//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This file contains the Mips implementation of the TargetInstrInfo class. | |
// | |
//===----------------------------------------------------------------------===// | |
//===----------------------------------------------------------------------===// | |
// Instruction format superclass | |
//===----------------------------------------------------------------------===// | |
include "MipsInstrFormats.td" | |
//===----------------------------------------------------------------------===// | |
// Mips profiles and nodes | |
//===----------------------------------------------------------------------===// | |
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>; | |
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; | |
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, | |
SDTCisSameAs<1, 2>, | |
SDTCisSameAs<3, 4>, | |
SDTCisInt<4>]>; | |
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; | |
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; | |
def SDT_MipsMAddMSub : SDTypeProfile<0, 4, | |
[SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, | |
SDTCisSameAs<1, 2>, | |
SDTCisSameAs<2, 3>]>; | |
def SDT_MipsDivRem : SDTypeProfile<0, 2, | |
[SDTCisInt<0>, | |
SDTCisSameAs<0, 1>]>; | |
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; | |
def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, | |
SDTCisVT<1, iPTR>]>; | |
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; | |
def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, | |
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; | |
def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, | |
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, | |
SDTCisSameAs<0, 4>]>; | |
// Call | |
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, | |
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, | |
SDNPVariadic]>; | |
// Hi and Lo nodes are used to handle global addresses. Used on | |
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol | |
// static model. (nothing to do with Mips Registers Hi and Lo) | |
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; | |
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; | |
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; | |
// TlsGd node is used to handle General Dynamic TLS | |
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>; | |
// TprelHi and TprelLo nodes are used to handle Local Exec TLS | |
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>; | |
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>; | |
// Thread pointer | |
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; | |
// Return | |
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain, | |
SDNPOptInGlue]>; | |
// These are target-independent nodes, but have target-specific formats. | |
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, | |
[SDNPHasChain, SDNPOutGlue]>; | |
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, | |
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; | |
// MAdd*/MSub* nodes | |
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub, | |
[SDNPOptInGlue, SDNPOutGlue]>; | |
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub, | |
[SDNPOptInGlue, SDNPOutGlue]>; | |
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub, | |
[SDNPOptInGlue, SDNPOutGlue]>; | |
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub, | |
[SDNPOptInGlue, SDNPOutGlue]>; | |
// DivRem(u) nodes | |
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem, | |
[SDNPOutGlue]>; | |
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem, | |
[SDNPOutGlue]>; | |
// Target constant nodes that are not part of any isel patterns and remain | |
// unchanged can cause instructions with illegal operands to be emitted. | |
// Wrapper node patterns give the instruction selector a chance to replace | |
// target constant nodes that would otherwise remain unchanged with ADDiu | |
// nodes. Without these wrapper node patterns, the following conditional move | |
// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is | |
// compiled: | |
// movn %got(d)($gp), %got(c)($gp), $4 | |
// This instruction is illegal since movn can take only register operands. | |
def MipsWrapperPIC : SDNode<"MipsISD::WrapperPIC", SDTIntUnaryOp>; | |
// Pointer to dynamically allocated stack area. | |
def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc, | |
[SDNPHasChain, SDNPInGlue]>; | |
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>; | |
def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; | |
def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; | |
//===----------------------------------------------------------------------===// | |
// Mips Instruction Predicate Definitions. | |
//===----------------------------------------------------------------------===// | |
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">; | |
def HasBitCount : Predicate<"Subtarget.hasBitCount()">; | |
def HasSwap : Predicate<"Subtarget.hasSwap()">; | |
def HasCondMov : Predicate<"Subtarget.hasCondMov()">; | |
