blob: 787b6d6076911ce7d50badb7957cd3e283a2ba51 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Context.cpp: Implements the es2::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "Context.h"
#include "main.h"
#include "mathutil.h"
#include "utilities.h"
#include "ResourceManager.h"
#include "Buffer.h"
#include "Fence.h"
#include "Framebuffer.h"
#include "Program.h"
#include "Query.h"
#include "Renderbuffer.h"
#include "Sampler.h"
#include "Shader.h"
#include "Texture.h"
#include "TransformFeedback.h"
#include "VertexArray.h"
#include "VertexDataManager.h"
#include "IndexDataManager.h"
#include "libEGL/Display.h"
#include "common/Surface.hpp"
#include "Common/Half.hpp"
#include <EGL/eglext.h>
#include <algorithm>
#include <string>
namespace es2
{
Context::Context(egl::Display *display, const Context *shareContext, const egl::Config *config)
: egl::Context(display), config(config)
{
sw::Context *context = new sw::Context();
device = new es2::Device(context);
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.cullFaceEnabled = false;
mState.cullMode = GL_BACK;
mState.frontFace = GL_CCW;
mState.depthTestEnabled = false;
mState.depthFunc = GL_LESS;
mState.blendEnabled = false;
mState.sourceBlendRGB = GL_ONE;
mState.sourceBlendAlpha = GL_ONE;
mState.destBlendRGB = GL_ZERO;
mState.destBlendAlpha = GL_ZERO;
mState.blendEquationRGB = GL_FUNC_ADD;
mState.blendEquationAlpha = GL_FUNC_ADD;
mState.blendColor.red = 0;
mState.blendColor.green = 0;
mState.blendColor.blue = 0;
mState.blendColor.alpha = 0;
mState.stencilTestEnabled = false;
mState.stencilFunc = GL_ALWAYS;
mState.stencilRef = 0;
mState.stencilMask = 0xFFFFFFFFu;
mState.stencilWritemask = 0xFFFFFFFFu;
mState.stencilBackFunc = GL_ALWAYS;
mState.stencilBackRef = 0;
mState.stencilBackMask = 0xFFFFFFFFu;
mState.stencilBackWritemask = 0xFFFFFFFFu;
mState.stencilFail = GL_KEEP;
mState.stencilPassDepthFail = GL_KEEP;
mState.stencilPassDepthPass = GL_KEEP;
mState.stencilBackFail = GL_KEEP;
mState.stencilBackPassDepthFail = GL_KEEP;
mState.stencilBackPassDepthPass = GL_KEEP;
mState.polygonOffsetFillEnabled = false;
mState.polygonOffsetFactor = 0.0f;
mState.polygonOffsetUnits = 0.0f;
mState.sampleAlphaToCoverageEnabled = false;
mState.sampleCoverageEnabled = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.scissorTestEnabled = false;
mState.ditherEnabled = true;
mState.primitiveRestartFixedIndexEnabled = false;
mState.rasterizerDiscardEnabled = false;
mState.generateMipmapHint = GL_DONT_CARE;
mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
mState.textureFilteringHint = GL_DONT_CARE;
mState.lineWidth = 1.0f;
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = 0;
mState.viewportHeight = 0;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = 0;
mState.scissorHeight = 0;
mState.colorMaskRed = true;
mState.colorMaskGreen = true;
mState.colorMaskBlue = true;
mState.colorMaskAlpha = true;
mState.depthMask = true;
if(shareContext)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager();
}
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero = new Texture2D(0);
mTexture3DZero = new Texture3D(0);
mTexture2DArrayZero = new Texture2DArray(0);
mTextureCubeMapZero = new TextureCubeMap(0);
mTexture2DRectZero = new Texture2DRect(0);
mTextureExternalZero = new TextureExternal(0);
mState.activeSampler = 0;
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
bindTexture((TextureType)type, 0);
}
bindVertexArray(0);
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
bindGenericUniformBuffer(0);
bindTransformFeedback(0);
mState.currentProgram = 0;
mVertexDataManager = nullptr;
mIndexDataManager = nullptr;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
markAllStateDirty();
}
Context::~Context()
{
if(mState.currentProgram != 0)
{
Program *programObject = mResourceManager->getProgram(mState.currentProgram);
if(programObject)
{
programObject->release();
