| //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a virtual register map. This maps virtual registers to |
| // physical registers and virtual registers to stack slots. It is created and |
| // updated by a register allocator and then used by a machine code rewriter that |
| // adds spill code and rewrites virtual into physical register references. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_VIRTREGMAP_H |
| #define LLVM_CODEGEN_VIRTREGMAP_H |
| |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include <map> |
| |
| namespace llvm { |
| class LiveIntervals; |
| class MachineInstr; |
| class MachineFunction; |
| class MachineRegisterInfo; |
| class TargetInstrInfo; |
| class TargetRegisterInfo; |
| class raw_ostream; |
| class SlotIndexes; |
| |
| class VirtRegMap : public MachineFunctionPass { |
| public: |
| enum { |
| NO_PHYS_REG = 0, |
| NO_STACK_SLOT = (1L << 30)-1, |
| MAX_STACK_SLOT = (1L << 18)-1 |
| }; |
| |
| enum ModRef { isRef = 1, isMod = 2, isModRef = 3 }; |
| typedef std::multimap<MachineInstr*, |
| std::pair<unsigned, ModRef> > MI2VirtMapTy; |
| |
| private: |
| MachineRegisterInfo *MRI; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| MachineFunction *MF; |
| |
| DenseMap<const TargetRegisterClass*, BitVector> allocatableRCRegs; |
| |
| /// Virt2PhysMap - This is a virtual to physical register |
| /// mapping. Each virtual register is required to have an entry in |
| /// it; even spilled virtual registers (the register mapped to a |
| /// spilled register is the temporary used to load it from the |
| /// stack). |
| IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysMap; |
| |
| /// Virt2StackSlotMap - This is virtual register to stack slot |
| /// mapping. Each spilled virtual register has an entry in it |
| /// which corresponds to the stack slot this register is spilled |
| /// at. |
| IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap; |
| |
| /// Virt2ReMatIdMap - This is virtual register to rematerialization id |
| /// mapping. Each spilled virtual register that should be remat'd has an |
| /// entry in it which corresponds to the remat id. |
| IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap; |
| |
| /// Virt2SplitMap - This is virtual register to splitted virtual register |
| /// mapping. |
| IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap; |
| |
| /// Virt2SplitKillMap - This is splitted virtual register to its last use |
| /// (kill) index mapping. |
| IndexedMap<SlotIndex, VirtReg2IndexFunctor> Virt2SplitKillMap; |
| |
| /// ReMatMap - This is virtual register to re-materialized instruction |
| /// mapping. Each virtual register whose definition is going to be |
| /// re-materialized has an entry in it. |
| IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap; |
| |
| /// MI2VirtMap - This is MachineInstr to virtual register |
| /// mapping. In the case of memory spill code being folded into |
| /// instructions, we need to know which virtual register was |
| /// read/written by this instruction. |
| MI2VirtMapTy MI2VirtMap; |
| |
| /// SpillPt2VirtMap - This records the virtual registers which should |
| /// be spilled right after the MachineInstr due to live interval |
| /// splitting. |
| std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > > |
| SpillPt2VirtMap; |
| |
| /// RestorePt2VirtMap - This records the virtual registers which should |
| /// be restored right before the MachineInstr due to live interval |
| /// splitting. |
| std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap; |
| |
| /// EmergencySpillMap - This records the physical registers that should |
| /// be spilled / restored around the MachineInstr since the register |
| /// allocator has run out of registers. |
| std::map<MachineInstr*, std::vector<unsigned> > EmergencySpillMap; |
| |
