blob: 961299ec0b7243661f283c5e0368a1b54e9afa39 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
//
// This is forked from Dart revision df52deea9f25690eb8b66c5995da92b70f7ac1fe
// Please update the (git) revision if we merge changes from Dart.
// https://code.google.com/p/dart/wiki/GettingTheSource
#include "vm/globals.h" // NOLINT
#if defined(TARGET_ARCH_ARM)
#include "vm/assembler.h"
#include "vm/cpu.h"
#include "vm/longjump.h"
#include "vm/runtime_entry.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
// An extra check since we are assuming the existence of /proc/cpuinfo below.
#if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID)
#error ARM cross-compile only supported on Linux
#endif
namespace dart {
DECLARE_FLAG(bool, allow_absolute_addresses);
DEFINE_FLAG(bool, print_stop_message, true, "Print stop message.");
DECLARE_FLAG(bool, inline_alloc);
#if 0
// Moved to encodeImmRegOffsetEnc3 in IceAssemblerARM32.cpp
uint32_t Address::encoding3() const {
if (kind_ == Immediate) {
uint32_t offset = encoding_ & kOffset12Mask;
ASSERT(offset < 256);
return (encoding_ & ~kOffset12Mask) | B22 |
((offset & 0xf0) << 4) | (offset & 0xf);
}
ASSERT(kind_ == IndexRegister);
return encoding_;
}
#endif
uint32_t Address::vencoding() const {
ASSERT(kind_ == Immediate);
uint32_t offset = encoding_ & kOffset12Mask;
ASSERT(offset < (1 << 10)); // In the range 0 to +1020.
ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4.
int mode = encoding_ & ((8|4|1) << 21);
ASSERT((mode == Offset) || (mode == NegOffset));
uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2);
if (mode == Offset) {
vencoding |= 1 << 23;
}
return vencoding;
}
void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) {
ASSERT(Utils::IsAligned(data, 4));
ASSERT(Utils::IsAligned(length, 4));
const uword end = data + length;
while (data < end) {
*reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction;
data += 4;
}
}
void Assembler::Emit(int32_t value) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<int32_t>(value);
}
#if 0
// Moved to ARM32::AssemblerARM32::emitType01()
void Assembler::EmitType01(Condition cond,
int type,
Opcode opcode,
int set_cc,
Register rn,
Register rd,
Operand o) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
type << kTypeShift |
static_cast<int32_t>(opcode) << kOpcodeShift |
set_cc << kSShift |
static_cast<int32_t>(rn) << kRnShift |
static_cast<int32_t>(rd) << kRdShift |
o.encoding();
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::emitType05()
void Assembler::EmitType5(Condition cond, int32_t offset, bool link) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
5 << kTypeShift |
(link ? 1 : 0) << kLinkShift;
Emit(Assembler::EncodeBranchOffset(offset, encoding));
}
// Moved to ARM32::AssemblerARM32::emitMemOp()
void Assembler::EmitMemOp(Condition cond,
bool load,
bool byte,
Register rd,
Address ad) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B26 | (ad.kind() == Address::Immediate ? 0 : B25) |
(load ? L : 0) |
(byte ? B : 0) |
(static_cast<int32_t>(rd) << kRdShift) |
ad.encoding();
Emit(encoding);
}
// Moved to AssemblerARM32::emitMemOpEnc3();
void Assembler::EmitMemOpAddressMode3(Condition cond,
int32_t mode,
Register rd,
Address ad) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
mode |
(static_cast<int32_t>(rd) << kRdShift) |
ad.encoding3();
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::emitMuliMemOp()
void Assembler::EmitMultiMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
RegList regs) {
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 |
am |
(load ? L : 0) |
(static_cast<int32_t>(base) << kRnShift) |
regs;
Emit(encoding);
}
#endif
void Assembler::EmitShiftImmediate(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o) {
ASSERT(cond != kNoCondition);
ASSERT(o.type() == 1);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
static_cast<int32_t>(rd) << kRdShift |
o.encoding() << kShiftImmShift |
static_cast<int32_t>(opcode) << kShiftShift |
static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::EmitShiftRegister(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o) {
ASSERT(cond != kNoCondition);
ASSERT(o.type() == 0);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
static_cast<int32_t>(rd) << kRdShift |
o.encoding() << kShiftRegisterShift |
static_cast<int32_t>(opcode) << kShiftShift |
B4 |
static_cast<int32_t>(rm);
Emit(encoding);
}
#if 0
// Moved to ARM32::AssemblerARM32::and_()
void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), AND, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::eor()
void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), EOR, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::sub()
void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SUB, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::rsb()
void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSB, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::rsb()
void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSB, 1, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::add()
void Assembler::add(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADD, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::add()
void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADD, 1, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::sub()
void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SUB, 1, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::adc()
void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADC, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::adc()
void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADC, 1, rn, rd, o);
}
#endif
void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SBC, 0, rn, rd, o);
}
void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SBC, 1, rn, rd, o);
}
#if 0
// Moved to ARM32::AssemblerARM32::rsc()f
void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSC, 0, rn, rd, o);
}
// Moved to ARM32::AssemblerARM32::tst()
void Assembler::tst(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), TST, 1, rn, R0, o);
}
#endif
void Assembler::teq(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), TEQ, 1, rn, R0, o);
}
#if 0
// Moved to ARM32::AssemblerARM32::cmp()
void Assembler::cmp(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), CMP, 1, rn, R0, o);
}
// Moved to ARM32::AssemblerARM32::cmn()
void Assembler::cmn(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), CMN, 1, rn, R0, o);
}
// Moved to ARM32::AssemberARM32::orr()
void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ORR, 0, rn, rd, o);
}
// Moved to ARM32::AssemberARM32::orr()
void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ORR, 1, rn, rd, o);
}
// Moved to ARM32::AssemblerARM32::mov()
// TODO(kschimpf) other forms of move.
void Assembler::mov(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MOV, 0, R0, rd, o);
}
#endif
void Assembler::movs(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MOV, 1, R0, rd, o);
}
#if 0
// Moved to ARM32::AssemblerARM32::bic()
void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), BIC, 0, rn, rd, o);
}
// Moved to ARM32::AssemblerARM32::bic()
void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), BIC, 1, rn, rd, o);
}
// Moved to ARM32::AssemblerARM32::mvn()
void Assembler::mvn(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MVN, 0, R0, rd, o);
}
// Moved to ARM32::AssemblerARM32::mvn()
void Assembler::mvns(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MVN, 1, R0, rd, o);
}
// Moved to ARM32::AssemblerARM32::clz()
void Assembler::clz(Register rd, Register rm, Condition cond) {
ASSERT(rd != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(rd != PC);
ASSERT(rm != PC);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 | B22 | B21 | (0xf << 16) |
(static_cast<int32_t>(rd) << kRdShift) |
(0xf << 8) | B4 | static_cast<int32_t>(rm);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::movw()
void Assembler::movw(Register rd, uint16_t imm16, Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
B25 | B24 | ((imm16 >> 12) << 16) |
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::movt()
void Assembler::movt(Register rd, uint16_t imm16, Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
B25 | B24 | B22 | ((imm16 >> 12) << 16) |
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::emitMulOp()
void Assembler::EmitMulOp(Condition cond, int32_t opcode,
Register rd, Register rn,
Register rm, Register rs) {
ASSERT(rd != kNoRegister);
ASSERT(rn != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(rs != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = opcode |
(static_cast<int32_t>(cond) << kConditionShift) |
(static_cast<int32_t>(rn) << kRnShift) |
(static_cast<int32_t>(rd) << kRdShift) |
(static_cast<int32_t>(rs) << kRsShift) |
B7 | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::mul()
void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) {
// Assembler registers rd, rn, rm are encoded as rn, rm, rs.
EmitMulOp(cond, 0, R0, rd, rn, rm);
}
#endif
// Like mul, but sets condition flags.
void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) {
EmitMulOp(cond, B20, R0, rd, rn, rm);
}
#if 0
// Moved to ARM32::AssemblerARM32::mla()
void Assembler::mla(Register rd, Register rn,
Register rm, Register ra, Condition cond) {
// rd <- ra + rn * rm.
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B21, ra, rd, rn, rm);
}
// Moved to ARM32::AssemblerARM32::mla()
void Assembler::mls(Register rd, Register rn,
Register rm, Register ra, Condition cond) {
// rd <- ra - rn * rm.
if (TargetCPUFeatures::arm_version() == ARMv7) {
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B22 | B21, ra, rd, rn, rm);
} else {
mul(IP, rn, rm, cond);
sub(rd, ra, Operand(IP), cond);
}
}
#endif
void Assembler::smull(Register rd_lo, Register rd_hi,
Register rn, Register rm, Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm);
}
#if 0
// Moved to ARM32::AssemblerARM32::umull()
void Assembler::umull(Register rd_lo, Register rd_hi,
Register rn, Register rm, Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm);
}
#endif
void Assembler::umlal(Register rd_lo, Register rd_hi,
Register rn, Register rm, Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm);
}
void Assembler::umaal(Register rd_lo, Register rd_hi,
Register rn, Register rm) {
ASSERT(rd_lo != IP);
ASSERT(rd_hi != IP);
ASSERT(rn != IP);
ASSERT(rm != IP);
if (TargetCPUFeatures::arm_version() != ARMv5TE) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm);
} else {
mov(IP, Operand(0));
umlal(rd_lo, IP, rn, rm);
adds(rd_lo, rd_lo, Operand(rd_hi));
adc(rd_hi, IP, Operand(0));
}
}
#if 0
// Moved to ARM32::AssemblerARM32::emitDivOp()
void Assembler::EmitDivOp(Condition cond, int32_t opcode,
Register rd, Register rn, Register rm) {
ASSERT(TargetCPUFeatures::integer_division_supported());
ASSERT(rd != kNoRegister);
ASSERT(rn != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = opcode |
(static_cast<int32_t>(cond) << kConditionShift) |
(static_cast<int32_t>(rn) << kDivRnShift) |
(static_cast<int32_t>(rd) << kDivRdShift) |
// TODO(kschimpf): Why not also: B15 | B14 | B13 | B12?
