| #include "../include/KaleidoscopeJIT.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/InstCombine/InstCombine.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Utils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cctype> |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::orc; |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, |
| tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, |
| tok_number = -5, |
| |
| // control |
| tok_if = -6, |
| tok_then = -7, |
| tok_else = -8, |
| tok_for = -9, |
| tok_in = -10, |
| |
| // operators |
| tok_binary = -11, |
| tok_unary = -12, |
| |
| // var definition |
| tok_var = -13 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") |
| return tok_def; |
| if (IdentifierStr == "extern") |
| return tok_extern; |
| if (IdentifierStr == "if") |
| return tok_if; |
| if (IdentifierStr == "then") |
| return tok_then; |
| if (IdentifierStr == "else") |
| return tok_else; |
| if (IdentifierStr == "for") |
| return tok_for; |
| if (IdentifierStr == "in") |
| return tok_in; |
| if (IdentifierStr == "binary") |
| return tok_binary; |
| if (IdentifierStr == "unary") |
| return tok_unary; |
| if (IdentifierStr == "var") |
| return tok_var; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), nullptr); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do |
| LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() = default; |
| |
| virtual Value *codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| |
| public: |
| NumberExprAST(double Val) : Val(Val) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| |
| public: |
| VariableExprAST(const std::string &Name) : Name(Name) {} |
| |
| Value *codegen() override; |
| const std::string &getName() const { return Name; } |
| }; |
| |
| /// UnaryExprAST - Expression class for a unary operator. |
| class UnaryExprAST : public ExprAST { |
| char Opcode; |
| std::unique_ptr<ExprAST> Operand; |
| |
| public: |
| UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) |
| : Opcode(Opcode), Operand(std::move(Operand)) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| std::unique_ptr<ExprAST> LHS, RHS; |
| |
| public: |
| BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS, |
| std::unique_ptr<ExprAST> RHS) |
| : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<std::unique_ptr<ExprAST>> Args; |
| |
| public: |
| CallExprAST(const std::string &Callee, |
| std::vector<std::unique_ptr<ExprAST>> Args) |
| : Callee(Callee), Args(std::move(Args)) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| std::unique_ptr<ExprAST> Cond, Then, Else; |
| |
| public: |
| IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then, |
| std::unique_ptr<ExprAST> Else) |
| : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| std::unique_ptr<ExprAST> Start, End, Step, Body; |
| |
| public: |
| ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start, |
| std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step, |
| std::unique_ptr<ExprAST> Body) |
| : VarName(VarName), Start(std::move(Start)), End(std::move(End)), |
| Step(std::move(Step)), Body(std::move(Body)) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// VarExprAST - Expression class for var/in |
| class VarExprAST : public ExprAST { |
| std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames; |
| std::unique_ptr<ExprAST> Body; |
| |
| public: |
| VarExprAST( |
| std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames, |
| std::unique_ptr<ExprAST> Body) |
| : VarNames(std::move(VarNames)), Body(std::move(Body)) {} |
| |
| Value *codegen() override; |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its name, and its argument names (thus implicitly the number |
| /// of arguments the function takes), as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| bool IsOperator; |
| unsigned Precedence; // Precedence if a binary op. |
| |
| public: |
| PrototypeAST(const std::string &Name, std::vector<std::string> Args, |
| bool IsOperator = false, unsigned Prec = 0) |
| : Name(Name), Args(std::move(Args)), IsOperator(IsOperator), |
| Precedence(Prec) {} |
| |
| Function *codegen(); |
| const std::string &getName() const { return Name; } |
| |
| bool isUnaryOp() const { return IsOperator && Args.size() == 1; } |
| bool isBinaryOp() const { return IsOperator && Args.size() == 2; } |
| |
| char getOperatorName() const { |
| assert(isUnaryOp() || isBinaryOp()); |
| return Name[Name.size() - 1]; |
| } |
| |