| /// EmergencySpillSlots - This records emergency spill slots used to |
| /// spill physical registers when the register allocator runs out of |
| /// registers. Ideally only one stack slot is used per function per |
| /// register class. |
| std::map<const TargetRegisterClass*, int> EmergencySpillSlots; |
| |
| /// ReMatId - Instead of assigning a stack slot to a to be rematerialized |
| /// virtual register, an unique id is being assigned. This keeps track of |
| /// the highest id used so far. Note, this starts at (1<<18) to avoid |
| /// conflicts with stack slot numbers. |
| int ReMatId; |
| |
| /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes. |
| int LowSpillSlot, HighSpillSlot; |
| |
| /// SpillSlotToUsesMap - Records uses for each register spill slot. |
| SmallVector<SmallPtrSet<MachineInstr*, 4>, 8> SpillSlotToUsesMap; |
| |
| /// ImplicitDefed - One bit for each virtual register. If set it indicates |
| /// the register is implicitly defined. |
| BitVector ImplicitDefed; |
| |
| /// UnusedRegs - A list of physical registers that have not been used. |
| BitVector UnusedRegs; |
| |
| /// createSpillSlot - Allocate a spill slot for RC from MFI. |
| unsigned createSpillSlot(const TargetRegisterClass *RC); |
| |
| VirtRegMap(const VirtRegMap&); // DO NOT IMPLEMENT |
| void operator=(const VirtRegMap&); // DO NOT IMPLEMENT |
| |
| public: |
| static char ID; |
| VirtRegMap() : MachineFunctionPass(ID), Virt2PhysMap(NO_PHYS_REG), |
| Virt2StackSlotMap(NO_STACK_SLOT), |
| Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0), |
| Virt2SplitKillMap(SlotIndex()), ReMatMap(NULL), |
| ReMatId(MAX_STACK_SLOT+1), |
| LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { } |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachineFunction &getMachineFunction() const { |
| assert(MF && "getMachineFunction called before runOnMachineFunction"); |
| return *MF; |
| } |
| |
| MachineRegisterInfo &getRegInfo() const { return *MRI; } |
| const TargetRegisterInfo &getTargetRegInfo() const { return *TRI; } |
| |
| void grow(); |
| |
| /// @brief returns true if the specified virtual register is |
| /// mapped to a physical register |
| bool hasPhys(unsigned virtReg) const { |
| return getPhys(virtReg) != NO_PHYS_REG; |
| } |
| |
| /// @brief returns the physical register mapped to the specified |
| /// virtual register |
| unsigned getPhys(unsigned virtReg) const { |
| assert(TargetRegisterInfo::isVirtualRegister(virtReg)); |
| return Virt2PhysMap[virtReg]; |
| } |
| |
| /// @brief creates a mapping for the specified virtual register to |
| /// the specified physical register |
| void assignVirt2Phys(unsigned virtReg, unsigned physReg) { |
| assert(TargetRegisterInfo::isVirtualRegister(virtReg) && |
| TargetRegisterInfo::isPhysicalRegister(physReg)); |
| assert(Virt2PhysMap[virtReg] == NO_PHYS_REG && |
| "attempt to assign physical register to already mapped " |
| "virtual register"); |
| Virt2PhysMap[virtReg] = physReg; |
| } |
| |
| /// @brief clears the specified virtual register's, physical |
| /// register mapping |
| void clearVirt(unsigned virtReg) { |
| assert(TargetRegisterInfo::isVirtualRegister(virtReg)); |
| assert(Virt2PhysMap[virtReg] != NO_PHYS_REG && |
| "attempt to clear a not assigned virtual register"); |
| Virt2PhysMap[virtReg] = NO_PHYS_REG; |
| } |
| |
| /// @brief clears all virtual to physical register mappings |
| void clearAllVirt() { |
| Virt2PhysMap.clear(); |
| grow(); |
| } |
| |
| /// @brief returns the register allocation preference. |
| unsigned getRegAllocPref(unsigned virtReg); |
| |
| /// @brief returns true if VirtReg is assigned to its preferred physreg. |
| bool hasPreferredPhys(unsigned VirtReg) { |
| return getPhys(VirtReg) == getRegAllocPref(VirtReg); |
| } |
| |
| /// @brief records virtReg is a split live interval from SReg. |