B26 | B25 | B24 | B20 | B4 |
(static_cast<int32_t>(rm) << kDivRmShift);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::sdiv()
void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) {
EmitDivOp(cond, 0, rd, rn, rm);
}
// Moved to ARM32::AssemblerARM32::udiv()
void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) {
EmitDivOp(cond, B21 , rd, rn, rm);
}
// Moved to ARM32::AssemblerARM32::ldr()
void Assembler::ldr(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, false, rd, ad);
}
// Moved to ARM32::AssemblerARM32::str()
void Assembler::str(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, false, rd, ad);
}
// Moved to ARM32::AssemblerARM32::ldr()
void Assembler::ldrb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, true, rd, ad);
}
// Moved to ARM32::AssemblerARM32::str()
void Assembler::strb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, true, rd, ad);
}
#endif
void Assembler::ldrh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad);
}
void Assembler::strh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad);
}
void Assembler::ldrsb(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad);
}
void Assembler::ldrsh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad);
}
void Assembler::ldrd(Register rd, Register rn, int32_t offset, Condition cond) {
ASSERT((rd % 2) == 0);
if (TargetCPUFeatures::arm_version() == ARMv5TE) {
const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1);
ldr(rd, Address(rn, offset), cond);
ldr(rd2, Address(rn, offset + kWordSize), cond);
} else {
EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset));
}
}
void Assembler::strd(Register rd, Register rn, int32_t offset, Condition cond) {
ASSERT((rd % 2) == 0);
if (TargetCPUFeatures::arm_version() == ARMv5TE) {
const Register rd2 = static_cast<Register>(static_cast<int32_t>(rd) + 1);
str(rd, Address(rn, offset), cond);
str(rd2, Address(rn, offset + kWordSize), cond);
} else {
EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset));
}
}
#if 0
// Folded into ARM32::AssemblerARM32::popList(), since it is its only
// use (and doesn't implement ARM STM instruction).
void Assembler::ldm(BlockAddressMode am, Register base, RegList regs,
Condition cond) {
ASSERT(regs != 0);
EmitMultiMemOp(cond, am, true, base, regs);
}
// Folded into ARM32::AssemblerARM32::pushList(), since it is its only
// use (and doesn't implement ARM STM instruction).
void Assembler::stm(BlockAddressMode am, Register base, RegList regs,
Condition cond) {
ASSERT(regs != 0);
EmitMultiMemOp(cond, am, false, base, regs);
}
// Moved to ARM::AssemblerARM32::ldrex();
void Assembler::ldrex(Register rt, Register rn, Condition cond) {
ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
ASSERT(rn != kNoRegister);
ASSERT(rt != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 |
B23 |
L |
(static_cast<int32_t>(rn) << kLdExRnShift) |
(static_cast<int32_t>(rt) << kLdExRtShift) |
B11 | B10 | B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0;
Emit(encoding);
}
// Moved to ARM::AssemblerARM32::strex();
void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) {
ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
ASSERT(rn != kNoRegister);
ASSERT(rd != kNoRegister);
ASSERT(rt != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 |
B23 |
(static_cast<int32_t>(rn) << kStrExRnShift) |
(static_cast<int32_t>(rd) << kStrExRdShift) |
B11 | B10 | B9 | B8 | B7 | B4 |
(static_cast<int32_t>(rt) << kStrExRtShift);
Emit(encoding);
}
#endif
void Assembler::clrex() {
ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
int32_t encoding = (kSpecialCondition << kConditionShift) |
B26 | B24 | B22 | B21 | B20 | (0xff << 12) | B4 | 0xf;
Emit(encoding);
}
#if 0
// Moved to ARM32::AssemblerARM32::nop().
void Assembler::nop(Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B25 | B24 | B21 | (0xf << 12);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::vmovsr().
void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sn != kNoSRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 |
((static_cast<int32_t>(sn) >> 1)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1)*B7) | B4;
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::vmovrs().
void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sn != kNoSRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B20 |
((static_cast<int32_t>(sn) >> 1)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1)*B7) | B4;
Emit(encoding);
}
#endif
void Assembler::vmovsrr(SRegister sm, Register rt, Register rt2,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sm != kNoSRegister);
ASSERT(sm != S31);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1)*B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vmovrrs(Register rt, Register rt2, SRegister sm,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sm != kNoSRegister);
ASSERT(sm != S31);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(rt != rt2);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 | B20 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1)*B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
#if 0
// Moved to ARM32::AssemblerARM32::vmovdqir().
void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT((i == 0) || (i == 1));
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(dn != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 |
(i*B21) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dn) >> 4)*B7) |
((static_cast<int32_t>(dn) & 0xf)*B16) | B4;
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::vmovdrr().
void Assembler::vmovdrr(DRegister dm, Register rt, Register rt2,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dm != kNoDRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::vmovrrd().
void Assembler::vmovrrd(Register rt, Register rt2, DRegister dm,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dm != kNoDRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(rt != rt2);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B22 | B20 |
(static_cast<int32_t>(rt2)*B16) |
(static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::vldrs()
void Assembler::vldrs(SRegister sd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 | B20 |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sd) >> 1)*B12) |
B11 | B9 | ad.vencoding();
Emit(encoding);
}
// Moved to Arm32::AssemblerARM32::vstrs()
void Assembler::vstrs(SRegister sd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
ASSERT(sd != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sd) >> 1)*B12) |
B11 | B9 | ad.vencoding();
Emit(encoding);
}
void Assembler::vldrd(DRegister dd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 | B20 |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
B11 | B9 | B8 | ad.vencoding();
Emit(encoding);
}
#endif
void Assembler::vstrd(DRegister dd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
ASSERT(dd != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B24 |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
B11 | B9 | B8 | ad.vencoding();
Emit(encoding);
}
void Assembler::EmitMultiVSMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
SRegister start,
uint32_t count) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(start != kNoSRegister);
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B11 | B9 |
am |
(load ? L : 0) |
(static_cast<int32_t>(base) << kRnShift) |
((static_cast<int32_t>(start) & 0x1) ? D : 0) |
((static_cast<int32_t>(start) >> 1) << 12) |
count;
Emit(encoding);
}
void Assembler::EmitMultiVDMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
DRegister start,
int32_t count) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(start != kNoDRegister);
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters);
const int armv5te = TargetCPUFeatures::arm_version() == ARMv5TE ? 1 : 0;
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B11 | B9 | B8 |
am |
(load ? L : 0) |
(static_cast<int32_t>(base) << kRnShift) |
((static_cast<int32_t>(start) & 0x10) ? D : 0) |
((static_cast<int32_t>(start) & 0xf) << 12) |
(count << 1) | armv5te;
Emit(encoding);
}
void Assembler::vldms(BlockAddressMode am, Register base,
SRegister first, SRegister last, Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(last > first);
EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1);
}
void Assembler::vstms(BlockAddressMode am, Register base,
SRegister first, SRegister last, Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(last > first);
EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1);
}
void Assembler::vldmd(BlockAddressMode am, Register base,
DRegister first, intptr_t count, Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(count <= 16);
ASSERT(first + count <= kNumberOfDRegisters);
EmitMultiVDMemOp(cond, am, true, base, first, count);
}
void Assembler::vstmd(BlockAddressMode am, Register base,
DRegister first, intptr_t count, Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(count <= 16);
ASSERT(first + count <= kNumberOfDRegisters);
EmitMultiVDMemOp(cond, am, false, base, first, count);
}
#if 0
// Moved to ARM32::AssemblerARM32::emitVFPsss
void Assembler::EmitVFPsss(Condition cond, int32_t opcode,
SRegister sd, SRegister sn, SRegister sm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(sn != kNoSRegister);
ASSERT(sm != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | opcode |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sn) >> 1)*B16) |
((static_cast<int32_t>(sd) >> 1)*B12) |
((static_cast<int32_t>(sn) & 1)*B7) |
((static_cast<int32_t>(sm) & 1)*B5) |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::emitVFPddd
void Assembler::EmitVFPddd(Condition cond, int32_t opcode,
DRegister dd, DRegister dn, DRegister dm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(dn != kNoDRegister);
ASSERT(dm != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | B8 | opcode |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dn) & 0xf)*B16) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
((static_cast<int32_t>(dn) >> 4)*B7) |
((static_cast<int32_t>(dm) >> 4)*B5) |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
// Moved to Arm32::AssemblerARM32::vmovss()
void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
}
// Moved to Arm32::AssemblerARM32::vmovdd()
void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
}
// Moved to Arm32::AssemblerARM32::vmovs()
bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return false;
}
uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
if (((imm32 & ((1 << 19) - 1)) == 0) &&
((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
(((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) {
uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
((imm32 >> 19) & ((1 << 6) -1));
EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf),
sd, S0, S0);
return true;
}
return false;
}
// Moved to Arm32::AssemblerARM32::vmovd()
bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return false;
}
uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
if (((imm64 & ((1LL << 48) - 1)) == 0) &&
((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
(((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) {
uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
((imm64 >> 48) & ((1 << 6) -1));
EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf),
dd, D0, D0);
return true;
}
return false;
}
// Moved to Arm32::AssemblerARM32::vadds()
void Assembler::vadds(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20, sd, sn, sm);
}
// Moved to Arm32::AssemblerARM32::vaddd()
void Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20, dd, dn, dm);
}
// Moved to Arm32::AssemblerARM32::vsubs()
void Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
}
// Moved to Arm32::AssemblerARM32::vsubd()
void Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
}
// Moved to Arm32::AssemblerARM32::vmuls()
void Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21, sd, sn, sm);
}
// Moved to Arm32::AssemblerARM32::vmuld()
void Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21, dd, dn, dm);
}
// Moved to Arm32::AssemblerARM32::vmlas()
void Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, 0, sd, sn, sm);
}
// Moved to Arm32::AssemblerARM32::vmlad()
void Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, 0, dd, dn, dm);
}
// Moved to Arm32::AssemblerARM32::vmlss()
void Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B6, sd, sn, sm);
}
// Moved to Arm32::AssemblerARM32::vmlsd()
void Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B6, dd, dn, dm);
}
// Moved to Arm32::AssemblerARM32::vdivs()
void Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm,
Condition cond) {
EmitVFPsss(cond, B23, sd, sn, sm);
}
// Moved to Arm32::AssemblerARM32::vdivd()
void Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm,
Condition cond) {
EmitVFPddd(cond, B23, dd, dn, dm);
}
// Moved to Arm32::AssemblerARM32::vabss().
void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
}
// Moved to Arm32::AssemblerARM32::vabsd().
void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
}
#endif
void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
}
void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
}
#if 0
// Moved to ARM32::AssemblerARM32::vsqrts().
void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
}
// Moved to ARM32::AssemblerARM32::vsqrtd().
void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
}
// Moved to ARM32::AssemblerARM32::emitVFPsd
void Assembler::EmitVFPsd(Condition cond, int32_t opcode,
SRegister sd, DRegister dm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(dm != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | opcode |
((static_cast<int32_t>(sd) & 1)*B22) |
((static_cast<int32_t>(sd) >> 1)*B12) |
((static_cast<int32_t>(dm) >> 4)*B5) |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::emitVFPds
void Assembler::EmitVFPds(Condition cond, int32_t opcode,
DRegister dd, SRegister sm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(sm != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B11 | B9 | opcode |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
((static_cast<int32_t>(sm) & 1)*B5) |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::vcvtsd().
void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
}
// Moved to ARM32::AssemblerARM32::vcvtds().
void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
}
// Moved to ARM32::AssemblerARM32::vcvtis()
void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
}
#endif
void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
}
#if 0
// Moved to ARM32::AssemblerARM32::vcvtsi()
void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
}
// Moved to ARM32::AssemblerARM32::vcvtdi()
void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
}
// Moved to ARM32::AssemblerARM32::vcvtus().
void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
}
// Moved to ARM32::AssemblerARM32::vcvtud().
