blob: faa8ba76845e457da45a2c68307a3dcbab451ea8 [file] [log] [blame]
//===-- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass ----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs load / store related peephole
// optimizations. This pass should be run after register allocation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-ldst-opt"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumLDMGened , "Number of ldm instructions generated");
STATISTIC(NumSTMGened , "Number of stm instructions generated");
STATISTIC(NumVLDMGened, "Number of vldm instructions generated");
STATISTIC(NumVSTMGened, "Number of vstm instructions generated");
STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation");
STATISTIC(NumSTRDFormed,"Number of strd created before allocation");
STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm");
STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm");
STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's");
STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's");
/// ARMAllocLoadStoreOpt - Post- register allocation pass the combine
/// load / store instructions to form ldm / stm instructions.
namespace {
struct ARMLoadStoreOpt : public MachineFunctionPass {
static char ID;
ARMLoadStoreOpt() : MachineFunctionPass(ID) {}
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
ARMFunctionInfo *AFI;
RegScavenger *RS;
bool isThumb2;
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "ARM load / store optimization pass";
}
private:
struct MemOpQueueEntry {
int Offset;
unsigned Reg;
bool isKill;
unsigned Position;
MachineBasicBlock::iterator MBBI;
bool Merged;
MemOpQueueEntry(int o, unsigned r, bool k, unsigned p,
MachineBasicBlock::iterator i)
: Offset(o), Reg(r), isKill(k), Position(p), MBBI(i), Merged(false) {}
};
typedef SmallVector<MemOpQueueEntry,8> MemOpQueue;
typedef MemOpQueue::iterator MemOpQueueIter;
bool MergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
int Offset, unsigned Base, bool BaseKill, int Opcode,
ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch,
DebugLoc dl, SmallVector<std::pair<unsigned, bool>, 8> &Regs);
void MergeOpsUpdate(MachineBasicBlock &MBB,
MemOpQueue &MemOps,
unsigned memOpsBegin,
unsigned memOpsEnd,
unsigned insertAfter,
int Offset,
unsigned Base,
bool BaseKill,
int Opcode,
ARMCC::CondCodes Pred,
unsigned PredReg,
unsigned Scratch,
DebugLoc dl,
SmallVector<MachineBasicBlock::iterator, 4> &Merges);
void MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base,
int Opcode, unsigned Size,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned Scratch, MemOpQueue &MemOps,
SmallVector<MachineBasicBlock::iterator, 4> &Merges);
void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps);
bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI);
bool MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const TargetInstrInfo *TII,
bool &Advance,
MachineBasicBlock::iterator &I);
bool MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
bool &Advance,
MachineBasicBlock::iterator &I);
bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
};
char ARMLoadStoreOpt::ID = 0;
}
static int getLoadStoreMultipleOpcode(int Opcode, ARM_AM::AMSubMode Mode) {
switch (Opcode) {
default: llvm_unreachable("Unhandled opcode!");
case ARM::LDRi12:
++NumLDMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::LDMIA;
case ARM_AM::da: return ARM::LDMDA;
case ARM_AM::db: return ARM::LDMDB;
case ARM_AM::ib: return ARM::LDMIB;
}
break;
case ARM::STRi12:
++NumSTMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::STMIA;
case ARM_AM::da: return ARM::STMDA;
case ARM_AM::db: return ARM::STMDB;
case ARM_AM::ib: return ARM::STMIB;
}
break;
case ARM::t2LDRi8:
case ARM::t2LDRi12:
++NumLDMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::t2LDMIA;
case ARM_AM::db: return ARM::t2LDMDB;
}
break;
case ARM::t2STRi8:
case ARM::t2STRi12:
++NumSTMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::t2STMIA;
case ARM_AM::db: return ARM::t2STMDB;
}
break;
case ARM::VLDRS:
++NumVLDMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VLDMSIA;
case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists.
}
break;
case ARM::VSTRS:
++NumVSTMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VSTMSIA;
case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists.
}
break;
case ARM::VLDRD:
++NumVLDMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VLDMDIA;
case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists.
}
break;
case ARM::VSTRD:
++NumVSTMGened;
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VSTMDIA;
case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists.
}
break;
}
return 0;
}
namespace llvm {
namespace ARM_AM {
AMSubMode getLoadStoreMultipleSubMode(int Opcode) {
switch (Opcode) {
default: llvm_unreachable("Unhandled opcode!");
case ARM::LDMIA_RET:
case ARM::LDMIA:
case ARM::LDMIA_UPD:
case ARM::STMIA:
case ARM::STMIA_UPD:
case ARM::t2LDMIA_RET:
case ARM::t2LDMIA:
case ARM::t2LDMIA_UPD:
case ARM::t2STMIA:
case ARM::t2STMIA_UPD:
case ARM::VLDMSIA:
case ARM::VLDMSIA_UPD:
case ARM::VSTMSIA:
case ARM::VSTMSIA_UPD:
case ARM::VLDMDIA:
case ARM::VLDMDIA_UPD:
case ARM::VSTMDIA:
case ARM::VSTMDIA_UPD:
return ARM_AM::ia;
case ARM::LDMDA:
case ARM::LDMDA_UPD:
case ARM::STMDA:
case ARM::STMDA_UPD:
return ARM_AM::da;
case ARM::LDMDB:
case ARM::LDMDB_UPD:
case ARM::STMDB:
case ARM::STMDB_UPD:
case ARM::t2LDMDB:
case ARM::t2LDMDB_UPD:
case ARM::t2STMDB:
case ARM::t2STMDB_UPD:
case ARM::VLDMSDB_UPD:
case ARM::VSTMSDB_UPD:
case ARM::VLDMDDB_UPD:
case ARM::VSTMDDB_UPD:
return ARM_AM::db;
case ARM::LDMIB:
case ARM::LDMIB_UPD:
case ARM::STMIB:
case ARM::STMIB_UPD:
return ARM_AM::ib;
}
return ARM_AM::bad_am_submode;
}
} // end namespace ARM_AM
} // end namespace llvm
static bool isT2i32Load(unsigned Opc) {
return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
}
static bool isi32Load(unsigned Opc) {
return Opc == ARM::LDRi12 || isT2i32Load(Opc);
}
static bool isT2i32Store(unsigned Opc) {
return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
}
static bool isi32Store(unsigned Opc) {
return Opc == ARM::STRi12 || isT2i32Store(Opc);
}
/// MergeOps - Create and insert a LDM or STM with Base as base register and
/// registers in Regs as the register operands that would be loaded / stored.