| void setIsSplitFromReg(unsigned virtReg, unsigned SReg) { |
| Virt2SplitMap[virtReg] = SReg; |
| } |
| |
| /// @brief returns the live interval virtReg is split from. |
| unsigned getPreSplitReg(unsigned virtReg) const { |
| return Virt2SplitMap[virtReg]; |
| } |
| |
| /// getOriginal - Return the original virtual register that VirtReg descends |
| /// from through splitting. |
| /// A register that was not created by splitting is its own original. |
| /// This operation is idempotent. |
| unsigned getOriginal(unsigned VirtReg) const { |
| unsigned Orig = getPreSplitReg(VirtReg); |
| return Orig ? Orig : VirtReg; |
| } |
| |
| /// @brief returns true if the specified virtual register is not |
| /// mapped to a stack slot or rematerialized. |
| bool isAssignedReg(unsigned virtReg) const { |
| if (getStackSlot(virtReg) == NO_STACK_SLOT && |
| getReMatId(virtReg) == NO_STACK_SLOT) |
| return true; |
| // Split register can be assigned a physical register as well as a |
| // stack slot or remat id. |
| return (Virt2SplitMap[virtReg] && Virt2PhysMap[virtReg] != NO_PHYS_REG); |
| } |
| |
| /// @brief returns the stack slot mapped to the specified virtual |
| /// register |
| int getStackSlot(unsigned virtReg) const { |
| assert(TargetRegisterInfo::isVirtualRegister(virtReg)); |
| return Virt2StackSlotMap[virtReg]; |
| } |
| |
| /// @brief returns the rematerialization id mapped to the specified virtual |
| /// register |
| int getReMatId(unsigned virtReg) const { |
| assert(TargetRegisterInfo::isVirtualRegister(virtReg)); |
| return Virt2ReMatIdMap[virtReg]; |
| } |
| |
| /// @brief create a mapping for the specifed virtual register to |
| /// the next available stack slot |
| int assignVirt2StackSlot(unsigned virtReg); |
| /// @brief create a mapping for the specified virtual register to |
| /// the specified stack slot |
| void assignVirt2StackSlot(unsigned virtReg, int frameIndex); |
| |
| /// @brief assign an unique re-materialization id to the specified |
| /// virtual register. |
| int assignVirtReMatId(unsigned virtReg); |
| /// @brief assign an unique re-materialization id to the specified |
| /// virtual register. |
| void assignVirtReMatId(unsigned virtReg, int id); |
| |
| /// @brief returns true if the specified virtual register is being |
| /// re-materialized. |
| bool isReMaterialized(unsigned virtReg) const { |
| return ReMatMap[virtReg] != NULL; |
| } |
| |
| /// @brief returns the original machine instruction being re-issued |
| /// to re-materialize the specified virtual register. |
| MachineInstr *getReMaterializedMI(unsigned virtReg) const { |
| return ReMatMap[virtReg]; |
| } |
| |
| /// @brief records the specified virtual register will be |
| /// re-materialized and the original instruction which will be re-issed |
| /// for this purpose. If parameter all is true, then all uses of the |
| /// registers are rematerialized and it's safe to delete the definition. |
| void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) { |
| ReMatMap[virtReg] = def; |
| } |
| |
| /// @brief record the last use (kill) of a split virtual register. |
| void addKillPoint(unsigned virtReg, SlotIndex index) { |
| Virt2SplitKillMap[virtReg] = index; |
| } |
| |
| SlotIndex getKillPoint(unsigned virtReg) const { |
| return Virt2SplitKillMap[virtReg]; |
| } |
| |
| /// @brief remove the last use (kill) of a split virtual register. |
| void removeKillPoint(unsigned virtReg) { |
| Virt2SplitKillMap[virtReg] = SlotIndex(); |
| } |
| |
| /// @brief returns true if the specified MachineInstr is a spill point. |
| bool isSpillPt(MachineInstr *Pt) const { |
| return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end(); |
| } |
| |
| /// @brief returns the virtual registers that should be spilled due to |
| /// splitting right after the specified MachineInstr. |