def HasMips32 : Predicate<"Subtarget.hasMips32()">; | |
def HasMips32r2 : Predicate<"Subtarget.hasMips32r2()">; | |
def HasMips64 : Predicate<"Subtarget.hasMips64()">; | |
def NotMips64 : Predicate<"!Subtarget.hasMips64()">; | |
def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">; | |
def IsN64 : Predicate<"Subtarget.isABI_N64()">; | |
def NotN64 : Predicate<"!Subtarget.isABI_N64()">; | |
//===----------------------------------------------------------------------===// | |
// Mips Operand, Complex Patterns and Transformations Definitions. | |
//===----------------------------------------------------------------------===// | |
// Instruction operand types | |
def brtarget : Operand<OtherVT>; | |
def calltarget : Operand<i32>; | |
def simm16 : Operand<i32>; | |
def simm16_64 : Operand<i64>; | |
def shamt : Operand<i32>; | |
// Unsigned Operand | |
def uimm16 : Operand<i32> { | |
let PrintMethod = "printUnsignedImm"; | |
} | |
// Address operand | |
def mem : Operand<i32> { | |
let PrintMethod = "printMemOperand"; | |
let MIOperandInfo = (ops CPURegs, simm16); | |
let EncoderMethod = "getMemEncoding"; | |
} | |
def mem64 : Operand<i64> { | |
let PrintMethod = "printMemOperand"; | |
let MIOperandInfo = (ops CPU64Regs, simm16_64); | |
} | |
def mem_ea : Operand<i32> { | |
let PrintMethod = "printMemOperandEA"; | |
let MIOperandInfo = (ops CPURegs, simm16); | |
let EncoderMethod = "getMemEncoding"; | |
} | |
// size operand of ext instruction | |
def size_ext : Operand<i32> { | |
let EncoderMethod = "getSizeExtEncoding"; | |
} | |
// size operand of ins instruction | |
def size_ins : Operand<i32> { | |
let EncoderMethod = "getSizeInsEncoding"; | |
} | |
// Transformation Function - get the lower 16 bits. | |
def LO16 : SDNodeXForm<imm, [{ | |
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF); | |
}]>; | |
// Transformation Function - get the higher 16 bits. | |
def HI16 : SDNodeXForm<imm, [{ | |
return getI32Imm((unsigned)N->getZExtValue() >> 16); | |
}]>; | |
// Node immediate fits as 16-bit sign extended on target immediate. | |
// e.g. addi, andi | |
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; | |
// Node immediate fits as 16-bit zero extended on target immediate. | |
// The LO16 param means that only the lower 16 bits of the node | |
// immediate are caught. | |
// e.g. addiu, sltiu | |
def immZExt16 : PatLeaf<(imm), [{ | |
if (N->getValueType(0) == MVT::i32) | |
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); | |
else | |
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); | |
}], LO16>; | |
// shamt field must fit in 5 bits. | |
def immZExt5 : PatLeaf<(imm), [{ | |
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ; | |
}]>; | |
// Mips Address Mode! SDNode frameindex could possibily be a match | |
// since load and store instructions from stack used it. | |
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>; | |
//===----------------------------------------------------------------------===// | |
// Pattern fragment for load/store | |
//===----------------------------------------------------------------------===// | |
class UnalignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{ | |
LoadSDNode *LD = cast<LoadSDNode>(N); | |
return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment(); | |
}]>; | |
class AlignedLoad<PatFrag Node> : PatFrag<(ops node:$ptr), (Node node:$ptr), [{ | |
LoadSDNode *LD = cast<LoadSDNode>(N); | |
return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment(); | |
}]>; | |
class UnalignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr), | |
(Node node:$val, node:$ptr), [{ | |
StoreSDNode *SD = cast<StoreSDNode>(N); | |
return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment(); | |
}]>; | |
class AlignedStore<PatFrag Node> : PatFrag<(ops node:$val, node:$ptr), | |
(Node node:$val, node:$ptr), [{ | |
StoreSDNode *SD = cast<StoreSDNode>(N); | |
return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment(); | |
}]>; | |
// Load/Store PatFrags. | |
def sextloadi16_a : AlignedLoad<sextloadi16>; | |
def zextloadi16_a : AlignedLoad<zextloadi16>; | |
def extloadi16_a : AlignedLoad<extloadi16>; | |
def load_a : AlignedLoad<load>; | |
def sextloadi32_a : AlignedLoad<sextloadi32>; | |
def zextloadi32_a : AlignedLoad<zextloadi32>; | |
def extloadi32_a : AlignedLoad<extloadi32>; | |
def truncstorei16_a : AlignedStore<truncstorei16>; | |
def store_a : AlignedStore<store>; | |
def truncstorei32_a : AlignedStore<truncstorei32>; | |
def sextloadi16_u : UnalignedLoad<sextloadi16>; | |
def zextloadi16_u : UnalignedLoad<zextloadi16>; | |
def extloadi16_u : UnalignedLoad<extloadi16>; | |
def load_u : UnalignedLoad<load>; | |
def sextloadi32_u : UnalignedLoad<sextloadi32>; | |
def zextloadi32_u : UnalignedLoad<zextloadi32>; | |
def extloadi32_u : UnalignedLoad<extloadi32>; | |
def truncstorei16_u : UnalignedStore<truncstorei16>; | |
def store_u : UnalignedStore<store>; | |
def truncstorei32_u : UnalignedStore<truncstorei32>; | |
//===----------------------------------------------------------------------===// | |