/// It returns true if the transformation is done.
bool
ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
int Offset, unsigned Base, bool BaseKill,
int Opcode, ARMCC::CondCodes Pred,
unsigned PredReg, unsigned Scratch, DebugLoc dl,
SmallVector<std::pair<unsigned, bool>, 8> &Regs) {
// Only a single register to load / store. Don't bother.
unsigned NumRegs = Regs.size();
if (NumRegs <= 1)
return false;
ARM_AM::AMSubMode Mode = ARM_AM::ia;
// VFP and Thumb2 do not support IB or DA modes.
bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
bool haveIBAndDA = isNotVFP && !isThumb2;
if (Offset == 4 && haveIBAndDA)
Mode = ARM_AM::ib;
else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA)
Mode = ARM_AM::da;
else if (Offset == -4 * (int)NumRegs && isNotVFP)
// VLDM/VSTM do not support DB mode without also updating the base reg.
Mode = ARM_AM::db;
else if (Offset != 0) {
// Check if this is a supported opcode before we insert instructions to
// calculate a new base register.
if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return false;
// If starting offset isn't zero, insert a MI to materialize a new base.
// But only do so if it is cost effective, i.e. merging more than two
// loads / stores.
if (NumRegs <= 2)
return false;
unsigned NewBase;
if (isi32Load(Opcode))
// If it is a load, then just use one of the destination register to
// use as the new base.
NewBase = Regs[NumRegs-1].first;
else {
// Use the scratch register to use as a new base.
NewBase = Scratch;
if (NewBase == 0)
return false;
}
int BaseOpc = !isThumb2 ? ARM::ADDri : ARM::t2ADDri;
if (Offset < 0) {
BaseOpc = !isThumb2 ? ARM::SUBri : ARM::t2SUBri;
Offset = - Offset;
}
int ImmedOffset = isThumb2
? ARM_AM::getT2SOImmVal(Offset) : ARM_AM::getSOImmVal(Offset);
if (ImmedOffset == -1)
// FIXME: Try t2ADDri12 or t2SUBri12?
return false; // Probably not worth it then.
BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase)
.addReg(Base, getKillRegState(BaseKill)).addImm(Offset)
.addImm(Pred).addReg(PredReg).addReg(0);
Base = NewBase;
BaseKill = true; // New base is always killed right its use.
}
bool isDef = (isi32Load(Opcode) || Opcode == ARM::VLDRS ||
Opcode == ARM::VLDRD);
Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
if (!Opcode) return false;
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(Opcode))
.addReg(Base, getKillRegState(BaseKill))
.addImm(Pred).addReg(PredReg);
for (unsigned i = 0; i != NumRegs; ++i)
MIB = MIB.addReg(Regs[i].first, getDefRegState(isDef)
| getKillRegState(Regs[i].second));
return true;
}
// MergeOpsUpdate - call MergeOps and update MemOps and merges accordingly on
// success.
void ARMLoadStoreOpt::MergeOpsUpdate(MachineBasicBlock &MBB,
MemOpQueue &memOps,
unsigned memOpsBegin, unsigned memOpsEnd,
unsigned insertAfter, int Offset,
unsigned Base, bool BaseKill,
int Opcode,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned Scratch,
DebugLoc dl,
SmallVector<MachineBasicBlock::iterator, 4> &Merges) {
// First calculate which of the registers should be killed by the merged
// instruction.
const unsigned insertPos = memOps[insertAfter].Position;
SmallSet<unsigned, 4> KilledRegs;
DenseMap<unsigned, unsigned> Killer;
for (unsigned i = 0, e = memOps.size(); i != e; ++i) {
if (i == memOpsBegin) {
i = memOpsEnd;
if (i == e)
break;
}
if (memOps[i].Position < insertPos && memOps[i].isKill) {
unsigned Reg = memOps[i].Reg;
KilledRegs.insert(Reg);
Killer[Reg] = i;
}
}
SmallVector<std::pair<unsigned, bool>, 8> Regs;
for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) {
unsigned Reg = memOps[i].Reg;
// If we are inserting the merged operation after an operation that
// uses the same register, make sure to transfer any kill flag.
bool isKill = memOps[i].isKill || KilledRegs.count(Reg);
Regs.push_back(std::make_pair(Reg, isKill));
}
// Try to do the merge.
MachineBasicBlock::iterator Loc = memOps[insertAfter].MBBI;
++Loc;
if (!MergeOps(MBB, Loc, Offset, Base, BaseKill, Opcode,
Pred, PredReg, Scratch, dl, Regs))
return;
// Merge succeeded, update records.
Merges.push_back(prior(Loc));
for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) {
// Remove kill flags from any memops that come before insertPos.
if (Regs[i-memOpsBegin].second) {
unsigned Reg = Regs[i-memOpsBegin].first;
if (KilledRegs.count(Reg)) {
unsigned j = Killer[Reg];
int Idx = memOps[j].MBBI->findRegisterUseOperandIdx(Reg, true);
assert(Idx >= 0 && "Cannot find killing operand");
memOps[j].MBBI->getOperand(Idx).setIsKill(false);
memOps[j].isKill = false;
}
memOps[i].isKill = true;
}
MBB.erase(memOps[i].MBBI);
// Update this memop to refer to the merged instruction.
// We may need to move kill flags again.
memOps[i].Merged = true;
memOps[i].MBBI = Merges.back();
memOps[i].Position = insertPos;
}
}
/// MergeLDR_STR - Merge a number of load / store instructions into one or more
/// load / store multiple instructions.
void
ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
unsigned Base, int Opcode, unsigned Size,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned Scratch, MemOpQueue &MemOps,
SmallVector<MachineBasicBlock::iterator, 4> &Merges) {
bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
int Offset = MemOps[SIndex].Offset;
int SOffset = Offset;
unsigned insertAfter = SIndex;
MachineBasicBlock::iterator Loc = MemOps[SIndex].MBBI;
DebugLoc dl = Loc->getDebugLoc();
const MachineOperand &PMO = Loc->getOperand(0);
unsigned PReg = PMO.getReg();
unsigned PRegNum = PMO.isUndef() ? UINT_MAX
: getARMRegisterNumbering(PReg);
unsigned Count = 1;
unsigned Limit = ~0U;
// vldm / vstm limit are 32 for S variants, 16 for D variants.
switch (Opcode) {
default: break;
case ARM::VSTRS:
Limit = 32;
break;
case ARM::VSTRD:
Limit = 16;
break;
case ARM::VLDRD:
Limit = 16;
break;
case ARM::VLDRS:
Limit = 32;
break;
}
for (unsigned i = SIndex+1, e = MemOps.size(); i != e; ++i) {
int NewOffset = MemOps[i].Offset;
const MachineOperand &MO = MemOps[i].MBBI->getOperand(0);
unsigned Reg = MO.getReg();
unsigned RegNum = MO.isUndef() ? UINT_MAX
: getARMRegisterNumbering(Reg);
// Register numbers must be in ascending order. For VFP / NEON load and
// store multiples, the registers must also be consecutive and within the
// limit on the number of registers per instruction.
if (Reg != ARM::SP &&
NewOffset == Offset + (int)Size &&
((isNotVFP && RegNum > PRegNum) ||
((Count < Limit) && RegNum == PRegNum+1))) {
Offset += Size;
PRegNum = RegNum;
++Count;
} else {
// Can't merge this in. Try merge the earlier ones first.