}
mState.currentProgram = 0;
}
while(!mFramebufferNameSpace.empty())
{
deleteFramebuffer(mFramebufferNameSpace.firstName());
}
while(!mFenceNameSpace.empty())
{
deleteFence(mFenceNameSpace.firstName());
}
while(!mQueryNameSpace.empty())
{
deleteQuery(mQueryNameSpace.firstName());
}
while(!mVertexArrayNameSpace.empty())
{
deleteVertexArray(mVertexArrayNameSpace.lastName());
}
while(!mTransformFeedbackNameSpace.empty())
{
deleteTransformFeedback(mTransformFeedbackNameSpace.firstName());
}
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
{
mState.samplerTexture[type][sampler] = nullptr;
}
}
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mState.vertexAttribute[i].mBoundBuffer = nullptr;
}
for(int i = 0; i < QUERY_TYPE_COUNT; i++)
{
mState.activeQuery[i] = nullptr;
}
mState.arrayBuffer = nullptr;
mState.copyReadBuffer = nullptr;
mState.copyWriteBuffer = nullptr;
mState.pixelPackBuffer = nullptr;
mState.pixelUnpackBuffer = nullptr;
mState.genericUniformBuffer = nullptr;
mState.genericTransformFeedbackBuffer = nullptr;
for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; i++) {
mState.uniformBuffers[i].set(nullptr, 0, 0);
}
mState.renderbuffer = nullptr;
for(int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
{
mState.sampler[i] = nullptr;
}
mTexture2DZero = nullptr;
mTexture3DZero = nullptr;
mTexture2DArrayZero = nullptr;
mTextureCubeMapZero = nullptr;
mTexture2DRectZero = nullptr;
mTextureExternalZero = nullptr;
delete mVertexDataManager;
delete mIndexDataManager;
mResourceManager->release();
delete device;
}
void Context::makeCurrent(gl::Surface *surface)
{
if(!mHasBeenCurrent)
{
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager();
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = surface ? surface->getWidth() : 0;
mState.viewportHeight = surface ? surface->getHeight() : 0;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = surface ? surface->getWidth() : 0;
mState.scissorHeight = surface ? surface->getHeight() : 0;
mHasBeenCurrent = true;
}
if(surface)
{
// Wrap the existing resources into GL objects and assign them to the '0' names
egl::Image *defaultRenderTarget = surface->getRenderTarget();
egl::Image *depthStencil = surface->getDepthStencil();
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
if(defaultRenderTarget)
{
defaultRenderTarget->release();
}
if(depthStencil)
{
depthStencil->release();
}
}
else
{
setFramebufferZero(nullptr);
}
markAllStateDirty();
}
EGLint Context::getClientVersion() const
{
return 3;
}
EGLint Context::getConfigID() const
{
return config->mConfigID;
}
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
mAppliedProgramSerial = 0;
mDepthStateDirty = true;
mMaskStateDirty = true;
mBlendStateDirty = true;
mStencilStateDirty = true;
mPolygonOffsetStateDirty = true;
mSampleStateDirty = true;
mDitherStateDirty = true;
mFrontFaceDirty = true;
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setCullFaceEnabled(bool enabled)
{
mState.cullFaceEnabled = enabled;
}
bool Context::isCullFaceEnabled() const
{
return mState.cullFaceEnabled;
}
void Context::setCullMode(GLenum mode)
{
mState.cullMode = mode;
}
void Context::setFrontFace(GLenum front)
{
if(mState.frontFace != front)
{
mState.frontFace = front;
mFrontFaceDirty = true;
}
}
void Context::setDepthTestEnabled(bool enabled)
{
if(mState.depthTestEnabled != enabled)
{
mState.depthTestEnabled = enabled;
mDepthStateDirty = true;
}
}
bool Context::isDepthTestEnabled() const
{
return mState.depthTestEnabled;
}
void Context::setDepthFunc(GLenum depthFunc)
{
if(mState.depthFunc != depthFunc)
{
mState.depthFunc = depthFunc;
mDepthStateDirty = true;
}
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlendEnabled(bool enabled)
{
if(mState.blendEnabled != enabled)
{
mState.blendEnabled = enabled;
mBlendStateDirty = true;
}
}
bool Context::isBlendEnabled() const
{
