blob: 0b4bdab0c12e33cbb73cca154728074b5e4cb8a0 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Blitter.hpp"
#include "Pipeline/ShaderCore.hpp"
#include "Reactor/Reactor.hpp"
#include "System/Half.hpp"
#include "System/Memory.hpp"
#include "Vulkan/VkDebug.hpp"
#include "Vulkan/VkImage.hpp"
#include "Vulkan/VkBuffer.hpp"
#include <utility>
namespace sw {
Blitter::Blitter() :
blitMutex(),
blitCache(1024),
cornerUpdateMutex(),
cornerUpdateCache(64) // We only need one of these per format
{
}
Blitter::~Blitter()
{
}
void Blitter::clear(void *pixel, vk::Format format, vk::Image *dest, const vk::Format& viewFormat, const VkImageSubresourceRange& subresourceRange, const VkRect2D* renderArea)
{
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask);
vk::Format dstFormat = viewFormat.getAspectFormat(aspect);
if(dstFormat == VK_FORMAT_UNDEFINED)
{
return;
}
float *pPixel = static_cast<float *>(pixel);
if (viewFormat.isUnsignedNormalized())
{
pPixel[0] = sw::clamp(pPixel[0], 0.0f, 1.0f);
pPixel[1] = sw::clamp(pPixel[1], 0.0f, 1.0f);
pPixel[2] = sw::clamp(pPixel[2], 0.0f, 1.0f);
pPixel[3] = sw::clamp(pPixel[3], 0.0f, 1.0f);
}
else if (viewFormat.isSignedNormalized())
{
pPixel[0] = sw::clamp(pPixel[0], -1.0f, 1.0f);
pPixel[1] = sw::clamp(pPixel[1], -1.0f, 1.0f);
pPixel[2] = sw::clamp(pPixel[2], -1.0f, 1.0f);
pPixel[3] = sw::clamp(pPixel[3], -1.0f, 1.0f);
}
if(fastClear(pixel, format, dest, dstFormat, subresourceRange, renderArea))
{
return;
}
State state(format, dstFormat, 1, dest->getSampleCountFlagBits(), Options{ 0xF });
auto blitRoutine = getBlitRoutine(state);
if(!blitRoutine)
{
return;
}
VkImageSubresourceLayers subresLayers =
{
subresourceRange.aspectMask,
subresourceRange.baseMipLevel,
subresourceRange.baseArrayLayer,
1
};
uint32_t lastMipLevel = dest->getLastMipLevel(subresourceRange);
uint32_t lastLayer = dest->getLastLayerIndex(subresourceRange);
VkRect2D area = { { 0, 0 }, { 0, 0 } };
if(renderArea)
{
ASSERT(subresourceRange.levelCount == 1);
area = *renderArea;
}
for(; subresLayers.mipLevel <= lastMipLevel; subresLayers.mipLevel++)
{
VkExtent3D extent = dest->getMipLevelExtent(aspect, subresLayers.mipLevel);
if(!renderArea)
{
area.extent.width = extent.width;
area.extent.height = extent.height;
}
BlitData data =
{
pixel, nullptr, // source, dest
format.bytes(), // sPitchB
dest->rowPitchBytes(aspect, subresLayers.mipLevel), // dPitchB
0, // sSliceB (unused in clear operations)
dest->slicePitchBytes(aspect, subresLayers.mipLevel), // dSliceB
0.5f, 0.5f, 0.0f, 0.0f, // x0, y0, w, h
area.offset.y, static_cast<int>(area.offset.y + area.extent.height), // y0d, y1d
area.offset.x, static_cast<int>(area.offset.x + area.extent.width), // x0d, x1d
0, 0, // sWidth, sHeight
};
if (renderArea && dest->is3DSlice())
{
// Reinterpret layers as depth slices
subresLayers.baseArrayLayer = 0;
subresLayers.layerCount = 1;
for (uint32_t depth = subresourceRange.baseArrayLayer; depth <= lastLayer; depth++)
{
data.dest = dest->getTexelPointer({0, 0, static_cast<int32_t>(depth)}, subresLayers);
blitRoutine(&data);
}
}
else
{
for(subresLayers.baseArrayLayer = subresourceRange.baseArrayLayer; subresLayers.baseArrayLayer <= lastLayer; subresLayers.baseArrayLayer++)
{
for(uint32_t depth = 0; depth < extent.depth; depth++)
{
data.dest = dest->getTexelPointer({ 0, 0, static_cast<int32_t>(depth) }, subresLayers);
blitRoutine(&data);
}
}
}
}
}
bool Blitter::fastClear(void *pixel, vk::Format format, vk::Image *dest, const vk::Format& viewFormat, const VkImageSubresourceRange& subresourceRange, const VkRect2D* renderArea)
{
if(format != VK_FORMAT_R32G32B32A32_SFLOAT)
{
return false;
}
float *color = (float*)pixel;
float r = color[0];
float g = color[1];
float b = color[2];
float a = color[3];
uint32_t packed;
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask);
switch(viewFormat)
{
case VK_FORMAT_R5G6B5_UNORM_PACK16:
packed = ((uint16_t)(31 * b + 0.5f) << 0) |
((uint16_t)(63 * g + 0.5f) << 5) |
((uint16_t)(31 * r + 0.5f) << 11);
break;
case VK_FORMAT_B5G6R5_UNORM_PACK16:
packed = ((uint16_t)(31 * r + 0.5f) << 0) |
((uint16_t)(63 * g + 0.5f) << 5) |
((uint16_t)(31 * b + 0.5f) << 11);
break;
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_R8G8B8A8_UNORM:
packed = ((uint32_t)(255 * a + 0.5f) << 24) |
((uint32_t)(255 * b + 0.5f) << 16) |
((uint32_t)(255 * g + 0.5f) << 8) |
((uint32_t)(255 * r + 0.5f) << 0);
break;
case VK_FORMAT_B8G8R8A8_UNORM:
packed = ((uint32_t)(255 * a + 0.5f) << 24) |
((uint32_t)(255 * r + 0.5f) << 16) |
((uint32_t)(255 * g + 0.5f) << 8) |
((uint32_t)(255 * b + 0.5f) << 0);
break;
case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
packed = R11G11B10F(color);
break;
case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32:
packed = RGB9E5(color);
break;
default:
return false;
}
VkImageSubresourceLayers subresLayers =
{
subresourceRange.aspectMask,
subresourceRange.baseMipLevel,
subresourceRange.baseArrayLayer,
1
};
uint32_t lastMipLevel = dest->getLastMipLevel(subresourceRange);
uint32_t lastLayer = dest->getLastLayerIndex(subresourceRange);
VkRect2D area = { { 0, 0 }, { 0, 0 } };
if(renderArea)
{
ASSERT(subresourceRange.levelCount == 1);
area = *renderArea;
}
for(; subresLayers.mipLevel <= lastMipLevel; subresLayers.mipLevel++)
{
int rowPitchBytes = dest->rowPitchBytes(aspect, subresLayers.mipLevel);
int slicePitchBytes = dest->slicePitchBytes(aspect, subresLayers.mipLevel);
VkExtent3D extent = dest->getMipLevelExtent(aspect, subresLayers.mipLevel);
if(!renderArea)
{
area.extent.width = extent.width;
area.extent.height = extent.height;
}
if(dest->is3DSlice())
{
extent.depth = 1; // The 3D image is instead interpreted as a 2D image with layers
}
for(subresLayers.baseArrayLayer = subresourceRange.baseArrayLayer; subresLayers.baseArrayLayer <= lastLayer; subresLayers.baseArrayLayer++)
{
for(uint32_t depth = 0; depth < extent.depth; depth++)
{
uint8_t *slice = (uint8_t*)dest->getTexelPointer(
{ area.offset.x, area.offset.y, static_cast<int32_t>(depth) }, subresLayers);
for(int j = 0; j < dest->getSampleCountFlagBits(); j++)
{
uint8_t *d = slice;
switch(viewFormat.bytes())
{
case 2:
for(uint32_t i = 0; i < area.extent.height; i++)
{
ASSERT(d < dest->end());
sw::clear((uint16_t*)d, static_cast<uint16_t>(packed), area.extent.width);
d += rowPitchBytes;
}
break;
case 4:
for(uint32_t i = 0; i < area.extent.height; i++)
{
ASSERT(d < dest->end());
sw::clear((uint32_t*)d, packed, area.extent.width);
d += rowPitchBytes;
}
break;
default:
assert(false);
}
slice += slicePitchBytes;
}
}
}
}
return true;
}
Float4 Blitter::readFloat4(Pointer<Byte> element, const State &state)
{
Float4 c(0.0f, 0.0f, 0.0f, 1.0f);
switch(state.sourceFormat)
{
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
c.w = Float(Int(*Pointer<Byte>(element)) & Int(0xF));
c.x = Float((Int(*Pointer<Byte>(element)) >> 4) & Int(0xF));
c.y = Float(Int(*Pointer<Byte>(element + 1)) & Int(0xF));
c.z = Float((Int(*Pointer<Byte>(element + 1)) >> 4) & Int(0xF));
break;
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8_SNORM:
c.x = Float(Int(*Pointer<SByte>(element)));
c.w = float(0x7F);
break;
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8_SRGB:
c.x = Float(Int(*Pointer<Byte>(element)));
c.w = float(0xFF);
break;
case VK_FORMAT_R16_SINT:
case VK_FORMAT_R16_SNORM:
c.x = Float(Int(*Pointer<Short>(element)));
c.w = float(0x7FFF);
break;
case VK_FORMAT_R16_UNORM:
case VK_FORMAT_R16_UINT:
c.x = Float(Int(*Pointer<UShort>(element)));
c.w = float(0xFFFF);
break;
case VK_FORMAT_R32_SINT:
c.x = Float(*Pointer<Int>(element));
c.w = float(0x7FFFFFFF);
break;
case VK_FORMAT_R32_UINT:
c.x = Float(*Pointer<UInt>(element));
c.w = float(0xFFFFFFFF);
break;
case VK_FORMAT_B8G8R8A8_SRGB:
case VK_FORMAT_B8G8R8A8_UNORM:
c = Float4(*Pointer<Byte4>(element)).zyxw;
break;
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
case VK_FORMAT_R8G8B8A8_SINT:
case VK_FORMAT_A8B8G8R8_SNORM_PACK32:
case VK_FORMAT_R8G8B8A8_SNORM:
c = Float4(*Pointer<SByte4>(element));
break;
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_R8G8B8A8_UINT:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
case VK_FORMAT_R8G8B8A8_SRGB:
c = Float4(*Pointer<Byte4>(element));
break;
case VK_FORMAT_R16G16B16A16_SINT:
c = Float4(*Pointer<Short4>(element));
break;
case VK_FORMAT_R16G16B16A16_UNORM:
case VK_FORMAT_R16G16B16A16_UINT:
c = Float4(*Pointer<UShort4>(element));
break;
case VK_FORMAT_R32G32B32A32_SINT:
c = Float4(*Pointer<Int4>(element));
break;
case VK_FORMAT_R32G32B32A32_UINT:
c = Float4(*Pointer<UInt4>(element));
break;
case VK_FORMAT_R8G8_SINT:
case VK_FORMAT_R8G8_SNORM:
c.x = Float(Int(*Pointer<SByte>(element + 0)));
c.y = Float(Int(*Pointer<SByte>(element + 1)));
c.w = float(0x7F);
break;
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R8G8_UINT:
case VK_FORMAT_R8G8_SRGB:
c.x = Float(Int(*Pointer<Byte>(element + 0)));
c.y = Float(Int(*Pointer<Byte>(element + 1)));
c.w = float(0xFF);
break;
case VK_FORMAT_R16G16_SINT:
case VK_FORMAT_R16G16_SNORM:
c.x = Float(Int(*Pointer<Short>(element + 0)));
c.y = Float(Int(*Pointer<Short>(element + 2)));