MergeOpsUpdate(MBB, MemOps, SIndex, i, insertAfter, SOffset,
Base, false, Opcode, Pred, PredReg, Scratch, dl, Merges);
MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch,
MemOps, Merges);
return;
}
if (MemOps[i].Position > MemOps[insertAfter].Position)
insertAfter = i;
}
bool BaseKill = Loc->findRegisterUseOperandIdx(Base, true) != -1;
MergeOpsUpdate(MBB, MemOps, SIndex, MemOps.size(), insertAfter, SOffset,
Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges);
return;
}
static inline bool isMatchingDecrement(MachineInstr *MI, unsigned Base,
unsigned Bytes, unsigned Limit,
ARMCC::CondCodes Pred, unsigned PredReg){
unsigned MyPredReg = 0;
if (!MI)
return false;
if (MI->getOpcode() != ARM::t2SUBri &&
MI->getOpcode() != ARM::tSUBspi &&
MI->getOpcode() != ARM::SUBri)
return false;
// Make sure the offset fits in 8 bits.
if (Bytes == 0 || (Limit && Bytes >= Limit))
return false;
unsigned Scale = (MI->getOpcode() == ARM::tSUBspi) ? 4 : 1; // FIXME
return (MI->getOperand(0).getReg() == Base &&
MI->getOperand(1).getReg() == Base &&
(MI->getOperand(2).getImm()*Scale) == Bytes &&
llvm::getInstrPredicate(MI, MyPredReg) == Pred &&
MyPredReg == PredReg);
}
static inline bool isMatchingIncrement(MachineInstr *MI, unsigned Base,
unsigned Bytes, unsigned Limit,
ARMCC::CondCodes Pred, unsigned PredReg){
unsigned MyPredReg = 0;
if (!MI)
return false;
if (MI->getOpcode() != ARM::t2ADDri &&
MI->getOpcode() != ARM::tADDspi &&
MI->getOpcode() != ARM::ADDri)
return false;
if (Bytes == 0 || (Limit && Bytes >= Limit))
// Make sure the offset fits in 8 bits.
return false;
unsigned Scale = (MI->getOpcode() == ARM::tADDspi) ? 4 : 1; // FIXME
return (MI->getOperand(0).getReg() == Base &&
MI->getOperand(1).getReg() == Base &&
(MI->getOperand(2).getImm()*Scale) == Bytes &&
llvm::getInstrPredicate(MI, MyPredReg) == Pred &&
MyPredReg == PredReg);
}
static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
switch (MI->getOpcode()) {
default: return 0;
case ARM::LDRi12:
case ARM::STRi12:
case ARM::t2LDRi8:
case ARM::t2LDRi12:
case ARM::t2STRi8:
case ARM::t2STRi12:
case ARM::VLDRS:
case ARM::VSTRS:
return 4;
case ARM::VLDRD:
case ARM::VSTRD:
return 8;
case ARM::LDMIA:
case ARM::LDMDA:
case ARM::LDMDB:
case ARM::LDMIB:
case ARM::STMIA:
case ARM::STMDA:
case ARM::STMDB:
case ARM::STMIB:
case ARM::t2LDMIA:
case ARM::t2LDMDB:
case ARM::t2STMIA:
case ARM::t2STMDB:
case ARM::VLDMSIA:
case ARM::VSTMSIA:
return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4;
case ARM::VLDMDIA:
case ARM::VSTMDIA:
return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8;
}
}
static unsigned getUpdatingLSMultipleOpcode(unsigned Opc,
ARM_AM::AMSubMode Mode) {
switch (Opc) {
default: llvm_unreachable("Unhandled opcode!");
case ARM::LDMIA:
case ARM::LDMDA:
case ARM::LDMDB:
case ARM::LDMIB:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::LDMIA_UPD;
case ARM_AM::ib: return ARM::LDMIB_UPD;
case ARM_AM::da: return ARM::LDMDA_UPD;
case ARM_AM::db: return ARM::LDMDB_UPD;
}
break;
case ARM::STMIA:
case ARM::STMDA:
case ARM::STMDB:
case ARM::STMIB:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::STMIA_UPD;
case ARM_AM::ib: return ARM::STMIB_UPD;
case ARM_AM::da: return ARM::STMDA_UPD;
case ARM_AM::db: return ARM::STMDB_UPD;
}
break;
case ARM::t2LDMIA:
case ARM::t2LDMDB:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::t2LDMIA_UPD;
case ARM_AM::db: return ARM::t2LDMDB_UPD;
}
break;
case ARM::t2STMIA:
case ARM::t2STMDB:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::t2STMIA_UPD;
case ARM_AM::db: return ARM::t2STMDB_UPD;
}
break;
case ARM::VLDMSIA:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VLDMSIA_UPD;
case ARM_AM::db: return ARM::VLDMSDB_UPD;
}
break;
case ARM::VLDMDIA:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VLDMDIA_UPD;
case ARM_AM::db: return ARM::VLDMDDB_UPD;
}
break;
case ARM::VSTMSIA:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VSTMSIA_UPD;
case ARM_AM::db: return ARM::VSTMSDB_UPD;
}
break;
case ARM::VSTMDIA:
switch (Mode) {
default: llvm_unreachable("Unhandled submode!");
case ARM_AM::ia: return ARM::VSTMDIA_UPD;
case ARM_AM::db: return ARM::VSTMDDB_UPD;
}
break;
}
return 0;
}
/// MergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base
/// register into the LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible:
///
/// stmia rn, <ra, rb, rc>
/// rn := rn + 4 * 3;
/// =>
/// stmia rn!, <ra, rb, rc>
///
/// rn := rn - 4 * 3;
/// ldmia rn, <ra, rb, rc>
/// =>
/// ldmdb rn!, <ra, rb, rc>
bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
bool &Advance,
MachineBasicBlock::iterator &I) {
MachineInstr *MI = MBBI;
unsigned Base = MI->getOperand(0).getReg();
bool BaseKill = MI->getOperand(0).isKill();
unsigned Bytes = getLSMultipleTransferSize(MI);
unsigned PredReg = 0;
ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg);
int Opcode = MI->getOpcode();
DebugLoc dl = MI->getDebugLoc();
// Can't use an updating ld/st if the base register is also a dest
// register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).getReg() == Base)
return false;
bool DoMerge = false;
ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(Opcode);
// Try merging with the previous instruction.
