| //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that Mips uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "mips-lower" |
| #include "MipsISelLowering.h" |
| #include "MipsMachineFunction.h" |
| #include "MipsTargetMachine.h" |
| #include "MipsTargetObjectFile.h" |
| #include "MipsSubtarget.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/CallingConv.h" |
| #include "InstPrinter/MipsInstPrinter.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| using namespace llvm; |
| |
| // If I is a shifted mask, set the size (Size) and the first bit of the |
| // mask (Pos), and return true. |
| // For example, if I is 0x003ff800, (Pos, Size) = (11, 11). |
| static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { |
| if (!isUInt<32>(I) || !isShiftedMask_32(I)) |
| return false; |
| |
| Size = CountPopulation_32(I); |
| Pos = CountTrailingZeros_32(I); |
| return true; |
| } |
| |
| const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| case MipsISD::JmpLink: return "MipsISD::JmpLink"; |
| case MipsISD::Hi: return "MipsISD::Hi"; |
| case MipsISD::Lo: return "MipsISD::Lo"; |
| case MipsISD::GPRel: return "MipsISD::GPRel"; |
| case MipsISD::TlsGd: return "MipsISD::TlsGd"; |
| case MipsISD::TprelHi: return "MipsISD::TprelHi"; |
| case MipsISD::TprelLo: return "MipsISD::TprelLo"; |
| case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; |
| case MipsISD::Ret: return "MipsISD::Ret"; |
| case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; |
| case MipsISD::FPCmp: return "MipsISD::FPCmp"; |
| case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; |
| case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; |
| case MipsISD::FPRound: return "MipsISD::FPRound"; |
| case MipsISD::MAdd: return "MipsISD::MAdd"; |
| case MipsISD::MAddu: return "MipsISD::MAddu"; |
| case MipsISD::MSub: return "MipsISD::MSub"; |
| case MipsISD::MSubu: return "MipsISD::MSubu"; |
| case MipsISD::DivRem: return "MipsISD::DivRem"; |
| case MipsISD::DivRemU: return "MipsISD::DivRemU"; |
| case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; |
| case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; |
| case MipsISD::WrapperPIC: return "MipsISD::WrapperPIC"; |
| case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; |
| case MipsISD::Sync: return "MipsISD::Sync"; |
| case MipsISD::Ext: return "MipsISD::Ext"; |
| case MipsISD::Ins: return "MipsISD::Ins"; |
| default: return NULL; |
| } |
| } |
| |
| MipsTargetLowering:: |
| MipsTargetLowering(MipsTargetMachine &TM) |
| : TargetLowering(TM, new MipsTargetObjectFile()), |
| Subtarget(&TM.getSubtarget<MipsSubtarget>()), |
| HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()) { |
| |
| // Mips does not have i1 type, so use i32 for |
| // setcc operations results (slt, sgt, ...). |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? |
| |
| // Set up the register classes |
| addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass); |
| addRegisterClass(MVT::f32, Mips::FGR32RegisterClass); |
| |
| if (HasMips64) |
| addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass); |
| |
| // When dealing with single precision only, use libcalls |
| if (!Subtarget->isSingleFloat()) { |
| if (HasMips64) |
| addRegisterClass(MVT::f64, Mips::FGR64RegisterClass); |
| else |
| addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass); |
| } |
| |
| // Load extented operations for i1 types must be promoted |
| setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // MIPS doesn't have extending float->double load/store |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // Used by legalize types to correctly generate the setcc result. |
| // Without this, every float setcc comes with a AND/OR with the result, |
| // we don't want this, since the fpcmp result goes to a flag register, |
| // which is used implicitly by brcond and select operations. |
| AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); |
| |
| // Mips Custom Operations |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIV, MVT::i64, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::UDIV, MVT::i64, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| |
| // Operations not directly supported by Mips. |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| |
| if (!Subtarget->hasMips32r2()) |
| setOperationAction(ISD::ROTR, MVT::i32, Expand); |
| |
| if (!Subtarget->hasMips64r2()) |
| setOperationAction(ISD::ROTR, MVT::i64, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FPOWI, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FLOG, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG2, MVT::f32, Expand); |
| setOperationAction(ISD::FLOG10, MVT::f32, Expand); |
| setOperationAction(ISD::FEXP, MVT::f32, Expand); |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| // Use the default for now |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); |
| |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); |
| |
| setInsertFencesForAtomic(true); |
| |
| if (Subtarget->isSingleFloat()) |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| |
| if (!Subtarget->hasSEInReg()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| } |
| |
| if (!Subtarget->hasBitCount()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| if (!Subtarget->hasSwap()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| setTargetDAGCombine(ISD::ADDE); |
| setTargetDAGCombine(ISD::SUBE); |
| setTargetDAGCombine(ISD::SDIVREM); |
| setTargetDAGCombine(ISD::UDIVREM); |
| setTargetDAGCombine(ISD::SETCC); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::OR); |
| |
| setMinFunctionAlignment(2); |
| |
| setStackPointerRegisterToSaveRestore(Mips::SP); |
| computeRegisterProperties(); |
| |
| setExceptionPointerRegister(Mips::A0); |
| setExceptionSelectorRegister(Mips::A1); |
| } |
| |
| bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const { |
| MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; |
| return SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16; |
| } |
| |
| EVT MipsTargetLowering::getSetCCResultType(EVT VT) const { |
| return MVT::i32; |
| } |
| |
| // SelectMadd - |
| // Transforms a subgraph in CurDAG if the following pattern is found: |
| // (addc multLo, Lo0), (adde multHi, Hi0), |
| // where, |
| // multHi/Lo: product of multiplication |
| // Lo0: initial value of Lo register |
| // Hi0: initial value of Hi register |
| // Return true if pattern matching was successful. |
| static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) { |
| // ADDENode's second operand must be a flag output of an ADDC node in order |
| // for the matching to be successful. |
| SDNode* ADDCNode = ADDENode->getOperand(2).getNode(); |
| |
| if (ADDCNode->getOpcode() != ISD::ADDC) |
| return false; |
| |
| SDValue MultHi = ADDENode->getOperand(0); |
| SDValue MultLo = ADDCNode->getOperand(0); |
| SDNode* MultNode = MultHi.getNode(); |
| unsigned MultOpc = MultHi.getOpcode(); |
| |
| // MultHi and MultLo must be generated by the same node, |
| if (MultLo.getNode() != MultNode) |
| return false; |
| |
| // and it must be a multiplication. |
| if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI) |
| return false; |
| |
| // MultLo amd MultHi must be the first and second output of MultNode |
| // respectively. |
| if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0) |
| return false; |
| |
| // Transform this to a MADD only if ADDENode and ADDCNode are the only users |
| // of the values of MultNode, in which case MultNode will be removed in later |
| // phases. |
| // If there exist users other than ADDENode or ADDCNode, this function returns |
| // here, which will result in MultNode being mapped to a single MULT |
| // instruction node rather than a pair of MULT and MADD instructions being |
| // produced. |
| if (!MultHi.hasOneUse() || !MultLo.hasOneUse()) |
| return false; |
| |
| SDValue Chain = CurDAG->getEntryNode(); |
| DebugLoc dl = ADDENode->getDebugLoc(); |
| |
| // create MipsMAdd(u) node |
| MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd; |
| |
| SDValue MAdd = CurDAG->getNode(MultOpc, dl, |
| MVT::Glue, |
| MultNode->getOperand(0),// Factor 0 |
| MultNode->getOperand(1),// Factor 1 |
| ADDCNode->getOperand(1),// Lo0 |
| ADDENode->getOperand(1));// Hi0 |
| |
| // create CopyFromReg nodes |
| SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32, |
| MAdd); |
| SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl, |
| Mips::HI, MVT::i32, |
| CopyFromLo.getValue(2)); |
| |
| // replace uses of adde and addc here |
| if (!SDValue(ADDCNode, 0).use_empty()) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo); |
| |
| if (!SDValue(ADDENode, 0).use_empty()) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi); |
| |
| return true; |
| } |
| |
| // SelectMsub - |
| // Transforms a subgraph in CurDAG if the following pattern is found: |
| // (addc Lo0, multLo), (sube Hi0, multHi), |
| // where, |
| // multHi/Lo: product of multiplication |
| // Lo0: initial value of Lo register |
| // Hi0: initial value of Hi register |
| // Return true if pattern matching was successful. |
| static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) { |
| // SUBENode's second operand must be a flag output of an SUBC node in order |
| // for the matching to be successful. |
| SDNode* SUBCNode = SUBENode->getOperand(2).getNode(); |
| |
| if (SUBCNode->getOpcode() != ISD::SUBC) |
| return false; |
| |
| SDValue MultHi = SUBENode->getOperand(1); |
| SDValue MultLo = SUBCNode->getOperand(1); |
| SDNode* MultNode = MultHi.getNode(); |
| unsigned MultOpc = MultHi.getOpcode(); |
| |
| // MultHi and MultLo must be generated by the same node, |