c.w = float(0x7FFF);
break;
case VK_FORMAT_R16G16_UNORM:
case VK_FORMAT_R16G16_UINT:
c.x = Float(Int(*Pointer<UShort>(element + 0)));
c.y = Float(Int(*Pointer<UShort>(element + 2)));
c.w = float(0xFFFF);
break;
case VK_FORMAT_R32G32_SINT:
c.x = Float(*Pointer<Int>(element + 0));
c.y = Float(*Pointer<Int>(element + 4));
c.w = float(0x7FFFFFFF);
break;
case VK_FORMAT_R32G32_UINT:
c.x = Float(*Pointer<UInt>(element + 0));
c.y = Float(*Pointer<UInt>(element + 4));
c.w = float(0xFFFFFFFF);
break;
case VK_FORMAT_R32G32B32A32_SFLOAT:
c = *Pointer<Float4>(element);
break;
case VK_FORMAT_R32G32_SFLOAT:
c.x = *Pointer<Float>(element + 0);
c.y = *Pointer<Float>(element + 4);
break;
case VK_FORMAT_R32_SFLOAT:
c.x = *Pointer<Float>(element);
break;
case VK_FORMAT_R16G16B16A16_SFLOAT:
c.w = Float(*Pointer<Half>(element + 6));
case VK_FORMAT_R16G16B16_SFLOAT:
c.z = Float(*Pointer<Half>(element + 4));
case VK_FORMAT_R16G16_SFLOAT:
c.y = Float(*Pointer<Half>(element + 2));
case VK_FORMAT_R16_SFLOAT:
c.x = Float(*Pointer<Half>(element));
break;
case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
// 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa.
// Since the Half float format also has a 5 bit exponent, we can convert these formats to half by
// copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format.
// In this case, we have:
// B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R
// 1st Short: |xxxxxxxxxx---------------------|
// 2nd Short: |xxxx---------------------xxxxxx|
// 3rd Short: |--------------------xxxxxxxxxxxx|
// These memory reads overlap, but each of them contains an entire channel, so we can read this without
// any int -> short conversion.
c.x = Float(As<Half>((*Pointer<UShort>(element + 0) & UShort(0x07FF)) << UShort(4)));
c.y = Float(As<Half>((*Pointer<UShort>(element + 1) & UShort(0x3FF8)) << UShort(1)));
c.z = Float(As<Half>((*Pointer<UShort>(element + 2) & UShort(0xFFC0)) >> UShort(1)));
break;
case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32:
// This type contains a common 5 bit exponent (E) and a 9 bit the mantissa for R, G and B.
c.x = Float(*Pointer<UInt>(element) & UInt(0x000001FF)); // R's mantissa (bits 0-8)
c.y = Float((*Pointer<UInt>(element) & UInt(0x0003FE00)) >> 9); // G's mantissa (bits 9-17)
c.z = Float((*Pointer<UInt>(element) & UInt(0x07FC0000)) >> 18); // B's mantissa (bits 18-26)
c *= Float4(
// 2^E, using the exponent (bits 27-31) and treating it as an unsigned integer value
Float(UInt(1) << ((*Pointer<UInt>(element) & UInt(0xF8000000)) >> 27)) *
// Since the 9 bit mantissa values currently stored in RGB were converted straight
// from int to float (in the [0, 1<<9] range instead of the [0, 1] range), they
// are (1 << 9) times too high.
// Also, the exponent has 5 bits and we compute the exponent bias of floating point
// formats using "2^(k-1) - 1", so, in this case, the exponent bias is 2^(5-1)-1 = 15
// Exponent bias (15) + number of mantissa bits per component (9) = 24
Float(1.0f / (1 << 24)));
c.w = 1.0f;
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
c.x = Float(Int((*Pointer<UShort>(element) & UShort(0xF800)) >> UShort(11)));
c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x07E0)) >> UShort(5)));
c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x001F)));
break;
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
c.w = Float(Int((*Pointer<UShort>(element) & UShort(0x8000)) >> UShort(15)));
c.x = Float(Int((*Pointer<UShort>(element) & UShort(0x7C00)) >> UShort(10)));
c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x03E0)) >> UShort(5)));
c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x001F)));
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
c.x = Float(Int((*Pointer<UInt>(element) & UInt(0x000003FF))));
c.y = Float(Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10));
c.z = Float(Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20));
c.w = Float(Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30));
break;
case VK_FORMAT_D16_UNORM:
c.x = Float(Int((*Pointer<UShort>(element))));
break;
case VK_FORMAT_X8_D24_UNORM_PACK32:
c.x = Float(Int((*Pointer<UInt>(element) & UInt(0xFFFFFF00)) >> 8));
break;
case VK_FORMAT_D32_SFLOAT:
c.x = *Pointer<Float>(element);
break;
case VK_FORMAT_S8_UINT:
c.x = Float(Int(*Pointer<Byte>(element)));
break;
default:
UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat);
}
return c;
}
void Blitter::write(Float4 &c, Pointer<Byte> element, const State &state)
{
bool writeR = state.writeRed;
bool writeG = state.writeGreen;
bool writeB = state.writeBlue;
bool writeA = state.writeAlpha;
bool writeRGBA = writeR && writeG && writeB && writeA;
switch(state.destFormat)
{
case VK_FORMAT_R4G4_UNORM_PACK8:
if(writeR | writeG)
{
if(!writeR)
{
*Pointer<Byte>(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) |
(*Pointer<Byte>(element) & Byte(0xF0));
}
else if(!writeG)
{
*Pointer<Byte>(element) = (*Pointer<Byte>(element) & Byte(0xF)) |
(Byte(RoundInt(Float(c.x))) << Byte(4));
}
else
{
*Pointer<Byte>(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) |
(Byte(RoundInt(Float(c.x))) << Byte(4));
}
}
break;
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
if(writeR || writeG || writeB || writeA)
{
*Pointer<UShort>(element) = (writeR ? ((UShort(RoundInt(Float(c.x))) & UShort(0xF)) << UShort(12)) :
(*Pointer<UShort>(element) & UShort(0x000F))) |
(writeG ? ((UShort(RoundInt(Float(c.y))) & UShort(0xF)) << UShort(8)) :
(*Pointer<UShort>(element) & UShort(0x00F0))) |
(writeB ? ((UShort(RoundInt(Float(c.z))) & UShort(0xF)) << UShort(4)) :
(*Pointer<UShort>(element) & UShort(0x0F00))) |
(writeA ? (UShort(RoundInt(Float(c.w))) & UShort(0xF)) :
(*Pointer<UShort>(element) & UShort(0xF000)));
}
break;
case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
if(writeRGBA)
{
*Pointer<UShort>(element) = UShort(RoundInt(Float(c.w)) & Int(0xF)) |
UShort((RoundInt(Float(c.x)) & Int(0xF)) << 4) |
UShort((RoundInt(Float(c.y)) & Int(0xF)) << 8) |
UShort((RoundInt(Float(c.z)) & Int(0xF)) << 12);
}
else
{
unsigned short mask = (writeA ? 0x000F : 0x0000) |
(writeR ? 0x00F0 : 0x0000) |
(writeG ? 0x0F00 : 0x0000) |
(writeB ? 0xF000 : 0x0000);
unsigned short unmask = ~mask;
*Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) |
((UShort(RoundInt(Float(c.w)) & Int(0xF)) |
UShort((RoundInt(Float(c.x)) & Int(0xF)) << 4) |
UShort((RoundInt(Float(c.y)) & Int(0xF)) << 8) |
UShort((RoundInt(Float(c.z)) & Int(0xF)) << 12)) & UShort(mask));
}
break;
case VK_FORMAT_B8G8R8A8_SRGB:
case VK_FORMAT_B8G8R8A8_UNORM:
if(writeRGBA)
{
Short4 c0 = RoundShort4(c.zyxw);
*Pointer<Byte4>(element) = Byte4(PackUnsigned(c0, c0));
}
else
{
if(writeB) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.z))); }
if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); }
if(writeR) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.x))); }
if(writeA) { *Pointer<Byte>(element + 3) = Byte(RoundInt(Float(c.w))); }
}
break;
case VK_FORMAT_B8G8R8_SNORM:
if(writeB) { *Pointer<SByte>(element + 0) = SByte(RoundInt(Float(c.z))); }
if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); }
if(writeR) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_B8G8R8_UNORM:
case VK_FORMAT_B8G8R8_SRGB:
if(writeB) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.z))); }
if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); }
if(writeR) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_R8G8B8A8_UINT:
case VK_FORMAT_R8G8B8A8_USCALED:
case VK_FORMAT_A8B8G8R8_USCALED_PACK32:
if(writeRGBA)
{
Short4 c0 = RoundShort4(c);
*Pointer<Byte4>(element) = Byte4(PackUnsigned(c0, c0));
}
else
{
if(writeR) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); }
if(writeB) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.z))); }
if(writeA) { *Pointer<Byte>(element + 3) = Byte(RoundInt(Float(c.w))); }
}
break;
case VK_FORMAT_R32G32B32A32_SFLOAT:
if(writeRGBA)
{
*Pointer<Float4>(element) = c;
}
else
{
if(writeR) { *Pointer<Float>(element) = c.x; }
if(writeG) { *Pointer<Float>(element + 4) = c.y; }
if(writeB) { *Pointer<Float>(element + 8) = c.z; }
if(writeA) { *Pointer<Float>(element + 12) = c.w; }
}
break;
case VK_FORMAT_R32G32B32_SFLOAT:
if(writeR) { *Pointer<Float>(element) = c.x; }
if(writeG) { *Pointer<Float>(element + 4) = c.y; }
if(writeB) { *Pointer<Float>(element + 8) = c.z; }
break;
case VK_FORMAT_R32G32_SFLOAT:
if(writeR && writeG)
{
*Pointer<Float2>(element) = Float2(c);
}
else
{
if(writeR) { *Pointer<Float>(element) = c.x; }
if(writeG) { *Pointer<Float>(element + 4) = c.y; }
}
break;
case VK_FORMAT_R32_SFLOAT:
if(writeR) { *Pointer<Float>(element) = c.x; }
break;
case VK_FORMAT_R16G16B16A16_SFLOAT:
if(writeA) { *Pointer<Half>(element + 6) = Half(c.w); }
case VK_FORMAT_R16G16B16_SFLOAT:
if(writeB) { *Pointer<Half>(element + 4) = Half(c.z); }
case VK_FORMAT_R16G16_SFLOAT:
if(writeG) { *Pointer<Half>(element + 2) = Half(c.y); }
case VK_FORMAT_R16_SFLOAT:
if(writeR) { *Pointer<Half>(element) = Half(c.x); }
break;
case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
{
// 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa.