// Instructions specific format | |
//===----------------------------------------------------------------------===// | |
// Arithmetic and logical instructions with 3 register operands. | |
class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode, | |
InstrItinClass itin, RegisterClass RC, bit isComm = 0>: | |
FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), | |
!strconcat(instr_asm, "\t$rd, $rs, $rt"), | |
[(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> { | |
let shamt = 0; | |
let isCommutable = isComm; | |
} | |
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm, | |
InstrItinClass itin, RegisterClass RC, bit isComm = 0>: | |
FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), | |
!strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> { | |
let shamt = 0; | |
let isCommutable = isComm; | |
} | |
// Arithmetic and logical instructions with 2 register operands. | |
class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode, | |
Operand Od, PatLeaf imm_type, RegisterClass RC> : | |
FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16), | |
!strconcat(instr_asm, "\t$rt, $rs, $imm16"), | |
[(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu>; | |
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode, | |
Operand Od, PatLeaf imm_type, RegisterClass RC> : | |
FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16), | |
!strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>; | |
// Arithmetic Multiply ADD/SUB | |
let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in | |
class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> : | |
FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt), | |
!strconcat(instr_asm, "\t$rs, $rt"), | |
[(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> { | |
let rd = 0; | |
let shamt = 0; | |
let isCommutable = isComm; | |
} | |
// Logical | |
class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>: | |
FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt), | |
!strconcat(instr_asm, "\t$rd, $rs, $rt"), | |
[(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> { | |
let shamt = 0; | |
let isCommutable = 1; | |
} | |
// Shifts | |
class LogicR_shift_rotate_imm<bits<6> func, bits<5> _rs, string instr_asm, | |
SDNode OpNode>: | |
FR<0x00, func, (outs CPURegs:$rd), (ins CPURegs:$rt, shamt:$shamt), | |
!strconcat(instr_asm, "\t$rd, $rt, $shamt"), | |
[(set CPURegs:$rd, (OpNode CPURegs:$rt, (i32 immZExt5:$shamt)))], IIAlu> { | |
let rs = _rs; | |
} | |
class LogicR_shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm, | |
SDNode OpNode>: | |
FR<0x00, func, (outs CPURegs:$rd), (ins CPURegs:$rs, CPURegs:$rt), | |
!strconcat(instr_asm, "\t$rd, $rt, $rs"), | |
[(set CPURegs:$rd, (OpNode CPURegs:$rt, CPURegs:$rs))], IIAlu> { | |
let shamt = isRotate; | |
} | |
// Load Upper Imediate | |
class LoadUpper<bits<6> op, string instr_asm>: | |
FI<op, (outs CPURegs:$rt), (ins uimm16:$imm16), | |
!strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> { | |
let rs = 0; | |
} | |
class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern, | |
InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> { | |
bits<21> addr; | |
let Inst{25-21} = addr{20-16}; | |
let Inst{15-0} = addr{15-0}; | |
} | |
// Memory Load/Store | |
let canFoldAsLoad = 1 in | |
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC, | |
Operand MemOpnd, bit Pseudo>: | |
FMem<op, (outs RC:$rt), (ins MemOpnd:$addr), | |
!strconcat(instr_asm, "\t$rt, $addr"), | |
[(set RC:$rt, (OpNode addr:$addr))], IILoad> { | |
let isPseudo = Pseudo; | |
} | |
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC, | |
Operand MemOpnd, bit Pseudo>: | |
FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr), | |
!strconcat(instr_asm, "\t$rt, $addr"), | |
[(OpNode RC:$rt, addr:$addr)], IIStore> { | |
let isPseudo = Pseudo; | |
} | |
// 32-bit load. | |
multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode, | |
bit Pseudo = 0> { | |
def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>, | |
Requires<[NotN64]>; | |
def _P8 : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>, | |
Requires<[IsN64]>; | |
} | |
// 64-bit load. | |
multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode, | |
bit Pseudo = 0> { | |
def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>, | |
Requires<[NotN64]>; | |
def _P8 : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>, | |
Requires<[IsN64]>; | |
} | |
// 32-bit store. | |
multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode, | |
bit Pseudo = 0> { | |
def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>, | |
Requires<[NotN64]>; | |
def _P8 : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>, | |
Requires<[IsN64]>; | |
} | |
// 64-bit store. | |
multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode, | |
bit Pseudo = 0> { | |
def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>, | |
Requires<[NotN64]>; | |
def _P8 : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>, | |
Requires<[IsN64]>; | |
} | |
// Conditional Branch | |