| if (MultLo.getNode() != MultNode) |
| return false; |
| |
| // and it must be a multiplication. |
| if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI) |
| return false; |
| |
| // MultLo amd MultHi must be the first and second output of MultNode |
| // respectively. |
| if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0) |
| return false; |
| |
| // Transform this to a MSUB only if SUBENode and SUBCNode are the only users |
| // of the values of MultNode, in which case MultNode will be removed in later |
| // phases. |
| // If there exist users other than SUBENode or SUBCNode, this function returns |
| // here, which will result in MultNode being mapped to a single MULT |
| // instruction node rather than a pair of MULT and MSUB instructions being |
| // produced. |
| if (!MultHi.hasOneUse() || !MultLo.hasOneUse()) |
| return false; |
| |
| SDValue Chain = CurDAG->getEntryNode(); |
| DebugLoc dl = SUBENode->getDebugLoc(); |
| |
| // create MipsSub(u) node |
| MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub; |
| |
| SDValue MSub = CurDAG->getNode(MultOpc, dl, |
| MVT::Glue, |
| MultNode->getOperand(0),// Factor 0 |
| MultNode->getOperand(1),// Factor 1 |
| SUBCNode->getOperand(0),// Lo0 |
| SUBENode->getOperand(0));// Hi0 |
| |
| // create CopyFromReg nodes |
| SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32, |
| MSub); |
| SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl, |
| Mips::HI, MVT::i32, |
| CopyFromLo.getValue(2)); |
| |
| // replace uses of sube and subc here |
| if (!SDValue(SUBCNode, 0).use_empty()) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo); |
| |
| if (!SDValue(SUBENode, 0).use_empty()) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi); |
| |
| return true; |
| } |
| |
| static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget* Subtarget) { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| if (Subtarget->hasMips32() && SelectMadd(N, &DAG)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget* Subtarget) { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| if (Subtarget->hasMips32() && SelectMsub(N, &DAG)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget* Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| EVT Ty = N->getValueType(0); |
| unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64; |
| unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64; |
| unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem : |
| MipsISD::DivRemU; |
| DebugLoc dl = N->getDebugLoc(); |
| |
| SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue, |
| N->getOperand(0), N->getOperand(1)); |
| SDValue InChain = DAG.getEntryNode(); |
| SDValue InGlue = DivRem; |
| |
| // insert MFLO |
| if (N->hasAnyUseOfValue(0)) { |
| SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty, |
| InGlue); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); |
| InChain = CopyFromLo.getValue(1); |
| InGlue = CopyFromLo.getValue(2); |
| } |
| |
| // insert MFHI |
| if (N->hasAnyUseOfValue(1)) { |
| SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl, |
| HI, Ty, InGlue); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); |
| } |
| |
| return SDValue(); |
| } |
| |
| static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown fp condition code!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: return Mips::FCOND_OEQ; |
| case ISD::SETUNE: return Mips::FCOND_UNE; |
| case ISD::SETLT: |
| case ISD::SETOLT: return Mips::FCOND_OLT; |
| case ISD::SETGT: |
| case ISD::SETOGT: return Mips::FCOND_OGT; |
| case ISD::SETLE: |
| case ISD::SETOLE: return Mips::FCOND_OLE; |
| case ISD::SETGE: |
| case ISD::SETOGE: return Mips::FCOND_OGE; |
| case ISD::SETULT: return Mips::FCOND_ULT; |
| case ISD::SETULE: return Mips::FCOND_ULE; |
| case ISD::SETUGT: return Mips::FCOND_UGT; |
| case ISD::SETUGE: return Mips::FCOND_UGE; |
| case ISD::SETUO: return Mips::FCOND_UN; |
| case ISD::SETO: return Mips::FCOND_OR; |
| case ISD::SETNE: |
| case ISD::SETONE: return Mips::FCOND_ONE; |
| case ISD::SETUEQ: return Mips::FCOND_UEQ; |
| } |
| } |
| |
| |
| // Returns true if condition code has to be inverted. |
| static bool InvertFPCondCode(Mips::CondCode CC) { |
| if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) |
| return false; |
| |
| if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) |
| return true; |
| |
| assert(false && "Illegal Condition Code"); |
| return false; |
| } |
| |
| // Creates and returns an FPCmp node from a setcc node. |
| // Returns Op if setcc is not a floating point comparison. |
| static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) { |
| // must be a SETCC node |
| if (Op.getOpcode() != ISD::SETCC) |
| return Op; |
| |
| SDValue LHS = Op.getOperand(0); |
| |
| if (!LHS.getValueType().isFloatingPoint()) |
| return Op; |
| |
| SDValue RHS = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of |
| // node if necessary. |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| |
| return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS, |
| DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32)); |
| } |
| |
| // Creates and returns a CMovFPT/F node. |
| static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True, |
| SDValue False, DebugLoc DL) { |
| bool invert = InvertFPCondCode((Mips::CondCode) |
| cast<ConstantSDNode>(Cond.getOperand(2)) |
| ->getSExtValue()); |
| |
| return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, |
| True.getValueType(), True, False, Cond); |
| } |
| |
| static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget* Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0)); |
| |
| if (Cond.getOpcode() != MipsISD::FPCmp) |
| return SDValue(); |
| |
| SDValue True = DAG.getConstant(1, MVT::i32); |
| SDValue False = DAG.getConstant(0, MVT::i32); |
| |
| return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc()); |
| } |
| |
| static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget* Subtarget) { |
| // Pattern match EXT. |
| // $dst = and ((sra or srl) $src , pos), (2**size - 1) |
| // => ext $dst, $src, size, pos |
| if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2()) |
| return SDValue(); |
| |
| SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1); |
| |
| // Op's first operand must be a shift right. |
| if (ShiftRight.getOpcode() != ISD::SRA && ShiftRight.getOpcode() != ISD::SRL) |
| return SDValue(); |
| |
| // The second operand of the shift must be an immediate. |
| uint64_t Pos; |
| ConstantSDNode *CN; |
| if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1)))) |
| return SDValue(); |
| |
| Pos = CN->getZExtValue(); |
| |
| uint64_t SMPos, SMSize; |
| // Op's second operand must be a shifted mask. |
| if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || |
| !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize)) |
| return SDValue(); |
| |
| // Return if the shifted mask does not start at bit 0 or the sum of its size |
| // and Pos exceeds the word's size. |
| if (SMPos != 0 || Pos + SMSize > 32) |
| return SDValue(); |
| |
| return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), MVT::i32, |
| ShiftRight.getOperand(0), |
| DAG.getConstant(Pos, MVT::i32), |
| DAG.getConstant(SMSize, MVT::i32)); |
| } |
| |
| static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const MipsSubtarget* Subtarget) { |
| // Pattern match INS. |
| // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), |
| // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 |
| // => ins $dst, $src, size, pos, $src1 |
| if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2()) |
| return SDValue(); |
| |
| SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); |
| uint64_t SMPos0, SMSize0, SMPos1, SMSize1; |
| ConstantSDNode *CN; |
| |
| // See if Op's first operand matches (and $src1 , mask0). |
| if (And0.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || |
| !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) |
| return SDValue(); |
| |
| // See if Op's second operand matches (and (shl $src, pos), mask1). |
| if (And1.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || |
| !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) |
| return SDValue(); |
| |
| // The shift masks must have the same position and size. |
| if (SMPos0 != SMPos1 || SMSize0 != SMSize1) |
| return SDValue(); |
| |
| SDValue Shl = And1.getOperand(0); |
| if (Shl.getOpcode() != ISD::SHL) |
| return SDValue(); |
| |
| if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) |
| return SDValue(); |
| |
| unsigned Shamt = CN->getZExtValue(); |
| |
| // Return if the shift amount and the first bit position of mask are not the |
| // same. |
| if (Shamt != SMPos0) |
| return SDValue(); |
| |
| return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), MVT::i32, |
| Shl.getOperand(0), |
| DAG.getConstant(SMPos0, MVT::i32), |
| DAG.getConstant(SMSize0, MVT::i32), |
| And0.getOperand(0)); |
| } |
| |
| SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) |
| const { |
| SelectionDAG &DAG = DCI.DAG; |
| unsigned opc = N->getOpcode(); |
| |
| switch (opc) { |
| default: break; |
| case ISD::ADDE: |
| return PerformADDECombine(N, DAG, DCI, Subtarget); |
| case ISD::SUBE: |
| return PerformSUBECombine(N, DAG, DCI, Subtarget); |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| return PerformDivRemCombine(N, DAG, DCI, Subtarget); |
| case ISD::SETCC: |
| return PerformSETCCCombine(N, DAG, DCI, Subtarget); |
| case ISD::AND: |
| return PerformANDCombine(N, DAG, DCI, Subtarget); |
| case ISD::OR: |
| return PerformORCombine(N, DAG, DCI, Subtarget); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerOperation(SDValue Op, SelectionDAG &DAG) const |
