//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
//===----------------------------------------------------------------------===// | |
// Declarations that describe the ARM register file | |
//===----------------------------------------------------------------------===// | |
// Registers are identified with 4-bit ID numbers. | |
class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> { | |
field bits<4> Num; | |
let Namespace = "ARM"; | |
let SubRegs = subregs; | |
} | |
class ARMFReg<bits<6> num, string n> : Register<n> { | |
field bits<6> Num; | |
let Namespace = "ARM"; | |
} | |
// Subregister indices. | |
let Namespace = "ARM" in { | |
// Note: Code depends on these having consecutive numbers. | |
def ssub_0 : SubRegIndex; | |
def ssub_1 : SubRegIndex; | |
def ssub_2 : SubRegIndex; // In a Q reg. | |
def ssub_3 : SubRegIndex; | |
def dsub_0 : SubRegIndex; | |
def dsub_1 : SubRegIndex; | |
def dsub_2 : SubRegIndex; | |
def dsub_3 : SubRegIndex; | |
def dsub_4 : SubRegIndex; | |
def dsub_5 : SubRegIndex; | |
def dsub_6 : SubRegIndex; | |
def dsub_7 : SubRegIndex; | |
def qsub_0 : SubRegIndex; | |
def qsub_1 : SubRegIndex; | |
def qsub_2 : SubRegIndex; | |
def qsub_3 : SubRegIndex; | |
def qqsub_0 : SubRegIndex; | |
def qqsub_1 : SubRegIndex; | |
} | |
// Integer registers | |
def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; | |
def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; | |
def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; | |
def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; | |
def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; | |
def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; | |
def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; | |
def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; | |
// These require 32-bit instructions. | |
let CostPerUse = 1 in { | |
def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; | |
def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; | |
def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; | |
def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; | |
def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; | |
def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>; | |
def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>; | |
def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>; | |
} | |
// Float registers | |
def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; | |
def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; | |
def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; | |
def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; | |
def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; | |
def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; | |
def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; | |
def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; | |
def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; | |
def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; | |
def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; | |
def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; | |
def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; | |
def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; | |
def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; | |
def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; | |
// Aliases of the F* registers used to hold 64-bit fp values (doubles) | |
let SubRegIndices = [ssub_0, ssub_1] in { | |
def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; | |
def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; | |
def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; | |
def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; | |
def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; | |
def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; | |
def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; | |
def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; | |
def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; | |
def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; | |
def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; | |
def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; | |
def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; | |
def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; | |
def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; | |
def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; | |
} | |
// VFP3 defines 16 additional double registers | |
def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; | |
def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; | |
def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; | |
def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; | |
def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; | |
def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; | |