| unsigned getBinaryPrecedence() const { return Precedence; } |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| std::unique_ptr<PrototypeAST> Proto; |
| std::unique_ptr<ExprAST> Body; |
| |
| public: |
| FunctionAST(std::unique_ptr<PrototypeAST> Proto, |
| std::unique_ptr<ExprAST> Body) |
| : Proto(std::move(Proto)), Body(std::move(Body)) {} |
| |
| Function *codegen(); |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { return CurTok = gettok(); } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) |
| return -1; |
| return TokPrec; |
| } |
| |
| /// LogError* - These are little helper functions for error handling. |
| std::unique_ptr<ExprAST> LogError(const char *Str) { |
| fprintf(stderr, "Error: %s\n", Str); |
| return nullptr; |
| } |
| |
| std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) { |
| LogError(Str); |
| return nullptr; |
| } |
| |
| static std::unique_ptr<ExprAST> ParseExpression(); |
| |
| /// numberexpr ::= number |
| static std::unique_ptr<ExprAST> ParseNumberExpr() { |
| auto Result = llvm::make_unique<NumberExprAST>(NumVal); |
| getNextToken(); // consume the number |
| return std::move(Result); |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static std::unique_ptr<ExprAST> ParseParenExpr() { |
| getNextToken(); // eat (. |
| auto V = ParseExpression(); |
| if (!V) |
| return nullptr; |
| |
| if (CurTok != ')') |
| return LogError("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static std::unique_ptr<ExprAST> ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return llvm::make_unique<VariableExprAST>(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<std::unique_ptr<ExprAST>> Args; |
| if (CurTok != ')') { |
| while (true) { |
| if (auto Arg = ParseExpression()) |
| Args.push_back(std::move(Arg)); |
| else |
| return nullptr; |
| |
| if (CurTok == ')') |
| break; |
| |
| if (CurTok != ',') |
| return LogError("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return llvm::make_unique<CallExprAST>(IdName, std::move(Args)); |
| } |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static std::unique_ptr<ExprAST> ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| auto Cond = ParseExpression(); |
| if (!Cond) |
| return nullptr; |
| |
| if (CurTok != tok_then) |
| return LogError("expected then"); |
| getNextToken(); // eat the then |
| |
| auto Then = ParseExpression(); |
| if (!Then) |
| return nullptr; |
| |
| if (CurTok != tok_else) |
| return LogError("expected else"); |
| |
| getNextToken(); |
| |
| auto Else = ParseExpression(); |
| if (!Else) |
| return nullptr; |
| |
| return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then), |
| std::move(Else)); |
| } |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static std::unique_ptr<ExprAST> ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return LogError("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return LogError("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| auto Start = ParseExpression(); |
| if (!Start) |
| return nullptr; |
| if (CurTok != ',') |
| return LogError("expected ',' after for start value"); |
| getNextToken(); |
| |
| auto End = ParseExpression(); |
| if (!End) |
| return nullptr; |
| |
| // The step value is optional. |
| std::unique_ptr<ExprAST> Step; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (!Step) |
| return nullptr; |
| } |
| |
| if (CurTok != tok_in) |
| return LogError("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| auto Body = ParseExpression(); |
| if (!Body) |
| return nullptr; |
| |
| return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End), |
| std::move(Step), std::move(Body)); |
| } |
| |
| /// varexpr ::= 'var' identifier ('=' expression)? |
| // (',' identifier ('=' expression)?)* 'in' expression |
| static std::unique_ptr<ExprAST> ParseVarExpr() { |
| getNextToken(); // eat the var. |
| |
| std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames; |
| |
| // At least one variable name is required. |
| if (CurTok != tok_identifier) |
| return LogError("expected identifier after var"); |
| |
| while (true) { |
| std::string Name = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| // Read the optional initializer. |
| std::unique_ptr<ExprAST> Init = nullptr; |
| if (CurTok == '=') { |
| getNextToken(); // eat the '='. |
| |
| Init = ParseExpression(); |
| if (!Init) |
| return nullptr; |
| } |
| |
| VarNames.push_back(std::make_pair(Name, std::move(Init))); |