| { |
| switch (Op.getOpcode()) |
| { |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lower helper functions |
| //===----------------------------------------------------------------------===// |
| |
| // AddLiveIn - This helper function adds the specified physical register to the |
| // MachineFunction as a live in value. It also creates a corresponding |
| // virtual register for it. |
| static unsigned |
| AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) |
| { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); |
| MF.getRegInfo().addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| // Get fp branch code (not opcode) from condition code. |
| static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) { |
| if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) |
| return Mips::BRANCH_T; |
| |
| if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) |
| return Mips::BRANCH_F; |
| |
| return Mips::BRANCH_INVALID; |
| } |
| |
| static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB, |
| DebugLoc dl, |
| const MipsSubtarget* Subtarget, |
| const TargetInstrInfo *TII, |
| bool isFPCmp, unsigned Opc) { |
| // There is no need to expand CMov instructions if target has |
| // conditional moves. |
| if (Subtarget->hasCondMov()) |
| return BB; |
| |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // setcc r1, r2, r3 |
| // bNE r1, r0, copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // Emit the right instruction according to the type of the operands compared |
| if (isFPCmp) |
| BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB); |
| else |
| BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg()) |
| .addReg(Mips::ZERO).addMBB(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] |
| // ... |
| BB = sinkMBB; |
| |
| if (isFPCmp) |
| BuildMI(*BB, BB->begin(), dl, |
| TII->get(Mips::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB); |
| else |
| BuildMI(*BB, BB->begin(), dl, |
| TII->get(Mips::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB); |
| |
| MI->eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| switch (MI->getOpcode()) { |
| default: |
| assert(false && "Unexpected instr type to insert"); |
| return NULL; |
| case Mips::MOVT: |
| case Mips::MOVT_S: |
| case Mips::MOVT_D: |
| return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1F); |
| case Mips::MOVF: |
| case Mips::MOVF_S: |
| case Mips::MOVF_D: |
| return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1T); |
| case Mips::MOVZ_I: |
| case Mips::MOVZ_S: |
| case Mips::MOVZ_D: |
| return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BNE); |
| case Mips::MOVN_I: |
| case Mips::MOVN_S: |
| case Mips::MOVN_D: |
| return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BEQ); |
| |
| case Mips::ATOMIC_LOAD_ADD_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu); |
| case Mips::ATOMIC_LOAD_ADD_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu); |
| case Mips::ATOMIC_LOAD_ADD_I32: |
| return EmitAtomicBinary(MI, BB, 4, Mips::ADDu); |
| |
| case Mips::ATOMIC_LOAD_AND_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND); |
| case Mips::ATOMIC_LOAD_AND_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND); |
| case Mips::ATOMIC_LOAD_AND_I32: |
| return EmitAtomicBinary(MI, BB, 4, Mips::AND); |
| |
| case Mips::ATOMIC_LOAD_OR_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR); |
| case Mips::ATOMIC_LOAD_OR_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR); |
| case Mips::ATOMIC_LOAD_OR_I32: |
| return EmitAtomicBinary(MI, BB, 4, Mips::OR); |
| |
| case Mips::ATOMIC_LOAD_XOR_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR); |
| case Mips::ATOMIC_LOAD_XOR_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR); |
| case Mips::ATOMIC_LOAD_XOR_I32: |
| return EmitAtomicBinary(MI, BB, 4, Mips::XOR); |
| |
| case Mips::ATOMIC_LOAD_NAND_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, 0, true); |
| case Mips::ATOMIC_LOAD_NAND_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, 0, true); |
| case Mips::ATOMIC_LOAD_NAND_I32: |
| return EmitAtomicBinary(MI, BB, 4, 0, true); |
| |
| case Mips::ATOMIC_LOAD_SUB_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu); |
| case Mips::ATOMIC_LOAD_SUB_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu); |
| case Mips::ATOMIC_LOAD_SUB_I32: |
| return EmitAtomicBinary(MI, BB, 4, Mips::SUBu); |
| |
| case Mips::ATOMIC_SWAP_I8: |
| return EmitAtomicBinaryPartword(MI, BB, 1, 0); |
| case Mips::ATOMIC_SWAP_I16: |
| return EmitAtomicBinaryPartword(MI, BB, 2, 0); |
| case Mips::ATOMIC_SWAP_I32: |
| return EmitAtomicBinary(MI, BB, 4, 0); |
| |
| case Mips::ATOMIC_CMP_SWAP_I8: |
| return EmitAtomicCmpSwapPartword(MI, BB, 1); |
| case Mips::ATOMIC_CMP_SWAP_I16: |
| return EmitAtomicCmpSwapPartword(MI, BB, 2); |
| case Mips::ATOMIC_CMP_SWAP_I32: |
| return EmitAtomicCmpSwap(MI, BB, 4); |
| } |
| } |
| |
| // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and |
| // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) |
| MachineBasicBlock * |
| MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, |
| unsigned Size, unsigned BinOpcode, |
| bool Nand) const { |
| assert(Size == 4 && "Unsupported size for EmitAtomicBinary."); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| unsigned OldVal = MI->getOperand(0).getReg(); |
| unsigned Ptr = MI->getOperand(1).getReg(); |
| unsigned Incr = MI->getOperand(2).getReg(); |
| |
| unsigned StoreVal = RegInfo.createVirtualRegister(RC); |
| unsigned AndRes = RegInfo.createVirtualRegister(RC); |
| unsigned Success = RegInfo.createVirtualRegister(RC); |
| |
| // insert new blocks after the current block |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = BB; |
| ++It; |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| loopMBB->addSuccessor(loopMBB); |
| loopMBB->addSuccessor(exitMBB); |
| |
| // loopMBB: |
| // ll oldval, 0(ptr) |
| // <binop> storeval, oldval, incr |
| // sc success, storeval, 0(ptr) |
| // beq success, $0, loopMBB |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(Ptr).addImm(0); |
| if (Nand) { |
| // and andres, oldval, incr |
| // nor storeval, $0, andres |
| BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr); |
| BuildMI(BB, dl, TII->get(Mips::NOR), StoreVal) |
| .addReg(Mips::ZERO).addReg(AndRes); |
| } else if (BinOpcode) { |
| // <binop> storeval, oldval, incr |
| BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr); |
| } else { |
| StoreVal = Incr; |
| } |
| BuildMI(BB, dl, TII->get(Mips::SC), Success) |
| .addReg(StoreVal).addReg(Ptr).addImm(0); |
| BuildMI(BB, dl, TII->get(Mips::BEQ)) |
| .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return exitMBB; |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size, unsigned BinOpcode, |
| bool Nand) const { |
| assert((Size == 1 || Size == 2) && |
| "Unsupported size for EmitAtomicBinaryPartial."); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| unsigned Dest = MI->getOperand(0).getReg(); |
| unsigned Ptr = MI->getOperand(1).getReg(); |
| unsigned Incr = MI->getOperand(2).getReg(); |
| |
| unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); |
| unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); |
| unsigned Mask = RegInfo.createVirtualRegister(RC); |
| unsigned Mask2 = RegInfo.createVirtualRegister(RC); |
| unsigned NewVal = RegInfo.createVirtualRegister(RC); |
| unsigned OldVal = RegInfo.createVirtualRegister(RC); |
| unsigned Incr2 = RegInfo.createVirtualRegister(RC); |
| unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); |
| unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); |
| unsigned MaskUpper = RegInfo.createVirtualRegister(RC); |
| unsigned AndRes = RegInfo.createVirtualRegister(RC); |
| unsigned BinOpRes = RegInfo.createVirtualRegister(RC); |
| unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); |
| unsigned StoreVal = RegInfo.createVirtualRegister(RC); |
| unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); |
| unsigned SrlRes = RegInfo.createVirtualRegister(RC); |
| unsigned SllRes = RegInfo.createVirtualRegister(RC); |
| unsigned Success = RegInfo.createVirtualRegister(RC); |
| |
| // insert new blocks after the current block |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = BB; |
| ++It; |
| MF->insert(It, loopMBB); |
| MF->insert(It, sinkMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(loopMBB); |
| loopMBB->addSuccessor(loopMBB); |
| loopMBB->addSuccessor(sinkMBB); |
| sinkMBB->addSuccessor(exitMBB); |
| |
| // thisMBB: |
| // addiu masklsb2,$0,-4 # 0xfffffffc |
| // and alignedaddr,ptr,masklsb2 |
| // andi ptrlsb2,ptr,3 |
| // sll shiftamt,ptrlsb2,3 |
| // ori maskupper,$0,255 # 0xff |
| // sll mask,maskupper,shiftamt |
| // nor mask2,$0,mask |
| // sll incr2,incr,shiftamt |
| |
| int64_t MaskImm = (Size == 1) ? 255 : 65535; |
| BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2) |
| .addReg(Mips::ZERO).addImm(-4); |
| BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr) |
| .addReg(Ptr).addReg(MaskLSB2); |
| BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); |
| BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); |
| BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper) |
| .addReg(Mips::ZERO).addImm(MaskImm); |
| BuildMI(BB, dl, TII->get(Mips::SLLV), Mask) |
| .addReg(ShiftAmt).addReg(MaskUpper); |
| BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); |
| BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr); |
| |
| |
| // atomic.load.binop |
| // loopMBB: |
| // ll oldval,0(alignedaddr) |
| // binop binopres,oldval,incr2 |
| // and newval,binopres,mask |
| // and maskedoldval0,oldval,mask2 |