return mState.blendEnabled;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
if(mState.sourceBlendRGB != sourceRGB ||
mState.sourceBlendAlpha != sourceAlpha ||
mState.destBlendRGB != destRGB ||
mState.destBlendAlpha != destAlpha)
{
mState.sourceBlendRGB = sourceRGB;
mState.destBlendRGB = destRGB;
mState.sourceBlendAlpha = sourceAlpha;
mState.destBlendAlpha = destAlpha;
mBlendStateDirty = true;
}
}
void Context::setBlendColor(float red, float green, float blue, float alpha)
{
if(mState.blendColor.red != red ||
mState.blendColor.green != green ||
mState.blendColor.blue != blue ||
mState.blendColor.alpha != alpha)
{
mState.blendColor.red = red;
mState.blendColor.green = green;
mState.blendColor.blue = blue;
mState.blendColor.alpha = alpha;
mBlendStateDirty = true;
}
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
if(mState.blendEquationRGB != rgbEquation ||
mState.blendEquationAlpha != alphaEquation)
{
mState.blendEquationRGB = rgbEquation;
mState.blendEquationAlpha = alphaEquation;
mBlendStateDirty = true;
}
}
void Context::setStencilTestEnabled(bool enabled)
{
if(mState.stencilTestEnabled != enabled)
{
mState.stencilTestEnabled = enabled;
mStencilStateDirty = true;
}
}
bool Context::isStencilTestEnabled() const
{
return mState.stencilTestEnabled;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
if(mState.stencilFunc != stencilFunc ||
mState.stencilRef != stencilRef ||
mState.stencilMask != stencilMask)
{
mState.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.stencilMask = stencilMask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
if(mState.stencilBackFunc != stencilBackFunc ||
mState.stencilBackRef != stencilBackRef ||
mState.stencilBackMask != stencilBackMask)
{
mState.stencilBackFunc = stencilBackFunc;
mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mState.stencilBackMask = stencilBackMask;
mStencilStateDirty = true;
}
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
if(mState.stencilWritemask != stencilWritemask)
{
mState.stencilWritemask = stencilWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
{
if(mState.stencilBackWritemask != stencilBackWritemask)
{
mState.stencilBackWritemask = stencilBackWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
if(mState.stencilFail != stencilFail ||
mState.stencilPassDepthFail != stencilPassDepthFail ||
mState.stencilPassDepthPass != stencilPassDepthPass)
{
mState.stencilFail = stencilFail;
mState.stencilPassDepthFail = stencilPassDepthFail;
mState.stencilPassDepthPass = stencilPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
if(mState.stencilBackFail != stencilBackFail ||
mState.stencilBackPassDepthFail != stencilBackPassDepthFail ||
mState.stencilBackPassDepthPass != stencilBackPassDepthPass)
{
mState.stencilBackFail = stencilBackFail;
mState.stencilBackPassDepthFail = stencilBackPassDepthFail;
mState.stencilBackPassDepthPass = stencilBackPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setPolygonOffsetFillEnabled(bool enabled)
{
if(mState.polygonOffsetFillEnabled != enabled)
{
mState.polygonOffsetFillEnabled = enabled;
mPolygonOffsetStateDirty = true;
}
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.polygonOffsetFillEnabled;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
if(mState.polygonOffsetFactor != factor ||
mState.polygonOffsetUnits != units)
{
mState.polygonOffsetFactor = factor;
mState.polygonOffsetUnits = units;
mPolygonOffsetStateDirty = true;
}
}
void Context::setSampleAlphaToCoverageEnabled(bool enabled)
{
if(mState.sampleAlphaToCoverageEnabled != enabled)
{
mState.sampleAlphaToCoverageEnabled = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.sampleAlphaToCoverageEnabled;
}
void Context::setSampleCoverageEnabled(bool enabled)
{
if(mState.sampleCoverageEnabled != enabled)
{
mState.sampleCoverageEnabled = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverageEnabled;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