def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; | |
def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; | |
def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; | |
def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; | |
def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; | |
def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; | |
def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; | |
def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; | |
def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; | |
def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; | |
// Advanced SIMD (NEON) defines 16 quad-word aliases | |
let SubRegIndices = [dsub_0, dsub_1], | |
CompositeIndices = [(ssub_2 dsub_1, ssub_0), | |
(ssub_3 dsub_1, ssub_1)] in { | |
def Q0 : ARMReg< 0, "q0", [D0, D1]>; | |
def Q1 : ARMReg< 1, "q1", [D2, D3]>; | |
def Q2 : ARMReg< 2, "q2", [D4, D5]>; | |
def Q3 : ARMReg< 3, "q3", [D6, D7]>; | |
def Q4 : ARMReg< 4, "q4", [D8, D9]>; | |
def Q5 : ARMReg< 5, "q5", [D10, D11]>; | |
def Q6 : ARMReg< 6, "q6", [D12, D13]>; | |
def Q7 : ARMReg< 7, "q7", [D14, D15]>; | |
} | |
let SubRegIndices = [dsub_0, dsub_1] in { | |
def Q8 : ARMReg< 8, "q8", [D16, D17]>; | |
def Q9 : ARMReg< 9, "q9", [D18, D19]>; | |
def Q10 : ARMReg<10, "q10", [D20, D21]>; | |
def Q11 : ARMReg<11, "q11", [D22, D23]>; | |
def Q12 : ARMReg<12, "q12", [D24, D25]>; | |
def Q13 : ARMReg<13, "q13", [D26, D27]>; | |
def Q14 : ARMReg<14, "q14", [D28, D29]>; | |
def Q15 : ARMReg<15, "q15", [D30, D31]>; | |
} | |
// Pseudo 256-bit registers to represent pairs of Q registers. These should | |
// never be present in the emitted code. | |
// These are used for NEON load / store instructions, e.g., vld4, vst3. | |
// NOTE: It's possible to define more QQ registers since technically the | |
// starting D register number doesn't have to be multiple of 4, e.g., | |
// D1, D2, D3, D4 would be a legal quad, but that would make the subregister | |
// stuff very messy. | |
let SubRegIndices = [qsub_0, qsub_1], | |
CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in { | |
def QQ0 : ARMReg<0, "qq0", [Q0, Q1]>; | |
def QQ1 : ARMReg<1, "qq1", [Q2, Q3]>; | |
def QQ2 : ARMReg<2, "qq2", [Q4, Q5]>; | |
def QQ3 : ARMReg<3, "qq3", [Q6, Q7]>; | |
def QQ4 : ARMReg<4, "qq4", [Q8, Q9]>; | |
def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>; | |
def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>; | |
def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>; | |
} | |
// Pseudo 512-bit registers to represent four consecutive Q registers. | |
let SubRegIndices = [qqsub_0, qqsub_1], | |
CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1), | |
(dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1), | |
(dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in { | |
def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>; | |
def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>; | |
def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>; | |
def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>; | |
} | |
// Current Program Status Register. | |
def CPSR : ARMReg<0, "cpsr">; | |
def APSR : ARMReg<1, "apsr">; | |
def SPSR : ARMReg<2, "spsr">; | |
def FPSCR : ARMReg<3, "fpscr">; | |
def ITSTATE : ARMReg<4, "itstate">; | |
// Special Registers - only available in privileged mode. | |
def FPSID : ARMReg<0, "fpsid">; | |
def FPEXC : ARMReg<8, "fpexc">; | |
// Register classes. | |
// | |
// pc == Program Counter | |
// lr == Link Register | |
// sp == Stack Pointer | |
// r12 == ip (scratch) | |
// r7 == Frame Pointer (thumb-style backtraces) | |
// r9 == May be reserved as Thread Register | |
// r11 == Frame Pointer (arm-style backtraces) | |
// r10 == Stack Limit | |
// | |
def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), | |
SP, LR, PC)> { | |
// Allocate LR as the first CSR since it is always saved anyway. | |
// For Thumb1 mode, we don't want to allocate hi regs at all, as we don't | |
// know how to spill them. If we make our prologue/epilogue code smarter at | |
// some point, we can go back to using the above allocation orders for the | |
// Thumb1 instructions that know how to use hi regs. | |
let AltOrders = [(add LR, GPR), (trunc GPR, 8)]; | |
let AltOrderSelect = [{ | |
return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only(); | |
}]; | |
} | |
// GPRs without the PC. Some ARM instructions do not allow the PC in | |
// certain operand slots, particularly as the destination. Primarily | |
// useful for disassembly. | |
def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { | |
let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; | |
let AltOrderSelect = [{ | |
return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only(); | |
}]; | |
} | |
// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the | |
// implied SP argument list. | |
// FIXME: It would be better to not use this at all and refactor the | |