void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
}
// Moved to ARM32::AssemblerARM32::vcvtsu()
void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
}
// Moved to ARM32::AssemblerARM32::vcvtdu()
void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
}
// Moved to ARM23::AssemblerARM32::vcmps().
void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
}
// Moved to ARM23::AssemblerARM32::vcmpd().
void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
}
// Moved to ARM23::AssemblerARM32::vcmpsz().
void Assembler::vcmpsz(SRegister sd, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
}
// Moved to ARM23::AssemblerARM32::vcmpdz().
void Assembler::vcmpdz(DRegister dd, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
}
// APSR_nzcv version moved to ARM32::AssemblerARM32::vmrsAPSR_nzcv()
void Assembler::vmrs(Register rd, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 |
(static_cast<int32_t>(rd)*B12) |
B11 | B9 | B4;
Emit(encoding);
}
#endif
void Assembler::vmstat(Condition cond) {
vmrs(APSR, cond);
}
static inline int ShiftOfOperandSize(OperandSize size) {
switch (size) {
case kByte:
case kUnsignedByte:
return 0;
case kHalfword:
case kUnsignedHalfword:
return 1;
case kWord:
case kUnsignedWord:
return 2;
case kWordPair:
return 3;
case kSWord:
case kDWord:
return 0;
default:
UNREACHABLE();
break;
}
UNREACHABLE();
return -1;
}
#if 0
// Moved to ARM32::AssemblerARM32::emitSIMDqqq()
void Assembler::EmitSIMDqqq(int32_t opcode, OperandSize size,
QRegister qd, QRegister qn, QRegister qm) {
ASSERT(TargetCPUFeatures::neon_supported());
int sz = ShiftOfOperandSize(size);
int32_t encoding =
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) |
B25 | B6 |
opcode | ((sz & 0x3) * B20) |
((static_cast<int32_t>(qd * 2) >> 4)*B22) |
((static_cast<int32_t>(qn * 2) & 0xf)*B16) |
((static_cast<int32_t>(qd * 2) & 0xf)*B12) |
((static_cast<int32_t>(qn * 2) >> 4)*B7) |
((static_cast<int32_t>(qm * 2) >> 4)*B5) |
(static_cast<int32_t>(qm * 2) & 0xf);
Emit(encoding);
}
#endif
void Assembler::EmitSIMDddd(int32_t opcode, OperandSize size,
DRegister dd, DRegister dn, DRegister dm) {
ASSERT(TargetCPUFeatures::neon_supported());
int sz = ShiftOfOperandSize(size);
int32_t encoding =
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) |
B25 |
opcode | ((sz & 0x3) * B20) |
((static_cast<int32_t>(dd) >> 4)*B22) |
((static_cast<int32_t>(dn) & 0xf)*B16) |
((static_cast<int32_t>(dd) & 0xf)*B12) |
((static_cast<int32_t>(dn) >> 4)*B7) |
((static_cast<int32_t>(dm) >> 4)*B5) |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovq(QRegister qd, QRegister qm) {
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm);
}
#if 0
// Moved to ARM32::AssemblerARM32::vaddqi().
void Assembler::vaddqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11, sz, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::vaddqf().
void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm);
}
#endif
void Assembler::vsubqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11, sz, qd, qn, qm);
}
void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm);
}
#if 0
// Moved to ARM32::AssemblerARM32::vmulqi().
void Assembler::vmulqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::vmulqf().
void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::vshlqi().
void Assembler::vshlqi(OperandSize sz,
QRegister qd, QRegister qm, QRegister qn) {
EmitSIMDqqq(B25 | B10, sz, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::vshlqu().
void Assembler::vshlqu(OperandSize sz,
QRegister qd, QRegister qm, QRegister qn) {
EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::veorq()
void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::vorrq()
void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm);
}
#endif
void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm);
}
#if 0
// Moved to ARM32::AssemblerARM32::vandq()
void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vmvnq(QRegister qd, QRegister qm) {
EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm);
}
#endif
void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
}
void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
}
#if 0
// Moved to Arm32::AssemblerARM32::vabsq().
void Assembler::vabsqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord,
qd, Q0, qm);
}
// Moved to Arm32::AssemblerARM32::vnegqs().
void Assembler::vnegqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord,
qd, Q0, qm);
}
#endif
void Assembler::vrecpeqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord,
qd, Q0, qm);
}
void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vrsqrteqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7,
kSWord, qd, Q0, qm);
}
void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) {
ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair));
int code = 0;
switch (sz) {
case kByte:
case kUnsignedByte: {
ASSERT((idx >= 0) && (idx < 8));
code = 1 | (idx << 1);
break;
}
case kHalfword:
case kUnsignedHalfword: {
ASSERT((idx >= 0) && (idx < 4));
code = 2 | (idx << 2);
break;
}
case kWord:
case kUnsignedWord: {
ASSERT((idx >= 0) && (idx < 2));
code = 4 | (idx << 3);
break;
}
default: {
break;
}
}
EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair,
static_cast<DRegister>(qd * 2),
static_cast<DRegister>(code & 0xf),
dm);
}
void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) {
ASSERT((len >= 1) && (len <= 4));
EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm);
}
void Assembler::vzipqw(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm);
}
#if 0
// Moved to Arm32::AssemblerARM32::vceqqi().
void Assembler::vceqqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vceqqi().
void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vcgeqi().
void Assembler::vcgeqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vcugeqi().
void Assembler::vcugeqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vcgeqs().
void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vcgtqi().
void Assembler::vcgtqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B9 | B8, sz, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vcugtqi().
void Assembler::vcugtqi(OperandSize sz,
QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm);
}
// Moved to Arm32::AssemblerARM32::vcgtqs().
void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm);
}
// Moved to ARM32::AssemblerARM32::bkpt()
void Assembler::bkpt(uint16_t imm16) {
Emit(BkptEncoding(imm16));
}
#endif
void Assembler::b(Label* label, Condition cond) {
EmitBranch(cond, label, false);
}
#if 0
// Moved to ARM32::AssemblerARM32::bl()
void Assembler::bl(Label* label, Condition cond) {
EmitBranch(cond, label, true);
}
// Moved to ARM32::AssemblerARM32::bx()
void Assembler::bx(Register rm, Condition cond) {
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 | B21 | (0xfff << 8) | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
// Moved to ARM32::AssemblerARM32::blx()
void Assembler::blx(Register rm, Condition cond) {
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
B24 | B21 | (0xfff << 8) | B5 | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
#endif
void Assembler::MarkExceptionHandler(Label* label) {
EmitType01(AL, 1, TST, 1, PC, R0, Operand(0));
Label l;
b(&l);
EmitBranch(AL, label, false);
Bind(&l);
}
void Assembler::Drop(intptr_t stack_elements) {
ASSERT(stack_elements >= 0);
if (stack_elements > 0) {
AddImmediate(SP, SP, stack_elements * kWordSize);
}
}
intptr_t Assembler::FindImmediate(int32_t imm) {
return object_pool_wrapper_.FindImmediate(imm);
}
// Uses a code sequence that can easily be decoded.
void Assembler::LoadWordFromPoolOffset(Register rd,
int32_t offset,
Register pp,
Condition cond) {
ASSERT((pp != PP) || constant_pool_allowed());
ASSERT(rd != pp);
int32_t offset_mask = 0;
if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) {
ldr(rd, Address(pp, offset), cond);
} else {
int32_t offset_hi = offset & ~offset_mask; // signed
uint32_t offset_lo = offset & offset_mask; // unsigned
// Inline a simplified version of AddImmediate(rd, pp, offset_hi).
Operand o;
if (Operand::CanHold(offset_hi, &o)) {
add(rd, pp, o, cond);
} else {
LoadImmediate(rd, offset_hi, cond);
add(rd, pp, Operand(rd), cond);
}
ldr(rd, Address(rd, offset_lo), cond);
}
}
void Assembler::CheckCodePointer() {
#ifdef DEBUG
Label cid_ok, instructions_ok;
Push(R0);
Push(IP);
CompareClassId(CODE_REG, kCodeCid, R0);
b(&cid_ok, EQ);
bkpt(0);
Bind(&cid_ok);
const intptr_t offset = CodeSize() + Instr::kPCReadOffset +
Instructions::HeaderSize() - kHeapObjectTag;
mov(R0, Operand(PC));
AddImmediate(R0, R0, -offset);
ldr(IP, FieldAddress(CODE_REG, Code::saved_instructions_offset()));
cmp(R0, Operand(IP));
b(&instructions_ok, EQ);
bkpt(1);
Bind(&instructions_ok);
Pop(IP);
Pop(R0);
#endif
}
void Assembler::RestoreCodePointer() {
ldr(CODE_REG, Address(FP, kPcMarkerSlotFromFp * kWordSize));
CheckCodePointer();
}
void Assembler::LoadPoolPointer(Register reg) {
// Load new pool pointer.
CheckCodePointer();
ldr(reg, FieldAddress(CODE_REG, Code::object_pool_offset()));
set_constant_pool_allowed(reg == PP);
}
void Assembler::LoadIsolate(Register rd) {
ldr(rd, Address(THR, Thread::isolate_offset()));
}
bool Assembler::CanLoadFromObjectPool(const Object& object) const {
ASSERT(!Thread::CanLoadFromThread(object));
if (!constant_pool_allowed()) {
return false;
}
ASSERT(object.IsNotTemporaryScopedHandle());
ASSERT(object.IsOld());
return true;
}
void Assembler::LoadObjectHelper(Register rd,
const Object& object,
Condition cond,
bool is_unique,
Register pp) {
// Load common VM constants from the thread. This works also in places where
// no constant pool is set up (e.g. intrinsic code).
if (Thread::CanLoadFromThread(object)) {
// Load common VM constants from the thread. This works also in places where
// no constant pool is set up (e.g. intrinsic code).
ldr(rd, Address(THR, Thread::OffsetFromThread(object)), cond);
} else if (object.IsSmi()) {
// Relocation doesn't apply to Smis.
LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond);
} else if (CanLoadFromObjectPool(object)) {
// Make sure that class CallPattern is able to decode this load from the
// object pool.
const int32_t offset = ObjectPool::element_offset(
is_unique ? object_pool_wrapper_.AddObject(object)
: object_pool_wrapper_.FindObject(object));
LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, pp, cond);
} else {
ASSERT(FLAG_allow_absolute_addresses);
ASSERT(object.IsOld());
// Make sure that class CallPattern is able to decode this load immediate.
const int32_t object_raw = reinterpret_cast<int32_t>(object.raw());
LoadImmediate(rd, object_raw, cond);
}
}
void Assembler::LoadObject(Register rd, const Object& object, Condition cond) {
LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP);
}
void Assembler::LoadUniqueObject(Register rd,
const Object& object,
Condition cond) {
LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP);
}
void Assembler::LoadFunctionFromCalleePool(Register dst,
const Function& function,
Register new_pp) {
const int32_t offset =
ObjectPool::element_offset(object_pool_wrapper_.FindObject(function));
LoadWordFromPoolOffset(dst, offset - kHeapObjectTag, new_pp, AL);
}
void Assembler::LoadNativeEntry(Register rd,
const ExternalLabel* label,
Patchability patchable,
Condition cond) {
const int32_t offset = ObjectPool::element_offset(
object_pool_wrapper_.FindNativeEntry(label, patchable));
LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond);
}
void Assembler::PushObject(const Object& object) {
LoadObject(IP, object);
Push(IP);
}
void Assembler::CompareObject(Register rn, const Object& object) {
ASSERT(rn != IP);
if (object.IsSmi()) {
CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw()));
} else {
LoadObject(IP, object);
cmp(rn, Operand(IP));
}
}
// Preserves object and value registers.
void Assembler::StoreIntoObjectFilterNoSmi(Register object,
Register value,
Label* no_update) {
COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) &&
(kOldObjectAlignmentOffset == 0));
// Write-barrier triggers if the value is in the new space (has bit set) and
// the object is in the old space (has bit cleared).