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>: | |
CBranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16), | |
!strconcat(instr_asm, "\t$rs, $rt, $imm16"), | |
[(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> { | |
let isBranch = 1; | |
let isTerminator = 1; | |
let hasDelaySlot = 1; | |
} | |
class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op, | |
RegisterClass RC>: | |
CBranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16), | |
!strconcat(instr_asm, "\t$rs, $imm16"), | |
[(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> { | |
let rt = _rt; | |
let isBranch = 1; | |
let isTerminator = 1; | |
let hasDelaySlot = 1; | |
} | |
// SetCC | |
class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op, | |
RegisterClass RC>: | |
FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt), | |
!strconcat(instr_asm, "\t$rd, $rs, $rt"), | |
[(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))], | |
IIAlu> { | |
let shamt = 0; | |
} | |
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od, | |
PatLeaf imm_type, RegisterClass RC>: | |
FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16), | |
!strconcat(instr_asm, "\t$rt, $rs, $imm16"), | |
[(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))], | |
IIAlu>; | |
// Unconditional branch | |
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in | |
class JumpFJ<bits<6> op, string instr_asm>: | |
FJ<op, (outs), (ins brtarget:$target), | |
!strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch>; | |
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in | |
class JumpFR<bits<6> op, bits<6> func, string instr_asm>: | |
FR<op, func, (outs), (ins CPURegs:$rs), | |
!strconcat(instr_asm, "\t$rs"), [(brind CPURegs:$rs)], IIBranch> { | |
let rt = 0; | |
let rd = 0; | |
let shamt = 0; | |
} | |
// Jump and Link (Call) | |
let isCall=1, hasDelaySlot=1, | |
// All calls clobber the non-callee saved registers... | |
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, | |
K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in { | |
class JumpLink<bits<6> op, string instr_asm>: | |
FJ<op, (outs), (ins calltarget:$target, variable_ops), | |
!strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)], | |
IIBranch>; | |
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>: | |
FR<op, func, (outs), (ins CPURegs:$rs, variable_ops), | |
!strconcat(instr_asm, "\t$rs"), [(MipsJmpLink CPURegs:$rs)], IIBranch> { | |
let rt = 0; | |
let rd = 31; | |
let shamt = 0; | |
} | |
class BranchLink<string instr_asm>: | |
FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$imm16, variable_ops), | |
!strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch>; | |
} | |
// Mul, Div | |
class Mul<bits<6> func, string instr_asm, InstrItinClass itin>: | |
FR<0x00, func, (outs), (ins CPURegs:$rs, CPURegs:$rt), | |
!strconcat(instr_asm, "\t$rs, $rt"), [], itin> { | |
let rd = 0; | |
let shamt = 0; | |
let isCommutable = 1; | |
let Defs = [HI, LO]; | |
} | |
class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>: | |
FR<0x00, func, (outs), (ins CPURegs:$rs, CPURegs:$rt), | |
!strconcat(instr_asm, "\t$$zero, $rs, $rt"), | |
[(op CPURegs:$rs, CPURegs:$rt)], itin> { | |
let rd = 0; | |
let shamt = 0; | |
let Defs = [HI, LO]; | |
} | |
// Move from Hi/Lo | |
class MoveFromLOHI<bits<6> func, string instr_asm>: | |
FR<0x00, func, (outs CPURegs:$rd), (ins), | |
!strconcat(instr_asm, "\t$rd"), [], IIHiLo> { | |
let rs = 0; | |
let rt = 0; | |
let shamt = 0; | |
} | |
class MoveToLOHI<bits<6> func, string instr_asm>: | |
FR<0x00, func, (outs), (ins CPURegs:$rs), | |
!strconcat(instr_asm, "\t$rs"), [], IIHiLo> { | |
let rt = 0; | |
let rd = 0; | |
let shamt = 0; | |
} | |
class EffectiveAddress<string instr_asm> : | |
FMem<0x09, (outs CPURegs:$rt), (ins mem_ea:$addr), | |
instr_asm, [(set CPURegs:$rt, addr:$addr)], IIAlu>; | |
// Count Leading Ones/Zeros in Word | |
class CountLeading<bits<6> func, string instr_asm, list<dag> pattern>: | |
FR<0x1c, func, (outs CPURegs:$rd), (ins CPURegs:$rs), | |
!strconcat(instr_asm, "\t$rd, $rs"), pattern, IIAlu>, | |
Requires<[HasBitCount]> { | |
let shamt = 0; | |
let rt = rd; | |
} | |
// Sign Extend in Register. | |
class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt>: | |
FR<0x1f, 0x20, (outs CPURegs:$rd), (ins CPURegs:$rt), | |
!strconcat(instr_asm, "\t$rd, $rt"), | |
[(set CPURegs:$rd, (sext_inreg CPURegs:$rt, vt))], NoItinerary> { | |
let rs = 0; | |
let shamt = sa; | |
let Predicates = [HasSEInReg]; | |
} | |
// Byte Swap | |
class ByteSwap<bits<6> func, bits<5> sa, string instr_asm>: | |
FR<0x1f, func, (outs CPURegs:$rd), (ins CPURegs:$rt), | |
!strconcat(instr_asm, "\t$rd, $rt"), | |
[(set CPURegs:$rd, (bswap CPURegs:$rt))], NoItinerary> { | |
let rs = 0; | |
let shamt = sa; | |
let Predicates = [HasSwap]; | |
} | |
// Read Hardware | |
class ReadHardware: FR<0x1f, 0x3b, (outs CPURegs:$rt), (ins HWRegs:$rd), | |
"rdhwr\t$rt, $rd", [], IIAlu> { | |
let rs = 0; | |
let shamt = 0; | |
} | |
// Ext and Ins | |
class ExtIns<bits<6> _funct, string instr_asm, dag outs, dag ins, | |
