| ; Test 32-bit shifts left. |
| ; |
| ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s |
| |
| ; Check the low end of the SLLG range. |
| define i64 @f1(i64 %a) { |
| ; CHECK-LABEL: f1: |
| ; CHECK: sllg %r2, %r2, 1 |
| ; CHECK: br %r14 |
| %shift = shl i64 %a, 1 |
| ret i64 %shift |
| } |
| |
| ; Check the high end of the defined SLLG range. |
| define i64 @f2(i64 %a) { |
| ; CHECK-LABEL: f2: |
| ; CHECK: sllg %r2, %r2, 63 |
| ; CHECK: br %r14 |
| %shift = shl i64 %a, 63 |
| ret i64 %shift |
| } |
| |
| ; We don't generate shifts by out-of-range values. |
| define i64 @f3(i64 %a) { |
| ; CHECK-LABEL: f3: |
| ; CHECK-NOT: sllg |
| ; CHECK: br %r14 |
| %shift = shl i64 %a, 64 |
| ret i64 %shift |
| } |
| |
| ; Check variable shifts. |
| define i64 @f4(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f4: |
| ; CHECK: sllg %r2, %r2, 0(%r3) |
| ; CHECK: br %r14 |
| %shift = shl i64 %a, %amt |
| ret i64 %shift |
| } |
| |
| ; Check shift amounts that have a constant term. |
| define i64 @f5(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f5: |
| ; CHECK: sllg %r2, %r2, 10(%r3) |
| ; CHECK: br %r14 |
| %add = add i64 %amt, 10 |
| %shift = shl i64 %a, %add |
| ret i64 %shift |
| } |
| |
| ; ...and again with a sign-extended 32-bit shift amount. |
| define i64 @f6(i64 %a, i32 %amt) { |
| ; CHECK-LABEL: f6: |
| ; CHECK: sllg %r2, %r2, 10(%r3) |
| ; CHECK: br %r14 |
| %add = add i32 %amt, 10 |
| %addext = sext i32 %add to i64 |
| %shift = shl i64 %a, %addext |
| ret i64 %shift |
| } |
| |
| ; ...and now with a zero-extended 32-bit shift amount. |
| define i64 @f7(i64 %a, i32 %amt) { |
| ; CHECK-LABEL: f7: |
| ; CHECK: sllg %r2, %r2, 10(%r3) |
| ; CHECK: br %r14 |
| %add = add i32 %amt, 10 |
| %addext = zext i32 %add to i64 |
| %shift = shl i64 %a, %addext |
| ret i64 %shift |
| } |
| |
| ; Check shift amounts that have the largest in-range constant term. We could |
| ; mask the amount instead. |
| define i64 @f8(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f8: |
| ; CHECK: sllg %r2, %r2, 524287(%r3) |
| ; CHECK: br %r14 |
| %add = add i64 %amt, 524287 |
| %shift = shl i64 %a, %add |
| ret i64 %shift |
| } |
| |
| ; Check the next value up, which without masking must use a separate |
| ; addition. |
| define i64 @f9(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f9: |
| ; CHECK: a{{g?}}fi %r3, 524288 |
| ; CHECK: sllg %r2, %r2, 0(%r3) |
| ; CHECK: br %r14 |
| %add = add i64 %amt, 524288 |
| %shift = shl i64 %a, %add |
| ret i64 %shift |
| } |
| |
| ; Check cases where 1 is subtracted from the shift amount. |
| define i64 @f10(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f10: |
| ; CHECK: sllg %r2, %r2, -1(%r3) |
| ; CHECK: br %r14 |
| %sub = sub i64 %amt, 1 |
| %shift = shl i64 %a, %sub |
| ret i64 %shift |
| } |
| |
| ; Check the lowest value that can be subtracted from the shift amount. |
| ; Again, we could mask the shift amount instead. |
| define i64 @f11(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f11: |
| ; CHECK: sllg %r2, %r2, -524288(%r3) |
| ; CHECK: br %r14 |
| %sub = sub i64 %amt, 524288 |
| %shift = shl i64 %a, %sub |
| ret i64 %shift |
| } |
| |
| ; Check the next value down, which without masking must use a separate |
| ; addition. |
| define i64 @f12(i64 %a, i64 %amt) { |
| ; CHECK-LABEL: f12: |
| ; CHECK: a{{g?}}fi %r3, -524289 |
| ; CHECK: sllg %r2, %r2, 0(%r3) |
| ; CHECK: br %r14 |
| %sub = sub i64 %amt, 524289 |
| %shift = shl i64 %a, %sub |
| ret i64 %shift |
| } |
| |
| ; Check that we don't try to generate "indexed" shifts. |
| define i64 @f13(i64 %a, i64 %b, i64 %c) { |
| ; CHECK-LABEL: f13: |
| ; CHECK: a{{g?}}r {{%r3, %r4|%r4, %r3}} |
| ; CHECK: sllg %r2, %r2, 0({{%r[34]}}) |
| ; CHECK: br %r14 |
| %add = add i64 %b, %c |
| %shift = shl i64 %a, %add |
| ret i64 %shift |
| } |
| |
| ; Check that the shift amount uses an address register. It cannot be in %r0. |
| define i64 @f14(i64 %a, i64 *%ptr) { |
| ; CHECK-LABEL: f14: |
| ; CHECK: l %r1, 4(%r3) |
| ; CHECK: sllg %r2, %r2, 0(%r1) |
| ; CHECK: br %r14 |
| %amt = load i64, i64 *%ptr |
| %shift = shl i64 %a, %amt |
| ret i64 %shift |
| } |