// Since the 16-bit half-precision float format also has a 5 bit exponent, we can extract these minifloats from them.
// FIXME(b/138944025): Handle negative values, Inf, and NaN.
// FIXME(b/138944025): Perform rounding before truncating the mantissa.
UInt r = (UInt(As<UShort>(Half(c.x))) & 0x00007FF0) >> 4;
UInt g = (UInt(As<UShort>(Half(c.y))) & 0x00007FF0) << 7;
UInt b = (UInt(As<UShort>(Half(c.z))) & 0x00007FE0) << 17;
UInt rgb = r | g | b;
UInt old = *Pointer<UInt>(element);
unsigned int mask = (writeR ? 0x000007FF : 0) |
(writeG ? 0x003FF800 : 0) |
(writeB ? 0xFFC00000 : 0);
*Pointer<UInt>(element) = (rgb & mask) | (old & ~mask);
}
break;
case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32:
{
ASSERT(writeRGBA); // Can't sensibly write just part of this format.
// Vulkan 1.1.117 section 15.2.1 RGB to Shared Exponent Conversion
constexpr int N = 9; // number of mantissa bits per component
constexpr int B = 15; // exponent bias
constexpr int E_max = 31; // maximum possible biased exponent value
// Maximum representable value.
constexpr float sharedexp_max = ((static_cast<float>(1 << N) - 1) / static_cast<float>(1 << N)) * static_cast<float>(1 << (E_max - B));
// Clamp components to valid range. NaN becomes 0.
Float red_c = Min(IfThenElse(!(c.x > 0), Float(0), Float(c.x)), sharedexp_max);
Float green_c = Min(IfThenElse(!(c.y > 0), Float(0), Float(c.y)), sharedexp_max);
Float blue_c = Min(IfThenElse(!(c.z > 0), Float(0), Float(c.z)), sharedexp_max);
// We're reducing the mantissa to 9 bits, so we must round up if the next
// bit is 1. In other words add 0.5 to the new mantissa's position and
// allow overflow into the exponent so we can scale correctly.
constexpr int half = 1 << (23 - N);
Float red_r = As<Float>(As<Int>(red_c) + half);
Float green_r = As<Float>(As<Int>(green_c) + half);
Float blue_r = As<Float>(As<Int>(blue_c) + half);
// The largest component determines the shared exponent. It can't be lower
// than 0 (after bias subtraction) so also limit to the mimimum representable.
constexpr float min_s = 0.5f / (1 << B);
Float max_s = Max(Max(red_r, green_r), Max(blue_r, min_s));
// Obtain the reciprocal of the shared exponent by inverting the bits,
// and scale by the new mantissa's size. Note that the IEEE-754 single-precision
// format has an implicit leading 1, but this shared component format does not.
Float scale = As<Float>((As<Int>(max_s) & 0x7F800000) ^ 0x7F800000) * (1 << (N - 2));
UInt R9 = RoundInt(red_c * scale);
UInt G9 = UInt(RoundInt(green_c * scale));
UInt B9 = UInt(RoundInt(blue_c * scale));
UInt E5 = (As<UInt>(max_s) >> 23) - 127 + 15 + 1;
UInt E5B9G9R9 = (E5 << 27) | (B9 << 18) | (G9 << 9) | R9;
*Pointer<UInt>(element) = E5B9G9R9;
}
break;
case VK_FORMAT_B8G8R8A8_SNORM:
if(writeB) { *Pointer<SByte>(element) = SByte(RoundInt(Float(c.z))); }
if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); }
if(writeR) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.x))); }
if(writeA) { *Pointer<SByte>(element + 3) = SByte(RoundInt(Float(c.w))); }
break;
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
case VK_FORMAT_R8G8B8A8_SINT:
case VK_FORMAT_A8B8G8R8_SNORM_PACK32:
case VK_FORMAT_R8G8B8A8_SNORM:
case VK_FORMAT_R8G8B8A8_SSCALED:
case VK_FORMAT_A8B8G8R8_SSCALED_PACK32:
if(writeA) { *Pointer<SByte>(element + 3) = SByte(RoundInt(Float(c.w))); }
case VK_FORMAT_R8G8B8_SINT:
case VK_FORMAT_R8G8B8_SNORM:
case VK_FORMAT_R8G8B8_SSCALED:
if(writeB) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.z))); }
case VK_FORMAT_R8G8_SINT:
case VK_FORMAT_R8G8_SNORM:
case VK_FORMAT_R8G8_SSCALED:
if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); }
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8_SNORM:
case VK_FORMAT_R8_SSCALED:
if(writeR) { *Pointer<SByte>(element) = SByte(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_R8G8B8_UINT:
case VK_FORMAT_R8G8B8_UNORM:
case VK_FORMAT_R8G8B8_USCALED:
case VK_FORMAT_R8G8B8_SRGB:
if(writeB) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.z))); }
case VK_FORMAT_R8G8_UINT:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R8G8_USCALED:
case VK_FORMAT_R8G8_SRGB:
if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); }
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8_USCALED:
case VK_FORMAT_R8_SRGB:
if(writeR) { *Pointer<Byte>(element) = Byte(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_R16G16B16A16_SINT:
case VK_FORMAT_R16G16B16A16_SNORM:
case VK_FORMAT_R16G16B16A16_SSCALED:
if(writeRGBA)
{
*Pointer<Short4>(element) = Short4(RoundInt(c));
}
else
{
if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); }
if(writeB) { *Pointer<Short>(element + 4) = Short(RoundInt(Float(c.z))); }
if(writeA) { *Pointer<Short>(element + 6) = Short(RoundInt(Float(c.w))); }
}
break;
case VK_FORMAT_R16G16B16_SINT:
case VK_FORMAT_R16G16B16_SNORM:
case VK_FORMAT_R16G16B16_SSCALED:
if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); }
if(writeB) { *Pointer<Short>(element + 4) = Short(RoundInt(Float(c.z))); }
break;
case VK_FORMAT_R16G16_SINT:
case VK_FORMAT_R16G16_SNORM:
case VK_FORMAT_R16G16_SSCALED:
if(writeR && writeG)
{
*Pointer<Short2>(element) = Short2(Short4(RoundInt(c)));
}
else
{
if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); }
}
break;
case VK_FORMAT_R16_SINT:
case VK_FORMAT_R16_SNORM:
case VK_FORMAT_R16_SSCALED:
if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_R16G16B16A16_UINT:
case VK_FORMAT_R16G16B16A16_UNORM:
case VK_FORMAT_R16G16B16A16_USCALED:
if(writeRGBA)
{
*Pointer<UShort4>(element) = UShort4(RoundInt(c));
}
else
{
if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); }
if(writeB) { *Pointer<UShort>(element + 4) = UShort(RoundInt(Float(c.z))); }
if(writeA) { *Pointer<UShort>(element + 6) = UShort(RoundInt(Float(c.w))); }
}
break;
case VK_FORMAT_R16G16B16_UINT:
case VK_FORMAT_R16G16B16_UNORM:
case VK_FORMAT_R16G16B16_USCALED:
if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); }
if(writeB) { *Pointer<UShort>(element + 4) = UShort(RoundInt(Float(c.z))); }
break;
case VK_FORMAT_R16G16_UINT:
case VK_FORMAT_R16G16_UNORM:
case VK_FORMAT_R16G16_USCALED:
if(writeR && writeG)
{
*Pointer<UShort2>(element) = UShort2(UShort4(RoundInt(c)));
}
else
{
if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); }
}
break;
case VK_FORMAT_R16_UINT:
case VK_FORMAT_R16_UNORM:
case VK_FORMAT_R16_USCALED:
if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_R32G32B32A32_SINT:
if(writeRGBA)
{
*Pointer<Int4>(element) = RoundInt(c);
}
else
{
if(writeR) { *Pointer<Int>(element) = RoundInt(Float(c.x)); }
if(writeG) { *Pointer<Int>(element + 4) = RoundInt(Float(c.y)); }
if(writeB) { *Pointer<Int>(element + 8) = RoundInt(Float(c.z)); }
if(writeA) { *Pointer<Int>(element + 12) = RoundInt(Float(c.w)); }
}
break;
case VK_FORMAT_R32G32B32_SINT:
if(writeB) { *Pointer<Int>(element + 8) = RoundInt(Float(c.z)); }
case VK_FORMAT_R32G32_SINT:
if(writeG) { *Pointer<Int>(element + 4) = RoundInt(Float(c.y)); }
case VK_FORMAT_R32_SINT:
if(writeR) { *Pointer<Int>(element) = RoundInt(Float(c.x)); }
break;
case VK_FORMAT_R32G32B32A32_UINT:
if(writeRGBA)
{
*Pointer<UInt4>(element) = UInt4(RoundInt(c));
}
else
{
if(writeR) { *Pointer<UInt>(element) = As<UInt>(RoundInt(Float(c.x))); }
if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(RoundInt(Float(c.y))); }
if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(RoundInt(Float(c.z))); }