list<dag> pattern, InstrItinClass itin>: | |
FR<0x1f, _funct, outs, ins, !strconcat(instr_asm, " $rt, $rs, $pos, $sz"), | |
pattern, itin>, Requires<[HasMips32r2]> { | |
bits<5> pos; | |
bits<5> sz; | |
let rd = sz; | |
let shamt = pos; | |
} | |
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). | |
class Atomic2Ops<PatFrag Op, string Opstr> : | |
MipsPseudo<(outs CPURegs:$dst), (ins CPURegs:$ptr, CPURegs:$incr), | |
!strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"), | |
[(set CPURegs:$dst, | |
(Op CPURegs:$ptr, CPURegs:$incr))]>; | |
// Atomic Compare & Swap. | |
class AtomicCmpSwap<PatFrag Op, string Width> : | |
MipsPseudo<(outs CPURegs:$dst), | |
(ins CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap), | |
!strconcat("atomic_cmp_swap_", Width, | |
"\t$dst, $ptr, $cmp, $swap"), | |
[(set CPURegs:$dst, | |
(Op CPURegs:$ptr, CPURegs:$cmp, CPURegs:$swap))]>; | |
//===----------------------------------------------------------------------===// | |
// Pseudo instructions | |
//===----------------------------------------------------------------------===// | |
// As stack alignment is always done with addiu, we need a 16-bit immediate | |
let Defs = [SP], Uses = [SP] in { | |
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt), | |
"!ADJCALLSTACKDOWN $amt", | |
[(callseq_start timm:$amt)]>; | |
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2), | |
"!ADJCALLSTACKUP $amt1", | |
[(callseq_end timm:$amt1, timm:$amt2)]>; | |
} | |
// Some assembly macros need to avoid pseudoinstructions and assembler | |
// automatic reodering, we should reorder ourselves. | |
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>; | |
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>; | |
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>; | |
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>; | |
// These macros are inserted to prevent GAS from complaining | |
// when using the AT register. | |
def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>; | |
def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>; | |
// When handling PIC code the assembler needs .cpload and .cprestore | |
// directives. If the real instructions corresponding these directives | |
// are used, we have the same behavior, but get also a bunch of warnings | |
// from the assembler. | |
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>; | |
def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>; | |
let usesCustomInserter = 1 in { | |
def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, "load_add_8">; | |
def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, "load_add_16">; | |
def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, "load_add_32">; | |
def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, "load_sub_8">; | |
def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, "load_sub_16">; | |
def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, "load_sub_32">; | |
def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, "load_and_8">; | |
def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, "load_and_16">; | |
def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, "load_and_32">; | |
def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, "load_or_8">; | |
def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, "load_or_16">; | |
def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, "load_or_32">; | |
def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, "load_xor_8">; | |
def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, "load_xor_16">; | |
def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, "load_xor_32">; | |
def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, "load_nand_8">; | |
def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, "load_nand_16">; | |
def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, "load_nand_32">; | |
def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, "swap_8">; | |
def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, "swap_16">; | |
def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, "swap_32">; | |
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, "8">; | |
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, "16">; | |
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, "32">; | |
} | |
//===----------------------------------------------------------------------===// | |
// Instruction definition | |
//===----------------------------------------------------------------------===// | |
//===----------------------------------------------------------------------===// | |
// MipsI Instructions | |
//===----------------------------------------------------------------------===// | |
/// Arithmetic Instructions (ALU Immediate) | |
def ADDiu : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>; | |
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>; | |
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>; | |
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>; | |
def ANDi : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>; | |