// To check that, we compute value & ~object and skip the write barrier
// if the bit is not set. We can't destroy the object.
bic(IP, value, Operand(object));
tst(IP, Operand(kNewObjectAlignmentOffset));
b(no_update, EQ);
}
// Preserves object and value registers.
void Assembler::StoreIntoObjectFilter(Register object,
Register value,
Label* no_update) {
// For the value we are only interested in the new/old bit and the tag bit.
// And the new bit with the tag bit. The resulting bit will be 0 for a Smi.
and_(IP, value, Operand(value, LSL, kObjectAlignmentLog2 - 1));
// And the result with the negated space bit of the object.
bic(IP, IP, Operand(object));
tst(IP, Operand(kNewObjectAlignmentOffset));
b(no_update, EQ);
}
Operand Assembler::GetVerifiedMemoryShadow() {
Operand offset;
if (!Operand::CanHold(VerifiedMemory::offset(), &offset)) {
FATAL1("Offset 0x%" Px " not representable", VerifiedMemory::offset());
}
return offset;
}
void Assembler::WriteShadowedField(Register base,
intptr_t offset,
Register value,
Condition cond) {
if (VerifiedMemory::enabled()) {
ASSERT(base != value);
Operand shadow(GetVerifiedMemoryShadow());
add(base, base, shadow, cond);
str(value, Address(base, offset), cond);
sub(base, base, shadow, cond);
}
str(value, Address(base, offset), cond);
}
void Assembler::WriteShadowedFieldPair(Register base,
intptr_t offset,
Register value_even,
Register value_odd,
Condition cond) {
ASSERT(value_odd == value_even + 1);
if (VerifiedMemory::enabled()) {
ASSERT(base != value_even);
ASSERT(base != value_odd);
Operand shadow(GetVerifiedMemoryShadow());
add(base, base, shadow, cond);
strd(value_even, base, offset, cond);
sub(base, base, shadow, cond);
}
strd(value_even, base, offset, cond);
}
Register UseRegister(Register reg, RegList* used) {
ASSERT(reg != SP);
ASSERT(reg != PC);
ASSERT((*used & (1 << reg)) == 0);
*used |= (1 << reg);
return reg;
}
Register AllocateRegister(RegList* used) {
const RegList free = ~*used;
return (free == 0) ?
kNoRegister :
UseRegister(static_cast<Register>(Utils::CountTrailingZeros(free)), used);
}
void Assembler::VerifiedWrite(const Address& address,
Register new_value,
FieldContent old_content) {
#if defined(DEBUG)
ASSERT(address.mode() == Address::Offset ||
address.mode() == Address::NegOffset);
// Allocate temporary registers (and check for register collisions).
RegList used = 0;
UseRegister(new_value, &used);
Register base = UseRegister(address.rn(), &used);
if (address.rm() != kNoRegister) {
UseRegister(address.rm(), &used);
}
Register old_value = AllocateRegister(&used);
Register temp = AllocateRegister(&used);
PushList(used);
ldr(old_value, address);
// First check that 'old_value' contains 'old_content'.
// Smi test.
tst(old_value, Operand(kHeapObjectTag));
Label ok;
switch (old_content) {
case kOnlySmi:
b(&ok, EQ); // Smi is OK.
Stop("Expected smi.");
break;
case kHeapObjectOrSmi:
b(&ok, EQ); // Smi is OK.
// Non-smi case: Verify object pointer is word-aligned when untagged.
COMPILE_ASSERT(kHeapObjectTag == 1);
tst(old_value, Operand((kWordSize - 1) - kHeapObjectTag));
b(&ok, EQ);
Stop("Expected heap object or Smi");
break;
case kEmptyOrSmiOrNull:
b(&ok, EQ); // Smi is OK.
// Non-smi case: Check for the special zap word or null.
// Note: Cannot use CompareImmediate, since IP may be in use.
LoadImmediate(temp, Heap::kZap32Bits);
cmp(old_value, Operand(temp));
b(&ok, EQ);
LoadObject(temp, Object::null_object());
cmp(old_value, Operand(temp));
b(&ok, EQ);
Stop("Expected zapped, Smi or null");
break;
default:
UNREACHABLE();
}
Bind(&ok);
if (VerifiedMemory::enabled()) {
Operand shadow_offset(GetVerifiedMemoryShadow());
// Adjust the address to shadow.
add(base, base, shadow_offset);
ldr(temp, address);
cmp(old_value, Operand(temp));
Label match;
b(&match, EQ);
Stop("Write barrier verification failed");
Bind(&match);
// Write new value in shadow.
str(new_value, address);
// Restore original address.
sub(base, base, shadow_offset);
}
str(new_value, address);
PopList(used);
#else
str(new_value, address);
#endif // DEBUG
}
void Assembler::StoreIntoObject(Register object,
const Address& dest,
Register value,
bool can_value_be_smi) {
ASSERT(object != value);
VerifiedWrite(dest, value, kHeapObjectOrSmi);
Label done;
if (can_value_be_smi) {
StoreIntoObjectFilter(object, value, &done);
} else {
StoreIntoObjectFilterNoSmi(object, value, &done);
}
// A store buffer update is required.
RegList regs = (1 << CODE_REG) | (1 << LR);
if (value != R0) {
regs |= (1 << R0); // Preserve R0.
}
PushList(regs);
if (object != R0) {
mov(R0, Operand(object));
}
ldr(CODE_REG, Address(THR, Thread::update_store_buffer_code_offset()));
ldr(LR, Address(THR, Thread::update_store_buffer_entry_point_offset()));
blx(LR);
PopList(regs);
Bind(&done);
}
void Assembler::StoreIntoObjectOffset(Register object,
int32_t offset,
Register value,
bool can_value_be_smi) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
StoreIntoObject(
object, FieldAddress(object, offset), value, can_value_be_smi);
} else {
AddImmediate(IP, object, offset - kHeapObjectTag);
StoreIntoObject(object, Address(IP), value, can_value_be_smi);
}
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
Register value,
FieldContent old_content) {
VerifiedWrite(dest, value, old_content);
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value, &done);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
Register value,
FieldContent old_content) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value,
old_content);
} else {
AddImmediate(IP, object, offset - kHeapObjectTag);
StoreIntoObjectNoBarrier(object, Address(IP), value, old_content);
}
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
const Object& value,
FieldContent old_content) {
ASSERT(value.IsSmi() || value.InVMHeap() ||
(value.IsOld() && value.IsNotTemporaryScopedHandle()));
// No store buffer update.
LoadObject(IP, value);
VerifiedWrite(dest, IP, old_content);
}
void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
const Object& value,
FieldContent old_content) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value,
old_content);
} else {
AddImmediate(IP, object, offset - kHeapObjectTag);
StoreIntoObjectNoBarrier(object, Address(IP), value, old_content);
}
}
void Assembler::InitializeFieldsNoBarrier(Register object,
Register begin,
Register end,
Register value_even,
Register value_odd) {
ASSERT(value_odd == value_even + 1);
Label init_loop;
Bind(&init_loop);
AddImmediate(begin, 2 * kWordSize);
cmp(begin, Operand(end));
WriteShadowedFieldPair(begin, -2 * kWordSize, value_even, value_odd, LS);
b(&init_loop, CC);
WriteShadowedField(begin, -2 * kWordSize, value_even, HI);
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value_even, &done);
StoreIntoObjectFilter(object, value_odd, &done);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::InitializeFieldsNoBarrierUnrolled(Register object,
Register base,
intptr_t begin_offset,
intptr_t end_offset,
Register value_even,
Register value_odd) {
ASSERT(value_odd == value_even + 1);
intptr_t current_offset = begin_offset;
while (current_offset + kWordSize < end_offset) {
WriteShadowedFieldPair(base, current_offset, value_even, value_odd);
current_offset += 2*kWordSize;
}
while (current_offset < end_offset) {
WriteShadowedField(base, current_offset, value_even);
current_offset += kWordSize;
}
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value_even, &done);
StoreIntoObjectFilter(object, value_odd, &done);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::StoreIntoSmiField(const Address& dest, Register value) {
#if defined(DEBUG)
Label done;
tst(value, Operand(kHeapObjectTag));
b(&done, EQ);
Stop("New value must be Smi.");
Bind(&done);
#endif // defined(DEBUG)
VerifiedWrite(dest, value, kOnlySmi);
}
void Assembler::LoadClassId(Register result, Register object, Condition cond) {
ASSERT(RawObject::kClassIdTagPos == 16);
ASSERT(RawObject::kClassIdTagSize == 16);
const intptr_t class_id_offset = Object::tags_offset() +
RawObject::kClassIdTagPos / kBitsPerByte;
ldrh(result, FieldAddress(object, class_id_offset), cond);
}
void Assembler::LoadClassById(Register result, Register class_id) {
ASSERT(result != class_id);
LoadIsolate(result);
const intptr_t offset =
Isolate::class_table_offset() + ClassTable::table_offset();
LoadFromOffset(kWord, result, result, offset);
ldr(result, Address(result, class_id, LSL, 2));
}
void Assembler::LoadClass(Register result, Register object, Register scratch) {
ASSERT(scratch != result);
LoadClassId(scratch, object);
LoadClassById(result, scratch);
}
void Assembler::CompareClassId(Register object,
intptr_t class_id,
Register scratch) {
LoadClassId(scratch, object);
CompareImmediate(scratch, class_id);
}
void Assembler::LoadClassIdMayBeSmi(Register result, Register object) {
tst(object, Operand(kSmiTagMask));
LoadClassId(result, object, NE);
LoadImmediate(result, kSmiCid, EQ);
}
void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) {
LoadClassIdMayBeSmi(result, object);
SmiTag(result);
}
void Assembler::ComputeRange(Register result,
Register value,
Register scratch,
Label* not_mint) {
const Register hi = TMP;
const Register lo = scratch;
Label done;
mov(result, Operand(value, LSR, kBitsPerWord - 1));
tst(value, Operand(kSmiTagMask));
b(&done, EQ);
CompareClassId(value, kMintCid, result);
b(not_mint, NE);
ldr(hi, FieldAddress(value, Mint::value_offset() + kWordSize));
ldr(lo, FieldAddress(value, Mint::value_offset()));
rsb(result, hi, Operand(ICData::kInt32RangeBit));
cmp(hi, Operand(lo, ASR, kBitsPerWord - 1));
b(&done, EQ);
LoadImmediate(result, ICData::kUint32RangeBit); // Uint32
tst(hi, Operand(hi));
LoadImmediate(result, ICData::kInt64RangeBit, NE); // Int64
Bind(&done);
}
void Assembler::UpdateRangeFeedback(Register value,
intptr_t index,
Register ic_data,
Register scratch1,
Register scratch2,
Label* miss) {
ASSERT(ICData::IsValidRangeFeedbackIndex(index));
ComputeRange(scratch1, value, scratch2, miss);
ldr(scratch2, FieldAddress(ic_data, ICData::state_bits_offset()));
orr(scratch2,
scratch2,
Operand(scratch1, LSL, ICData::RangeFeedbackShift(index)));
str(scratch2, FieldAddress(ic_data, ICData::state_bits_offset()));
}
#if 0
// Moved to ::canEncodeBranchoffset() in IceAssemblerARM32.cpp.