if(writeA) { *Pointer<UInt>(element + 12) = As<UInt>(RoundInt(Float(c.w))); }
}
break;
case VK_FORMAT_R32G32B32_UINT:
if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(RoundInt(Float(c.z))); }
case VK_FORMAT_R32G32_UINT:
if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(RoundInt(Float(c.y))); }
case VK_FORMAT_R32_UINT:
if(writeR) { *Pointer<UInt>(element) = As<UInt>(RoundInt(Float(c.x))); }
break;
case VK_FORMAT_R5G6B5_UNORM_PACK16:
if(writeR && writeG && writeB)
{
*Pointer<UShort>(element) = UShort(RoundInt(Float(c.z)) |
(RoundInt(Float(c.y)) << Int(5)) |
(RoundInt(Float(c.x)) << Int(11)));
}
else
{
unsigned short mask = (writeB ? 0x001F : 0x0000) | (writeG ? 0x07E0 : 0x0000) | (writeR ? 0xF800 : 0x0000);
unsigned short unmask = ~mask;
*Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) |
(UShort(RoundInt(Float(c.z)) |
(RoundInt(Float(c.y)) << Int(5)) |
(RoundInt(Float(c.x)) << Int(11))) & UShort(mask));
}
break;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
if(writeRGBA)
{
*Pointer<UShort>(element) = UShort(RoundInt(Float(c.w)) |
(RoundInt(Float(c.z)) << Int(1)) |
(RoundInt(Float(c.y)) << Int(6)) |
(RoundInt(Float(c.x)) << Int(11)));
}
else
{
unsigned short mask = (writeA ? 0x8000 : 0x0000) |
(writeR ? 0x7C00 : 0x0000) |
(writeG ? 0x03E0 : 0x0000) |
(writeB ? 0x001F : 0x0000);
unsigned short unmask = ~mask;
*Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) |
(UShort(RoundInt(Float(c.w)) |
(RoundInt(Float(c.z)) << Int(1)) |
(RoundInt(Float(c.y)) << Int(6)) |
(RoundInt(Float(c.x)) << Int(11))) & UShort(mask));
}
break;
case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
if(writeRGBA)
{
*Pointer<UShort>(element) = UShort(RoundInt(Float(c.w)) |
(RoundInt(Float(c.x)) << Int(1)) |
(RoundInt(Float(c.y)) << Int(6)) |
(RoundInt(Float(c.z)) << Int(11)));
}
else
{
unsigned short mask = (writeA ? 0x8000 : 0x0000) |
(writeR ? 0x7C00 : 0x0000) |
(writeG ? 0x03E0 : 0x0000) |
(writeB ? 0x001F : 0x0000);
unsigned short unmask = ~mask;
*Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) |
(UShort(RoundInt(Float(c.w)) |
(RoundInt(Float(c.x)) << Int(1)) |
(RoundInt(Float(c.y)) << Int(6)) |
(RoundInt(Float(c.z)) << Int(11))) & UShort(mask));
}
break;
case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
if(writeRGBA)
{
*Pointer<UShort>(element) = UShort(RoundInt(Float(c.z)) |
(RoundInt(Float(c.y)) << Int(5)) |
(RoundInt(Float(c.x)) << Int(10)) |
(RoundInt(Float(c.w)) << Int(15)));
}
else
{
unsigned short mask = (writeA ? 0x8000 : 0x0000) |
(writeR ? 0x7C00 : 0x0000) |
(writeG ? 0x03E0 : 0x0000) |
(writeB ? 0x001F : 0x0000);
unsigned short unmask = ~mask;
*Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) |
(UShort(RoundInt(Float(c.z)) |
(RoundInt(Float(c.y)) << Int(5)) |
(RoundInt(Float(c.x)) << Int(10)) |
(RoundInt(Float(c.w)) << Int(15))) & UShort(mask));
}
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
if(writeRGBA)
{
*Pointer<UInt>(element) = UInt(RoundInt(Float(c.x)) |
(RoundInt(Float(c.y)) << 10) |
(RoundInt(Float(c.z)) << 20) |
(RoundInt(Float(c.w)) << 30));
}
else
{
unsigned int mask = (writeA ? 0xC0000000 : 0x0000) |
(writeB ? 0x3FF00000 : 0x0000) |
(writeG ? 0x000FFC00 : 0x0000) |
(writeR ? 0x000003FF : 0x0000);
unsigned int unmask = ~mask;
*Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) |
(UInt(RoundInt(Float(c.x)) |
(RoundInt(Float(c.y)) << 10) |
(RoundInt(Float(c.z)) << 20) |
(RoundInt(Float(c.w)) << 30)) & UInt(mask));
}
break;
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
case VK_FORMAT_A2R10G10B10_UINT_PACK32:
case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
if(writeRGBA)
{
*Pointer<UInt>(element) = UInt(RoundInt(Float(c.z)) |
(RoundInt(Float(c.y)) << 10) |
(RoundInt(Float(c.x)) << 20) |
(RoundInt(Float(c.w)) << 30));
}
else
{
unsigned int mask = (writeA ? 0xC0000000 : 0x0000) |
(writeR ? 0x3FF00000 : 0x0000) |
(writeG ? 0x000FFC00 : 0x0000) |
(writeB ? 0x000003FF : 0x0000);
unsigned int unmask = ~mask;
*Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) |
(UInt(RoundInt(Float(c.z)) |
(RoundInt(Float(c.y)) << 10) |
(RoundInt(Float(c.x)) << 20) |
(RoundInt(Float(c.w)) << 30)) & UInt(mask));
}
break;
case VK_FORMAT_D16_UNORM:
*Pointer<UShort>(element) = UShort(RoundInt(Float(c.x)));
break;
case VK_FORMAT_X8_D24_UNORM_PACK32:
*Pointer<UInt>(element) = UInt(RoundInt(Float(c.x)) << 8);
break;
case VK_FORMAT_D32_SFLOAT:
*Pointer<Float>(element) = c.x;
break;
case VK_FORMAT_S8_UINT:
*Pointer<Byte>(element) = Byte(RoundInt(Float(c.x)));
break;
default:
UNSUPPORTED("Blitter destination format %d", (int)state.destFormat);
break;
}
}
Int4 Blitter::readInt4(Pointer<Byte> element, const State &state)
{
Int4 c(0, 0, 0, 1);
switch(state.sourceFormat)
{
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
case VK_FORMAT_R8G8B8A8_SINT:
c = Insert(c, Int(*Pointer<SByte>(element + 3)), 3);
c = Insert(c, Int(*Pointer<SByte>(element + 2)), 2);
case VK_FORMAT_R8G8_SINT:
c = Insert(c, Int(*Pointer<SByte>(element + 1)), 1);
case VK_FORMAT_R8_SINT:
c = Insert(c, Int(*Pointer<SByte>(element)), 0);
break;
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000003FF))), 0);
c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10), 1);
c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20), 2);
c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30), 3);
break;
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_R8G8B8A8_UINT:
c = Insert(c, Int(*Pointer<Byte>(element + 3)), 3);
c = Insert(c, Int(*Pointer<Byte>(element + 2)), 2);
case VK_FORMAT_R8G8_UINT:
c = Insert(c, Int(*Pointer<Byte>(element + 1)), 1);
case VK_FORMAT_R8_UINT:
case VK_FORMAT_S8_UINT:
c = Insert(c, Int(*Pointer<Byte>(element)), 0);
break;
case VK_FORMAT_R16G16B16A16_SINT:
c = Insert(c, Int(*Pointer<Short>(element + 6)), 3);
c = Insert(c, Int(*Pointer<Short>(element + 4)), 2);
case VK_FORMAT_R16G16_SINT:
c = Insert(c, Int(*Pointer<Short>(element + 2)), 1);
case VK_FORMAT_R16_SINT:
c = Insert(c, Int(*Pointer<Short>(element)), 0);
break;
case VK_FORMAT_R16G16B16A16_UINT:
c = Insert(c, Int(*Pointer<UShort>(element + 6)), 3);
c = Insert(c, Int(*Pointer<UShort>(element + 4)), 2);
case VK_FORMAT_R16G16_UINT:
c = Insert(c, Int(*Pointer<UShort>(element + 2)), 1);
case VK_FORMAT_R16_UINT:
c = Insert(c, Int(*Pointer<UShort>(element)), 0);
break;
case VK_FORMAT_R32G32B32A32_SINT:
case VK_FORMAT_R32G32B32A32_UINT:
c = *Pointer<Int4>(element);
break;
case VK_FORMAT_R32G32_SINT:
case VK_FORMAT_R32G32_UINT:
c = Insert(c, *Pointer<Int>(element + 4), 1);
case VK_FORMAT_R32_SINT:
case VK_FORMAT_R32_UINT:
c = Insert(c, *Pointer<Int>(element), 0);
break;
default:
UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat);
}
return c;
}
void Blitter::write(Int4 &c, Pointer<Byte> element, const State &state)
{
bool writeR = state.writeRed;
bool writeG = state.writeGreen;
bool writeB = state.writeBlue;
bool writeA = state.writeAlpha;
bool writeRGBA = writeR && writeG && writeB && writeA;
switch(state.destFormat)
{
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
c = Min(As<UInt4>(c), UInt4(0x03FF, 0x03FF, 0x03FF, 0x0003));
break;
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_R8G8B8A8_UINT:
case VK_FORMAT_R8G8B8_UINT:
case VK_FORMAT_R8G8_UINT:
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8G8B8A8_USCALED:
case VK_FORMAT_R8G8B8_USCALED:
case VK_FORMAT_R8G8_USCALED:
case VK_FORMAT_R8_USCALED:
case VK_FORMAT_S8_UINT:
c = Min(As<UInt4>(c), UInt4(0xFF));
break;
case VK_FORMAT_R16G16B16A16_UINT:
case VK_FORMAT_R16G16B16_UINT:
case VK_FORMAT_R16G16_UINT:
case VK_FORMAT_R16_UINT:
case VK_FORMAT_R16G16B16A16_USCALED:
case VK_FORMAT_R16G16B16_USCALED:
case VK_FORMAT_R16G16_USCALED:
case VK_FORMAT_R16_USCALED:
c = Min(As<UInt4>(c), UInt4(0xFFFF));
break;
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
case VK_FORMAT_R8G8B8A8_SINT:
case VK_FORMAT_R8G8_SINT:
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8G8B8A8_SSCALED:
case VK_FORMAT_R8G8B8_SSCALED:
case VK_FORMAT_R8G8_SSCALED:
case VK_FORMAT_R8_SSCALED:
c = Min(Max(c, Int4(-0x80)), Int4(0x7F));
break;
case VK_FORMAT_R16G16B16A16_SINT:
case VK_FORMAT_R16G16B16_SINT:
case VK_FORMAT_R16G16_SINT:
case VK_FORMAT_R16_SINT:
case VK_FORMAT_R16G16B16A16_SSCALED:
case VK_FORMAT_R16G16B16_SSCALED:
case VK_FORMAT_R16G16_SSCALED:
case VK_FORMAT_R16_SSCALED:
c = Min(Max(c, Int4(-0x8000)), Int4(0x7FFF));
break;
default:
break;
}
switch(state.destFormat)
{
case VK_FORMAT_B8G8R8A8_SINT:
case VK_FORMAT_B8G8R8A8_SSCALED:
if(writeA) { *Pointer<SByte>(element + 3) = SByte(Extract(c, 3)); }
case VK_FORMAT_B8G8R8_SINT:
case VK_FORMAT_B8G8R8_SSCALED:
if(writeB) { *Pointer<SByte>(element) = SByte(Extract(c, 2)); }
if(writeG) { *Pointer<SByte>(element + 1) = SByte(Extract(c, 1)); }
if(writeR) { *Pointer<SByte>(element + 2) = SByte(Extract(c, 0)); }
break;
case VK_FORMAT_A8B8G8R8_SINT_PACK32:
case VK_FORMAT_R8G8B8A8_SINT:
case VK_FORMAT_R8G8B8A8_SSCALED:
case VK_FORMAT_A8B8G8R8_SSCALED_PACK32:
if(writeA) { *Pointer<SByte>(element + 3) = SByte(Extract(c, 3)); }
case VK_FORMAT_R8G8B8_SINT:
case VK_FORMAT_R8G8B8_SSCALED:
if(writeB) { *Pointer<SByte>(element + 2) = SByte(Extract(c, 2)); }
case VK_FORMAT_R8G8_SINT:
case VK_FORMAT_R8G8_SSCALED:
if(writeG) { *Pointer<SByte>(element + 1) = SByte(Extract(c, 1)); }
case VK_FORMAT_R8_SINT:
case VK_FORMAT_R8_SSCALED:
if(writeR) { *Pointer<SByte>(element) = SByte(Extract(c, 0)); }
break;
case VK_FORMAT_A2B10G10R10_UINT_PACK32:
case VK_FORMAT_A2B10G10R10_SINT_PACK32:
case VK_FORMAT_A2B10G10R10_USCALED_PACK32:
case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
if(writeRGBA)
{
*Pointer<UInt>(element) =
UInt((Extract(c, 0)) | (Extract(c, 1) << 10) | (Extract(c, 2) << 20) | (Extract(c, 3) << 30));
}
else
{
unsigned int mask = (writeA ? 0xC0000000 : 0x0000) |
(writeB ? 0x3FF00000 : 0x0000) |
(writeG ? 0x000FFC00 : 0x0000) |
(writeR ? 0x000003FF : 0x0000);
unsigned int unmask = ~mask;
*Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) |
(UInt(Extract(c, 0) | (Extract(c, 1) << 10) | (Extract(c, 2) << 20) | (Extract(c, 3) << 30)) & UInt(mask));
}
break;
case VK_FORMAT_A2R10G10B10_UINT_PACK32:
case VK_FORMAT_A2R10G10B10_SINT_PACK32:
case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
if(writeRGBA)
{
*Pointer<UInt>(element) =
UInt((Extract(c, 2)) | (Extract(c, 1) << 10) | (Extract(c, 0) << 20) | (Extract(c, 3) << 30));
}
else
{
unsigned int mask = (writeA ? 0xC0000000 : 0x0000) |
(writeR ? 0x3FF00000 : 0x0000) |
(writeG ? 0x000FFC00 : 0x0000) |
(writeB ? 0x000003FF : 0x0000);
unsigned int unmask = ~mask;
*Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) |
(UInt(Extract(c, 2) | (Extract(c, 1) << 10) | (Extract(c, 0) << 20) | (Extract(c, 3) << 30)) & UInt(mask));
}
break;
case VK_FORMAT_B8G8R8A8_UINT:
case VK_FORMAT_B8G8R8A8_USCALED:
if(writeA) { *Pointer<Byte>(element + 3) = Byte(Extract(c, 3)); }
case VK_FORMAT_B8G8R8_UINT:
case VK_FORMAT_B8G8R8_USCALED:
case VK_FORMAT_B8G8R8_SRGB:
if(writeB) { *Pointer<Byte>(element) = Byte(Extract(c, 2)); }
if(writeG) { *Pointer<Byte>(element + 1) = Byte(Extract(c, 1)); }
if(writeR) { *Pointer<Byte>(element + 2) = Byte(Extract(c, 0)); }
break;
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
case VK_FORMAT_R8G8B8A8_UINT:
case VK_FORMAT_R8G8B8A8_USCALED:
case VK_FORMAT_A8B8G8R8_USCALED_PACK32:
if(writeA) { *Pointer<Byte>(element + 3) = Byte(Extract(c, 3)); }
case VK_FORMAT_R8G8B8_UINT:
case VK_FORMAT_R8G8B8_USCALED:
if(writeB) { *Pointer<Byte>(element + 2) = Byte(Extract(c, 2)); }
case VK_FORMAT_R8G8_UINT:
case VK_FORMAT_R8G8_USCALED:
if(writeG) { *Pointer<Byte>(element + 1) = Byte(Extract(c, 1)); }
case VK_FORMAT_R8_UINT:
case VK_FORMAT_R8_USCALED:
case VK_FORMAT_S8_UINT:
if(writeR) { *Pointer<Byte>(element) = Byte(Extract(c, 0)); }
break;
case VK_FORMAT_R16G16B16A16_SINT:
case VK_FORMAT_R16G16B16A16_SSCALED:
if(writeA) { *Pointer<Short>(element + 6) = Short(Extract(c, 3)); }
case VK_FORMAT_R16G16B16_SINT:
case VK_FORMAT_R16G16B16_SSCALED:
if(writeB) { *Pointer<Short>(element + 4) = Short(Extract(c, 2)); }
case VK_FORMAT_R16G16_SINT:
case VK_FORMAT_R16G16_SSCALED:
if(writeG) { *Pointer<Short>(element + 2) = Short(Extract(c, 1)); }
case VK_FORMAT_R16_SINT:
case VK_FORMAT_R16_SSCALED:
if(writeR) { *Pointer<Short>(element) = Short(Extract(c, 0)); }
break;
case VK_FORMAT_R16G16B16A16_UINT:
case VK_FORMAT_R16G16B16A16_USCALED:
if(writeA) { *Pointer<UShort>(element + 6) = UShort(Extract(c, 3)); }
case VK_FORMAT_R16G16B16_UINT:
case VK_FORMAT_R16G16B16_USCALED:
if(writeB) { *Pointer<UShort>(element + 4) = UShort(Extract(c, 2)); }
case VK_FORMAT_R16G16_UINT:
case VK_FORMAT_R16G16_USCALED:
if(writeG) { *Pointer<UShort>(element + 2) = UShort(Extract(c, 1)); }
case VK_FORMAT_R16_UINT:
case VK_FORMAT_R16_USCALED:
if(writeR) { *Pointer<UShort>(element) = UShort(Extract(c, 0)); }
break;
case VK_FORMAT_R32G32B32A32_SINT:
if(writeRGBA)
{
*Pointer<Int4>(element) = c;
}
else
{
if(writeR) { *Pointer<Int>(element) = Extract(c, 0); }
if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); }
if(writeB) { *Pointer<Int>(element + 8) = Extract(c, 2); }
if(writeA) { *Pointer<Int>(element + 12) = Extract(c, 3); }
}
break;
case VK_FORMAT_R32G32B32_SINT:
if(writeR) { *Pointer<Int>(element) = Extract(c, 0); }
if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); }
if(writeB) { *Pointer<Int>(element + 8) = Extract(c, 2); }
break;
case VK_FORMAT_R32G32_SINT:
if(writeR) { *Pointer<Int>(element) = Extract(c, 0); }
if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); }
break;
case VK_FORMAT_R32_SINT:
if(writeR) { *Pointer<Int>(element) = Extract(c, 0); }
break;
case VK_FORMAT_R32G32B32A32_UINT:
if(writeRGBA)
{
*Pointer<UInt4>(element) = As<UInt4>(c);
}
else
{
if(writeR) { *Pointer<UInt>(element) = As<UInt>(Extract(c, 0)); }
if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(Extract(c, 1)); }
if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(Extract(c, 2)); }
if(writeA) { *Pointer<UInt>(element + 12) = As<UInt>(Extract(c, 3)); }
}
break;
case VK_FORMAT_R32G32B32_UINT:
if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(Extract(c, 2)); }
case VK_FORMAT_R32G32_UINT:
if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(Extract(c, 1)); }
case VK_FORMAT_R32_UINT:
if(writeR) { *Pointer<UInt>(element) = As<UInt>(Extract(c, 0)); }
break;
default:
UNSUPPORTED("Blitter destination format %d", (int)state.destFormat);
}
}
void Blitter::ApplyScaleAndClamp(Float4 &value, const State &state, bool preScaled)
{
float4 scale{}, unscale{};
if(state.clearOperation &&
state.sourceFormat.isNonNormalizedInteger() &&
!state.destFormat.isNonNormalizedInteger())
{
// If we're clearing a buffer from an int or uint color into a normalized color,
// then the whole range of the int or uint color must be scaled between 0 and 1.