def ORi : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>; | |
def XORi : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>; | |
def LUi : LoadUpper<0x0f, "lui">; | |
/// Arithmetic Instructions (3-Operand, R-Type) | |
def ADDu : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>; | |
def SUBu : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>; | |
def ADD : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>; | |
def SUB : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>; | |
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>; | |
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>; | |
def AND : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>; | |
def OR : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPURegs, 1>; | |
def XOR : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>; | |
def NOR : LogicNOR<0x00, 0x27, "nor", CPURegs>; | |
/// Shift Instructions | |
def SLL : LogicR_shift_rotate_imm<0x00, 0x00, "sll", shl>; | |
def SRL : LogicR_shift_rotate_imm<0x02, 0x00, "srl", srl>; | |
def SRA : LogicR_shift_rotate_imm<0x03, 0x00, "sra", sra>; | |
def SLLV : LogicR_shift_rotate_reg<0x04, 0x00, "sllv", shl>; | |
def SRLV : LogicR_shift_rotate_reg<0x06, 0x00, "srlv", srl>; | |
def SRAV : LogicR_shift_rotate_reg<0x07, 0x00, "srav", sra>; | |
// Rotate Instructions | |
let Predicates = [HasMips32r2] in { | |
def ROTR : LogicR_shift_rotate_imm<0x02, 0x01, "rotr", rotr>; | |
def ROTRV : LogicR_shift_rotate_reg<0x06, 0x01, "rotrv", rotr>; | |
} | |
/// Load and Store Instructions | |
/// aligned | |
defm LB : LoadM32<0x20, "lb", sextloadi8>; | |
defm LBu : LoadM32<0x24, "lbu", zextloadi8>; | |
defm LH : LoadM32<0x21, "lh", sextloadi16_a>; | |
defm LHu : LoadM32<0x25, "lhu", zextloadi16_a>; | |
defm LW : LoadM32<0x23, "lw", load_a>; | |
defm SB : StoreM32<0x28, "sb", truncstorei8>; | |
defm SH : StoreM32<0x29, "sh", truncstorei16_a>; | |
defm SW : StoreM32<0x2b, "sw", store_a>; | |
/// unaligned | |
defm ULH : LoadM32<0x21, "ulh", sextloadi16_u, 1>; | |
defm ULHu : LoadM32<0x25, "ulhu", zextloadi16_u, 1>; | |
defm ULW : LoadM32<0x23, "ulw", load_u, 1>; | |
defm USH : StoreM32<0x29, "ush", truncstorei16_u, 1>; | |
defm USW : StoreM32<0x2b, "usw", store_u, 1>; | |
let hasSideEffects = 1 in | |
def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype", | |
[(MipsSync imm:$stype)], NoItinerary, FrmOther> | |
{ | |
bits<5> stype; | |
let Opcode = 0; | |
let Inst{25-11} = 0; | |
let Inst{10-6} = stype; | |
let Inst{5-0} = 15; | |
} | |
/// Load-linked, Store-conditional | |
let mayLoad = 1 in | |
def LL : FMem<0x30, (outs CPURegs:$rt), (ins mem:$addr), | |
"ll\t$rt, $addr", [], IILoad>; | |
let mayStore = 1, Constraints = "$rt = $dst" in | |
def SC : FMem<0x38, (outs CPURegs:$dst), (ins CPURegs:$rt, mem:$addr), | |
"sc\t$rt, $addr", [], IIStore>; | |
/// Jump and Branch Instructions | |
def J : JumpFJ<0x02, "j">; | |
let isIndirectBranch = 1 in | |
def JR : JumpFR<0x00, 0x08, "jr">; | |
def JAL : JumpLink<0x03, "jal">; | |
def JALR : JumpLinkReg<0x00, 0x09, "jalr">; | |
def BEQ : CBranch<0x04, "beq", seteq, CPURegs>; | |
def BNE : CBranch<0x05, "bne", setne, CPURegs>; | |
def BGEZ : CBranchZero<0x01, 1, "bgez", setge, CPURegs>; | |
def BGTZ : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>; | |
def BLEZ : CBranchZero<0x06, 0, "blez", setle, CPURegs>; | |
def BLTZ : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>; | |
let rt=0x11 in | |
def BGEZAL : BranchLink<"bgezal">; | |
let rt=0x10 in | |
def BLTZAL : BranchLink<"bltzal">; | |
let isReturn=1, isTerminator=1, hasDelaySlot=1, | |
isBarrier=1, hasCtrlDep=1, rd=0, rt=0, shamt=0 in | |
def RET : FR <0x00, 0x08, (outs), (ins CPURegs:$target), | |
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>; | |
/// Multiply and Divide Instructions. | |
def MULT : Mul<0x18, "mult", IIImul>; | |
def MULTu : Mul<0x19, "multu", IIImul>; | |
def SDIV : Div<MipsDivRem, 0x1a, "div", IIIdiv>; | |
def UDIV : Div<MipsDivRemU, 0x1b, "divu", IIIdiv>; | |
let Defs = [HI] in | |
def MTHI : MoveToLOHI<0x11, "mthi">; | |
let Defs = [LO] in | |
def MTLO : MoveToLOHI<0x13, "mtlo">; | |
let Uses = [HI] in | |
def MFHI : MoveFromLOHI<0x10, "mfhi">; | |
let Uses = [LO] in | |
def MFLO : MoveFromLOHI<0x12, "mflo">; | |
/// Sign Ext In Register Instructions. | |
def SEB : SignExtInReg<0x10, "seb", i8>; | |
def SEH : SignExtInReg<0x18, "seh", i16>; | |
/// Count Leading | |
def CLZ : CountLeading<0x20, "clz", | |
[(set CPURegs:$rd, (ctlz CPURegs:$rs))]>; | |
def CLO : CountLeading<0x21, "clo", | |
[(set CPURegs:$rd, (ctlz (not CPURegs:$rs)))]>; | |
/// Byte Swap | |
def WSBW : ByteSwap<0x20, 0x2, "wsbw">; | |
// Conditional moves: | |
// These instructions are expanded in | |
// MipsISelLowering::EmitInstrWithCustomInserter if target does not have | |
// conditional move instructions. | |
// flag:int, data:int | |
class CondMovIntInt<bits<6> funct, string instr_asm> : | |
FR<0, funct, (outs CPURegs:$rd), | |
(ins CPURegs:$rs, CPURegs:$rt, CPURegs:$F), | |
!strconcat(instr_asm, "\t$rd, $rs, $rt"), [], NoItinerary> { | |
let shamt = 0; | |