static bool CanEncodeBranchOffset(int32_t offset) {
ASSERT(Utils::IsAligned(offset, 4));
// Note: This check doesn't take advantage of the fact that offset>>2
// is stored (allowing two more bits in address space).
return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset);
}
// Moved to ARM32::AssemblerARM32::encodeBranchOffset()
int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) {
// The offset is off by 8 due to the way the ARM CPUs read PC.
offset -= Instr::kPCReadOffset;
if (!CanEncodeBranchOffset(offset)) {
ASSERT(!use_far_branches());
Thread::Current()->long_jump_base()->Jump(
1, Object::branch_offset_error());
}
// Properly preserve only the bits supported in the instruction.
offset >>= 2;
offset &= kBranchOffsetMask;
return (inst & ~kBranchOffsetMask) | offset;
}
// Moved to AssemberARM32::decodeBranchOffset()
int Assembler::DecodeBranchOffset(int32_t inst) {
// Sign-extend, left-shift by 2, then add 8.
return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset);
}
#endif
static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) {
int32_t offset = 0;
offset |= (movt & 0xf0000) << 12;
offset |= (movt & 0xfff) << 16;
offset |= (movw & 0xf0000) >> 4;
offset |= movw & 0xfff;
return offset;
}
static int32_t DecodeARMv6LoadImmediate(int32_t mov, int32_t or1,
int32_t or2, int32_t or3) {
int32_t offset = 0;
offset |= (mov & 0xff) << 24;
offset |= (or1 & 0xff) << 16;
offset |= (or2 & 0xff) << 8;
offset |= (or3 & 0xff);
return offset;
}
class PatchFarBranch : public AssemblerFixup {
public:
PatchFarBranch() {}
void Process(const MemoryRegion& region, intptr_t position) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
ProcessARMv6(region, position);
} else {
ASSERT(version == ARMv7);
ProcessARMv7(region, position);
}
}
private:
void ProcessARMv6(const MemoryRegion& region, intptr_t position) {
const int32_t mov = region.Load<int32_t>(position);
const int32_t or1 = region.Load<int32_t>(position + 1*Instr::kInstrSize);
const int32_t or2 = region.Load<int32_t>(position + 2*Instr::kInstrSize);
const int32_t or3 = region.Load<int32_t>(position + 3*Instr::kInstrSize);
const int32_t bx = region.Load<int32_t>(position + 4*Instr::kInstrSize);
if (((mov & 0xffffff00) == 0xe3a0c400) && // mov IP, (byte3 rot 4)
((or1 & 0xffffff00) == 0xe38cc800) && // orr IP, IP, (byte2 rot 8)
((or2 & 0xffffff00) == 0xe38ccc00) && // orr IP, IP, (byte1 rot 12)
((or3 & 0xffffff00) == 0xe38cc000)) { // orr IP, IP, byte0
const int32_t offset = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
const int32_t dest = region.start() + offset;
const int32_t dest0 = (dest & 0x000000ff);
const int32_t dest1 = (dest & 0x0000ff00) >> 8;
const int32_t dest2 = (dest & 0x00ff0000) >> 16;
const int32_t dest3 = (dest & 0xff000000) >> 24;
const int32_t patched_mov = 0xe3a0c400 | dest3;
const int32_t patched_or1 = 0xe38cc800 | dest2;
const int32_t patched_or2 = 0xe38ccc00 | dest1;
const int32_t patched_or3 = 0xe38cc000 | dest0;
region.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov);
region.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1);
region.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2);
region.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3);
return;
}
// If the offset loading instructions aren't there, we must have replaced
// the far branch with a near one, and so these instructions
// should be NOPs.
ASSERT((or1 == Instr::kNopInstruction) &&
(or2 == Instr::kNopInstruction) &&
(or3 == Instr::kNopInstruction) &&
(bx == Instr::kNopInstruction));
}
void ProcessARMv7(const MemoryRegion& region, intptr_t position) {
const int32_t movw = region.Load<int32_t>(position);
const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize);
const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize);
if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high
((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low
const int32_t offset = DecodeARMv7LoadImmediate(movt, movw);
const int32_t dest = region.start() + offset;
const uint16_t dest_high = Utils::High16Bits(dest);
const uint16_t dest_low = Utils::Low16Bits(dest);
const int32_t patched_movt =
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
const int32_t patched_movw =
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
region.Store<int32_t>(position, patched_movw);
region.Store<int32_t>(position + Instr::kInstrSize, patched_movt);
return;
}
// If the offset loading instructions aren't there, we must have replaced
// the far branch with a near one, and so these instructions
// should be NOPs.
ASSERT((movt == Instr::kNopInstruction) &&
(bx == Instr::kNopInstruction));
}
virtual bool IsPointerOffset() const { return false; }
};
void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) {
buffer_.EmitFixup(new PatchFarBranch());
LoadPatchableImmediate(IP, offset);
if (link) {
blx(IP, cond);
} else {
bx(IP, cond);
}
}
void Assembler::EmitBranch(Condition cond, Label* label, bool link) {
if (label->IsBound()) {
const int32_t dest = label->Position() - buffer_.Size();
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
EmitFarBranch(cond, label->Position(), link);
} else {
EmitType5(cond, dest, link);
}
} else {
const intptr_t position = buffer_.Size();
if (use_far_branches()) {
const int32_t dest = label->position_;
EmitFarBranch(cond, dest, link);
} else {
// Use the offset field of the branch instruction for linking the sites.
EmitType5(cond, label->position_, link);
}
label->LinkTo(position);
}
}
void Assembler::BindARMv6(Label* label) {
ASSERT(!label->IsBound());
intptr_t bound_pc = buffer_.Size();
while (label->IsLinked()) {
const int32_t position = label->Position();
int32_t dest = bound_pc - position;
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
// Far branches are enabled and we can't encode the branch offset.
// Grab instructions that load the offset.
const int32_t mov =
buffer_.Load<int32_t>(position);
const int32_t or1 =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t or2 =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
const int32_t or3 =
buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize);
// Change from relative to the branch to relative to the assembler
// buffer.
dest = buffer_.Size();
const int32_t dest0 = (dest & 0x000000ff);
const int32_t dest1 = (dest & 0x0000ff00) >> 8;
const int32_t dest2 = (dest & 0x00ff0000) >> 16;
const int32_t dest3 = (dest & 0xff000000) >> 24;
const int32_t patched_mov = 0xe3a0c400 | dest3;
const int32_t patched_or1 = 0xe38cc800 | dest2;
const int32_t patched_or2 = 0xe38ccc00 | dest1;
const int32_t patched_or3 = 0xe38cc000 | dest0;
// Rewrite the instructions.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2);
buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3);
label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
} else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
// Grab instructions that load the offset, and the branch.
const int32_t mov =
buffer_.Load<int32_t>(position);
const int32_t or1 =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t or2 =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
const int32_t or3 =
buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize);
const int32_t branch =
buffer_.Load<int32_t>(position + 4 * Instr::kInstrSize);
// Grab the branch condition, and encode the link bit.
const int32_t cond = branch & 0xf0000000;
const int32_t link = (branch & 0x20) << 19;
// Encode the branch and the offset.
const int32_t new_branch = cond | link | 0x0a000000;
const int32_t encoded = EncodeBranchOffset(dest, new_branch);
// Write the encoded branch instruction followed by two nops.
buffer_.Store<int32_t>(position, encoded);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 4 * Instr::kInstrSize,
Instr::kNopInstruction);
label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
} else {
int32_t next = buffer_.Load<int32_t>(position);
int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
buffer_.Store<int32_t>(position, encoded);
label->position_ = Assembler::DecodeBranchOffset(next);
}
}
label->BindTo(bound_pc);
}
#if 0
// Moved to ARM32::AssemblerARM32::bind(Label* Label)
// Note: Most of this code isn't needed because instruction selection has
// already been handler
void Assembler::BindARMv7(Label* label) {
ASSERT(!label->IsBound());
intptr_t bound_pc = buffer_.Size();
while (label->IsLinked()) {
const int32_t position = label->Position();
int32_t dest = bound_pc - position;
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
// Far branches are enabled and we can't encode the branch offset.
// Grab instructions that load the offset.
const int32_t movw =
buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
const int32_t movt =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
// Change from relative to the branch to relative to the assembler
// buffer.
dest = buffer_.Size();
const uint16_t dest_high = Utils::High16Bits(dest);
const uint16_t dest_low = Utils::Low16Bits(dest);
const int32_t patched_movt =
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
const int32_t patched_movw =
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
// Rewrite the instructions.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt);
label->position_ = DecodeARMv7LoadImmediate(movt, movw);
} else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
// Far branches are enabled, but we can encode the branch offset.
// Grab instructions that load the offset, and the branch.
const int32_t movw =
buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
const int32_t movt =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t branch =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
// Grab the branch condition, and encode the link bit.
const int32_t cond = branch & 0xf0000000;
const int32_t link = (branch & 0x20) << 19;
// Encode the branch and the offset.
const int32_t new_branch = cond | link | 0x0a000000;
const int32_t encoded = EncodeBranchOffset(dest, new_branch);
// Write the encoded branch instruction followed by two nops.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize,
encoded);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
Instr::kNopInstruction);
label->position_ = DecodeARMv7LoadImmediate(movt, movw);
} else {
int32_t next = buffer_.Load<int32_t>(position);
int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
buffer_.Store<int32_t>(position, encoded);
label->position_ = Assembler::DecodeBranchOffset(next);
}
}
label->BindTo(bound_pc);
}
#endif
void Assembler::Bind(Label* label) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
BindARMv6(label);
} else {
ASSERT(version == ARMv7);
BindARMv7(label);
}
}
OperandSize Address::OperandSizeFor(intptr_t cid) {
switch (cid) {
case kArrayCid:
case kImmutableArrayCid:
return kWord;
case kOneByteStringCid:
case kExternalOneByteStringCid:
return kByte;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
return kHalfword;
case kTypedDataInt8ArrayCid:
return kByte;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnsignedByte;
case kTypedDataInt16ArrayCid:
return kHalfword;
case kTypedDataUint16ArrayCid:
return kUnsignedHalfword;
case kTypedDataInt32ArrayCid:
return kWord;
case kTypedDataUint32ArrayCid:
return kUnsignedWord;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
UNREACHABLE();
return kByte;
case kTypedDataFloat32ArrayCid:
return kSWord;
case kTypedDataFloat64ArrayCid:
return kDWord;
case kTypedDataFloat32x4ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
return kRegList;
case kTypedDataInt8ArrayViewCid:
UNREACHABLE();
return kByte;
default:
UNREACHABLE();
return kByte;
}
}
bool Address::CanHoldLoadOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask) {
switch (size) {
case kByte:
case kHalfword:
case kUnsignedHalfword:
case kWordPair: {
*offset_mask = 0xff;
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
}
case kUnsignedByte:
case kWord:
case kUnsignedWord: {
*offset_mask = 0xfff;
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
}
case kSWord:
case kDWord: {
*offset_mask = 0x3fc; // Multiple of 4.