MachineBasicBlock::iterator BeginMBBI = MBB.begin();
if (MBBI != BeginMBBI) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
while (PrevMBBI != BeginMBBI && PrevMBBI->isDebugValue())
--PrevMBBI;
if (Mode == ARM_AM::ia &&
isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
Mode = ARM_AM::db;
DoMerge = true;
} else if (Mode == ARM_AM::ib &&
isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
Mode = ARM_AM::da;
DoMerge = true;
}
if (DoMerge)
MBB.erase(PrevMBBI);
}
// Try merging with the next instruction.
MachineBasicBlock::iterator EndMBBI = MBB.end();
if (!DoMerge && MBBI != EndMBBI) {
MachineBasicBlock::iterator NextMBBI = llvm::next(MBBI);
while (NextMBBI != EndMBBI && NextMBBI->isDebugValue())
++NextMBBI;
if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) &&
isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
DoMerge = true;
} else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) &&
isMatchingDecrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
DoMerge = true;
}
if (DoMerge) {
if (NextMBBI == I) {
Advance = true;
++I;
}
MBB.erase(NextMBBI);
}
}
if (!DoMerge)
return false;
unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode);
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(NewOpc))
.addReg(Base, getDefRegState(true)) // WB base register
.addReg(Base, getKillRegState(BaseKill))
.addImm(Pred).addReg(PredReg);
// Transfer the rest of operands.
for (unsigned OpNum = 3, e = MI->getNumOperands(); OpNum != e; ++OpNum)
MIB.addOperand(MI->getOperand(OpNum));
// Transfer memoperands.
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
MBB.erase(MBBI);
return true;
}
static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc,
ARM_AM::AddrOpc Mode) {
switch (Opc) {
case ARM::LDRi12:
return ARM::LDR_PRE_IMM;
case ARM::STRi12:
return ARM::STR_PRE_IMM;
case ARM::VLDRS:
return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
case ARM::VLDRD:
return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
case ARM::VSTRS:
return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
case ARM::VSTRD:
return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
case ARM::t2LDRi8:
case ARM::t2LDRi12:
return ARM::t2LDR_PRE;
case ARM::t2STRi8:
case ARM::t2STRi12:
return ARM::t2STR_PRE;
default: llvm_unreachable("Unhandled opcode!");
}
return 0;
}
static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc,
ARM_AM::AddrOpc Mode) {
switch (Opc) {
case ARM::LDRi12:
return ARM::LDR_POST_IMM;
case ARM::STRi12:
return ARM::STR_POST_IMM;
case ARM::VLDRS:
return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
case ARM::VLDRD:
return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
case ARM::VSTRS:
return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
case ARM::VSTRD:
return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
case ARM::t2LDRi8:
case ARM::t2LDRi12:
return ARM::t2LDR_POST;
case ARM::t2STRi8:
case ARM::t2STRi12:
return ARM::t2STR_POST;
default: llvm_unreachable("Unhandled opcode!");
}
return 0;
}
/// MergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base
/// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible:
bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const TargetInstrInfo *TII,
bool &Advance,
MachineBasicBlock::iterator &I) {
MachineInstr *MI = MBBI;
unsigned Base = MI->getOperand(1).getReg();
bool BaseKill = MI->getOperand(1).isKill();
unsigned Bytes = getLSMultipleTransferSize(MI);
int Opcode = MI->getOpcode();
DebugLoc dl = MI->getDebugLoc();
bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS ||
Opcode == ARM::VSTRD || Opcode == ARM::VSTRS);
bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12);
if (isi32Load(Opcode) || isi32Store(Opcode))
if (MI->getOperand(2).getImm() != 0)
return false;
if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
return false;
bool isLd = isi32Load(Opcode) || Opcode == ARM::VLDRS || Opcode == ARM::VLDRD;
// Can't do the merge if the destination register is the same as the would-be
// writeback register.
if (isLd && MI->getOperand(0).getReg() == Base)
return false;
unsigned PredReg = 0;
ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg);
bool DoMerge = false;
ARM_AM::AddrOpc AddSub = ARM_AM::add;
unsigned NewOpc = 0;
// AM2 - 12 bits, thumb2 - 8 bits.
unsigned Limit = isAM5 ? 0 : (isAM2 ? 0x1000 : 0x100);
// Try merging with the previous instruction.
MachineBasicBlock::iterator BeginMBBI = MBB.begin();
if (MBBI != BeginMBBI) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
while (PrevMBBI != BeginMBBI && PrevMBBI->isDebugValue())
--PrevMBBI;
if (isMatchingDecrement(PrevMBBI, Base, Bytes, Limit, Pred, PredReg)) {
DoMerge = true;
AddSub = ARM_AM::sub;
} else if (!isAM5 &&
isMatchingIncrement(PrevMBBI, Base, Bytes, Limit,Pred,PredReg)) {
DoMerge = true;
}
if (DoMerge) {
NewOpc = getPreIndexedLoadStoreOpcode(Opcode, AddSub);
MBB.erase(PrevMBBI);
}
}
// Try merging with the next instruction.
MachineBasicBlock::iterator EndMBBI = MBB.end();
if (!DoMerge && MBBI != EndMBBI) {
MachineBasicBlock::iterator NextMBBI = llvm::next(MBBI);
while (NextMBBI != EndMBBI && NextMBBI->isDebugValue())
++NextMBBI;
if (!isAM5 &&
isMatchingDecrement(NextMBBI, Base, Bytes, Limit, Pred, PredReg)) {
DoMerge = true;
AddSub = ARM_AM::sub;
} else if (isMatchingIncrement(NextMBBI, Base, Bytes, Limit,Pred,PredReg)) {
DoMerge = true;
}
if (DoMerge) {
NewOpc = getPostIndexedLoadStoreOpcode(Opcode, AddSub);
if (NextMBBI == I) {
Advance = true;
++I;
}
MBB.erase(NextMBBI);
}
}
if (!DoMerge)
return false;
if (isAM5) {
// VLDM[SD}_UPD, VSTM[SD]_UPD
// (There are no base-updating versions of VLDR/VSTR instructions, but the
// updating load/store-multiple instructions can be used with only one
// register.)