let usesCustomInserter = 1; | |
let Constraints = "$F = $rd"; | |
} | |
def MOVZ_I : CondMovIntInt<0x0a, "movz">; | |
def MOVN_I : CondMovIntInt<0x0b, "movn">; | |
/// No operation | |
let addr=0 in | |
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>; | |
// FrameIndexes are legalized when they are operands from load/store | |
// instructions. The same not happens for stack address copies, so an | |
// add op with mem ComplexPattern is used and the stack address copy | |
// can be matched. It's similar to Sparc LEA_ADDRi | |
def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr">; | |
// DynAlloc node points to dynamically allocated stack space. | |
// $sp is added to the list of implicitly used registers to prevent dead code | |
// elimination from removing instructions that modify $sp. | |
let Uses = [SP] in | |
def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr">; | |
// MADD*/MSUB* | |
def MADD : MArithR<0, "madd", MipsMAdd, 1>; | |
def MADDU : MArithR<1, "maddu", MipsMAddu, 1>; | |
def MSUB : MArithR<4, "msub", MipsMSub>; | |
def MSUBU : MArithR<5, "msubu", MipsMSubu>; | |
// MUL is a assembly macro in the current used ISAs. In recent ISA's | |
// it is a real instruction. | |
def MUL : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>, | |
Requires<[HasMips32]>; | |
def RDHWR : ReadHardware; | |
def EXT : ExtIns<0, "ext", (outs CPURegs:$rt), | |
(ins CPURegs:$rs, uimm16:$pos, size_ext:$sz), | |
[(set CPURegs:$rt, | |
(MipsExt CPURegs:$rs, immZExt5:$pos, immZExt5:$sz))], | |
NoItinerary>; | |
let Constraints = "$src = $rt" in | |
def INS : ExtIns<4, "ins", (outs CPURegs:$rt), | |
(ins CPURegs:$rs, uimm16:$pos, size_ins:$sz, CPURegs:$src), | |
[(set CPURegs:$rt, | |
(MipsIns CPURegs:$rs, immZExt5:$pos, immZExt5:$sz, | |
CPURegs:$src))], | |
NoItinerary>; | |
//===----------------------------------------------------------------------===// | |
// Arbitrary patterns that map to one or more instructions | |
//===----------------------------------------------------------------------===// | |
// Small immediates | |
def : Pat<(i32 immSExt16:$in), | |
(ADDiu ZERO, imm:$in)>; | |
def : Pat<(i32 immZExt16:$in), | |
(ORi ZERO, imm:$in)>; | |
// Arbitrary immediates | |
def : Pat<(i32 imm:$imm), | |
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; | |
// Carry patterns | |
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs), | |
(SUBu CPURegs:$lhs, CPURegs:$rhs)>; | |
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs), | |
(ADDu CPURegs:$lhs, CPURegs:$rhs)>; | |
def : Pat<(addc CPURegs:$src, immSExt16:$imm), | |
(ADDiu CPURegs:$src, imm:$imm)>; | |
// Call | |
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), | |
(JAL tglobaladdr:$dst)>; | |
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)), | |
(JAL texternalsym:$dst)>; | |
//def : Pat<(MipsJmpLink CPURegs:$dst), | |
// (JALR CPURegs:$dst)>; | |
// hi/lo relocs | |
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; | |
def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>; | |
def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; | |
def : Pat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>; | |
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)), | |
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>; | |
def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)), | |
(ADDiu CPURegs:$hi, tblockaddress:$lo)>; | |
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; | |
def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>; | |
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)), | |
(ADDiu CPURegs:$hi, tjumptable:$lo)>; | |
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; | |
def : Pat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>; | |
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)), | |
(ADDiu CPURegs:$hi, tconstpool:$lo)>; | |
// gp_rel relocs | |
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)), | |
(ADDiu CPURegs:$gp, tglobaladdr:$in)>; | |
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)), | |
(ADDiu CPURegs:$gp, tconstpool:$in)>; | |
// tlsgd | |
def : Pat<(add CPURegs:$gp, (MipsTlsGd tglobaltlsaddr:$in)), | |
(ADDiu CPURegs:$gp, tglobaltlsaddr:$in)>; | |
// tprel hi/lo | |
def : Pat<(MipsTprelHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>; | |
def : Pat<(MipsTprelLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>; | |
def : Pat<(add CPURegs:$hi, (MipsTprelLo tglobaltlsaddr:$lo)), | |
(ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>; | |
// wrapper_pic | |
class WrapperPICPat<SDNode node>: | |
Pat<(MipsWrapperPIC node:$in), | |
(ADDiu GP, node:$in)>; | |
def : WrapperPICPat<tglobaladdr>; | |
def : WrapperPICPat<tconstpool>; | |
def : WrapperPICPat<texternalsym>; | |
def : WrapperPICPat<tblockaddress>; | |
def : WrapperPICPat<tjumptable>; | |
// Mips does not have "not", so we expand our way | |
def : Pat<(not CPURegs:$in), | |
(NOR CPURegs:$in, ZERO)>; | |
// extended load and stores | |
def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>; | |
def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>; | |