| // or storeval,maskedoldval0,newval |
| // sc success,storeval,0(alignedaddr) |
| // beq success,$0,loopMBB |
| |
| // atomic.swap |
| // loopMBB: |
| // ll oldval,0(alignedaddr) |
| // and newval,incr2,mask |
| // and maskedoldval0,oldval,mask2 |
| // or storeval,maskedoldval0,newval |
| // sc success,storeval,0(alignedaddr) |
| // beq success,$0,loopMBB |
| |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0); |
| if (Nand) { |
| // and andres, oldval, incr2 |
| // nor binopres, $0, andres |
| // and newval, binopres, mask |
| BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2); |
| BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes) |
| .addReg(Mips::ZERO).addReg(AndRes); |
| BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); |
| } else if (BinOpcode) { |
| // <binop> binopres, oldval, incr2 |
| // and newval, binopres, mask |
| BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2); |
| BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); |
| } else {// atomic.swap |
| // and newval, incr2, mask |
| BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask); |
| } |
| |
| BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0) |
| .addReg(OldVal).addReg(Mask2); |
| BuildMI(BB, dl, TII->get(Mips::OR), StoreVal) |
| .addReg(MaskedOldVal0).addReg(NewVal); |
| BuildMI(BB, dl, TII->get(Mips::SC), Success) |
| .addReg(StoreVal).addReg(AlignedAddr).addImm(0); |
| BuildMI(BB, dl, TII->get(Mips::BEQ)) |
| .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); |
| |
| // sinkMBB: |
| // and maskedoldval1,oldval,mask |
| // srl srlres,maskedoldval1,shiftamt |
| // sll sllres,srlres,24 |
| // sra dest,sllres,24 |
| BB = sinkMBB; |
| int64_t ShiftImm = (Size == 1) ? 24 : 16; |
| |
| BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1) |
| .addReg(OldVal).addReg(Mask); |
| BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes) |
| .addReg(ShiftAmt).addReg(MaskedOldVal1); |
| BuildMI(BB, dl, TII->get(Mips::SLL), SllRes) |
| .addReg(SrlRes).addImm(ShiftImm); |
| BuildMI(BB, dl, TII->get(Mips::SRA), Dest) |
| .addReg(SllRes).addImm(ShiftImm); |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return exitMBB; |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size) const { |
| assert(Size == 4 && "Unsupported size for EmitAtomicCmpSwap."); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| unsigned Dest = MI->getOperand(0).getReg(); |
| unsigned Ptr = MI->getOperand(1).getReg(); |
| unsigned OldVal = MI->getOperand(2).getReg(); |
| unsigned NewVal = MI->getOperand(3).getReg(); |
| |
| unsigned Success = RegInfo.createVirtualRegister(RC); |
| |
| // insert new blocks after the current block |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = BB; |
| ++It; |
| MF->insert(It, loop1MBB); |
| MF->insert(It, loop2MBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loop1MBB |
| BB->addSuccessor(loop1MBB); |
| loop1MBB->addSuccessor(exitMBB); |
| loop1MBB->addSuccessor(loop2MBB); |
| loop2MBB->addSuccessor(loop1MBB); |
| loop2MBB->addSuccessor(exitMBB); |
| |
| // loop1MBB: |
| // ll dest, 0(ptr) |
| // bne dest, oldval, exitMBB |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(Mips::LL), Dest).addReg(Ptr).addImm(0); |
| BuildMI(BB, dl, TII->get(Mips::BNE)) |
| .addReg(Dest).addReg(OldVal).addMBB(exitMBB); |
| |
| // loop2MBB: |
| // sc success, newval, 0(ptr) |
| // beq success, $0, loop1MBB |
| BB = loop2MBB; |
| BuildMI(BB, dl, TII->get(Mips::SC), Success) |
| .addReg(NewVal).addReg(Ptr).addImm(0); |
| BuildMI(BB, dl, TII->get(Mips::BEQ)) |
| .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return exitMBB; |
| } |
| |
| MachineBasicBlock * |
| MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size) const { |
| assert((Size == 1 || Size == 2) && |
| "Unsupported size for EmitAtomicCmpSwapPartial."); |
| |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i32); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| unsigned Dest = MI->getOperand(0).getReg(); |
| unsigned Ptr = MI->getOperand(1).getReg(); |
| unsigned CmpVal = MI->getOperand(2).getReg(); |
| unsigned NewVal = MI->getOperand(3).getReg(); |
| |
| unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); |
| unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); |
| unsigned Mask = RegInfo.createVirtualRegister(RC); |
| unsigned Mask2 = RegInfo.createVirtualRegister(RC); |
| unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); |
| unsigned OldVal = RegInfo.createVirtualRegister(RC); |
| unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); |
| unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); |
| unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); |
| unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); |
| unsigned MaskUpper = RegInfo.createVirtualRegister(RC); |
| unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); |
| unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); |
| unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); |
| unsigned StoreVal = RegInfo.createVirtualRegister(RC); |
| unsigned SrlRes = RegInfo.createVirtualRegister(RC); |
| unsigned SllRes = RegInfo.createVirtualRegister(RC); |
| unsigned Success = RegInfo.createVirtualRegister(RC); |
| |
| // insert new blocks after the current block |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = BB; |
| ++It; |
| MF->insert(It, loop1MBB); |
| MF->insert(It, loop2MBB); |
| MF->insert(It, sinkMBB); |
| MF->insert(It, exitMBB); |
| |
| // Transfer the remainder of BB and its successor edges to exitMBB. |
| exitMBB->splice(exitMBB->begin(), BB, |
| llvm::next(MachineBasicBlock::iterator(MI)), |
| BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(loop1MBB); |
| loop1MBB->addSuccessor(sinkMBB); |
| loop1MBB->addSuccessor(loop2MBB); |
| loop2MBB->addSuccessor(loop1MBB); |
| loop2MBB->addSuccessor(sinkMBB); |
| sinkMBB->addSuccessor(exitMBB); |
| |
| // FIXME: computation of newval2 can be moved to loop2MBB. |
| // thisMBB: |
| // addiu masklsb2,$0,-4 # 0xfffffffc |
| // and alignedaddr,ptr,masklsb2 |
| // andi ptrlsb2,ptr,3 |
| // sll shiftamt,ptrlsb2,3 |
| // ori maskupper,$0,255 # 0xff |
| // sll mask,maskupper,shiftamt |
| // nor mask2,$0,mask |
| // andi maskedcmpval,cmpval,255 |
| // sll shiftedcmpval,maskedcmpval,shiftamt |
| // andi maskednewval,newval,255 |
| // sll shiftednewval,maskednewval,shiftamt |
| int64_t MaskImm = (Size == 1) ? 255 : 65535; |
| BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2) |
| .addReg(Mips::ZERO).addImm(-4); |
| BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr) |
| .addReg(Ptr).addReg(MaskLSB2); |
| BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); |
| BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); |
| BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper) |
| .addReg(Mips::ZERO).addImm(MaskImm); |
| BuildMI(BB, dl, TII->get(Mips::SLLV), Mask) |
| .addReg(ShiftAmt).addReg(MaskUpper); |
| BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); |
| BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal) |
| .addReg(CmpVal).addImm(MaskImm); |
| BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal) |
| .addReg(ShiftAmt).addReg(MaskedCmpVal); |
| BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal) |
| .addReg(NewVal).addImm(MaskImm); |
| BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal) |
| .addReg(ShiftAmt).addReg(MaskedNewVal); |
| |
| // loop1MBB: |
| // ll oldval,0(alginedaddr) |
| // and maskedoldval0,oldval,mask |
| // bne maskedoldval0,shiftedcmpval,sinkMBB |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0); |
| BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0) |
| .addReg(OldVal).addReg(Mask); |
| BuildMI(BB, dl, TII->get(Mips::BNE)) |
| .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB); |
| |
| // loop2MBB: |
| // and maskedoldval1,oldval,mask2 |
| // or storeval,maskedoldval1,shiftednewval |
| // sc success,storeval,0(alignedaddr) |
| // beq success,$0,loop1MBB |
| BB = loop2MBB; |
| BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1) |
| .addReg(OldVal).addReg(Mask2); |
| BuildMI(BB, dl, TII->get(Mips::OR), StoreVal) |
| .addReg(MaskedOldVal1).addReg(ShiftedNewVal); |
| BuildMI(BB, dl, TII->get(Mips::SC), Success) |
| .addReg(StoreVal).addReg(AlignedAddr).addImm(0); |
| BuildMI(BB, dl, TII->get(Mips::BEQ)) |
| .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); |
| |
| // sinkMBB: |
| // srl srlres,maskedoldval0,shiftamt |
| // sll sllres,srlres,24 |
| // sra dest,sllres,24 |
| BB = sinkMBB; |
| int64_t ShiftImm = (Size == 1) ? 24 : 16; |
| |
| BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes) |
| .addReg(ShiftAmt).addReg(MaskedOldVal0); |
| BuildMI(BB, dl, TII->get(Mips::SLL), SllRes) |
| .addReg(SrlRes).addImm(ShiftImm); |
| BuildMI(BB, dl, TII->get(Mips::SRA), Dest) |
| .addReg(SllRes).addImm(ShiftImm); |
| |
| MI->eraseFromParent(); // The instruction is gone now. |
| |
| return exitMBB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Misc Lower Operation implementation |
| //===----------------------------------------------------------------------===// |
| SDValue MipsTargetLowering:: |
| LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const |
| { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| assert(getTargetMachine().getFrameLowering()->getStackAlignment() >= |
| cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() && |
| "Cannot lower if the alignment of the allocated space is larger than \ |
| that of the stack."); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // Get a reference from Mips stack pointer |
| SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32); |
| |