MachineOperand &MO = MI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII->get(NewOpc))
.addReg(Base, getDefRegState(true)) // WB base register
.addReg(Base, getKillRegState(isLd ? BaseKill : false))
.addImm(Pred).addReg(PredReg)
.addReg(MO.getReg(), (isLd ? getDefRegState(true) :
getKillRegState(MO.isKill())));
} else if (isLd) {
if (isAM2) {
// LDR_PRE, LDR_POST
if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) {
int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
.addReg(Base, RegState::Define)
.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
} else {
int Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
.addReg(Base, RegState::Define)
.addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
}
} else {
int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
// t2LDR_PRE, t2LDR_POST
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
.addReg(Base, RegState::Define)
.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
}
} else {
MachineOperand &MO = MI->getOperand(0);
// FIXME: post-indexed stores use am2offset_imm, which still encodes
// the vestigal zero-reg offset register. When that's fixed, this clause
// can be removed entirely.
if (isAM2 && NewOpc == ARM::STR_POST_IMM) {
int Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
// STR_PRE, STR_POST
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
.addReg(MO.getReg(), getKillRegState(MO.isKill()))
.addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
} else {
int Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
// t2STR_PRE, t2STR_POST
BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
.addReg(MO.getReg(), getKillRegState(MO.isKill()))
.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
}
}
MBB.erase(MBBI);
return true;
}
/// isMemoryOp - Returns true if instruction is a memory operation that this
/// pass is capable of operating on.
static bool isMemoryOp(const MachineInstr *MI) {
// When no memory operands are present, conservatively assume unaligned,
// volatile, unfoldable.
if (!MI->hasOneMemOperand())
return false;
const MachineMemOperand *MMO = *MI->memoperands_begin();
// Don't touch volatile memory accesses - we may be changing their order.
if (MMO->isVolatile())
return false;
// Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is
// not.
if (MMO->getAlignment() < 4)
return false;
// str <undef> could probably be eliminated entirely, but for now we just want
// to avoid making a mess of it.
// FIXME: Use str <undef> as a wildcard to enable better stm folding.
if (MI->getNumOperands() > 0 && MI->getOperand(0).isReg() &&
MI->getOperand(0).isUndef())
return false;
// Likewise don't mess with references to undefined addresses.
if (MI->getNumOperands() > 1 && MI->getOperand(1).isReg() &&
MI->getOperand(1).isUndef())
return false;
int Opcode = MI->getOpcode();
switch (Opcode) {
default: break;
case ARM::VLDRS:
case ARM::VSTRS:
return MI->getOperand(1).isReg();
case ARM::VLDRD:
case ARM::VSTRD:
return MI->getOperand(1).isReg();
case ARM::LDRi12:
case ARM::STRi12:
case ARM::t2LDRi8:
case ARM::t2LDRi12:
case ARM::t2STRi8:
case ARM::t2STRi12:
return MI->getOperand(1).isReg();
}
return false;
}
/// AdvanceRS - Advance register scavenger to just before the earliest memory
/// op that is being merged.
void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) {
MachineBasicBlock::iterator Loc = MemOps[0].MBBI;
unsigned Position = MemOps[0].Position;
for (unsigned i = 1, e = MemOps.size(); i != e; ++i) {
if (MemOps[i].Position < Position) {
Position = MemOps[i].Position;
Loc = MemOps[i].MBBI;
}
}
if (Loc != MBB.begin())
RS->forward(prior(Loc));
}
static int getMemoryOpOffset(const MachineInstr *MI) {
int Opcode = MI->getOpcode();
bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
unsigned NumOperands = MI->getDesc().getNumOperands();
unsigned OffField = MI->getOperand(NumOperands-3).getImm();
if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
Opcode == ARM::LDRi12 || Opcode == ARM::STRi12)
return OffField;
int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
: ARM_AM::getAM5Offset(OffField) * 4;
if (isAM3) {
if (ARM_AM::getAM3Op(OffField) == ARM_AM::sub)
Offset = -Offset;
} else {
if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub)
Offset = -Offset;
}
return Offset;
}
static void InsertLDR_STR(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int Offset, bool isDef,
DebugLoc dl, unsigned NewOpc,
unsigned Reg, bool RegDeadKill, bool RegUndef,
unsigned BaseReg, bool BaseKill, bool BaseUndef,
bool OffKill, bool OffUndef,
ARMCC::CondCodes Pred, unsigned PredReg,
const TargetInstrInfo *TII, bool isT2) {
if (isDef) {
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
TII->get(NewOpc))
.addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
.addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
} else {
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
TII->get(NewOpc))
.addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
.addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
}
}
bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI) {
MachineInstr *MI = &*MBBI;
unsigned Opcode = MI->getOpcode();
if (Opcode == ARM::LDRD || Opcode == ARM::STRD ||
Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) {
unsigned EvenReg = MI->getOperand(0).getReg();
unsigned OddReg = MI->getOperand(1).getReg();
unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false);
if ((EvenRegNum & 1) == 0 && (EvenRegNum + 1) == OddRegNum)
return false;
MachineBasicBlock::iterator NewBBI = MBBI;
bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
bool EvenDeadKill = isLd ?
MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
bool EvenUndef = MI->getOperand(0).isUndef();
bool OddDeadKill = isLd ?
MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
bool OddUndef = MI->getOperand(1).isUndef();
const MachineOperand &BaseOp = MI->getOperand(2);
unsigned BaseReg = BaseOp.getReg();
bool BaseKill = BaseOp.isKill();
bool BaseUndef = BaseOp.isUndef();
bool OffKill = isT2 ? false : MI->getOperand(3).isKill();
bool OffUndef = isT2 ? false : MI->getOperand(3).isUndef();
int OffImm = getMemoryOpOffset(MI);
unsigned PredReg = 0;
ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg);
if (OddRegNum > EvenRegNum && OffImm == 0) {
// Ascending register numbers and no offset. It's safe to change it to a
// ldm or stm.
unsigned NewOpc = (isLd)
? (isT2 ? ARM::t2LDMIA : ARM::LDMIA)
: (isT2 ? ARM::t2STMIA : ARM::STMIA);
if (isLd) {
BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
.addReg(BaseReg, getKillRegState(BaseKill))
.addImm(Pred).addReg(PredReg)
.addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
.addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill));
++NumLDRD2LDM;
} else {
BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
.addReg(BaseReg, getKillRegState(BaseKill))
.addImm(Pred).addReg(PredReg)
.addReg(EvenReg,
getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
.addReg(OddReg,
getKillRegState(OddDeadKill) | getUndefRegState(OddUndef));
++NumSTRD2STM;
}
NewBBI = llvm::prior(MBBI);
} else {
// Split into two instructions.
unsigned NewOpc = (isLd)
? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
: (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
DebugLoc dl = MBBI->getDebugLoc();
// If this is a load and base register is killed, it may have been
// re-defed by the load, make sure the first load does not clobber it.
if (isLd &&
(BaseKill || OffKill) &&
(TRI->regsOverlap(EvenReg, BaseReg))) {
assert(!TRI->regsOverlap(OddReg, BaseReg));
InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc,
OddReg, OddDeadKill, false,
BaseReg, false, BaseUndef, false, OffUndef,
Pred, PredReg, TII, isT2);
NewBBI = llvm::prior(MBBI);
InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc,
EvenReg, EvenDeadKill, false,
BaseReg, BaseKill, BaseUndef, OffKill, OffUndef,
Pred, PredReg, TII, isT2);
} else {
if (OddReg == EvenReg && EvenDeadKill) {
// If the two source operands are the same, the kill marker is
// probably on the first one. e.g.