switch(state.sourceFormat)
{
case VK_FORMAT_R32G32B32A32_SINT:
unscale = replicate(static_cast<float>(0x7FFFFFFF));
break;
case VK_FORMAT_R32G32B32A32_UINT:
unscale = replicate(static_cast<float>(0xFFFFFFFF));
break;
default:
UNSUPPORTED("Blitter source format %d", (int)state.sourceFormat);
}
}
else
{
unscale = state.sourceFormat.getScale();
}
scale = state.destFormat.getScale();
bool srcSRGB = state.sourceFormat.isSRGBformat();
bool dstSRGB = state.destFormat.isSRGBformat();
if(state.allowSRGBConversion && ((srcSRGB && !preScaled) || dstSRGB)) // One of the formats is sRGB encoded.
{
value *= preScaled ? Float4(1.0f / scale.x, 1.0f / scale.y, 1.0f / scale.z, 1.0f / scale.w) : // Unapply scale
Float4(1.0f / unscale.x, 1.0f / unscale.y, 1.0f / unscale.z, 1.0f / unscale.w); // Apply unscale
value = (srcSRGB && !preScaled) ? sRGBtoLinear(value) : LinearToSRGB(value);
value *= Float4(scale.x, scale.y, scale.z, scale.w); // Apply scale
}
else if(unscale != scale)
{
value *= Float4(scale.x / unscale.x, scale.y / unscale.y, scale.z / unscale.z, scale.w / unscale.w);
}
if(state.sourceFormat.isFloatFormat() && !state.destFormat.isFloatFormat())
{
value = Min(value, Float4(scale.x, scale.y, scale.z, scale.w));
value = Max(value, Float4(state.destFormat.isUnsignedComponent(0) ? 0.0f : -scale.x,
state.destFormat.isUnsignedComponent(1) ? 0.0f : -scale.y,
state.destFormat.isUnsignedComponent(2) ? 0.0f : -scale.z,
state.destFormat.isUnsignedComponent(3) ? 0.0f : -scale.w));
}
}
Int Blitter::ComputeOffset(Int &x, Int &y, Int &pitchB, int bytes)
{
return y * pitchB + x * bytes;
}
Float4 Blitter::LinearToSRGB(Float4 &c)
{
Float4 lc = Min(c, Float4(0.0031308f)) * Float4(12.92f);
Float4 ec = Float4(1.055f) * power(c, Float4(1.0f / 2.4f)) - Float4(0.055f);
Float4 s = c;
s.xyz = Max(lc, ec);
return s;
}
Float4 Blitter::sRGBtoLinear(Float4 &c)
{
Float4 lc = c * Float4(1.0f / 12.92f);
Float4 ec = power((c + Float4(0.055f)) * Float4(1.0f / 1.055f), Float4(2.4f));
Int4 linear = CmpLT(c, Float4(0.04045f));
Float4 s = c;
s.xyz = As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec))); // TODO: IfThenElse()
return s;
}
Blitter::BlitRoutineType Blitter::generate(const State &state)
{
BlitFunction function;
{
Pointer<Byte> blit(function.Arg<0>());
Pointer<Byte> source = *Pointer<Pointer<Byte>>(blit + OFFSET(BlitData,source));
Pointer<Byte> dest = *Pointer<Pointer<Byte>>(blit + OFFSET(BlitData,dest));
Int sPitchB = *Pointer<Int>(blit + OFFSET(BlitData,sPitchB));
Int dPitchB = *Pointer<Int>(blit + OFFSET(BlitData,dPitchB));
Float x0 = *Pointer<Float>(blit + OFFSET(BlitData,x0));
Float y0 = *Pointer<Float>(blit + OFFSET(BlitData,y0));
Float w = *Pointer<Float>(blit + OFFSET(BlitData,w));
Float h = *Pointer<Float>(blit + OFFSET(BlitData,h));
Int x0d = *Pointer<Int>(blit + OFFSET(BlitData,x0d));
Int x1d = *Pointer<Int>(blit + OFFSET(BlitData,x1d));
Int y0d = *Pointer<Int>(blit + OFFSET(BlitData,y0d));
Int y1d = *Pointer<Int>(blit + OFFSET(BlitData,y1d));
Int sWidth = *Pointer<Int>(blit + OFFSET(BlitData,sWidth));
Int sHeight = *Pointer<Int>(blit + OFFSET(BlitData,sHeight));
bool intSrc = state.sourceFormat.isNonNormalizedInteger();
bool intDst = state.destFormat.isNonNormalizedInteger();
bool intBoth = intSrc && intDst;
int srcBytes = state.sourceFormat.bytes();
int dstBytes = state.destFormat.bytes();
bool hasConstantColorI = false;
Int4 constantColorI;
bool hasConstantColorF = false;
Float4 constantColorF;
if(state.clearOperation)
{
if(intBoth) // Integer types
{
constantColorI = readInt4(source, state);
hasConstantColorI = true;
}
else
{
constantColorF = readFloat4(source, state);
hasConstantColorF = true;
ApplyScaleAndClamp(constantColorF, state);
}
}
For(Int j = y0d, j < y1d, j++)
{
Float y = state.clearOperation ? RValue<Float>(y0) : y0 + Float(j) * h;
Pointer<Byte> destLine = dest + j * dPitchB;
For(Int i = x0d, i < x1d, i++)
{
Float x = state.clearOperation ? RValue<Float>(x0) : x0 + Float(i) * w;
Pointer<Byte> d = destLine + i * dstBytes;
if(hasConstantColorI)
{
for(int s = 0; s < state.destSamples; s++)
{
write(constantColorI, d, state);
d += *Pointer<Int>(blit + OFFSET(BlitData, dSliceB));
}
}
else if(hasConstantColorF)
{
for(int s = 0; s < state.destSamples; s++)
{
write(constantColorF, d, state);
d += *Pointer<Int>(blit + OFFSET(BlitData, dSliceB));
}
}
else if(intBoth) // Integer types do not support filtering
{
Int X = Int(x);
Int Y = Int(y);
if(state.clampToEdge)
{
X = Clamp(X, 0, sWidth - 1);
Y = Clamp(Y, 0, sHeight - 1);
}
Pointer<Byte> s = source + ComputeOffset(X, Y, sPitchB, srcBytes);
// When both formats are true integer types, we don't go to float to avoid losing precision
Int4 color = readInt4(s, state);
for(int s = 0; s < state.destSamples; s++)
{
write(color, d, state);
d += *Pointer<Int>(blit + OFFSET(BlitData,dSliceB));
}
}
else
{
Float4 color;
bool preScaled = false;
if(!state.filter || intSrc)
{
Int X = Int(x);
Int Y = Int(y);
if(state.clampToEdge)
{
X = Clamp(X, 0, sWidth - 1);
Y = Clamp(Y, 0, sHeight - 1);
}
Pointer<Byte> s = source + ComputeOffset(X, Y, sPitchB, srcBytes);
color = readFloat4(s, state);
if(state.srcSamples > 1) // Resolve multisampled source
{
if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB
{
ApplyScaleAndClamp(color, state);
preScaled = true;
}
Float4 accum = color;
for(int sample = 1; sample < state.srcSamples; sample++)
{
s += *Pointer<Int>(blit + OFFSET(BlitData, sSliceB));
color = readFloat4(s, state);
if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB
{
ApplyScaleAndClamp(color, state);
preScaled = true;
}
accum += color;
}
color = accum * Float4(1.0f / static_cast<float>(state.srcSamples));
}
}
else // Bilinear filtering
{
Float X = x;
Float Y = y;
if(state.clampToEdge)
{
X = Min(Max(x, 0.5f), Float(sWidth) - 0.5f);
Y = Min(Max(y, 0.5f), Float(sHeight) - 0.5f);
}
Float x0 = X - 0.5f;
Float y0 = Y - 0.5f;
Int X0 = Max(Int(x0), 0);
Int Y0 = Max(Int(y0), 0);
Int X1 = X0 + 1;
Int Y1 = Y0 + 1;
X1 = IfThenElse(X1 >= sWidth, X0, X1);
Y1 = IfThenElse(Y1 >= sHeight, Y0, Y1);
Pointer<Byte> s00 = source + ComputeOffset(X0, Y0, sPitchB, srcBytes);
Pointer<Byte> s01 = source + ComputeOffset(X1, Y0, sPitchB, srcBytes);
Pointer<Byte> s10 = source + ComputeOffset(X0, Y1, sPitchB, srcBytes);
Pointer<Byte> s11 = source + ComputeOffset(X1, Y1, sPitchB, srcBytes);
Float4 c00 = readFloat4(s00, state);
Float4 c01 = readFloat4(s01, state);
Float4 c10 = readFloat4(s10, state);
Float4 c11 = readFloat4(s11, state);
if(state.allowSRGBConversion && state.sourceFormat.isSRGBformat()) // sRGB -> RGB
{
ApplyScaleAndClamp(c00, state);
ApplyScaleAndClamp(c01, state);
ApplyScaleAndClamp(c10, state);
ApplyScaleAndClamp(c11, state);
preScaled = true;
}
Float4 fx = Float4(x0 - Float(X0));
Float4 fy = Float4(y0 - Float(Y0));
Float4 ix = Float4(1.0f) - fx;
Float4 iy = Float4(1.0f) - fy;
color = (c00 * ix + c01 * fx) * iy +
(c10 * ix + c11 * fx) * fy;
}
ApplyScaleAndClamp(color, state, preScaled);
for(int s = 0; s < state.destSamples; s++)
{
write(color, d, state);
d += *Pointer<Int>(blit + OFFSET(BlitData,dSliceB));
}
}
}
}
}
return function("BlitRoutine");
}
Blitter::BlitRoutineType Blitter::getBlitRoutine(const State &state)
{
std::unique_lock<std::mutex> lock(blitMutex);
auto blitRoutine = blitCache.query(state);
if(!blitRoutine)
{
blitRoutine = generate(state);
blitCache.add(state, blitRoutine);
}
return blitRoutine;