// VFP addressing mode.
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
}
case kRegList: {
*offset_mask = 0x0;
return offset == 0;
}
default: {
UNREACHABLE();
return false;
}
}
}
bool Address::CanHoldStoreOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask) {
switch (size) {
case kHalfword:
case kUnsignedHalfword:
case kWordPair: {
*offset_mask = 0xff;
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
}
case kByte:
case kUnsignedByte:
case kWord:
case kUnsignedWord: {
*offset_mask = 0xfff;
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
}
case kSWord:
case kDWord: {
*offset_mask = 0x3fc; // Multiple of 4.
// VFP addressing mode.
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
}
case kRegList: {
*offset_mask = 0x0;
return offset == 0;
}
default: {
UNREACHABLE();
return false;
}
}
}
bool Address::CanHoldImmediateOffset(
bool is_load, intptr_t cid, int64_t offset) {
int32_t offset_mask = 0;
if (is_load) {
return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask);
} else {
return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask);
}
}
#if 0
// Moved to ARM32::AssemblerARM32::push().
void Assembler::Push(Register rd, Condition cond) {
str(rd, Address(SP, -kWordSize, Address::PreIndex), cond);
}
// Moved to ARM32::AssemblerARM32::pop().
void Assembler::Pop(Register rd, Condition cond) {
ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond);
}
// Moved to ARM32::AssemblerARM32::pushList().
void Assembler::PushList(RegList regs, Condition cond) {
stm(DB_W, SP, regs, cond);
}
// Moved to ARM32::AssemblerARM32::popList().
void Assembler::PopList(RegList regs, Condition cond) {
ldm(IA_W, SP, regs, cond);
}
#endif
void Assembler::MoveRegister(Register rd, Register rm, Condition cond) {
if (rd != rm) {
mov(rd, Operand(rm), cond);
}
}
#if 0
// Moved to ARM32::AssemblerARM32::lsl()
void Assembler::Lsl(Register rd, Register rm, const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
ASSERT(shift_imm.encoding() != 0); // Do not use Lsl if no shift is wanted.
mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond);
}
// Moved to ARM32::AssemblerARM32::lsl()
void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, LSL, rs), cond);
}
// Moved to ARM32::AssemblerARM32::lsr()
void Assembler::Lsr(Register rd, Register rm, const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Lsr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
mov(rd, Operand(rm, LSR, shift), cond);
}
// Moved to ARM32::AssemblerARM32::lsr()
void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, LSR, rs), cond);
}
// Moved to ARM32::AssemblerARM32::asr()
void Assembler::Asr(Register rd, Register rm, const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
mov(rd, Operand(rm, ASR, shift), cond);
}
#endif
void Assembler::Asrs(Register rd, Register rm, const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
movs(rd, Operand(rm, ASR, shift), cond);
}
#if 0
// Moved to ARM32::AssemblerARM32::asr()
void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, ASR, rs), cond);
}
#endif
void Assembler::Ror(Register rd, Register rm, const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
ASSERT(shift_imm.encoding() != 0); // Use Rrx instruction.
mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond);
}
void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, ROR, rs), cond);
}
void Assembler::Rrx(Register rd, Register rm, Condition cond) {
mov(rd, Operand(rm, ROR, 0), cond);
}
void Assembler::SignFill(Register rd, Register rm, Condition cond) {
Asr(rd, rm, Operand(31), cond);
}
void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) {
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
// Reciprocal estimate.
vrecpeqs(qd, qm);
// 2 Newton-Raphson steps.
vrecpsqs(QTMP, qm, qd);
vmulqs(qd, qd, QTMP);
vrecpsqs(QTMP, qm, qd);
vmulqs(qd, qd, QTMP);
}
void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) {
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
// Reciprocal square root estimate.
vrsqrteqs(qd, qm);
// 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2.
// First step.
vmulqs(QTMP, qd, qd); // QTMP <- xn^2
vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2.
vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP
// Second step.
vmulqs(QTMP, qd, qd);
vrsqrtsqs(QTMP, qm, QTMP);
vmulqs(qd, qd, QTMP);
}
void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) {
ASSERT(temp != QTMP);
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
if (temp != kNoQRegister) {
vmovq(temp, qm);
qm = temp;
}
VreciprocalSqrtqs(qd, qm);
vmovq(qm, qd);
Vreciprocalqs(qd, qm);
}
void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) {
ASSERT(qd != QTMP);
ASSERT(qn != QTMP);
ASSERT(qm != QTMP);
Vreciprocalqs(qd, qm);
vmulqs(qd, qn, qd);
}
void Assembler::Branch(const StubEntry& stub_entry,
Patchability patchable,
Register pp,
Condition cond) {
const Code& target_code = Code::Handle(stub_entry.code());
const int32_t offset = ObjectPool::element_offset(
object_pool_wrapper_.FindObject(target_code, patchable));
LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, pp, cond);
ldr(IP, FieldAddress(CODE_REG, Code::entry_point_offset()), cond);
bx(IP, cond);
}
void Assembler::BranchLink(const Code& target, Patchability patchable) {
// Make sure that class CallPattern is able to patch the label referred
// to by this code sequence.
// For added code robustness, use 'blx lr' in a patchable sequence and
// use 'blx ip' in a non-patchable sequence (see other BranchLink flavors).
const int32_t offset = ObjectPool::element_offset(
object_pool_wrapper_.FindObject(target, patchable));
LoadWordFromPoolOffset(CODE_REG, offset - kHeapObjectTag, PP, AL);
ldr(LR, FieldAddress(CODE_REG, Code::entry_point_offset()));
blx(LR); // Use blx instruction so that the return branch prediction works.
}
void Assembler::BranchLink(const StubEntry& stub_entry,
Patchability patchable) {
const Code& code = Code::Handle(stub_entry.code());
BranchLink(code, patchable);
}
void Assembler::BranchLinkPatchable(const Code& target) {
BranchLink(target, kPatchable);
}
void Assembler::BranchLink(const ExternalLabel* label) {
LoadImmediate(LR, label->address()); // Target address is never patched.
blx(LR); // Use blx instruction so that the return branch prediction works.
}
void Assembler::BranchLinkPatchable(const StubEntry& stub_entry) {
BranchLinkPatchable(Code::Handle(stub_entry.code()));
}
void Assembler::BranchLinkOffset(Register base, int32_t offset) {
ASSERT(base != PC);
ASSERT(base != IP);
LoadFromOffset(kWord, IP, base, offset);
blx(IP); // Use blx instruction so that the return branch prediction works.
}
void Assembler::LoadPatchableImmediate(
Register rd, int32_t value, Condition cond) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
// This sequence is patched in a few places, and should remain fixed.
const uint32_t byte0 = (value & 0x000000ff);
const uint32_t byte1 = (value & 0x0000ff00) >> 8;
const uint32_t byte2 = (value & 0x00ff0000) >> 16;
const uint32_t byte3 = (value & 0xff000000) >> 24;
mov(rd, Operand(4, byte3), cond);
orr(rd, rd, Operand(8, byte2), cond);
orr(rd, rd, Operand(12, byte1), cond);
orr(rd, rd, Operand(byte0), cond);
} else {
ASSERT(version == ARMv7);
const uint16_t value_low = Utils::Low16Bits(value);
const uint16_t value_high = Utils::High16Bits(value);
movw(rd, value_low, cond);
movt(rd, value_high, cond);
}
}
void Assembler::LoadDecodableImmediate(
Register rd, int32_t value, Condition cond) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
if (constant_pool_allowed()) {
const int32_t offset = Array::element_offset(FindImmediate(value));
LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond);
} else {
LoadPatchableImmediate(rd, value, cond);
}
} else {
ASSERT(version == ARMv7);
movw(rd, Utils::Low16Bits(value), cond);
const uint16_t value_high = Utils::High16Bits(value);
if (value_high != 0) {
movt(rd, value_high, cond);
}
}
}
void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
mov(rd, o, cond);
} else if (Operand::CanHold(~value, &o)) {
mvn(rd, o, cond);
} else {
LoadDecodableImmediate(rd, value, cond);
}
}
void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) {
if (!vmovs(sd, value, cond)) {
const DRegister dd = static_cast<DRegister>(sd >> 1);
const int index = sd & 1;
LoadImmediate(IP, bit_cast<int32_t, float>(value), cond);
vmovdr(dd, index, IP, cond);
}
}
void Assembler::LoadDImmediate(DRegister dd,
double value,
Register scratch,
Condition cond) {
ASSERT(scratch != PC);
ASSERT(scratch != IP);
if (!vmovd(dd, value, cond)) {
// A scratch register and IP are needed to load an arbitrary double.