if(mState.sampleCoverageValue != value ||
mState.sampleCoverageInvert != invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
mSampleStateDirty = true;
}
}
void Context::setScissorTestEnabled(bool enabled)
{
mState.scissorTestEnabled = enabled;
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTestEnabled;
}
void Context::setDitherEnabled(bool enabled)
{
if(mState.ditherEnabled != enabled)
{
mState.ditherEnabled = enabled;
mDitherStateDirty = true;
}
}
bool Context::isDitherEnabled() const
{
return mState.ditherEnabled;
}
void Context::setPrimitiveRestartFixedIndexEnabled(bool enabled)
{
mState.primitiveRestartFixedIndexEnabled = enabled;
}
bool Context::isPrimitiveRestartFixedIndexEnabled() const
{
return mState.primitiveRestartFixedIndexEnabled;
}
void Context::setRasterizerDiscardEnabled(bool enabled)
{
mState.rasterizerDiscardEnabled = enabled;
}
bool Context::isRasterizerDiscardEnabled() const
{
return mState.rasterizerDiscardEnabled;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setFragmentShaderDerivativeHint(GLenum hint)
{
mState.fragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void Context::setTextureFilteringHint(GLenum hint)
{
mState.textureFilteringHint = hint;
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewportX = x;
mState.viewportY = y;
mState.viewportWidth = std::min<GLsizei>(width, IMPLEMENTATION_MAX_RENDERBUFFER_SIZE); // GL_MAX_VIEWPORT_DIMS[0]
mState.viewportHeight = std::min<GLsizei>(height, IMPLEMENTATION_MAX_RENDERBUFFER_SIZE); // GL_MAX_VIEWPORT_DIMS[1]
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.scissorX = x;
mState.scissorY = y;
mState.scissorWidth = width;
mState.scissorHeight = height;
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
{
mState.colorMaskRed = red;
mState.colorMaskGreen = green;
mState.colorMaskBlue = blue;
mState.colorMaskAlpha = alpha;
mMaskStateDirty = true;
}
}
unsigned int Context::getColorMask() const
{
return (mState.colorMaskRed ? 0x1 : 0) |
(mState.colorMaskGreen ? 0x2 : 0) |
(mState.colorMaskBlue ? 0x4 : 0) |
(mState.colorMaskAlpha ? 0x8 : 0);
}
void Context::setDepthMask(bool mask)
{
if(mState.depthMask != mask)
{
mState.depthMask = mask;
mMaskStateDirty = true;
}
}
void Context::setActiveSampler(unsigned int active)
{
mState.activeSampler = active;
}
GLuint Context::getReadFramebufferName() const
{
return mState.readFramebuffer;
}
GLuint Context::getDrawFramebufferName() const
{
return mState.drawFramebuffer;
}
GLuint Context::getRenderbufferName() const
{
return mState.renderbuffer.name();
}
void Context::setFramebufferReadBuffer(GLuint buf)
{
Framebuffer *framebuffer = getReadFramebuffer();
if(framebuffer)
{
framebuffer->setReadBuffer(buf);
}
else
{
return error(GL_INVALID_OPERATION);
}
}
void Context::setFramebufferDrawBuffers(GLsizei n, const GLenum *bufs)
{
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if(drawFramebuffer)
{
for(int i = 0; i < MAX_COLOR_ATTACHMENTS; i++)
{
drawFramebuffer->setDrawBuffer(i, (i < n) ? bufs[i] : GL_NONE);
}
}
else
{
return error(GL_INVALID_OPERATION);
}
}
GLuint Context::getArrayBufferName() const
{
return mState.arrayBuffer.name();
}
GLuint Context::getElementArrayBufferName() const
{
Buffer* elementArrayBuffer = getCurrentVertexArray()->getElementArrayBuffer();
return elementArrayBuffer ? elementArrayBuffer->name : 0;
}
GLuint Context::getActiveQuery(GLenum target) const
{
Query *queryObject = nullptr;
switch(target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED];
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE];
break;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
queryObject = mState.activeQuery[QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN];
break;
default:
ASSERT(false);
}
if(queryObject)
{
return queryObject->name;
}
return 0;
}
void Context::setVertexAttribArrayEnabled(unsigned int attribNum, bool enabled)