| // Subtract the dynamic size from the actual stack size to |
| // obtain the new stack size. |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size); |
| |
| // The Sub result contains the new stack start address, so it |
| // must be placed in the stack pointer register. |
| Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub, |
| SDValue()); |
| |
| // This node always has two return values: a new stack pointer |
| // value and a chain |
| SDVTList VTLs = DAG.getVTList(MVT::i32, MVT::Other); |
| SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy()); |
| SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) }; |
| |
| return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerBRCOND(SDValue Op, SelectionDAG &DAG) const |
| { |
| // The first operand is the chain, the second is the condition, the third is |
| // the block to branch to if the condition is true. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Dest = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1)); |
| |
| // Return if flag is not set by a floating point comparison. |
| if (CondRes.getOpcode() != MipsISD::FPCmp) |
| return Op; |
| |
| SDValue CCNode = CondRes.getOperand(2); |
| Mips::CondCode CC = |
| (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); |
| SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32); |
| |
| return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode, |
| Dest, CondRes); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerSELECT(SDValue Op, SelectionDAG &DAG) const |
| { |
| SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0)); |
| |
| // Return if flag is not set by a floating point comparison. |
| if (Cond.getOpcode() != MipsISD::FPCmp) |
| return Op; |
| |
| return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), |
| Op.getDebugLoc()); |
| } |
| |
| SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| // FIXME there isn't actually debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) { |
| SDVTList VTs = DAG.getVTList(MVT::i32); |
| |
| MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering(); |
| |
| // %gp_rel relocation |
| if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, |
| MipsII::MO_GPREL); |
| SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1); |
| SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); |
| return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode); |
| } |
| // %hi/%lo relocation |
| SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, |
| MipsII::MO_ABS_HI); |
| SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, |
| MipsII::MO_ABS_LO); |
| SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo); |
| return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); |
| } |
| |
| EVT ValTy = Op.getValueType(); |
| bool HasGotOfst = (GV->hasInternalLinkage() || |
| (GV->hasLocalLinkage() && !isa<Function>(GV))); |
| unsigned GotFlag = IsN64 ? |
| (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) : |
| MipsII::MO_GOT; |
| SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag); |
| GA = DAG.getNode(MipsISD::WrapperPIC, dl, ValTy, GA); |
| SDValue ResNode = DAG.getLoad(ValTy, dl, |
| DAG.getEntryNode(), GA, MachinePointerInfo(), |
| false, false, 0); |
| // On functions and global targets not internal linked only |
| // a load from got/GP is necessary for PIC to work. |
| if (!HasGotOfst) |
| return ResNode; |
| SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, |
| IsN64 ? MipsII::MO_GOT_OFST : |
| MipsII::MO_ABS_LO); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo); |
| return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo); |
| } |
| |
| SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| // FIXME there isn't actually debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { |
| // %hi/%lo relocation |
| SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, |
| MipsII::MO_ABS_HI); |
| SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, |
| MipsII::MO_ABS_LO); |
| SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo); |
| return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo); |
| } |
| |
| SDValue BAGOTOffset = DAG.getBlockAddress(BA, MVT::i32, true, |
| MipsII::MO_GOT); |
| BAGOTOffset = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, BAGOTOffset); |
| SDValue BALOOffset = DAG.getBlockAddress(BA, MVT::i32, true, |
| MipsII::MO_ABS_LO); |
| SDValue Load = DAG.getLoad(MVT::i32, dl, |
| DAG.getEntryNode(), BAGOTOffset, |
| MachinePointerInfo(), false, false, 0); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALOOffset); |
| return DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const |
| { |
| // If the relocation model is PIC, use the General Dynamic TLS Model, |
| // otherwise use the Initial Exec or Local Exec TLS Model. |
| // TODO: implement Local Dynamic TLS model |
| |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| DebugLoc dl = GA->getDebugLoc(); |
| const GlobalValue *GV = GA->getGlobal(); |
| EVT PtrVT = getPointerTy(); |
| |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| // General Dynamic TLS Model |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, |
| 0, MipsII::MO_TLSGD); |
| SDValue Tlsgd = DAG.getNode(MipsISD::TlsGd, dl, MVT::i32, TGA); |
| SDValue GP = DAG.getRegister(Mips::GP, MVT::i32); |
| SDValue Argument = DAG.getNode(ISD::ADD, dl, MVT::i32, GP, Tlsgd); |
| |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); |
| Args.push_back(Entry); |
| std::pair<SDValue, SDValue> CallResult = |
| LowerCallTo(DAG.getEntryNode(), |
| (Type *) Type::getInt32Ty(*DAG.getContext()), |
| false, false, false, false, 0, CallingConv::C, false, true, |
| DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, |
| dl); |
| |
| return CallResult.first; |
| } |
| |
| SDValue Offset; |
| if (GV->isDeclaration()) { |
| // Initial Exec TLS Model |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, |
| MipsII::MO_GOTTPREL); |
| Offset = DAG.getLoad(MVT::i32, dl, |
| DAG.getEntryNode(), TGA, MachinePointerInfo(), |
| false, false, 0); |
| } else { |
| // Local Exec TLS Model |
| SDVTList VTs = DAG.getVTList(MVT::i32); |
| SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, |
| MipsII::MO_TPREL_HI); |
| SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, |
| MipsII::MO_TPREL_LO); |
| SDValue Hi = DAG.getNode(MipsISD::TprelHi, dl, VTs, &TGAHi, 1); |
| SDValue Lo = DAG.getNode(MipsISD::TprelLo, dl, MVT::i32, TGALo); |
| Offset = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo); |
| } |
| |
| SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT); |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerJumpTable(SDValue Op, SelectionDAG &DAG) const |
| { |
| SDValue ResNode; |
| SDValue HiPart; |
| // FIXME there isn't actually debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; |
| unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HI; |
| |
| EVT PtrVT = Op.getValueType(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); |
| |
| if (!IsPIC) { |
| SDValue Ops[] = { JTI }; |
| HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1); |
| } else {// Emit Load from Global Pointer |
| JTI = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, JTI); |
| HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI, |
| MachinePointerInfo(), |
| false, false, 0); |
| } |
| |
| SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, |
| MipsII::MO_ABS_LO); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTILo); |
| ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); |
| |
| return ResNode; |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerConstantPool(SDValue Op, SelectionDAG &DAG) const |
| { |
| SDValue ResNode; |
| ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); |
| const Constant *C = N->getConstVal(); |
| // FIXME there isn't actually debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // gp_rel relocation |
| // FIXME: we should reference the constant pool using small data sections, |
| // but the asm printer currently doesn't support this feature without |
| // hacking it. This feature should come soon so we can uncomment the |
| // stuff below. |
| //if (IsInSmallSection(C->getType())) { |
| // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP); |
| // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); |
| // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode); |
| |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { |
| SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), |
| N->getOffset(), MipsII::MO_ABS_HI); |
| SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), |
| N->getOffset(), MipsII::MO_ABS_LO); |
| SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo); |
| ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); |
| } else { |
| SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), |
| N->getOffset(), MipsII::MO_GOT); |
| CP = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, CP); |
| SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), |
| CP, MachinePointerInfo::getConstantPool(), |
| false, false, 0); |
| SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), |
| N->getOffset(), MipsII::MO_ABS_LO); |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo); |
| ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo); |
| } |
| |
| return ResNode; |
| } |
| |
| SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| getPointerTy()); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), |
| MachinePointerInfo(SV), |
| false, false, 0); |
| } |
| |
| static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG) { |
| // FIXME: Use ext/ins instructions if target architecture is Mips32r2. |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(0)); |
| SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(1)); |
| SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op0, |
| DAG.getConstant(0x7fffffff, MVT::i32)); |
| SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op1, |
| DAG.getConstant(0x80000000, MVT::i32)); |
| SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Result); |
| } |
| |
| static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool isLittle) { |
| // FIXME: |
| // Use ext/ins instructions if target architecture is Mips32r2. |
| // Eliminate redundant mfc1 and mtc1 instructions. |
| unsigned LoIdx = 0, HiIdx = 1; |
| |
| if (!isLittle) |
| std::swap(LoIdx, HiIdx); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Word0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, |
| Op.getOperand(0), |
| DAG.getConstant(LoIdx, MVT::i32)); |
| SDValue Hi0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, |
| Op.getOperand(0), DAG.getConstant(HiIdx, MVT::i32)); |
| SDValue Hi1 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, |
| Op.getOperand(1), DAG.getConstant(HiIdx, MVT::i32)); |
| SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi0, |
| DAG.getConstant(0x7fffffff, MVT::i32)); |
| SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi1, |
| DAG.getConstant(0x80000000, MVT::i32)); |
| SDValue Word1 = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1); |
| |
| if (!isLittle) |
| std::swap(Word0, Word1); |
| |
| return DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, Word0, Word1); |
| } |
| |
| SDValue MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) |
| const { |
| EVT Ty = Op.getValueType(); |
| |
| assert(Ty == MVT::f32 || Ty == MVT::f64); |
| |
| if (Ty == MVT::f32) |
| return LowerFCOPYSIGN32(Op, DAG); |
| else |
| return LowerFCOPYSIGN64(Op, DAG, Subtarget->isLittle()); |
| } |
| |
| SDValue MipsTargetLowering:: |
| LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| // check the depth |
| assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && |
| "Frame address can only be determined for current frame."); |
| |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Mips::FP, VT); |
| return FrameAddr; |
| } |
| |
| // TODO: set SType according to the desired memory barrier behavior. |
| SDValue MipsTargetLowering::LowerMEMBARRIER(SDValue Op, |
| SelectionDAG& DAG) const { |
| unsigned SType = 0; |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(SType, MVT::i32)); |
| } |
| |
| SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op, |
| SelectionDAG& DAG) const { |
| // FIXME: Need pseudo-fence for 'singlethread' fences |
| // FIXME: Set SType for weaker fences where supported/appropriate. |
| unsigned SType = 0; |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(SType, MVT::i32)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "MipsGenCallingConv.inc" |
| |
| //===----------------------------------------------------------------------===// |
| // TODO: Implement a generic logic using tblgen that can support this. |
| // Mips O32 ABI rules: |
| // --- |
| // i32 - Passed in A0, A1, A2, A3 and stack |
| // f32 - Only passed in f32 registers if no int reg has been used yet to hold |
| // an argument. Otherwise, passed in A1, A2, A3 and stack. |
| // f64 - Only passed in two aliased f32 registers if no int reg has been used |
| // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is |
| // not used, it must be shadowed. If only A3 is avaiable, shadow it and |
| // go to stack. |
| // |
| // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. |
| //===----------------------------------------------------------------------===// |
| |
| static bool CC_MipsO32(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| static const unsigned IntRegsSize=4, FloatRegsSize=2; |
| |
| static const unsigned IntRegs[] = { |
| Mips::A0, Mips::A1, Mips::A2, Mips::A3 |
| }; |
| static const unsigned F32Regs[] = { |
| Mips::F12, Mips::F14 |
| }; |
| static const unsigned F64Regs[] = { |
| Mips::D6, Mips::D7 |
| }; |
| |
| // ByVal Args |
| if (ArgFlags.isByVal()) { |
| State.HandleByVal(ValNo, ValVT, LocVT, LocInfo, |
| 1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags); |
| unsigned NextReg = (State.getNextStackOffset() + 3) / 4; |
| for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize); |
| r < std::min(IntRegsSize, NextReg); ++r) |
| State.AllocateReg(IntRegs[r]); |
| return false; |
| } |
| |
| // Promote i8 and i16 |
| if (LocVT == MVT::i8 || LocVT == MVT::i16) { |
| LocVT = MVT::i32; |
| if (ArgFlags.isSExt()) |
| LocInfo = CCValAssign::SExt; |
| else if (ArgFlags.isZExt()) |
| LocInfo = CCValAssign::ZExt; |
| else |
| LocInfo = CCValAssign::AExt; |
| } |
| |
| unsigned Reg; |
| |
| // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following |
| // is true: function is vararg, argument is 3rd or higher, there is previous |
| // argument which is not f32 or f64. |
| bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 |
| || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo; |
| unsigned OrigAlign = ArgFlags.getOrigAlign(); |
| bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); |
| |
| if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { |
| Reg = State.AllocateReg(IntRegs, IntRegsSize); |
| // If this is the first part of an i64 arg, |
| // the allocated register must be either A0 or A2. |
| if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) |
| Reg = State.AllocateReg(IntRegs, IntRegsSize); |
| LocVT = MVT::i32; |
| } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { |
| // Allocate int register and shadow next int register. If first |
| // available register is Mips::A1 or Mips::A3, shadow it too. |
| Reg = State.AllocateReg(IntRegs, IntRegsSize); |
| if (Reg == Mips::A1 || Reg == Mips::A3) |
| Reg = State.AllocateReg(IntRegs, IntRegsSize); |
| State.AllocateReg(IntRegs, IntRegsSize); |
| LocVT = MVT::i32; |
| } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { |
| // we are guaranteed to find an available float register |
| if (ValVT == MVT::f32) { |
| Reg = State.AllocateReg(F32Regs, FloatRegsSize); |
| // Shadow int register |
| State.AllocateReg(IntRegs, IntRegsSize); |
| } else { |
| Reg = State.AllocateReg(F64Regs, FloatRegsSize); |
| // Shadow int registers |
| unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize); |
| if (Reg2 == Mips::A1 || Reg2 == Mips::A3) |
| State.AllocateReg(IntRegs, IntRegsSize); |
| State.AllocateReg(IntRegs, IntRegsSize); |
| } |
| } else |
| llvm_unreachable("Cannot handle this ValVT."); |
| |
| unsigned SizeInBytes = ValVT.getSizeInBits() >> 3; |
| unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign); |
| |
| if (!Reg) |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| else |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| |
| return false; // CC must always match |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Call Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static const unsigned O32IntRegsSize = 4; |
| |
| static const unsigned O32IntRegs[] = { |
| Mips::A0, Mips::A1, Mips::A2, Mips::A3 |
| }; |
| |
| // Return next O32 integer argument register. |
| static unsigned getNextIntArgReg(unsigned Reg) { |
| assert((Reg == Mips::A0) || (Reg == Mips::A2)); |
| return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; |
| } |
| |
| // Write ByVal Arg to arg registers and stack. |
| static void |
| WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl, |
| SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass, |
| SmallVector<SDValue, 8>& MemOpChains, int& LastFI, |
| MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, |
| const CCValAssign &VA, const ISD::ArgFlagsTy& Flags, |
| MVT PtrType, bool isLittle) { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| unsigned Offset = 0; |
| uint32_t RemainingSize = Flags.getByValSize(); |
| unsigned ByValAlign = Flags.getByValAlign(); |
| |
| // Copy the first 4 words of byval arg to registers A0 - A3. |
| // FIXME: Use a stricter alignment if it enables better optimization in passes |
| // run later. |
| for (; RemainingSize >= 4 && LocMemOffset < 4 * 4; |
| Offset += 4, RemainingSize -= 4, LocMemOffset += 4) { |
| SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, |
| DAG.getConstant(Offset, MVT::i32)); |
| SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr, |
| MachinePointerInfo(), |
| false, false, std::min(ByValAlign, |
| (unsigned )4)); |
| MemOpChains.push_back(LoadVal.getValue(1)); |
| unsigned DstReg = O32IntRegs[LocMemOffset / 4]; |
| RegsToPass.push_back(std::make_pair(DstReg, LoadVal)); |
| } |
| |
| if (RemainingSize == 0) |
| return; |
| |
| // If there still is a register available for argument passing, write the |
| // remaining part of the structure to it using subword loads and shifts. |
| if (LocMemOffset < 4 * 4) { |
| assert(RemainingSize <= 3 && RemainingSize >= 1 && |
| "There must be one to three bytes remaining."); |
| unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize); |
| SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, |
| DAG.getConstant(Offset, MVT::i32)); |
| unsigned Alignment = std::min(ByValAlign, (unsigned )4); |
| SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain, |
| LoadPtr, MachinePointerInfo(), |
| MVT::getIntegerVT(LoadSize * 8), false, |
| false, Alignment); |
| MemOpChains.push_back(LoadVal.getValue(1)); |
| |
| // If target is big endian, shift it to the most significant half-word or |
| // byte. |
| if (!isLittle) |
| LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal, |
| DAG.getConstant(32 - LoadSize * 8, MVT::i32)); |
| |
| Offset += LoadSize; |