// t2STRDi8 %R5<kill>, %R5, %R9<kill>, 0, 14, %reg0
EvenDeadKill = false;
OddDeadKill = true;
}
InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc,
EvenReg, EvenDeadKill, EvenUndef,
BaseReg, false, BaseUndef, false, OffUndef,
Pred, PredReg, TII, isT2);
NewBBI = llvm::prior(MBBI);
InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc,
OddReg, OddDeadKill, OddUndef,
BaseReg, BaseKill, BaseUndef, OffKill, OffUndef,
Pred, PredReg, TII, isT2);
}
if (isLd)
++NumLDRD2LDR;
else
++NumSTRD2STR;
}
MBB.erase(MI);
MBBI = NewBBI;
return true;
}
return false;
}
/// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR
/// ops of the same base and incrementing offset into LDM / STM ops.
bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
unsigned NumMerges = 0;
unsigned NumMemOps = 0;
MemOpQueue MemOps;
unsigned CurrBase = 0;
int CurrOpc = -1;
unsigned CurrSize = 0;
ARMCC::CondCodes CurrPred = ARMCC::AL;
unsigned CurrPredReg = 0;
unsigned Position = 0;
SmallVector<MachineBasicBlock::iterator,4> Merges;
RS->enterBasicBlock(&MBB);
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
if (FixInvalidRegPairOp(MBB, MBBI))
continue;
bool Advance = false;
bool TryMerge = false;
bool Clobber = false;
bool isMemOp = isMemoryOp(MBBI);
if (isMemOp) {
int Opcode = MBBI->getOpcode();
unsigned Size = getLSMultipleTransferSize(MBBI);
const MachineOperand &MO = MBBI->getOperand(0);
unsigned Reg = MO.getReg();
bool isKill = MO.isDef() ? false : MO.isKill();
unsigned Base = MBBI->getOperand(1).getReg();
unsigned PredReg = 0;
ARMCC::CondCodes Pred = llvm::getInstrPredicate(MBBI, PredReg);
int Offset = getMemoryOpOffset(MBBI);
// Watch out for:
// r4 := ldr [r5]
// r5 := ldr [r5, #4]
// r6 := ldr [r5, #8]
//
// The second ldr has effectively broken the chain even though it
// looks like the later ldr(s) use the same base register. Try to
// merge the ldr's so far, including this one. But don't try to
// combine the following ldr(s).
Clobber = (isi32Load(Opcode) && Base == MBBI->getOperand(0).getReg());
if (CurrBase == 0 && !Clobber) {
// Start of a new chain.
CurrBase = Base;
CurrOpc = Opcode;
CurrSize = Size;
CurrPred = Pred;
CurrPredReg = PredReg;
MemOps.push_back(MemOpQueueEntry(Offset, Reg, isKill, Position, MBBI));
++NumMemOps;
Advance = true;
} else {
if (Clobber) {
TryMerge = true;
Advance = true;
}
if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
// No need to match PredReg.
// Continue adding to the queue.
if (Offset > MemOps.back().Offset) {
MemOps.push_back(MemOpQueueEntry(Offset, Reg, isKill,
Position, MBBI));
++NumMemOps;
Advance = true;
} else {
for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end();
I != E; ++I) {
if (Offset < I->Offset) {
MemOps.insert(I, MemOpQueueEntry(Offset, Reg, isKill,
Position, MBBI));
++NumMemOps;
Advance = true;
break;
} else if (Offset == I->Offset) {
// Collision! This can't be merged!
break;
}
}
}
}
}
}
if (MBBI->isDebugValue()) {
++MBBI;
if (MBBI == E)
// Reach the end of the block, try merging the memory instructions.
TryMerge = true;
} else if (Advance) {
++Position;
++MBBI;
if (MBBI == E)
// Reach the end of the block, try merging the memory instructions.
TryMerge = true;
} else
TryMerge = true;
if (TryMerge) {
if (NumMemOps > 1) {
// Try to find a free register to use as a new base in case it's needed.
// First advance to the instruction just before the start of the chain.
AdvanceRS(MBB, MemOps);
// Find a scratch register.
unsigned Scratch = RS->FindUnusedReg(ARM::GPRRegisterClass);
// Process the load / store instructions.
RS->forward(prior(MBBI));
// Merge ops.
Merges.clear();
MergeLDR_STR(MBB, 0, CurrBase, CurrOpc, CurrSize,
CurrPred, CurrPredReg, Scratch, MemOps, Merges);
// Try folding preceding/trailing base inc/dec into the generated
// LDM/STM ops.
for (unsigned i = 0, e = Merges.size(); i < e; ++i)
if (MergeBaseUpdateLSMultiple(MBB, Merges[i], Advance, MBBI))
++NumMerges;
NumMerges += Merges.size();
// Try folding preceding/trailing base inc/dec into those load/store
// that were not merged to form LDM/STM ops.
for (unsigned i = 0; i != NumMemOps; ++i)
if (!MemOps[i].Merged)
if (MergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI))
++NumMerges;
// RS may be pointing to an instruction that's deleted.
RS->skipTo(prior(MBBI));
} else if (NumMemOps == 1) {
// Try folding preceding/trailing base inc/dec into the single
// load/store.
if (MergeBaseUpdateLoadStore(MBB, MemOps[0].MBBI, TII, Advance, MBBI)) {
++NumMerges;
RS->forward(prior(MBBI));
}
}
CurrBase = 0;
CurrOpc = -1;
CurrSize = 0;
CurrPred = ARMCC::AL;
CurrPredReg = 0;
if (NumMemOps) {
MemOps.clear();
NumMemOps = 0;
}
// If iterator hasn't been advanced and this is not a memory op, skip it.
// It can't start a new chain anyway.
if (!Advance && !isMemOp && MBBI != E) {
++Position;
++MBBI;
}
}
}
return NumMerges > 0;
}
/// MergeReturnIntoLDM - If this is a exit BB, try merging the return ops
/// ("bx lr" and "mov pc, lr") into the preceding stack restore so it
/// directly restore the value of LR into pc.