ASSERT(scratch != kNoRegister);
int64_t imm64 = bit_cast<int64_t, double>(value);
LoadImmediate(IP, Utils::Low32Bits(imm64), cond);
LoadImmediate(scratch, Utils::High32Bits(imm64), cond);
vmovdrr(dd, IP, scratch, cond);
}
}
void Assembler::LoadFromOffset(OperandSize size,
Register reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldLoadOffset(size, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
switch (size) {
case kByte:
ldrsb(reg, Address(base, offset), cond);
break;
case kUnsignedByte:
ldrb(reg, Address(base, offset), cond);
break;
case kHalfword:
ldrsh(reg, Address(base, offset), cond);
break;
case kUnsignedHalfword:
ldrh(reg, Address(base, offset), cond);
break;
case kWord:
ldr(reg, Address(base, offset), cond);
break;
case kWordPair:
ldrd(reg, base, offset, cond);
break;
default:
UNREACHABLE();
}
}
void Assembler::StoreToOffset(OperandSize size,
Register reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldStoreOffset(size, offset, &offset_mask)) {
ASSERT(reg != IP);
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
switch (size) {
case kByte:
strb(reg, Address(base, offset), cond);
break;
case kHalfword:
strh(reg, Address(base, offset), cond);
break;
case kWord:
str(reg, Address(base, offset), cond);
break;
case kWordPair:
strd(reg, base, offset, cond);
break;
default:
UNREACHABLE();
}
}
void Assembler::LoadSFromOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vldrs(reg, Address(base, offset), cond);
}
void Assembler::StoreSToOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vstrs(reg, Address(base, offset), cond);
}
void Assembler::LoadDFromOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vldrd(reg, Address(base, offset), cond);
}
void Assembler::StoreDToOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vstrd(reg, Address(base, offset), cond);
}
void Assembler::LoadMultipleDFromOffset(DRegister first,
intptr_t count,
Register base,
int32_t offset) {
ASSERT(base != IP);
AddImmediate(IP, base, offset);
vldmd(IA, IP, first, count);
}
void Assembler::StoreMultipleDToOffset(DRegister first,
intptr_t count,
Register base,
int32_t offset) {
ASSERT(base != IP);
AddImmediate(IP, base, offset);
vstmd(IA, IP, first, count);
}
void Assembler::CopyDoubleField(
Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) {
if (TargetCPUFeatures::vfp_supported()) {
LoadDFromOffset(dtmp, src, Double::value_offset() - kHeapObjectTag);
StoreDToOffset(dtmp, dst, Double::value_offset() - kHeapObjectTag);
} else {
LoadFromOffset(kWord, tmp1, src,
Double::value_offset() - kHeapObjectTag);
LoadFromOffset(kWord, tmp2, src,
Double::value_offset() + kWordSize - kHeapObjectTag);
StoreToOffset(kWord, tmp1, dst,
Double::value_offset() - kHeapObjectTag);
StoreToOffset(kWord, tmp2, dst,
Double::value_offset() + kWordSize - kHeapObjectTag);
}
}
void Assembler::CopyFloat32x4Field(
Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) {
if (TargetCPUFeatures::neon_supported()) {
LoadMultipleDFromOffset(dtmp, 2, src,
Float32x4::value_offset() - kHeapObjectTag);
StoreMultipleDToOffset(dtmp, 2, dst,
Float32x4::value_offset() - kHeapObjectTag);
} else {
LoadFromOffset(kWord, tmp1, src,
(Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag);
LoadFromOffset(kWord, tmp2, src,
(Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp1, dst,
(Float32x4::value_offset() + 0 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp2, dst,
(Float32x4::value_offset() + 1 * kWordSize) - kHeapObjectTag);
LoadFromOffset(kWord, tmp1, src,
(Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag);
LoadFromOffset(kWord, tmp2, src,
(Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp1, dst,
(Float32x4::value_offset() + 2 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp2, dst,
(Float32x4::value_offset() + 3 * kWordSize) - kHeapObjectTag);
}
}
void Assembler::CopyFloat64x2Field(
Register dst, Register src, Register tmp1, Register tmp2, DRegister dtmp) {
if (TargetCPUFeatures::neon_supported()) {
LoadMultipleDFromOffset(dtmp, 2, src,
Float64x2::value_offset() - kHeapObjectTag);
StoreMultipleDToOffset(dtmp, 2, dst,
Float64x2::value_offset() - kHeapObjectTag);
} else {
LoadFromOffset(kWord, tmp1, src,
(Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag);
LoadFromOffset(kWord, tmp2, src,
(Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp1, dst,
(Float64x2::value_offset() + 0 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp2, dst,
(Float64x2::value_offset() + 1 * kWordSize) - kHeapObjectTag);
LoadFromOffset(kWord, tmp1, src,
(Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag);
LoadFromOffset(kWord, tmp2, src,
(Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp1, dst,
(Float64x2::value_offset() + 2 * kWordSize) - kHeapObjectTag);
StoreToOffset(kWord, tmp2, dst,
(Float64x2::value_offset() + 3 * kWordSize) - kHeapObjectTag);
}
}
void Assembler::AddImmediate(Register rd, int32_t value, Condition cond) {
AddImmediate(rd, rd, value, cond);
}
void Assembler::AddImmediate(Register rd, Register rn, int32_t value,
Condition cond) {
if (value == 0) {
if (rd != rn) {
mov(rd, Operand(rn), cond);
}
return;
}
// We prefer to select the shorter code sequence rather than selecting add for
// positive values and sub for negatives ones, which would slightly improve
// the readability of generated code for some constants.
Operand o;
if (Operand::CanHold(value, &o)) {
add(rd, rn, o, cond);
} else if (Operand::CanHold(-value, &o)) {
sub(rd, rn, o, cond);
} else {
ASSERT(rn != IP);
if (Operand::CanHold(~value, &o)) {
mvn(IP, o, cond);
add(rd, rn, Operand(IP), cond);
} else if (Operand::CanHold(~(-value), &o)) {
mvn(IP, o, cond);
sub(rd, rn, Operand(IP), cond);
} else {
LoadDecodableImmediate(IP, value, cond);
add(rd, rn, Operand(IP), cond);
}
}
}
void Assembler::AddImmediateSetFlags(Register rd, Register rn, int32_t value,
Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
// Handles value == kMinInt32.
adds(rd, rn, o, cond);
} else if (Operand::CanHold(-value, &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
subs(rd, rn, o, cond);
} else {
ASSERT(rn != IP);
if (Operand::CanHold(~value, &o)) {
mvn(IP, o, cond);
adds(rd, rn, Operand(IP), cond);
} else if (Operand::CanHold(~(-value), &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
mvn(IP, o, cond);
subs(rd, rn, Operand(IP), cond);
} else {
LoadDecodableImmediate(IP, value, cond);
adds(rd, rn, Operand(IP), cond);
}
}
}
void Assembler::SubImmediateSetFlags(Register rd, Register rn, int32_t value,
Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
// Handles value == kMinInt32.
subs(rd, rn, o, cond);
} else if (Operand::CanHold(-value, &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
adds(rd, rn, o, cond);
} else {
ASSERT(rn != IP);
if (Operand::CanHold(~value, &o)) {
mvn(IP, o, cond);
subs(rd, rn, Operand(IP), cond);
} else if (Operand::CanHold(~(-value), &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
mvn(IP, o, cond);
adds(rd, rn, Operand(IP), cond);
} else {
LoadDecodableImmediate(IP, value, cond);
subs(rd, rn, Operand(IP), cond);
}
}
}
void Assembler::AndImmediate(Register rd, Register rs, int32_t imm,
Condition cond) {
Operand o;
if (Operand::CanHold(imm, &o)) {
and_(rd, rs, Operand(o), cond);
} else {
LoadImmediate(TMP, imm, cond);
and_(rd, rs, Operand(TMP), cond);
}
}
void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
cmp(rn, o, cond);
} else {
ASSERT(rn != IP);
LoadImmediate(IP, value, cond);
cmp(rn, Operand(IP), cond);
}
}
void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) {
Operand o;
if (Operand::CanHold(imm, &o)) {
tst(rn, o, cond);
} else {
LoadImmediate(IP, imm);
tst(rn, Operand(IP), cond);
}
}
void Assembler::IntegerDivide(Register result, Register left, Register right,
DRegister tmpl, DRegister tmpr) {
ASSERT(tmpl != tmpr);
if (TargetCPUFeatures::integer_division_supported()) {
sdiv(result, left, right);
} else {
ASSERT(TargetCPUFeatures::vfp_supported());
SRegister stmpl = static_cast<SRegister>(2 * tmpl);
SRegister stmpr = static_cast<SRegister>(2 * tmpr);
vmovsr(stmpl, left);
vcvtdi(tmpl, stmpl); // left is in tmpl.
vmovsr(stmpr, right);
vcvtdi(tmpr, stmpr); // right is in tmpr.
vdivd(tmpr, tmpl, tmpr);
vcvtid(stmpr, tmpr);
vmovrs(result, stmpr);
}
}
static int NumRegsBelowFP(RegList regs) {
int count = 0;
for (int i = 0; i < FP; i++) {
if ((regs & (1 << i)) != 0) {
count++;
}
}
return count;
}
void Assembler::EnterFrame(RegList regs, intptr_t frame_size) {
if (prologue_offset_ == -1) {
prologue_offset_ = CodeSize();
}
PushList(regs);
if ((regs & (1 << FP)) != 0) {
// Set FP to the saved previous FP.
add(FP, SP, Operand(4 * NumRegsBelowFP(regs)));
}
AddImmediate(SP, -frame_size);
}
void Assembler::LeaveFrame(RegList regs) {
ASSERT((regs & (1 << PC)) == 0); // Must not pop PC.
if ((regs & (1 << FP)) != 0) {
// Use FP to set SP.
sub(SP, FP, Operand(4 * NumRegsBelowFP(regs)));
}
PopList(regs);
}
void Assembler::Ret() {
bx(LR);
}
void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) {
// Reserve space for arguments and align frame before entering
// the C++ world.
AddImmediate(SP, -frame_space);
if (OS::ActivationFrameAlignment() > 1) {
bic(SP, SP, Operand(OS::ActivationFrameAlignment() - 1));
}
}
void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) {
// Preserve volatile CPU registers and PP.
EnterFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP), 0);
COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0);
// Preserve all volatile FPU registers.
if (TargetCPUFeatures::vfp_supported()) {
DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
if ((lastv - firstv + 1) >= 16) {
DRegister mid = static_cast<DRegister>(firstv + 16);
vstmd(DB_W, SP, mid, lastv - mid + 1);
vstmd(DB_W, SP, firstv, 16);
} else {
vstmd(DB_W, SP, firstv, lastv - firstv + 1);
}
}
LoadPoolPointer();
ReserveAlignedFrameSpace(frame_space);
}
void Assembler::LeaveCallRuntimeFrame() {
// SP might have been modified to reserve space for arguments
// and ensure proper alignment of the stack frame.
// We need to restore it before restoring registers.
const intptr_t kPushedFpuRegisterSize =
TargetCPUFeatures::vfp_supported() ?
kDartVolatileFpuRegCount * kFpuRegisterSize : 0;
COMPILE_ASSERT(PP < FP);
COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0);
// kVolatileCpuRegCount +1 for PP, -1 because even though LR is volatile,
// it is pushed ahead of FP.
const intptr_t kPushedRegistersSize =
kDartVolatileCpuRegCount * kWordSize + kPushedFpuRegisterSize;
AddImmediate(SP, FP, -kPushedRegistersSize);
// Restore all volatile FPU registers.
if (TargetCPUFeatures::vfp_supported()) {
DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
if ((lastv - firstv + 1) >= 16) {
DRegister mid = static_cast<DRegister>(firstv + 16);
vldmd(IA_W, SP, firstv, 16);
vldmd(IA_W, SP, mid, lastv - mid + 1);
} else {
vldmd(IA_W, SP, firstv, lastv - firstv + 1);
}
}
// Restore volatile CPU registers.
LeaveFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP));
}
void Assembler::CallRuntime(const RuntimeEntry& entry,
intptr_t argument_count) {
entry.Call(this, argument_count);
}
void Assembler::EnterDartFrame(intptr_t frame_size) {
ASSERT(!constant_pool_allowed());
// Registers are pushed in descending order: R9 | R10 | R11 | R14.