| |
| // End of var list, exit loop. |
| if (CurTok != ',') |
| break; |
| getNextToken(); // eat the ','. |
| |
| if (CurTok != tok_identifier) |
| return LogError("expected identifier list after var"); |
| } |
| |
| // At this point, we have to have 'in'. |
| if (CurTok != tok_in) |
| return LogError("expected 'in' keyword after 'var'"); |
| getNextToken(); // eat 'in'. |
| |
| auto Body = ParseExpression(); |
| if (!Body) |
| return nullptr; |
| |
| return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body)); |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| /// ::= varexpr |
| static std::unique_ptr<ExprAST> ParsePrimary() { |
| switch (CurTok) { |
| default: |
| return LogError("unknown token when expecting an expression"); |
| case tok_identifier: |
| return ParseIdentifierExpr(); |
| case tok_number: |
| return ParseNumberExpr(); |
| case '(': |
| return ParseParenExpr(); |
| case tok_if: |
| return ParseIfExpr(); |
| case tok_for: |
| return ParseForExpr(); |
| case tok_var: |
| return ParseVarExpr(); |
| } |
| } |
| |
| /// unary |
| /// ::= primary |
| /// ::= '!' unary |
| static std::unique_ptr<ExprAST> ParseUnary() { |
| // If the current token is not an operator, it must be a primary expr. |
| if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| return ParsePrimary(); |
| |
| // If this is a unary operator, read it. |
| int Opc = CurTok; |
| getNextToken(); |
| if (auto Operand = ParseUnary()) |
| return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand)); |
| return nullptr; |
| } |
| |
| /// binoprhs |
| /// ::= ('+' unary)* |
| static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, |
| std::unique_ptr<ExprAST> LHS) { |
| // If this is a binop, find its precedence. |
| while (true) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the unary expression after the binary operator. |
| auto RHS = ParseUnary(); |
| if (!RHS) |
| return nullptr; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS)); |
| if (!RHS) |
| return nullptr; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = |
| llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS)); |
| } |
| } |
| |
| /// expression |
| /// ::= unary binoprhs |
| /// |
| static std::unique_ptr<ExprAST> ParseExpression() { |
| auto LHS = ParseUnary(); |
| if (!LHS) |
| return nullptr; |
| |
| return ParseBinOpRHS(0, std::move(LHS)); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| /// ::= binary LETTER number? (id, id) |
| /// ::= unary LETTER (id) |
| static std::unique_ptr<PrototypeAST> ParsePrototype() { |
| std::string FnName; |
| |
| unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| unsigned BinaryPrecedence = 30; |
| |
| switch (CurTok) { |
| default: |
| return LogErrorP("Expected function name in prototype"); |
| case tok_identifier: |
| FnName = IdentifierStr; |
| Kind = 0; |
| getNextToken(); |
| break; |
| case tok_unary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return LogErrorP("Expected unary operator"); |
| FnName = "unary"; |
| FnName += (char)CurTok; |
| Kind = 1; |
| getNextToken(); |
| break; |
| case tok_binary: |
| getNextToken(); |
| if (!isascii(CurTok)) |
| return LogErrorP("Expected binary operator"); |
| FnName = "binary"; |
| FnName += (char)CurTok; |
| Kind = 2; |
| getNextToken(); |
| |
| // Read the precedence if present. |
| if (CurTok == tok_number) { |
| if (NumVal < 1 || NumVal > 100) |
| return LogErrorP("Invalid precedence: must be 1..100"); |
| BinaryPrecedence = (unsigned)NumVal; |
| getNextToken(); |
| } |
| break; |
| } |
| |
| if (CurTok != '(') |
| return LogErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return LogErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| // Verify right number of names for operator. |
| if (Kind && ArgNames.size() != Kind) |
| return LogErrorP("Invalid number of operands for operator"); |
| |
| return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0, |
| BinaryPrecedence); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static std::unique_ptr<FunctionAST> ParseDefinition() { |
| getNextToken(); // eat def. |
| auto Proto = ParsePrototype(); |
| if (!Proto) |
| return nullptr; |
| |
| if (auto E = ParseExpression()) |
| return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E)); |
| return nullptr; |
| } |
| |
| /// toplevelexpr ::= expression |
| static std::unique_ptr<FunctionAST> ParseTopLevelExpr() { |
| if (auto E = ParseExpression()) { |