{
getCurrentVertexArray()->enableAttribute(attribNum, enabled);
}
void Context::setVertexAttribDivisor(unsigned int attribNum, GLuint divisor)
{
getCurrentVertexArray()->setVertexAttribDivisor(attribNum, divisor);
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) const
{
return getCurrentVertexArray()->getVertexAttribute(attribNum);
}
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type,
bool normalized, bool pureInteger, GLsizei stride, const void *pointer)
{
getCurrentVertexArray()->setAttributeState(attribNum, boundBuffer, size, type, normalized, pureInteger, stride, pointer);
}
const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
return getCurrentVertexArray()->getVertexAttribute(attribNum).mPointer;
}
const VertexAttributeArray &Context::getVertexArrayAttributes()
{
return getCurrentVertexArray()->getVertexAttributes();
}
const VertexAttributeArray &Context::getCurrentVertexAttributes()
{
return mState.vertexAttribute;
}
void Context::setPackAlignment(GLint alignment)
{
mState.packParameters.alignment = alignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpackParameters.alignment = alignment;
}
const gl::PixelStorageModes &Context::getUnpackParameters() const
{
return mState.unpackParameters;
}
void Context::setPackRowLength(GLint rowLength)
{
mState.packParameters.rowLength = rowLength;
}
void Context::setPackSkipPixels(GLint skipPixels)
{
mState.packParameters.skipPixels = skipPixels;
}
void Context::setPackSkipRows(GLint skipRows)
{
mState.packParameters.skipRows = skipRows;
}
void Context::setUnpackRowLength(GLint rowLength)
{
mState.unpackParameters.rowLength = rowLength;
}
void Context::setUnpackImageHeight(GLint imageHeight)
{
mState.unpackParameters.imageHeight = imageHeight;
}
void Context::setUnpackSkipPixels(GLint skipPixels)
{
mState.unpackParameters.skipPixels = skipPixels;
}
void Context::setUnpackSkipRows(GLint skipRows)
{
mState.unpackParameters.skipRows = skipRows;
}
void Context::setUnpackSkipImages(GLint skipImages)
{
mState.unpackParameters.skipImages = skipImages;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
return mFramebufferNameSpace.allocate();
}
GLuint Context::createFence()
{
return mFenceNameSpace.allocate(new Fence());
}
// Returns an unused query name
GLuint Context::createQuery()
{
return mQueryNameSpace.allocate();
}
// Returns an unused vertex array name
GLuint Context::createVertexArray()
{
return mVertexArrayNameSpace.allocate();
}
GLsync Context::createFenceSync(GLenum condition, GLbitfield flags)
{
GLuint handle = mResourceManager->createFenceSync(condition, flags);
return reinterpret_cast<GLsync>(static_cast<uintptr_t>(handle));
}
// Returns an unused transform feedback name
GLuint Context::createTransformFeedback()
{
return mTransformFeedbackNameSpace.allocate();
}
// Returns an unused sampler name
GLuint Context::createSampler()
{
return mResourceManager->createSampler();
}
void Context::deleteBuffer(GLuint buffer)
{
detachBuffer(buffer);
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
detachTexture(texture);
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if(mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
detachFramebuffer(framebuffer);
Framebuffer *framebufferObject = mFramebufferNameSpace.remove(framebuffer);
if(framebufferObject)
{
delete framebufferObject;
}
}
void Context::deleteFence(GLuint fence)
{
Fence *fenceObject = mFenceNameSpace.remove(fence);
if(fenceObject)
{
delete fenceObject;
}
}
void Context::deleteQuery(GLuint query)
{
Query *queryObject = mQueryNameSpace.remove(query);
if(queryObject)
{
queryObject->release();
}
}
void Context::deleteVertexArray(GLuint vertexArray)
{
// [OpenGL ES 3.0.2] section 2.10 page 43:
// If a vertex array object that is currently bound is deleted, the binding
// for that object reverts to zero and the default vertex array becomes current.