/// ldmfd sp!, {..., lr}
/// bx lr
/// or
/// ldmfd sp!, {..., lr}
/// mov pc, lr
/// =>
/// ldmfd sp!, {..., pc}
bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
if (MBB.empty()) return false;
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
if (MBBI != MBB.begin() &&
(MBBI->getOpcode() == ARM::BX_RET ||
MBBI->getOpcode() == ARM::tBX_RET ||
MBBI->getOpcode() == ARM::MOVPCLR)) {
MachineInstr *PrevMI = prior(MBBI);
unsigned Opcode = PrevMI->getOpcode();
if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD ||
Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD ||
Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1);
if (MO.getReg() != ARM::LR)
return false;
unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET);
assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) ||
Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!");
PrevMI->setDesc(TII->get(NewOpc));
MO.setReg(ARM::PC);
PrevMI->copyImplicitOps(&*MBBI);
MBB.erase(MBBI);
return true;
}
}
return false;
}
bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
const TargetMachine &TM = Fn.getTarget();
AFI = Fn.getInfo<ARMFunctionInfo>();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
RS = new RegScavenger();
isThumb2 = AFI->isThumb2Function();
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock &MBB = *MFI;
Modified |= LoadStoreMultipleOpti(MBB);
if (TM.getSubtarget<ARMSubtarget>().hasV5TOps())
Modified |= MergeReturnIntoLDM(MBB);
}
delete RS;
return Modified;
}
/// ARMPreAllocLoadStoreOpt - Pre- register allocation pass that move
/// load / stores from consecutive locations close to make it more
/// likely they will be combined later.
namespace {
struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
static char ID;
ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}
const TargetData *TD;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
const ARMSubtarget *STI;
MachineRegisterInfo *MRI;
MachineFunction *MF;
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "ARM pre- register allocation load / store optimization pass";
}
private:
bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
unsigned &NewOpc, unsigned &EvenReg,
unsigned &OddReg, unsigned &BaseReg,
int &Offset,
unsigned &PredReg, ARMCC::CondCodes &Pred,
bool &isT2);
bool RescheduleOps(MachineBasicBlock *MBB,
SmallVector<MachineInstr*, 4> &Ops,
unsigned Base, bool isLd,
DenseMap<MachineInstr*, unsigned> &MI2LocMap);
bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
};
char ARMPreAllocLoadStoreOpt::ID = 0;
}
bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
TD = Fn.getTarget().getTargetData();
TII = Fn.getTarget().getInstrInfo();
TRI = Fn.getTarget().getRegisterInfo();
STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
MRI = &Fn.getRegInfo();
MF = &Fn;
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI)
Modified |= RescheduleLoadStoreInstrs(MFI);
return Modified;
}
static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E,
SmallPtrSet<MachineInstr*, 4> &MemOps,
SmallSet<unsigned, 4> &MemRegs,
const TargetRegisterInfo *TRI) {
// Are there stores / loads / calls between them?
// FIXME: This is overly conservative. We should make use of alias information
// some day.
SmallSet<unsigned, 4> AddedRegPressure;
while (++I != E) {
if (I->isDebugValue() || MemOps.count(&*I))
continue;
const MCInstrDesc &MCID = I->getDesc();
if (MCID.isCall() || MCID.isTerminator() || I->hasUnmodeledSideEffects())
return false;
if (isLd && MCID.mayStore())
return false;
if (!isLd) {
if (MCID.mayLoad())
return false;
// It's not safe to move the first 'str' down.
// str r1, [r0]
// strh r5, [r0]
// str r4, [r0, #+4]
if (MCID.mayStore())
return false;
}
for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
MachineOperand &MO = I->getOperand(j);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (MO.isDef() && TRI->regsOverlap(Reg, Base))
return false;
if (Reg != Base && !MemRegs.count(Reg))
AddedRegPressure.insert(Reg);
}
}
// Estimate register pressure increase due to the transformation.
if (MemRegs.size() <= 4)
// Ok if we are moving small number of instructions.
return true;
return AddedRegPressure.size() <= MemRegs.size() * 2;
}
bool
ARMPreAllocLoadStoreOpt::CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1,
DebugLoc &dl,
unsigned &NewOpc, unsigned &EvenReg,
unsigned &OddReg, unsigned &BaseReg,
int &Offset, unsigned &PredReg,
ARMCC::CondCodes &Pred,
bool &isT2) {
// Make sure we're allowed to generate LDRD/STRD.
if (!STI->hasV5TEOps())
return false;
// FIXME: VLDRS / VSTRS -> VLDRD / VSTRD
unsigned Scale = 1;
unsigned Opcode = Op0->getOpcode();
if (Opcode == ARM::LDRi12)
NewOpc = ARM::LDRD;
else if (Opcode == ARM::STRi12)
NewOpc = ARM::STRD;
else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
NewOpc = ARM::t2LDRDi8;
Scale = 4;
isT2 = true;
} else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
NewOpc = ARM::t2STRDi8;
Scale = 4;
isT2 = true;
} else
return false;
// Make sure the base address satisfies i64 ld / st alignment requirement.
if (!Op0->hasOneMemOperand() ||
!(*Op0->memoperands_begin())->getValue() ||
(*Op0->memoperands_begin())->isVolatile())
return false;
unsigned Align = (*Op0->memoperands_begin())->getAlignment();
const Function *Func = MF->getFunction();
unsigned ReqAlign = STI->hasV6Ops()
? TD->getABITypeAlignment(Type::getInt64Ty(Func->getContext()))
: 8; // Pre-v6 need 8-byte align
if (Align < ReqAlign)
return false;
// Then make sure the immediate offset fits.
int OffImm = getMemoryOpOffset(Op0);
if (isT2) {
int Limit = (1 << 8) * Scale;
if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1)))
return false;
Offset = OffImm;
} else {
ARM_AM::AddrOpc AddSub = ARM_AM::add;
if (OffImm < 0) {
AddSub = ARM_AM::sub;
OffImm = - OffImm;
}
int Limit = (1 << 8) * Scale;
if (OffImm >= Limit || (OffImm & (Scale-1)))
return false;
Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
}
EvenReg = Op0->getOperand(0).getReg();
OddReg = Op1->getOperand(0).getReg();
if (EvenReg == OddReg)
return false;
BaseReg = Op0->getOperand(1).getReg();
Pred = llvm::getInstrPredicate(Op0, PredReg);
dl = Op0->getDebugLoc();
return true;
}
namespace {
struct OffsetCompare {
bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
int LOffset = getMemoryOpOffset(LHS);
int ROffset = getMemoryOpOffset(RHS);
assert(LHS == RHS || LOffset != ROffset);
return LOffset > ROffset;
}
};
}
bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
SmallVector<MachineInstr*, 4> &Ops,
unsigned Base, bool isLd,
DenseMap<MachineInstr*, unsigned> &MI2LocMap) {
bool RetVal = false;
// Sort by offset (in reverse order).
std::sort(Ops.begin(), Ops.end(), OffsetCompare());
// The loads / stores of the same base are in order. Scan them from first to
// last and check for the following:
// 1. Any def of base.