| std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) { |
| return SpillPt2VirtMap[Pt]; |
| } |
| |
| /// @brief records the specified MachineInstr as a spill point for virtReg. |
| void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) { |
| std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator |
| I = SpillPt2VirtMap.find(Pt); |
| if (I != SpillPt2VirtMap.end()) |
| I->second.push_back(std::make_pair(virtReg, isKill)); |
| else { |
| std::vector<std::pair<unsigned,bool> > Virts; |
| Virts.push_back(std::make_pair(virtReg, isKill)); |
| SpillPt2VirtMap.insert(std::make_pair(Pt, Virts)); |
| } |
| } |
| |
| /// @brief - transfer spill point information from one instruction to |
| /// another. |
| void transferSpillPts(MachineInstr *Old, MachineInstr *New) { |
| std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator |
| I = SpillPt2VirtMap.find(Old); |
| if (I == SpillPt2VirtMap.end()) |
| return; |
| while (!I->second.empty()) { |
| unsigned virtReg = I->second.back().first; |
| bool isKill = I->second.back().second; |
| I->second.pop_back(); |
| addSpillPoint(virtReg, isKill, New); |
| } |
| SpillPt2VirtMap.erase(I); |
| } |
| |
| /// @brief returns true if the specified MachineInstr is a restore point. |
| bool isRestorePt(MachineInstr *Pt) const { |
| return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end(); |
| } |
| |
| /// @brief returns the virtual registers that should be restoreed due to |
| /// splitting right after the specified MachineInstr. |
| std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) { |
| return RestorePt2VirtMap[Pt]; |
| } |
| |
| /// @brief records the specified MachineInstr as a restore point for virtReg. |
| void addRestorePoint(unsigned virtReg, MachineInstr *Pt) { |
| std::map<MachineInstr*, std::vector<unsigned> >::iterator I = |
| RestorePt2VirtMap.find(Pt); |
| if (I != RestorePt2VirtMap.end()) |
| I->second.push_back(virtReg); |
| else { |
| std::vector<unsigned> Virts; |
| Virts.push_back(virtReg); |
| RestorePt2VirtMap.insert(std::make_pair(Pt, Virts)); |
| } |
| } |
| |
| /// @brief - transfer restore point information from one instruction to |
| /// another. |
| void transferRestorePts(MachineInstr *Old, MachineInstr *New) { |
| std::map<MachineInstr*, std::vector<unsigned> >::iterator I = |
| RestorePt2VirtMap.find(Old); |
| if (I == RestorePt2VirtMap.end()) |
| return; |
| while (!I->second.empty()) { |
| unsigned virtReg = I->second.back(); |
| I->second.pop_back(); |
| addRestorePoint(virtReg, New); |
| } |
| RestorePt2VirtMap.erase(I); |
| } |
| |
| /// @brief records that the specified physical register must be spilled |
| /// around the specified machine instr. |
| void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) { |
| if (EmergencySpillMap.find(MI) != EmergencySpillMap.end()) |
| EmergencySpillMap[MI].push_back(PhysReg); |
| else { |
| std::vector<unsigned> PhysRegs; |
| PhysRegs.push_back(PhysReg); |
| EmergencySpillMap.insert(std::make_pair(MI, PhysRegs)); |
| } |
| } |
| |
| /// @brief returns true if one or more physical registers must be spilled |
| /// around the specified instruction. |
| bool hasEmergencySpills(MachineInstr *MI) const { |
| return EmergencySpillMap.find(MI) != EmergencySpillMap.end(); |
| } |
| |
| /// @brief returns the physical registers to be spilled and restored around |
| /// the instruction. |
| std::vector<unsigned> &getEmergencySpills(MachineInstr *MI) { |
| return EmergencySpillMap[MI]; |
| } |
| |
| /// @brief - transfer emergency spill information from one instruction to |
| /// another. |
| void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) { |
| std::map<MachineInstr*,std::vector<unsigned> >::iterator I = |
| EmergencySpillMap.find(Old); |
| if (I == EmergencySpillMap.end()) |
| return; |