| RemainingSize -= LoadSize; |
| |
| // Read second subword if necessary. |
| if (RemainingSize != 0) { |
| assert(RemainingSize == 1 && "There must be one byte remaining."); |
| LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, |
| DAG.getConstant(Offset, MVT::i32)); |
| unsigned Alignment = std::min(ByValAlign, (unsigned )2); |
| SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain, |
| LoadPtr, MachinePointerInfo(), |
| MVT::i8, false, false, Alignment); |
| MemOpChains.push_back(Subword.getValue(1)); |
| // Insert the loaded byte to LoadVal. |
| // FIXME: Use INS if supported by target. |
| unsigned ShiftAmt = isLittle ? 16 : 8; |
| SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift); |
| } |
| |
| unsigned DstReg = O32IntRegs[LocMemOffset / 4]; |
| RegsToPass.push_back(std::make_pair(DstReg, LoadVal)); |
| return; |
| } |
| |
| // Create a fixed object on stack at offset LocMemOffset and copy |
| // remaining part of byval arg to it using memcpy. |
| SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, |
| DAG.getConstant(Offset, MVT::i32)); |
| LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true); |
| SDValue Dst = DAG.getFrameIndex(LastFI, PtrType); |
| ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src, |
| DAG.getConstant(RemainingSize, MVT::i32), |
| std::min(ByValAlign, (unsigned)4), |
| /*isVolatile=*/false, /*AlwaysInline=*/false, |
| MachinePointerInfo(0), MachinePointerInfo(0)); |
| } |
| |
| /// LowerCall - functions arguments are copied from virtual regs to |
| /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. |
| /// TODO: isTailCall. |
| SDValue |
| MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool &isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| // MIPs target does not yet support tail call optimization. |
| isTailCall = false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering(); |
| bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| if (Subtarget->isABI_O32()) |
| CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32); |
| else |
| CCInfo.AnalyzeCallOperands(Outs, CC_Mips); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NextStackOffset = CCInfo.getNextStackOffset(); |
| |
| // Chain is the output chain of the last Load/Store or CopyToReg node. |
| // ByValChain is the output chain of the last Memcpy node created for copying |
| // byval arguments to the stack. |
| SDValue Chain, CallSeqStart, ByValChain; |
| SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true); |
| Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal); |
| ByValChain = InChain; |
| |
| // If this is the first call, create a stack frame object that points to |
| // a location to which .cprestore saves $gp. |
| if (IsPIC && !MipsFI->getGPFI()) |
| MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true)); |
| |
| // Get the frame index of the stack frame object that points to the location |
| // of dynamically allocated area on the stack. |
| int DynAllocFI = MipsFI->getDynAllocFI(); |
| |
| // Update size of the maximum argument space. |
| // For O32, a minimum of four words (16 bytes) of argument space is |
| // allocated. |
| if (Subtarget->isABI_O32()) |
| NextStackOffset = std::max(NextStackOffset, (unsigned)16); |
| |
| unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize(); |
| |
| if (MaxCallFrameSize < NextStackOffset) { |
| MipsFI->setMaxCallFrameSize(NextStackOffset); |
| |
| // Set the offsets relative to $sp of the $gp restore slot and dynamically |
| // allocated stack space. These offsets must be aligned to a boundary |
| // determined by the stack alignment of the ABI. |
| unsigned StackAlignment = TFL->getStackAlignment(); |
| NextStackOffset = (NextStackOffset + StackAlignment - 1) / |
| StackAlignment * StackAlignment; |
| |
| if (IsPIC) |
| MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset); |
| |
| MFI->setObjectOffset(DynAllocFI, NextStackOffset); |
| } |
| |
| // With EABI is it possible to have 16 args on registers. |
| SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| SDValue Arg = OutVals[i]; |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| if (Subtarget->isABI_O32() && VA.isRegLoc()) { |
| if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32) |
| Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); |
| if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) { |
| SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, |
| Arg, DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, |
| Arg, DAG.getConstant(1, MVT::i32)); |
| if (!Subtarget->isLittle()) |
| std::swap(Lo, Hi); |
| unsigned LocRegLo = VA.getLocReg(); |
| unsigned LocRegHigh = getNextIntArgReg(LocRegLo); |
| RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); |
| RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); |
| continue; |
| } |
| } |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // Arguments that can be passed on register must be kept at |
| // RegsToPass vector |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| |
| // Register can't get to this point... |
| assert(VA.isMemLoc()); |
| |
| // ByVal Arg. |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| if (Flags.isByVal()) { |
| assert(Subtarget->isABI_O32() && |
| "No support for ByVal args by ABIs other than O32 yet."); |
| assert(Flags.getByValSize() && |
| "ByVal args of size 0 should have been ignored by front-end."); |
| WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, MFI, |
| DAG, Arg, VA, Flags, getPointerTy(), Subtarget->isLittle()); |
| continue; |
| } |
| |
| // Create the frame index object for this incoming parameter |
| LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, |
| VA.getLocMemOffset(), true); |
| SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy()); |
| |
| // emit ISD::STORE whichs stores the |
| // parameter value to a stack Location |
| MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(), |
| false, false, 0)); |
| } |
| |
| // Extend range of indices of frame objects for outgoing arguments that were |
| // created during this function call. Skip this step if no such objects were |
| // created. |
| if (LastFI) |
| MipsFI->extendOutArgFIRange(FirstFI, LastFI); |
| |
| // If a memcpy has been created to copy a byval arg to a stack, replace the |
| // chain input of CallSeqStart with ByValChain. |
| if (InChain != ByValChain) |
| DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain, |
| NextStackOffsetVal); |
| |
| // Transform all store nodes into one single node because all store |
| // nodes are independent of each other. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG; |
| bool LoadSymAddr = false; |
| SDValue CalleeLo; |
| |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| if (IsPIC && G->getGlobal()->hasInternalLinkage()) { |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, |
| getPointerTy(), 0,MipsII:: MO_GOT); |
| CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), |
| 0, MipsII::MO_ABS_LO); |
| } else { |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, |
| getPointerTy(), 0, OpFlag); |
| } |
| |
| LoadSymAddr = true; |
| } |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), |
| getPointerTy(), OpFlag); |
| LoadSymAddr = true; |
| } |
| |
| SDValue InFlag; |
| |
| // Create nodes that load address of callee and copy it to T9 |
| if (IsPIC) { |
| if (LoadSymAddr) { |
| // Load callee address |
| Callee = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, Callee); |
| SDValue LoadValue = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), Callee, |
| MachinePointerInfo::getGOT(), |
| false, false, 0); |
| |
| // Use GOT+LO if callee has internal linkage. |
| if (CalleeLo.getNode()) { |
| SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CalleeLo); |
| Callee = DAG.getNode(ISD::ADD, dl, MVT::i32, LoadValue, Lo); |
| } else |
| Callee = LoadValue; |
| } |
| |
| // copy to T9 |
| Chain = DAG.getCopyToReg(Chain, dl, Mips::T9, Callee, SDValue(0, 0)); |
| InFlag = Chain.getValue(1); |
| Callee = DAG.getRegister(Mips::T9, MVT::i32); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token |
| // chain and flag operands which copy the outgoing args into registers. |
| // The InFlag in necessary since all emitted instructions must be |
| // stuck together. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // MipsJmpLink = #chain, #target_address, #opt_in_flags... |
| // = Chain, Callee, Reg#1, Reg#2, ... |
| // |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END(Chain, |
| DAG.getIntPtrConstant(NextStackOffset, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, |
| Ins, dl, DAG, InVals); |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| SDValue |
| MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallResult(Ins, RetCC_Mips); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), |
| RVLocs[i].getValVT(), InFlag).getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Formal Arguments Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl, |
| std::vector<SDValue>& OutChains, |
| SelectionDAG &DAG, unsigned NumWords, SDValue FIN, |
| const CCValAssign &VA, const ISD::ArgFlagsTy& Flags) { |
| unsigned LocMem = VA.getLocMemOffset(); |
| unsigned FirstWord = LocMem / 4; |
| |
| // copy register A0 - A3 to frame object |
| for (unsigned i = 0; i < NumWords; ++i) { |
| unsigned CurWord = FirstWord + i; |
| if (CurWord >= O32IntRegsSize) |
| break; |
| |
| unsigned SrcReg = O32IntRegs[CurWord]; |
| unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass); |
| SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN, |
| DAG.getConstant(i * 4, MVT::i32)); |
| SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32), |