def : Pat<(extloadi16_a addr:$src), (LHu addr:$src)>; | |
def : Pat<(extloadi16_u addr:$src), (ULHu addr:$src)>; | |
// peepholes | |
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; | |
// brcond patterns | |
multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp, | |
Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp, | |
Instruction SLTiuOp, Register ZEROReg> { | |
def : Pat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), | |
(BNEOp RC:$lhs, ZEROReg, bb:$dst)>; | |
def : Pat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), | |
(BEQOp RC:$lhs, ZEROReg, bb:$dst)>; | |
def : Pat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), | |
(BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; | |
def : Pat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), | |
(BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; | |
def : Pat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), | |
(BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; | |
def : Pat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), | |
(BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; | |
def : Pat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), | |
(BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; | |
def : Pat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), | |
(BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; | |
def : Pat<(brcond RC:$cond, bb:$dst), | |
(BNEOp RC:$cond, ZEROReg, bb:$dst)>; | |
} | |
defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>; | |
// select patterns | |
multiclass MovzPats<RegisterClass RC, Instruction MOVZInst> { | |
def : Pat<(select (i32 (setge CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (SLT CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; | |
def : Pat<(select (i32 (setuge CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; | |
def : Pat<(select (i32 (setge CPURegs:$lhs, immSExt16:$rhs)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs), RC:$F)>; | |
def : Pat<(select (i32 (setuge CPURegs:$lh, immSExt16:$rh)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (SLTiu CPURegs:$lh, immSExt16:$rh), RC:$F)>; | |
def : Pat<(select (i32 (setle CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (SLT CPURegs:$rhs, CPURegs:$lhs), RC:$F)>; | |
def : Pat<(select (i32 (setule CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs), RC:$F)>; | |
def : Pat<(select (i32 (seteq CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; | |
def : Pat<(select (i32 (seteq CPURegs:$lhs, 0)), RC:$T, RC:$F), | |
(MOVZInst RC:$T, CPURegs:$lhs, RC:$F)>; | |
} | |
multiclass MovnPats<RegisterClass RC, Instruction MOVNInst> { | |
def : Pat<(select (i32 (setne CPURegs:$lhs, CPURegs:$rhs)), RC:$T, RC:$F), | |
(MOVNInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; | |
def : Pat<(select CPURegs:$cond, RC:$T, RC:$F), | |
(MOVNInst RC:$T, CPURegs:$cond, RC:$F)>; | |
def : Pat<(select (i32 (setne CPURegs:$lhs, 0)), RC:$T, RC:$F), | |
(MOVNInst RC:$T, CPURegs:$lhs, RC:$F)>; | |
} | |
defm : MovzPats<CPURegs, MOVZ_I>; | |
defm : MovnPats<CPURegs, MOVN_I>; | |
// setcc patterns | |
multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp, | |
Instruction SLTuOp, Register ZEROReg> { | |
def : Pat<(seteq RC:$lhs, RC:$rhs), | |
(SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; | |
def : Pat<(setne RC:$lhs, RC:$rhs), | |
(SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; | |
} | |
multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { | |
def : Pat<(setle RC:$lhs, RC:$rhs), | |
(XORi (SLTOp RC:$rhs, RC:$lhs), 1)>; | |
def : Pat<(setule RC:$lhs, RC:$rhs), | |
(XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>; | |
} | |
multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { | |
def : Pat<(setgt RC:$lhs, RC:$rhs), | |
(SLTOp RC:$rhs, RC:$lhs)>; | |
def : Pat<(setugt RC:$lhs, RC:$rhs), | |
(SLTuOp RC:$rhs, RC:$lhs)>; | |
} | |
multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> { | |
def : Pat<(setge RC:$lhs, RC:$rhs), | |
(XORi (SLTOp RC:$lhs, RC:$rhs), 1)>; | |
def : Pat<(setuge RC:$lhs, RC:$rhs), | |
(XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>; | |
} | |
multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp, | |
Instruction SLTiuOp> { | |
def : Pat<(setge RC:$lhs, immSExt16:$rhs), | |
(XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; | |
def : Pat<(setuge RC:$lhs, immSExt16:$rhs), | |
(XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; | |
} | |
defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>; | |
defm : SetlePats<CPURegs, SLT, SLTu>; | |
defm : SetgtPats<CPURegs, SLT, SLTu>; | |
defm : SetgePats<CPURegs, SLT, SLTu>; | |
defm : SetgeImmPats<CPURegs, SLTi, SLTiu>; | |
// select MipsDynAlloc | |
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>; | |
//===----------------------------------------------------------------------===// | |
// Floating Point Support | |
//===----------------------------------------------------------------------===// | |
include "MipsInstrFPU.td" | |
include "Mips64InstrInfo.td" | |