EnterFrame((1 << PP) | (1 << CODE_REG) | (1 << FP) | (1 << LR), 0);
// Setup pool pointer for this dart function.
LoadPoolPointer();
// Reserve space for locals.
AddImmediate(SP, -frame_size);
}
// On entry to a function compiled for OSR, the caller's frame pointer, the
// stack locals, and any copied parameters are already in place. The frame
// pointer is already set up. The PC marker is not correct for the
// optimized function and there may be extra space for spill slots to
// allocate. We must also set up the pool pointer for the function.
void Assembler::EnterOsrFrame(intptr_t extra_size) {
ASSERT(!constant_pool_allowed());
Comment("EnterOsrFrame");
RestoreCodePointer();
LoadPoolPointer();
AddImmediate(SP, -extra_size);
}
void Assembler::LeaveDartFrame(RestorePP restore_pp) {
if (restore_pp == kRestoreCallerPP) {
ldr(PP, Address(FP, kSavedCallerPpSlotFromFp * kWordSize));
set_constant_pool_allowed(false);
}
Drop(2); // Drop saved PP, PC marker.
LeaveFrame((1 << FP) | (1 << LR));
}
void Assembler::EnterStubFrame() {
EnterDartFrame(0);
}
void Assembler::LeaveStubFrame() {
LeaveDartFrame();
}
void Assembler::LoadAllocationStatsAddress(Register dest,
intptr_t cid,
bool inline_isolate) {
ASSERT(dest != kNoRegister);
ASSERT(dest != TMP);
ASSERT(cid > 0);
const intptr_t class_offset = ClassTable::ClassOffsetFor(cid);
if (inline_isolate) {
ASSERT(FLAG_allow_absolute_addresses);
ClassTable* class_table = Isolate::Current()->class_table();
ClassHeapStats** table_ptr = class_table->TableAddressFor(cid);
if (cid < kNumPredefinedCids) {
LoadImmediate(dest, reinterpret_cast<uword>(*table_ptr) + class_offset);
} else {
LoadImmediate(dest, reinterpret_cast<uword>(table_ptr));
ldr(dest, Address(dest, 0));
AddImmediate(dest, class_offset);
}
} else {
LoadIsolate(dest);
intptr_t table_offset =
Isolate::class_table_offset() + ClassTable::TableOffsetFor(cid);
ldr(dest, Address(dest, table_offset));
AddImmediate(dest, class_offset);
}
}
void Assembler::MaybeTraceAllocation(intptr_t cid,
Register temp_reg,
Label* trace,
bool inline_isolate) {
LoadAllocationStatsAddress(temp_reg, cid, inline_isolate);
const uword state_offset = ClassHeapStats::state_offset();
ldr(temp_reg, Address(temp_reg, state_offset));
tst(temp_reg, Operand(ClassHeapStats::TraceAllocationMask()));
b(trace, NE);
}
void Assembler::IncrementAllocationStats(Register stats_addr_reg,
intptr_t cid,
Heap::Space space) {
ASSERT(stats_addr_reg != kNoRegister);
ASSERT(stats_addr_reg != TMP);
ASSERT(cid > 0);
const uword count_field_offset = (space == Heap::kNew) ?
ClassHeapStats::allocated_since_gc_new_space_offset() :
ClassHeapStats::allocated_since_gc_old_space_offset();
const Address& count_address = Address(stats_addr_reg, count_field_offset);
ldr(TMP, count_address);
AddImmediate(TMP, 1);
str(TMP, count_address);
}
void Assembler::IncrementAllocationStatsWithSize(Register stats_addr_reg,
Register size_reg,
Heap::Space space) {
ASSERT(stats_addr_reg != kNoRegister);
ASSERT(stats_addr_reg != TMP);
const uword count_field_offset = (space == Heap::kNew) ?
ClassHeapStats::allocated_since_gc_new_space_offset() :
ClassHeapStats::allocated_since_gc_old_space_offset();
const uword size_field_offset = (space == Heap::kNew) ?
ClassHeapStats::allocated_size_since_gc_new_space_offset() :
ClassHeapStats::allocated_size_since_gc_old_space_offset();
const Address& count_address = Address(stats_addr_reg, count_field_offset);
const Address& size_address = Address(stats_addr_reg, size_field_offset);
ldr(TMP, count_address);
AddImmediate(TMP, 1);
str(TMP, count_address);
ldr(TMP, size_address);
add(TMP, TMP, Operand(size_reg));
str(TMP, size_address);
}
void Assembler::TryAllocate(const Class& cls,
Label* failure,
Register instance_reg,
Register temp_reg) {
ASSERT(failure != NULL);
if (FLAG_inline_alloc) {
ASSERT(instance_reg != temp_reg);
ASSERT(temp_reg != IP);
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size != 0);
// If this allocation is traced, program will jump to failure path
// (i.e. the allocation stub) which will allocate the object and trace the
// allocation call site.
MaybeTraceAllocation(cls.id(), temp_reg, failure,
/* inline_isolate = */ false);
Heap::Space space = Heap::SpaceForAllocation(cls.id());
ldr(temp_reg, Address(THR, Thread::heap_offset()));
ldr(instance_reg, Address(temp_reg, Heap::TopOffset(space)));
// TODO(koda): Protect against unsigned overflow here.
AddImmediateSetFlags(instance_reg, instance_reg, instance_size);
// instance_reg: potential next object start.
ldr(IP, Address(temp_reg, Heap::EndOffset(space)));
cmp(IP, Operand(instance_reg));
// fail if heap end unsigned less than or equal to instance_reg.
b(failure, LS);
// Successfully allocated the object, now update top to point to
// next object start and store the class in the class field of object.
str(instance_reg, Address(temp_reg, Heap::TopOffset(space)));
LoadAllocationStatsAddress(temp_reg, cls.id(),
/* inline_isolate = */ false);
ASSERT(instance_size >= kHeapObjectTag);
AddImmediate(instance_reg, -instance_size + kHeapObjectTag);
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
LoadImmediate(IP, tags);
str(IP, FieldAddress(instance_reg, Object::tags_offset()));
IncrementAllocationStats(temp_reg, cls.id(), space);
} else {
b(failure);
}
}
void Assembler::TryAllocateArray(intptr_t cid,
intptr_t instance_size,
Label* failure,
Register instance,
Register end_address,
Register temp1,
Register temp2) {
if (FLAG_inline_alloc) {
// If this allocation is traced, program will jump to failure path
// (i.e. the allocation stub) which will allocate the object and trace the
// allocation call site.
MaybeTraceAllocation(cid, temp1, failure, /* inline_isolate = */ false);
Heap::Space space = Heap::SpaceForAllocation(cid);
ldr(temp1, Address(THR, Thread::heap_offset()));
// Potential new object start.
ldr(instance, Address(temp1, Heap::TopOffset(space)));
AddImmediateSetFlags(end_address, instance, instance_size);
b(failure, CS); // Branch if unsigned overflow.
// Check if the allocation fits into the remaining space.
// instance: potential new object start.
// end_address: potential next object start.
ldr(temp2, Address(temp1, Heap::EndOffset(space)));
cmp(end_address, Operand(temp2));
b(failure, CS);
LoadAllocationStatsAddress(temp2, cid, /* inline_isolate = */ false);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
str(end_address, Address(temp1, Heap::TopOffset(space)));
add(instance, instance, Operand(kHeapObjectTag));
// Initialize the tags.
// instance: new object start as a tagged pointer.
uword tags = 0;
tags = RawObject::ClassIdTag::update(cid, tags);
tags = RawObject::SizeTag::update(instance_size, tags);
LoadImmediate(temp1, tags);
str(temp1, FieldAddress(instance, Array::tags_offset())); // Store tags.
LoadImmediate(temp1, instance_size);
IncrementAllocationStatsWithSize(temp2, temp1, space);
} else {
b(failure);
}
}
void Assembler::Stop(const char* message) {
if (FLAG_print_stop_message) {
PushList((1 << R0) | (1 << IP) | (1 << LR)); // Preserve R0, IP, LR.
LoadImmediate(R0, reinterpret_cast<int32_t>(message));
// PrintStopMessage() preserves all registers.
BranchLink(&StubCode::PrintStopMessage_entry()->label());
PopList((1 << R0) | (1 << IP) | (1 << LR)); // Restore R0, IP, LR.
}
// Emit the message address before the svc instruction, so that we can
// 'unstop' and continue execution in the simulator or jump to the next
// instruction in gdb.
Label stop;
b(&stop);
Emit(reinterpret_cast<int32_t>(message));
Bind(&stop);
bkpt(Instr::kStopMessageCode);
}
Address Assembler::ElementAddressForIntIndex(bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
intptr_t index,
Register temp) {
const int64_t offset_base =
(is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag));
const int64_t offset = offset_base +
static_cast<int64_t>(index) * index_scale;
ASSERT(Utils::IsInt(32, offset));
if (Address::CanHoldImmediateOffset(is_load, cid, offset)) {
return Address(array, static_cast<int32_t>(offset));
} else {
ASSERT(Address::CanHoldImmediateOffset(is_load, cid, offset - offset_base));
AddImmediate(temp, array, static_cast<int32_t>(offset_base));
return Address(temp, static_cast<int32_t>(offset - offset_base));
}
}
Address Assembler::ElementAddressForRegIndex(bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
Register index) {
// Note that index is expected smi-tagged, (i.e, LSL 1) for all arrays.
const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) - kSmiTagShift;
int32_t offset =
is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag);
const OperandSize size = Address::OperandSizeFor(cid);
ASSERT(array != IP);
ASSERT(index != IP);
const Register base = is_load ? IP : index;
if ((offset != 0) ||
(size == kSWord) || (size == kDWord) || (size == kRegList)) {
if (shift < 0) {
ASSERT(shift == -1);
add(base, array, Operand(index, ASR, 1));
} else {
add(base, array, Operand(index, LSL, shift));
}
} else {
if (shift < 0) {
ASSERT(shift == -1);
return Address(array, index, ASR, 1);
} else {
return Address(array, index, LSL, shift);
}
}
int32_t offset_mask = 0;
if ((is_load && !Address::CanHoldLoadOffset(size,
offset,
&offset_mask)) ||
(!is_load && !Address::CanHoldStoreOffset(size,
offset,
&offset_mask))) {
AddImmediate(base, offset & ~offset_mask);
offset = offset & offset_mask;
}
return Address(base, offset);
}
static const char* cpu_reg_names[kNumberOfCpuRegisters] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "ctx", "pp", "fp", "ip", "sp", "lr", "pc",
};
const char* Assembler::RegisterName(Register reg) {
ASSERT((0 <= reg) && (reg < kNumberOfCpuRegisters));
return cpu_reg_names[reg];
}
static const char* fpu_reg_names[kNumberOfFpuRegisters] = {
"q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
#if defined(VFPv3_D32)
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
#endif
};
const char* Assembler::FpuRegisterName(FpuRegister reg) {
ASSERT((0 <= reg) && (reg < kNumberOfFpuRegisters));
return fpu_reg_names[reg];
}
} // namespace dart
#endif // defined TARGET_ARCH_ARM