}
Blitter::CornerUpdateRoutineType Blitter::getCornerUpdateRoutine(const State &state)
{
std::unique_lock<std::mutex> lock(cornerUpdateMutex);
auto cornerUpdateRoutine = cornerUpdateCache.query(state);
if(!cornerUpdateRoutine)
{
cornerUpdateRoutine = generateCornerUpdate(state);
cornerUpdateCache.add(state, cornerUpdateRoutine);
}
return cornerUpdateRoutine;
}
void Blitter::blitToBuffer(const vk::Image *src, VkImageSubresourceLayers subresource, VkOffset3D offset, VkExtent3D extent, uint8_t *dst, int bufferRowPitch, int bufferSlicePitch)
{
auto aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
auto format = src->getFormat(aspect);
State state(format, format, VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_1_BIT, Options{false, false});
auto blitRoutine = getBlitRoutine(state);
if(!blitRoutine)
{
return;
}
BlitData data =
{
nullptr, // source
dst, // dest
src->rowPitchBytes(aspect, subresource.mipLevel), // sPitchB
bufferRowPitch, // dPitchB
src->slicePitchBytes(aspect, subresource.mipLevel), // sSliceB
bufferSlicePitch, // dSliceB
0, 0, 1, 1,
0, // y0d
static_cast<int>(extent.height), // y1d
0, // x0d
static_cast<int>(extent.width), // x1d
static_cast<int>(extent.width), // sWidth
static_cast<int>(extent.height) // sHeight;
};
VkOffset3D srcOffset = { 0, 0, offset.z };
VkImageSubresourceLayers srcSubresLayers = subresource;
srcSubresLayers.layerCount = 1;
VkImageSubresourceRange srcSubresRange =
{
subresource.aspectMask,
subresource.mipLevel,
1,
subresource.baseArrayLayer,
subresource.layerCount
};
uint32_t lastLayer = src->getLastLayerIndex(srcSubresRange);
for(; srcSubresLayers.baseArrayLayer <= lastLayer; srcSubresLayers.baseArrayLayer++)
{
srcOffset.z = offset.z;
for(auto i = 0u; i < extent.depth; i++)
{
data.source = src->getTexelPointer(srcOffset, srcSubresLayers);
ASSERT(data.source < src->end());
blitRoutine(&data);
srcOffset.z++;
data.dest = (dst += bufferSlicePitch);
}
}
}
void Blitter::blitFromBuffer(const vk::Image *dst, VkImageSubresourceLayers subresource, VkOffset3D offset, VkExtent3D extent, uint8_t *src, int bufferRowPitch, int bufferSlicePitch)
{
auto aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
auto format = dst->getFormat(aspect);
State state(format, format, VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_1_BIT, Options{false, false});
auto blitRoutine = getBlitRoutine(state);
if(!blitRoutine)
{
return;
}
BlitData data =
{
src, // source
nullptr, // dest
bufferRowPitch, // sPitchB
dst->rowPitchBytes(aspect, subresource.mipLevel), // dPitchB
bufferSlicePitch, // sSliceB
dst->slicePitchBytes(aspect, subresource.mipLevel), // dSliceB
static_cast<float>(-offset.x), // x0
static_cast<float>(-offset.y), // y0
1.0f, // w
1.0f, // h
offset.y, // y0d
static_cast<int>(offset.y + extent.height), // y1d
offset.x, // x0d
static_cast<int>(offset.x + extent.width), // x1d
static_cast<int>(extent.width), // sWidth
static_cast<int>(extent.height) // sHeight;
};
VkOffset3D dstOffset = { 0, 0, offset.z };
VkImageSubresourceLayers dstSubresLayers = subresource;
dstSubresLayers.layerCount = 1;
VkImageSubresourceRange dstSubresRange =
{
subresource.aspectMask,
subresource.mipLevel,
1,
subresource.baseArrayLayer,
subresource.layerCount
};
uint32_t lastLayer = dst->getLastLayerIndex(dstSubresRange);
for(; dstSubresLayers.baseArrayLayer <= lastLayer; dstSubresLayers.baseArrayLayer++)
{
dstOffset.z = offset.z;
for(auto i = 0u; i < extent.depth; i++)
{
data.dest = dst->getTexelPointer(dstOffset, dstSubresLayers);
ASSERT(data.dest < dst->end());
blitRoutine(&data);
dstOffset.z++;
data.source = (src += bufferSlicePitch);
}
}
}
void Blitter::blit(const vk::Image *src, vk::Image *dst, VkImageBlit region, VkFilter filter)
{
if(dst->getFormat() == VK_FORMAT_UNDEFINED)
{
return;
}
if((region.srcSubresource.layerCount != region.dstSubresource.layerCount) ||
(region.srcSubresource.aspectMask != region.dstSubresource.aspectMask))
{
UNIMPLEMENTED("region");
}
if(region.dstOffsets[0].x > region.dstOffsets[1].x)
{
std::swap(region.srcOffsets[0].x, region.srcOffsets[1].x);
std::swap(region.dstOffsets[0].x, region.dstOffsets[1].x);
}
if(region.dstOffsets[0].y > region.dstOffsets[1].y)
{
std::swap(region.srcOffsets[0].y, region.srcOffsets[1].y);
std::swap(region.dstOffsets[0].y, region.dstOffsets[1].y);
}
VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(region.srcSubresource.aspectMask);
VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(region.dstSubresource.aspectMask);
VkExtent3D srcExtent = src->getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel);
int32_t numSlices = (region.srcOffsets[1].z - region.srcOffsets[0].z);
ASSERT(numSlices == (region.dstOffsets[1].z - region.dstOffsets[0].z));
float widthRatio = static_cast<float>(region.srcOffsets[1].x - region.srcOffsets[0].x) /
static_cast<float>(region.dstOffsets[1].x - region.dstOffsets[0].x);
float heightRatio = static_cast<float>(region.srcOffsets[1].y - region.srcOffsets[0].y) /
static_cast<float>(region.dstOffsets[1].y - region.dstOffsets[0].y);
float x0 = region.srcOffsets[0].x + (0.5f - region.dstOffsets[0].x) * widthRatio;
float y0 = region.srcOffsets[0].y + (0.5f - region.dstOffsets[0].y) * heightRatio;
auto srcFormat = src->getFormat(srcAspect);
auto dstFormat = dst->getFormat(dstAspect);
bool doFilter = (filter != VK_FILTER_NEAREST);
bool allowSRGBConversion =
doFilter ||
(src->getSampleCountFlagBits() > 1) ||
(srcFormat.isSRGBformat() != dstFormat.isSRGBformat());
State state(src->getFormat(srcAspect), dst->getFormat(dstAspect), src->getSampleCountFlagBits(), dst->getSampleCountFlagBits(),
Options{ doFilter, allowSRGBConversion });
state.clampToEdge = (region.srcOffsets[0].x < 0) ||
(region.srcOffsets[0].y < 0) ||
(static_cast<uint32_t>(region.srcOffsets[1].x) > srcExtent.width) ||
(static_cast<uint32_t>(region.srcOffsets[1].y) > srcExtent.height) ||
(doFilter && ((x0 < 0.5f) || (y0 < 0.5f)));
auto blitRoutine = getBlitRoutine(state);
if(!blitRoutine)
{
return;
}
BlitData data =
{
nullptr, // source
nullptr, // dest
src->rowPitchBytes(srcAspect, region.srcSubresource.mipLevel), // sPitchB
dst->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel), // dPitchB
src->slicePitchBytes(srcAspect, region.srcSubresource.mipLevel), // sSliceB
dst->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel), // dSliceB
x0,
y0,
widthRatio,
heightRatio,
region.dstOffsets[0].y, // y0d
region.dstOffsets[1].y, // y1d
region.dstOffsets[0].x, // x0d
region.dstOffsets[1].x, // x1d
static_cast<int>(srcExtent.width), // sWidth
static_cast<int>(srcExtent.height) // sHeight;
};
VkOffset3D srcOffset = { 0, 0, region.srcOffsets[0].z };
VkOffset3D dstOffset = { 0, 0, region.dstOffsets[0].z };
VkImageSubresourceLayers srcSubresLayers =
{
region.srcSubresource.aspectMask,
region.srcSubresource.mipLevel,
region.srcSubresource.baseArrayLayer,
1
};
VkImageSubresourceLayers dstSubresLayers =
{
region.dstSubresource.aspectMask,
region.dstSubresource.mipLevel,
region.dstSubresource.baseArrayLayer,
1
};
VkImageSubresourceRange srcSubresRange =
{
region.srcSubresource.aspectMask,
region.srcSubresource.mipLevel,
1,
region.srcSubresource.baseArrayLayer,
region.srcSubresource.layerCount
};
uint32_t lastLayer = src->getLastLayerIndex(srcSubresRange);
for(; srcSubresLayers.baseArrayLayer <= lastLayer; srcSubresLayers.baseArrayLayer++, dstSubresLayers.baseArrayLayer++)
{