| while (!I->second.empty()) { |
| unsigned virtReg = I->second.back(); |
| I->second.pop_back(); |
| addEmergencySpill(virtReg, New); |
| } |
| EmergencySpillMap.erase(I); |
| } |
| |
| /// @brief return or get a emergency spill slot for the register class. |
| int getEmergencySpillSlot(const TargetRegisterClass *RC); |
| |
| /// @brief Return lowest spill slot index. |
| int getLowSpillSlot() const { |
| return LowSpillSlot; |
| } |
| |
| /// @brief Return highest spill slot index. |
| int getHighSpillSlot() const { |
| return HighSpillSlot; |
| } |
| |
| /// @brief Records a spill slot use. |
| void addSpillSlotUse(int FrameIndex, MachineInstr *MI); |
| |
| /// @brief Returns true if spill slot has been used. |
| bool isSpillSlotUsed(int FrameIndex) const { |
| assert(FrameIndex >= 0 && "Spill slot index should not be negative!"); |
| return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty(); |
| } |
| |
| /// @brief Mark the specified register as being implicitly defined. |
| void setIsImplicitlyDefined(unsigned VirtReg) { |
| ImplicitDefed.set(TargetRegisterInfo::virtReg2Index(VirtReg)); |
| } |
| |
| /// @brief Returns true if the virtual register is implicitly defined. |
| bool isImplicitlyDefined(unsigned VirtReg) const { |
| return ImplicitDefed[TargetRegisterInfo::virtReg2Index(VirtReg)]; |
| } |
| |
| /// @brief Updates information about the specified virtual register's value |
| /// folded into newMI machine instruction. |
| void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI, |
| ModRef MRInfo); |
| |
| /// @brief Updates information about the specified virtual register's value |
| /// folded into the specified machine instruction. |
| void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo); |
| |
| /// @brief returns the virtual registers' values folded in memory |
| /// operands of this instruction |
| std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator> |
| getFoldedVirts(MachineInstr* MI) const { |
| return MI2VirtMap.equal_range(MI); |
| } |
| |
| /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the |
| /// the folded instruction map and spill point map. |
| void RemoveMachineInstrFromMaps(MachineInstr *MI); |
| |
| /// FindUnusedRegisters - Gather a list of allocatable registers that |
| /// have not been allocated to any virtual register. |
| bool FindUnusedRegisters(LiveIntervals* LIs); |
| |
| /// HasUnusedRegisters - Return true if there are any allocatable registers |
| /// that have not been allocated to any virtual register. |
| bool HasUnusedRegisters() const { |
| return !UnusedRegs.none(); |
| } |
| |
| /// setRegisterUsed - Remember the physical register is now used. |
| void setRegisterUsed(unsigned Reg) { |
| UnusedRegs.reset(Reg); |
| } |
| |
| /// isRegisterUnused - Return true if the physical register has not been |
| /// used. |
| bool isRegisterUnused(unsigned Reg) const { |
| return UnusedRegs[Reg]; |
| } |
| |
| /// getFirstUnusedRegister - Return the first physical register that has not |
| /// been used. |
| unsigned getFirstUnusedRegister(const TargetRegisterClass *RC) { |
| int Reg = UnusedRegs.find_first(); |
| while (Reg != -1) { |
| if (allocatableRCRegs[RC][Reg]) |
| return (unsigned)Reg; |
| Reg = UnusedRegs.find_next(Reg); |
| } |
| return 0; |
| } |
| |
| /// rewrite - Rewrite all instructions in MF to use only physical registers |
| /// by mapping all virtual register operands to their assigned physical |
| /// registers. |
| /// |
| /// @param Indexes Optionally remove deleted instructions from indexes. |
| void rewrite(SlotIndexes *Indexes); |
| |
| void print(raw_ostream &OS, const Module* M = 0) const; |
| void dump() const; |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const VirtRegMap &VRM) { |
| VRM.print(OS); |
| return OS; |
| } |
| } // End llvm namespace |
| |
| #endif |