if(getCurrentVertexArray()->name == vertexArray)
{
bindVertexArray(0);
}
VertexArray *vertexArrayObject = mVertexArrayNameSpace.remove(vertexArray);
if(vertexArrayObject)
{
delete vertexArrayObject;
}
}
void Context::deleteFenceSync(GLsync fenceSync)
{
// The spec specifies the underlying Fence object is not deleted until all current
// wait commands finish. However, since the name becomes invalid, we cannot query the fence,
// and since our API is currently designed for being called from a single thread, we can delete
// the fence immediately.
mResourceManager->deleteFenceSync(static_cast<GLuint>(reinterpret_cast<uintptr_t>(fenceSync)));
}
void Context::deleteTransformFeedback(GLuint transformFeedback)
{
TransformFeedback *transformFeedbackObject = mTransformFeedbackNameSpace.remove(transformFeedback);
// Detach if currently bound.
if(mState.transformFeedback == transformFeedback)
{
mState.transformFeedback = 0;
}
if(transformFeedbackObject)
{
delete transformFeedbackObject;
}
}
void Context::deleteSampler(GLuint sampler)
{
detachSampler(sampler);
mResourceManager->deleteSampler(sampler);
}
Buffer *Context::getBuffer(GLuint handle) const
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle) const
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle) const
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle) const
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle) const
{
return mResourceManager->getRenderbuffer(handle);
}
Framebuffer *Context::getReadFramebuffer() const
{
return getFramebuffer(mState.readFramebuffer);
}
Framebuffer *Context::getDrawFramebuffer() const
{
return getFramebuffer(mState.drawFramebuffer);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.arrayBuffer = getBuffer(buffer);
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
getCurrentVertexArray()->setElementArrayBuffer(getBuffer(buffer));
}
void Context::bindCopyReadBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.copyReadBuffer = getBuffer(buffer);
}
void Context::bindCopyWriteBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.copyWriteBuffer = getBuffer(buffer);
}
void Context::bindPixelPackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.pixelPackBuffer = getBuffer(buffer);
}
void Context::bindPixelUnpackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.pixelUnpackBuffer = getBuffer(buffer);
}
void Context::bindTransformFeedbackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.genericTransformFeedbackBuffer = getBuffer(buffer);
}
void Context::bindTexture(TextureType type, GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, type);
mState.samplerTexture[type][mState.activeSampler] = getTexture(texture);
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if(!getFramebuffer(framebuffer))
{
if(framebuffer == 0)
{
mFramebufferNameSpace.insert(framebuffer, new DefaultFramebuffer());
}
else
{
mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
}
}
mState.readFramebuffer = framebuffer;
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if(!getFramebuffer(framebuffer))
{
if(framebuffer == 0)
{
mFramebufferNameSpace.insert(framebuffer, new DefaultFramebuffer());
}
else
{
mFramebufferNameSpace.insert(framebuffer, new Framebuffer());
}
}
mState.drawFramebuffer = framebuffer;
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.renderbuffer = getRenderbuffer(renderbuffer);
}
void Context::bindVertexArray(GLuint array)
{
VertexArray *vertexArray = getVertexArray(array);
if(!vertexArray)
{
vertexArray = new VertexArray(array);
mVertexArrayNameSpace.insert(array, vertexArray);
}
mState.vertexArray = array;
}
void Context::bindGenericUniformBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.genericUniformBuffer = getBuffer(buffer);
}
void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