| // Make an anonymous proto. |
| auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr", |
| std::vector<std::string>()); |
| return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E)); |
| } |
| return nullptr; |
| } |
| |
| /// external ::= 'extern' prototype |
| static std::unique_ptr<PrototypeAST> ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static LLVMContext TheContext; |
| static IRBuilder<> Builder(TheContext); |
| static std::unique_ptr<Module> TheModule; |
| static std::map<std::string, AllocaInst *> NamedValues; |
| static std::unique_ptr<legacy::FunctionPassManager> TheFPM; |
| static std::unique_ptr<KaleidoscopeJIT> TheJIT; |
| static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos; |
| |
| Value *LogErrorV(const char *Str) { |
| LogError(Str); |
| return nullptr; |
| } |
| |
| Function *getFunction(std::string Name) { |
| // First, see if the function has already been added to the current module. |
| if (auto *F = TheModule->getFunction(Name)) |
| return F; |
| |
| // If not, check whether we can codegen the declaration from some existing |
| // prototype. |
| auto FI = FunctionProtos.find(Name); |
| if (FI != FunctionProtos.end()) |
| return FI->second->codegen(); |
| |
| // If no existing prototype exists, return null. |
| return nullptr; |
| } |
| |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of |
| /// the function. This is used for mutable variables etc. |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, |
| const std::string &VarName) { |
| IRBuilder<> TmpB(&TheFunction->getEntryBlock(), |
| TheFunction->getEntryBlock().begin()); |
| return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName); |
| } |
| |
| Value *NumberExprAST::codegen() { |
| return ConstantFP::get(TheContext, APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| if (!V) |
| return LogErrorV("Unknown variable name"); |
| |
| // Load the value. |
| return Builder.CreateLoad(V, Name.c_str()); |
| } |
| |
| Value *UnaryExprAST::codegen() { |
| Value *OperandV = Operand->codegen(); |
| if (!OperandV) |
| return nullptr; |
| |
| Function *F = getFunction(std::string("unary") + Opcode); |
| if (!F) |
| return LogErrorV("Unknown unary operator"); |
| |
| return Builder.CreateCall(F, OperandV, "unop"); |
| } |
| |
| Value *BinaryExprAST::codegen() { |
| // Special case '=' because we don't want to emit the LHS as an expression. |
| if (Op == '=') { |
| // Assignment requires the LHS to be an identifier. |
| // This assume we're building without RTTI because LLVM builds that way by |
| // default. If you build LLVM with RTTI this can be changed to a |
| // dynamic_cast for automatic error checking. |
| VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get()); |
| if (!LHSE) |
| return LogErrorV("destination of '=' must be a variable"); |
| // Codegen the RHS. |
| Value *Val = RHS->codegen(); |
| if (!Val) |
| return nullptr; |
| |
| // Look up the name. |
| Value *Variable = NamedValues[LHSE->getName()]; |
| if (!Variable) |
| return LogErrorV("Unknown variable name"); |
| |
| Builder.CreateStore(Val, Variable); |
| return Val; |
| } |
| |
| Value *L = LHS->codegen(); |
| Value *R = RHS->codegen(); |
| if (!L || !R) |
| return nullptr; |
| |
| switch (Op) { |
| case '+': |
| return Builder.CreateFAdd(L, R, "addtmp"); |
| case '-': |
| return Builder.CreateFSub(L, R, "subtmp"); |
| case '*': |
| return Builder.CreateFMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); |
| default: |
| break; |
| } |
| |
| // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| // a call to it. |
| Function *F = getFunction(std::string("binary") + Op); |
| assert(F && "binary operator not found!"); |
| |
| Value *Ops[] = {L, R}; |
| return Builder.CreateCall(F, Ops, "binop"); |
| } |
| |
| Value *CallExprAST::codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = getFunction(Callee); |
| if (!CalleeF) |
| return LogErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return LogErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value *> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->codegen()); |
| if (!ArgsV.back()) |
| return nullptr; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| } |
| |
| Value *IfExprAST::codegen() { |
| Value *CondV = Cond->codegen(); |
| if (!CondV) |
| return nullptr; |
| |
| // Convert condition to a bool by comparing non-equal to 0.0. |
| CondV = Builder.CreateFCmpONE( |
| CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); |
| BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); |
| BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->codegen(); |
| if (!ThenV) |
| return nullptr; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->codegen(); |
| if (!ElseV) |
| return nullptr; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| // Output for-loop as: |
| // var = alloca double |
| // ... |
| // start = startexpr |
| // store start -> var |
| // goto loop |
| // loop: |
| // ... |
| // bodyexpr |
| // ... |
| // loopend: |
| // step = stepexpr |
| // endcond = endexpr |
| // |
| // curvar = load var |
| // nextvar = curvar + step |
| // store nextvar -> var |
| // br endcond, loop, endloop |
| // outloop: |
| Value *ForExprAST::codegen() { |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create an alloca for the variable in the entry block. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->codegen(); |
| if (!StartVal) |
| return nullptr; |
| |
| // Store the value into the alloca. |
| Builder.CreateStore(StartVal, Alloca); |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| AllocaInst *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Alloca; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (!Body->codegen()) |
| return nullptr; |
| |
| // Emit the step value. |
| Value *StepVal = nullptr; |
| if (Step) { |
| StepVal = Step->codegen(); |
| if (!StepVal) |
| return nullptr; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(TheContext, APFloat(1.0)); |
| } |
| |
| // Compute the end condition. |
| Value *EndCond = End->codegen(); |
| if (!EndCond) |
| return nullptr; |
| |
| // Reload, increment, and restore the alloca. This handles the case where |
| // the body of the loop mutates the variable. |
| Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); |
| Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); |
| Builder.CreateStore(NextVar, Alloca); |
| |
| // Convert condition to a bool by comparing non-equal to 0.0. |
| EndCond = Builder.CreateFCmpONE( |
| EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *AfterBB = |
| BasicBlock::Create(TheContext, "afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::getDoubleTy(TheContext)); |
| } |
| |
| Value *VarExprAST::codegen() { |
| std::vector<AllocaInst *> OldBindings; |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Register all variables and emit their initializer. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { |
| const std::string &VarName = VarNames[i].first; |
| ExprAST *Init = VarNames[i].second.get(); |
| |
| // Emit the initializer before adding the variable to scope, this prevents |
| // the initializer from referencing the variable itself, and permits stuff |
| // like this: |
| // var a = 1 in |
| // var a = a in ... # refers to outer 'a'. |
| Value *InitVal; |
| if (Init) { |
| InitVal = Init->codegen(); |
| if (!InitVal) |
| return nullptr; |
| } else { // If not specified, use 0.0. |
| InitVal = ConstantFP::get(TheContext, APFloat(0.0)); |
| } |
| |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); |
| Builder.CreateStore(InitVal, Alloca); |
| |
| // Remember the old variable binding so that we can restore the binding when |
| // we unrecurse. |
| OldBindings.push_back(NamedValues[VarName]); |
| |
| // Remember this binding. |
| NamedValues[VarName] = Alloca; |
| } |
| |
| // Codegen the body, now that all vars are in scope. |
| Value *BodyVal = Body->codegen(); |
| if (!BodyVal) |
| return nullptr; |
| |
| // Pop all our variables from scope. |
| for (unsigned i = 0, e = VarNames.size(); i != e; ++i) |
| NamedValues[VarNames[i].first] = OldBindings[i]; |
| |
| // Return the body computation. |
| return BodyVal; |
| } |
| |
| Function *PrototypeAST::codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext)); |
| FunctionType *FT = |
| FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); |
| |
| Function *F = |
| Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get()); |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (auto &Arg : F->args()) |
| Arg.setName(Args[Idx++]); |
| |
| return F; |
| } |
| |
| Function *FunctionAST::codegen() { |
| // Transfer ownership of the prototype to the FunctionProtos map, but keep a |
| // reference to it for use below. |
| auto &P = *Proto; |
| FunctionProtos[Proto->getName()] = std::move(Proto); |
| Function *TheFunction = getFunction(P.getName()); |
| if (!TheFunction) |
| return nullptr; |
| |