srcOffset.z = region.srcOffsets[0].z;
dstOffset.z = region.dstOffsets[0].z;
for(int i = 0; i < numSlices; i++)
{
data.source = src->getTexelPointer(srcOffset, srcSubresLayers);
data.dest = dst->getTexelPointer(dstOffset, dstSubresLayers);
ASSERT(data.source < src->end());
ASSERT(data.dest < dst->end());
blitRoutine(&data);
srcOffset.z++;
dstOffset.z++;
}
}
}
void Blitter::computeCubeCorner(Pointer<Byte>& layer, Int& x0, Int& x1, Int& y0, Int& y1, Int& pitchB, const State& state)
{
int bytes = state.sourceFormat.bytes();
Float4 c = readFloat4(layer + ComputeOffset(x0, y1, pitchB, bytes), state) +
readFloat4(layer + ComputeOffset(x1, y0, pitchB, bytes), state) +
readFloat4(layer + ComputeOffset(x1, y1, pitchB, bytes), state);
c *= Float4(1.0f / 3.0f);
write(c, layer + ComputeOffset(x0, y0, pitchB, bytes), state);
}
Blitter::CornerUpdateRoutineType Blitter::generateCornerUpdate(const State& state)
{
// Reading and writing from/to the same image
ASSERT(state.sourceFormat == state.destFormat);
ASSERT(state.srcSamples == state.destSamples);
if(state.srcSamples != 1)
{
UNIMPLEMENTED("state.srcSamples %d", state.srcSamples);
}
CornerUpdateFunction function;
{
Pointer<Byte> blit(function.Arg<0>());
Pointer<Byte> layers = *Pointer<Pointer<Byte>>(blit + OFFSET(CubeBorderData, layers));
Int pitchB = *Pointer<Int>(blit + OFFSET(CubeBorderData, pitchB));
UInt layerSize = *Pointer<Int>(blit + OFFSET(CubeBorderData, layerSize));
UInt dim = *Pointer<Int>(blit + OFFSET(CubeBorderData, dim));
// Low Border, Low Pixel, High Border, High Pixel
Int LB(-1), LP(0), HB(dim), HP(dim-1);
for(int face = 0; face < 6; face++)
{
computeCubeCorner(layers, LB, LP, LB, LP, pitchB, state);
computeCubeCorner(layers, LB, LP, HB, HP, pitchB, state);
computeCubeCorner(layers, HB, HP, LB, LP, pitchB, state);
computeCubeCorner(layers, HB, HP, HB, HP, pitchB, state);
layers = layers + layerSize;
}
}
return function("BlitRoutine");
}
void Blitter::updateBorders(vk::Image* image, const VkImageSubresourceLayers& subresourceLayers)
{
if(image->getArrayLayers() < (subresourceLayers.baseArrayLayer + 6))
{
UNIMPLEMENTED("image->getArrayLayers() %d, baseArrayLayer %d",
image->getArrayLayers(), subresourceLayers.baseArrayLayer);
}
// From Vulkan 1.1 spec, section 11.5. Image Views:
// "For cube and cube array image views, the layers of the image view starting
// at baseArrayLayer correspond to faces in the order +X, -X, +Y, -Y, +Z, -Z."
VkImageSubresourceLayers posX = subresourceLayers;
posX.layerCount = 1;
VkImageSubresourceLayers negX = posX;
negX.baseArrayLayer++;
VkImageSubresourceLayers posY = negX;
posY.baseArrayLayer++;
VkImageSubresourceLayers negY = posY;
negY.baseArrayLayer++;
VkImageSubresourceLayers posZ = negY;
posZ.baseArrayLayer++;
VkImageSubresourceLayers negZ = posZ;
negZ.baseArrayLayer++;
// Copy top / bottom
copyCubeEdge(image, posX, BOTTOM, negY, RIGHT);
copyCubeEdge(image, posY, BOTTOM, posZ, TOP);
copyCubeEdge(image, posZ, BOTTOM, negY, TOP);
copyCubeEdge(image, negX, BOTTOM, negY, LEFT);
copyCubeEdge(image, negY, BOTTOM, negZ, BOTTOM);
copyCubeEdge(image, negZ, BOTTOM, negY, BOTTOM);
copyCubeEdge(image, posX, TOP, posY, RIGHT);
copyCubeEdge(image, posY, TOP, negZ, TOP);
copyCubeEdge(image, posZ, TOP, posY, BOTTOM);
copyCubeEdge(image, negX, TOP, posY, LEFT);
copyCubeEdge(image, negY, TOP, posZ, BOTTOM);
copyCubeEdge(image, negZ, TOP, posY, TOP);
// Copy left / right
copyCubeEdge(image, posX, RIGHT, negZ, LEFT);
copyCubeEdge(image, posY, RIGHT, posX, TOP);
copyCubeEdge(image, posZ, RIGHT, posX, LEFT);
copyCubeEdge(image, negX, RIGHT, posZ, LEFT);
copyCubeEdge(image, negY, RIGHT, posX, BOTTOM);
copyCubeEdge(image, negZ, RIGHT, negX, LEFT);
copyCubeEdge(image, posX, LEFT, posZ, RIGHT);
copyCubeEdge(image, posY, LEFT, negX, TOP);
copyCubeEdge(image, posZ, LEFT, negX, RIGHT);
copyCubeEdge(image, negX, LEFT, negZ, RIGHT);
copyCubeEdge(image, negY, LEFT, negX, BOTTOM);
copyCubeEdge(image, negZ, LEFT, posX, RIGHT);
// Compute corner colors
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresourceLayers.aspectMask);
vk::Format format = image->getFormat(aspect);
VkSampleCountFlagBits samples = image->getSampleCountFlagBits();
State state(format, format, samples, samples, Options{ 0xF });
if(samples != VK_SAMPLE_COUNT_1_BIT)
{
UNIMPLEMENTED("Multi-sampled cube: %d samples", static_cast<int>(samples));
}
auto cornerUpdateRoutine = getCornerUpdateRoutine(state);
if(!cornerUpdateRoutine)
{
return;
}
VkExtent3D extent = image->getMipLevelExtent(aspect, subresourceLayers.mipLevel);
CubeBorderData data =
{
image->getTexelPointer({ 0, 0, 0 }, posX),
image->rowPitchBytes(aspect, subresourceLayers.mipLevel),
static_cast<uint32_t>(image->getLayerSize(aspect)),
extent.width
};
cornerUpdateRoutine(&data);
}
void Blitter::copyCubeEdge(vk::Image* image,
const VkImageSubresourceLayers& dstSubresourceLayers, Edge dstEdge,
const VkImageSubresourceLayers& srcSubresourceLayers, Edge srcEdge)
{
ASSERT(srcSubresourceLayers.aspectMask == dstSubresourceLayers.aspectMask);
ASSERT(srcSubresourceLayers.mipLevel == dstSubresourceLayers.mipLevel);
ASSERT(srcSubresourceLayers.baseArrayLayer != dstSubresourceLayers.baseArrayLayer);
ASSERT(srcSubresourceLayers.layerCount == 1);
ASSERT(dstSubresourceLayers.layerCount == 1);
// Figure out if the edges to be copied in reverse order respectively from one another
// The copy should be reversed whenever the same edges are contiguous or if we're
// copying top <-> right or bottom <-> left. This is explained by the layout, which is:
//
// | +y |
// | -x | +z | +x | -z |
// | -y |
bool reverse = (srcEdge == dstEdge) ||
((srcEdge == TOP) && (dstEdge == RIGHT)) ||
((srcEdge == RIGHT) && (dstEdge == TOP)) ||
((srcEdge == BOTTOM) && (dstEdge == LEFT)) ||
((srcEdge == LEFT) && (dstEdge == BOTTOM));
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(srcSubresourceLayers.aspectMask);
int bytes = image->getFormat(aspect).bytes();
int pitchB = image->rowPitchBytes(aspect, srcSubresourceLayers.mipLevel);
VkExtent3D extent = image->getMipLevelExtent(aspect, srcSubresourceLayers.mipLevel);
int w = extent.width;
int h = extent.height;
if(w != h)
{
UNSUPPORTED("Cube doesn't have square faces : (%d, %d)", w, h);
}
// Src is expressed in the regular [0, width-1], [0, height-1] space
bool srcHorizontal = ((srcEdge == TOP) || (srcEdge == BOTTOM));
int srcDelta = srcHorizontal ? bytes : pitchB;
VkOffset3D srcOffset = { (srcEdge == RIGHT) ? (w - 1) : 0, (srcEdge == BOTTOM) ? (h - 1) : 0, 0 };
// Dst contains borders, so it is expressed in the [-1, width], [-1, height] space
bool dstHorizontal = ((dstEdge == TOP) || (dstEdge == BOTTOM));
int dstDelta = (dstHorizontal ? bytes : pitchB) * (reverse ? -1 : 1);
VkOffset3D dstOffset = { (dstEdge == RIGHT) ? w : -1, (dstEdge == BOTTOM) ? h : -1, 0 };
// Don't write in the corners
if(dstHorizontal)
{
dstOffset.x += reverse ? w : 1;
}
else
{
dstOffset.y += reverse ? h : 1;
}
const uint8_t* src = static_cast<const uint8_t*>(image->getTexelPointer(srcOffset, srcSubresourceLayers));
uint8_t *dst = static_cast<uint8_t*>(image->getTexelPointer(dstOffset, dstSubresourceLayers));
ASSERT((src < image->end()) && ((src + (w * srcDelta)) < image->end()));
ASSERT((dst < image->end()) && ((dst + (w * dstDelta)) < image->end()));
for(int i = 0; i < w; ++i, dst += dstDelta, src += srcDelta)
{
memcpy(dst, src, bytes);
}
}
} // namepspace sw