| StorePtr, MachinePointerInfo(), false, |
| false, 0); |
| OutChains.push_back(Store); |
| } |
| } |
| |
| /// LowerFormalArguments - transform physical registers into virtual registers |
| /// and generate load operations for arguments places on the stack. |
| SDValue |
| MipsTargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) |
| const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| MipsFI->setVarArgsFrameIndex(0); |
| |
| // Used with vargs to acumulate store chains. |
| std::vector<SDValue> OutChains; |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| if (Subtarget->isABI_O32()) |
| CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32); |
| else |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Mips); |
| |
| int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function. |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments stored on registers |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| unsigned ArgReg = VA.getLocReg(); |
| TargetRegisterClass *RC = 0; |
| |
| if (RegVT == MVT::i32) |
| RC = Mips::CPURegsRegisterClass; |
| else if (RegVT == MVT::i64) |
| RC = Mips::CPU64RegsRegisterClass; |
| else if (RegVT == MVT::f32) |
| RC = Mips::FGR32RegisterClass; |
| else if (RegVT == MVT::f64) |
| RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass; |
| else |
| llvm_unreachable("RegVT not supported by FormalArguments Lowering"); |
| |
| // Transform the arguments stored on |
| // physical registers into virtual ones |
| unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| |
| // If this is an 8 or 16-bit value, it has been passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| if (VA.getLocInfo() != CCValAssign::Full) { |
| unsigned Opcode = 0; |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| Opcode = ISD::AssertSext; |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| Opcode = ISD::AssertZext; |
| if (Opcode) |
| ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| } |
| |
| // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64 |
| if (Subtarget->isABI_O32()) { |
| if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32) |
| ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f32, ArgValue); |
| if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) { |
| unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(), |
| getNextIntArgReg(ArgReg), RC); |
| SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT); |
| if (!Subtarget->isLittle()) |
| std::swap(ArgValue, ArgValue2); |
| ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, |
| ArgValue, ArgValue2); |
| } |
| } |
| |
| InVals.push_back(ArgValue); |
| } else { // VA.isRegLoc() |
| |
| // sanity check |
| assert(VA.isMemLoc()); |
| |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| |
| if (Flags.isByVal()) { |
| assert(Subtarget->isABI_O32() && |
| "No support for ByVal args by ABIs other than O32 yet."); |
| assert(Flags.getByValSize() && |
| "ByVal args of size 0 should have been ignored by front-end."); |
| unsigned NumWords = (Flags.getByValSize() + 3) / 4; |
| LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(), |
| true); |
| SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy()); |
| InVals.push_back(FIN); |
| ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags); |
| |
| continue; |
| } |
| |
| // The stack pointer offset is relative to the caller stack frame. |
| LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, |
| VA.getLocMemOffset(), true); |
| |
| // Create load nodes to retrieve arguments from the stack |
| SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy()); |
| InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, |
| MachinePointerInfo::getFixedStack(LastFI), |
| false, false, 0)); |
| } |
| } |
| |
| // The mips ABIs for returning structs by value requires that we copy |
| // the sret argument into $v0 for the return. Save the argument into |
| // a virtual register so that we can access it from the return points. |
| if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { |
| unsigned Reg = MipsFI->getSRetReturnReg(); |
| if (!Reg) { |
| Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); |
| MipsFI->setSRetReturnReg(Reg); |
| } |
| SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); |
| } |
| |
| if (isVarArg && Subtarget->isABI_O32()) { |
| // Record the frame index of the first variable argument |
| // which is a value necessary to VASTART. |
| unsigned NextStackOffset = CCInfo.getNextStackOffset(); |
| assert(NextStackOffset % 4 == 0 && |
| "NextStackOffset must be aligned to 4-byte boundaries."); |
| LastFI = MFI->CreateFixedObject(4, NextStackOffset, true); |
| MipsFI->setVarArgsFrameIndex(LastFI); |
| |
| // If NextStackOffset is smaller than o32's 16-byte reserved argument area, |
| // copy the integer registers that have not been used for argument passing |
| // to the caller's stack frame. |
| for (; NextStackOffset < 16; NextStackOffset += 4) { |
| TargetRegisterClass *RC = Mips::CPURegsRegisterClass; |
| unsigned Idx = NextStackOffset / 4; |
| unsigned Reg = AddLiveIn(DAG.getMachineFunction(), O32IntRegs[Idx], RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32); |
| LastFI = MFI->CreateFixedObject(4, NextStackOffset, true); |
| SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy()); |
| OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, |
| MachinePointerInfo(), |
| false, false, 0)); |
| } |
| } |
| |
| MipsFI->setLastInArgFI(LastFI); |
| |
| // All stores are grouped in one node to allow the matching between |
| // the size of Ins and InVals. This only happens when on varg functions |
| if (!OutChains.empty()) { |
| OutChains.push_back(Chain); |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &OutChains[0], OutChains.size()); |
| } |
| |
| return Chain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| SDValue |
| MipsTargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| |
| // CCValAssign - represent the assignment of |
| // the return value to a location |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| |
| // Analize return values. |
| CCInfo.AnalyzeReturn(Outs, RetCC_Mips); |
| |
| // If this is the first return lowered for this function, add |
| // the regs to the liveout set for the function. |
| if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| SDValue Flag; |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| OutVals[i], Flag); |
| |
| // guarantee that all emitted copies are |
| // stuck together, avoiding something bad |
| Flag = Chain.getValue(1); |
| } |
| |
| // The mips ABIs for returning structs by value requires that we copy |
| // the sret argument into $v0 for the return. We saved the argument into |
| // a virtual register in the entry block, so now we copy the value out |
| // and into $v0. |
| if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| unsigned Reg = MipsFI->getSRetReturnReg(); |
| |
| if (!Reg) |
| llvm_unreachable("sret virtual register not created in the entry block"); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag); |
| Flag = Chain.getValue(1); |
| } |
| |
| // Return on Mips is always a "jr $ra" |
| if (Flag.getNode()) |
| return DAG.getNode(MipsISD::Ret, dl, MVT::Other, |
| Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag); |
| else // Return Void |
| return DAG.getNode(MipsISD::Ret, dl, MVT::Other, |
| Chain, DAG.getRegister(Mips::RA, MVT::i32)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Mips Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| MipsTargetLowering::ConstraintType MipsTargetLowering:: |
| getConstraintType(const std::string &Constraint) const |
| { |
| // Mips specific constrainy |
| // GCC config/mips/constraints.md |
| // |
| // 'd' : An address register. Equivalent to r |
| // unless generating MIPS16 code. |
| // 'y' : Equivalent to r; retained for |
| // backwards compatibility. |
| // 'f' : Floating Point registers. |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default : break; |
| case 'd': |
| case 'y': |
| case 'f': |
| return C_RegisterClass; |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| MipsTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (CallOperandVal == NULL) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'd': |
| case 'y': |
| if (type->isIntegerTy()) |
| weight = CW_Register; |
| break; |
| case 'f': |
| if (type->isFloatTy()) |
| weight = CW_Register; |
| break; |
| } |
| return weight; |
| } |
| |
| /// Given a register class constraint, like 'r', if this corresponds directly |
| /// to an LLVM register class, return a register of 0 and the register class |
| /// pointer. |
| std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering:: |
| getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const |
| { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'd': // Address register. Same as 'r' unless generating MIPS16 code. |
| case 'y': // Same as 'r'. Exists for compatibility. |
| case 'r': |
| return std::make_pair(0U, Mips::CPURegsRegisterClass); |
| case 'f': |
| if (VT == MVT::f32) |
| return std::make_pair(0U, Mips::FGR32RegisterClass); |
| if (VT == MVT::f64) |
| if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit())) |
| return std::make_pair(0U, Mips::AFGR64RegisterClass); |
| break; |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| bool |
| MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The Mips target isn't yet aware of offsets. |
| return false; |
| } |
| |
| bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| if (VT != MVT::f32 && VT != MVT::f64) |
| return false; |
| if (Imm.isNegZero()) |
| return false; |
| return Imm.isZero(); |
| } |