// 2. Any gaps.
while (Ops.size() > 1) {
unsigned FirstLoc = ~0U;
unsigned LastLoc = 0;
MachineInstr *FirstOp = 0;
MachineInstr *LastOp = 0;
int LastOffset = 0;
unsigned LastOpcode = 0;
unsigned LastBytes = 0;
unsigned NumMove = 0;
for (int i = Ops.size() - 1; i >= 0; --i) {
MachineInstr *Op = Ops[i];
unsigned Loc = MI2LocMap[Op];
if (Loc <= FirstLoc) {
FirstLoc = Loc;
FirstOp = Op;
}
if (Loc >= LastLoc) {
LastLoc = Loc;
LastOp = Op;
}
unsigned Opcode = Op->getOpcode();
if (LastOpcode && Opcode != LastOpcode)
break;
int Offset = getMemoryOpOffset(Op);
unsigned Bytes = getLSMultipleTransferSize(Op);
if (LastBytes) {
if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
break;
}
LastOffset = Offset;
LastBytes = Bytes;
LastOpcode = Opcode;
if (++NumMove == 8) // FIXME: Tune this limit.
break;
}
if (NumMove <= 1)
Ops.pop_back();
else {
SmallPtrSet<MachineInstr*, 4> MemOps;
SmallSet<unsigned, 4> MemRegs;
for (int i = NumMove-1; i >= 0; --i) {
MemOps.insert(Ops[i]);
MemRegs.insert(Ops[i]->getOperand(0).getReg());
}
// Be conservative, if the instructions are too far apart, don't
// move them. We want to limit the increase of register pressure.
bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this.
if (DoMove)
DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp,
MemOps, MemRegs, TRI);
if (!DoMove) {
for (unsigned i = 0; i != NumMove; ++i)
Ops.pop_back();
} else {
// This is the new location for the loads / stores.
MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
while (InsertPos != MBB->end()
&& (MemOps.count(InsertPos) || InsertPos->isDebugValue()))
++InsertPos;
// If we are moving a pair of loads / stores, see if it makes sense
// to try to allocate a pair of registers that can form register pairs.
MachineInstr *Op0 = Ops.back();
MachineInstr *Op1 = Ops[Ops.size()-2];
unsigned EvenReg = 0, OddReg = 0;
unsigned BaseReg = 0, PredReg = 0;
ARMCC::CondCodes Pred = ARMCC::AL;
bool isT2 = false;
unsigned NewOpc = 0;
int Offset = 0;
DebugLoc dl;
if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
EvenReg, OddReg, BaseReg,
Offset, PredReg, Pred, isT2)) {
Ops.pop_back();
Ops.pop_back();
const MCInstrDesc &MCID = TII->get(NewOpc);
const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI);
MRI->constrainRegClass(EvenReg, TRC);
MRI->constrainRegClass(OddReg, TRC);
// Form the pair instruction.
if (isLd) {
MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
.addReg(EvenReg, RegState::Define)
.addReg(OddReg, RegState::Define)
.addReg(BaseReg);
// FIXME: We're converting from LDRi12 to an insn that still
// uses addrmode2, so we need an explicit offset reg. It should
// always by reg0 since we're transforming LDRi12s.
if (!isT2)
MIB.addReg(0);
MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
++NumLDRDFormed;
} else {
MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
.addReg(EvenReg)
.addReg(OddReg)
.addReg(BaseReg);
// FIXME: We're converting from LDRi12 to an insn that still
// uses addrmode2, so we need an explicit offset reg. It should
// always by reg0 since we're transforming STRi12s.
if (!isT2)
MIB.addReg(0);
MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
++NumSTRDFormed;
}
MBB->erase(Op0);
MBB->erase(Op1);
// Add register allocation hints to form register pairs.
MRI->setRegAllocationHint(EvenReg, ARMRI::RegPairEven, OddReg);
MRI->setRegAllocationHint(OddReg, ARMRI::RegPairOdd, EvenReg);
} else {
for (unsigned i = 0; i != NumMove; ++i) {
MachineInstr *Op = Ops.back();
Ops.pop_back();
MBB->splice(InsertPos, MBB, Op);
}
}
NumLdStMoved += NumMove;
RetVal = true;
}
}
}
return RetVal;
}
bool
ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
bool RetVal = false;
DenseMap<MachineInstr*, unsigned> MI2LocMap;
DenseMap<unsigned, SmallVector<MachineInstr*, 4> > Base2LdsMap;
DenseMap<unsigned, SmallVector<MachineInstr*, 4> > Base2StsMap;
SmallVector<unsigned, 4> LdBases;
SmallVector<unsigned, 4> StBases;
unsigned Loc = 0;
MachineBasicBlock::iterator MBBI = MBB->begin();
MachineBasicBlock::iterator E = MBB->end();
while (MBBI != E) {
for (; MBBI != E; ++MBBI) {
MachineInstr *MI = MBBI;
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.isCall() || MCID.isTerminator()) {
// Stop at barriers.
++MBBI;
break;
}
if (!MI->isDebugValue())
MI2LocMap[MI] = ++Loc;
if (!isMemoryOp(MI))
continue;
unsigned PredReg = 0;
if (llvm::getInstrPredicate(MI, PredReg) != ARMCC::AL)
continue;
int Opc = MI->getOpcode();
bool isLd = isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD;
unsigned Base = MI->getOperand(1).getReg();
int Offset = getMemoryOpOffset(MI);
bool StopHere = false;
if (isLd) {
DenseMap<unsigned, SmallVector<MachineInstr*, 4> >::iterator BI =
Base2LdsMap.find(Base);
if (BI != Base2LdsMap.end()) {
for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
if (Offset == getMemoryOpOffset(BI->second[i])) {
StopHere = true;
break;
}
}
if (!StopHere)
BI->second.push_back(MI);
} else {
SmallVector<MachineInstr*, 4> MIs;
MIs.push_back(MI);
Base2LdsMap[Base] = MIs;
LdBases.push_back(Base);
}
} else {
DenseMap<unsigned, SmallVector<MachineInstr*, 4> >::iterator BI =
Base2StsMap.find(Base);
if (BI != Base2StsMap.end()) {
for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
if (Offset == getMemoryOpOffset(BI->second[i])) {
StopHere = true;
break;
}
}
if (!StopHere)
BI->second.push_back(MI);
} else {
SmallVector<MachineInstr*, 4> MIs;
MIs.push_back(MI);
Base2StsMap[Base] = MIs;
StBases.push_back(Base);
}
}
if (StopHere) {
// Found a duplicate (a base+offset combination that's seen earlier).
// Backtrack.
--Loc;
break;
}
}
// Re-schedule loads.
for (unsigned i = 0, e = LdBases.size(); i != e; ++i) {
unsigned Base = LdBases[i];
SmallVector<MachineInstr*, 4> &Lds = Base2LdsMap[Base];
if (Lds.size() > 1)
RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap);
}
// Re-schedule stores.
for (unsigned i = 0, e = StBases.size(); i != e; ++i) {
unsigned Base = StBases[i];
SmallVector<MachineInstr*, 4> &Sts = Base2StsMap[Base];
if (Sts.size() > 1)
RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap);
}
if (MBBI != E) {
Base2LdsMap.clear();
Base2StsMap.clear();
LdBases.clear();
StBases.clear();
}
}
return RetVal;
}
/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
/// optimization pass.
FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
if (PreAlloc)
return new ARMPreAllocLoadStoreOpt();
return new ARMLoadStoreOpt();
}