// instructions to not have SP an an explicit argument. That makes | |
// frame index resolution a bit trickier, though. | |
def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>; | |
// restricted GPR register class. Many Thumb2 instructions allow the full | |
// register range for operands, but have undefined behaviours when PC | |
// or SP (R13 or R15) are used. The ARM ISA refers to these operands | |
// via the BadReg() pseudo-code description. | |
def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { | |
let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)]; | |
let AltOrderSelect = [{ | |
return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only(); | |
}]; | |
} | |
// Thumb registers are R0-R7 normally. Some instructions can still use | |
// the general GPR register class above (MOV, e.g.) | |
def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>; | |
// The high registers in thumb mode, R8-R15. | |
def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>; | |
// For tail calls, we can't use callee-saved registers, as they are restored | |
// to the saved value before the tail call, which would clobber a call address. | |
// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of | |
// this class and the preceding one(!) This is what we want. | |
def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R9, R12)> { | |
let AltOrders = [(and tcGPR, tGPR)]; | |
let AltOrderSelect = [{ | |
return MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only(); | |
}]; | |
} | |
// Scalar single precision floating point register class.. | |
def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)>; | |
// Subset of SPR which can be used as a source of NEON scalars for 16-bit | |
// operations | |
def SPR_8 : RegisterClass<"ARM", [f32], 32, (trunc SPR, 16)>; | |
// Scalar double precision floating point / generic 64-bit vector register | |
// class. | |
// ARM requires only word alignment for double. It's more performant if it | |
// is double-word alignment though. | |
def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, | |
(sequence "D%u", 0, 31)> { | |
// Allocate non-VFP2 registers D16-D31 first. | |
let AltOrders = [(rotl DPR, 16)]; | |
let AltOrderSelect = [{ return 1; }]; | |
} | |
// Subset of DPR that are accessible with VFP2 (and so that also have | |
// 32-bit SPR subregs). | |
def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, | |
(trunc DPR, 16)> { | |
let SubRegClasses = [(SPR ssub_0, ssub_1)]; | |
} | |
// Subset of DPR which can be used as a source of NEON scalars for 16-bit | |
// operations | |
def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, | |
(trunc DPR, 8)> { | |
let SubRegClasses = [(SPR_8 ssub_0, ssub_1)]; | |
} | |
// Generic 128-bit vector register class. | |
def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, | |
(sequence "Q%u", 0, 15)> { | |
let SubRegClasses = [(DPR dsub_0, dsub_1)]; | |
// Allocate non-VFP2 aliases Q8-Q15 first. | |
let AltOrders = [(rotl QPR, 8)]; | |
let AltOrderSelect = [{ return 1; }]; | |
} | |
// Subset of QPR that have 32-bit SPR subregs. | |
def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
128, (trunc QPR, 8)> { | |
let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3), | |
(DPR_VFP2 dsub_0, dsub_1)]; | |
} | |
// Subset of QPR that have DPR_8 and SPR_8 subregs. | |
def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
128, (trunc QPR, 4)> { | |
let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3), | |
(DPR_8 dsub_0, dsub_1)]; | |
} | |
// Pseudo 256-bit vector register class to model pairs of Q registers | |
// (4 consecutive D registers). | |
def QQPR : RegisterClass<"ARM", [v4i64], 256, (sequence "QQ%u", 0, 7)> { | |
let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3), | |
(QPR qsub_0, qsub_1)]; | |
// Allocate non-VFP2 aliases first. | |
let AltOrders = [(rotl QQPR, 4)]; | |
let AltOrderSelect = [{ return 1; }]; | |
} | |
// Subset of QQPR that have 32-bit SPR subregs. | |
def QQPR_VFP2 : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 4)> { | |
let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3), | |
(DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3), | |
(QPR_VFP2 qsub_0, qsub_1)]; | |
} | |
// Pseudo 512-bit vector register class to model 4 consecutive Q registers | |
// (8 consecutive D registers). | |
def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (sequence "QQQQ%u", 0, 3)> { | |
let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3, | |
dsub_4, dsub_5, dsub_6, dsub_7), | |
(QPR qsub_0, qsub_1, qsub_2, qsub_3)]; | |
// Allocate non-VFP2 aliases first. | |
let AltOrders = [(rotl QQQQPR, 2)]; | |
let AltOrderSelect = [{ return 1; }]; | |
} | |
// Condition code registers. | |
def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { | |
let CopyCost = -1; // Don't allow copying of status registers. | |
let isAllocatable = 0; | |
} |