| // If this is an operator, install it. |
| if (P.isBinaryOp()) |
| BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence(); |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| // Record the function arguments in the NamedValues map. |
| NamedValues.clear(); |
| for (auto &Arg : TheFunction->args()) { |
| // Create an alloca for this variable. |
| AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName()); |
| |
| // Store the initial value into the alloca. |
| Builder.CreateStore(&Arg, Alloca); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Arg.getName()] = Alloca; |
| } |
| |
| if (Value *RetVal = Body->codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| |
| // Run the optimizer on the function. |
| TheFPM->run(*TheFunction); |
| |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| |
| if (P.isBinaryOp()) |
| BinopPrecedence.erase(P.getOperatorName()); |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static void InitializeModuleAndPassManager() { |
| // Open a new module. |
| TheModule = llvm::make_unique<Module>("my cool jit", TheContext); |
| TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout()); |
| |
| // Create a new pass manager attached to it. |
| TheFPM = llvm::make_unique<legacy::FunctionPassManager>(TheModule.get()); |
| |
| // Promote allocas to registers. |
| TheFPM->add(createPromoteMemoryToRegisterPass()); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| TheFPM->add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| TheFPM->add(createReassociatePass()); |
| // Eliminate Common SubExpressions. |
| TheFPM->add(createGVNPass()); |
| // Simplify the control flow graph (deleting unreachable blocks, etc). |
| TheFPM->add(createCFGSimplificationPass()); |
| |
| TheFPM->doInitialization(); |
| } |
| |
| static void HandleDefinition() { |
| if (auto FnAST = ParseDefinition()) { |
| if (auto *FnIR = FnAST->codegen()) { |
| fprintf(stderr, "Read function definition:"); |
| FnIR->print(errs()); |
| fprintf(stderr, "\n"); |
| TheJIT->addModule(std::move(TheModule)); |
| InitializeModuleAndPassManager(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (auto ProtoAST = ParseExtern()) { |
| if (auto *FnIR = ProtoAST->codegen()) { |
| fprintf(stderr, "Read extern: "); |
| FnIR->print(errs()); |
| fprintf(stderr, "\n"); |
| FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top-level expression into an anonymous function. |
| if (auto FnAST = ParseTopLevelExpr()) { |
| if (FnAST->codegen()) { |
| // JIT the module containing the anonymous expression, keeping a handle so |
| // we can free it later. |
| auto H = TheJIT->addModule(std::move(TheModule)); |
| InitializeModuleAndPassManager(); |
| |
| // Search the JIT for the __anon_expr symbol. |
| auto ExprSymbol = TheJIT->findSymbol("__anon_expr"); |
| assert(ExprSymbol && "Function not found"); |
| |
| // Get the symbol's address and cast it to the right type (takes no |
| // arguments, returns a double) so we can call it as a native function. |
| double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress()); |
| fprintf(stderr, "Evaluated to %f\n", FP()); |
| |
| // Delete the anonymous expression module from the JIT. |
| TheJIT->removeModule(H); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (true) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: |
| return; |
| case ';': // ignore top-level semicolons. |
| getNextToken(); |
| break; |
| case tok_def: |
| HandleDefinition(); |
| break; |
| case tok_extern: |
| HandleExtern(); |
| break; |
| default: |
| HandleTopLevelExpression(); |
| break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| #ifdef _WIN32 |
| #define DLLEXPORT __declspec(dllexport) |
| #else |
| #define DLLEXPORT |
| #endif |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" DLLEXPORT double putchard(double X) { |
| fputc((char)X, stderr); |
| return 0; |
| } |
| |
| /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| extern "C" DLLEXPORT double printd(double X) { |
| fprintf(stderr, "%f\n", X); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| InitializeNativeTarget(); |
| InitializeNativeTargetAsmPrinter(); |
| InitializeNativeTargetAsmParser(); |
| |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['='] = 2; |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| TheJIT = llvm::make_unique<KaleidoscopeJIT>(); |
| |
| InitializeModuleAndPassManager(); |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| return 0; |
| } |