Buffer* bufferObject = getBuffer(buffer);
mState.uniformBuffers[index].set(bufferObject, static_cast<int>(offset), static_cast<int>(size));
}
void Context::bindGenericTransformFeedbackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.genericTransformFeedbackBuffer = getBuffer(buffer);
}
void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
Buffer* bufferObject = getBuffer(buffer);
getTransformFeedback()->setBuffer(index, bufferObject, offset, size);
mState.genericTransformFeedbackBuffer = bufferObject;
}
void Context::bindTransformFeedback(GLuint id)
{
if(!getTransformFeedback(id))
{
mTransformFeedbackNameSpace.insert(id, new TransformFeedback(id));
}
mState.transformFeedback = id;
}
bool Context::bindSampler(GLuint unit, GLuint sampler)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler* samplerObject = getSampler(sampler);
mState.sampler[unit] = samplerObject;
return !!samplerObject;
}
void Context::useProgram(GLuint program)
{
GLuint priorProgram = mState.currentProgram;
mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged.
if(priorProgram != program)
{
Program *newProgram = mResourceManager->getProgram(program);
Program *oldProgram = mResourceManager->getProgram(priorProgram);
if(newProgram)
{
newProgram->addRef();
}
if(oldProgram)
{
oldProgram->release();
}
}
}
void Context::beginQuery(GLenum target, GLuint query)
{
// From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id>
// of zero, if the active query object name for <target> is non-zero (for the
// targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if
// the active query for either target is non-zero), if <id> is the name of an
// existing query object whose type does not match <target>, or if <id> is the
// active query object name for any query type, the error INVALID_OPERATION is
// generated.
// Ensure no other queries are active
// NOTE: If other queries than occlusion are supported, we will need to check
// separately that:
// a) The query ID passed is not the current active query for any target/type
// b) There are no active queries for the requested target (and in the case
// of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT,
// no query may be active for either if glBeginQuery targets either.
for(int i = 0; i < QUERY_TYPE_COUNT; i++)
{
if(mState.activeQuery[i])
{
switch(mState.activeQuery[i]->getType())
{
case GL_ANY_SAMPLES_PASSED_EXT:
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
if((target == GL_ANY_SAMPLES_PASSED_EXT) ||
(target == GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT))
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
if(target == GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN)
{
return error(GL_INVALID_OPERATION);
}
break;
default:
break;
}
}
}
QueryType qType;
switch(target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
qType = QUERY_ANY_SAMPLES_PASSED;
break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE;
break;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN:
qType = QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN;
break;
default:
UNREACHABLE(target);
return error(GL_INVALID_ENUM);
}
Query *queryObject = createQuery(query, target);
// Check that name was obtained with glGenQueries
if(!queryObject)
{
return error(GL_INVALID_OPERATION);
}
// Check for type mismatch
if(queryObject->getType() != target)
{
return error(GL_INVALID_OPERATION);
}
// Set query as active for specified target
mState.activeQuery[qType] = queryObject;
// Begin query
queryObject->begin();
}
void Context::endQuery(GLenum target)
{
QueryType qType;
switch(target)
{
case GL_ANY_SAMPLES_PASSED_EXT: qType = QUERY_ANY_SAMPLES_PASSED; break;
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; break;
case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: qType = QUERY_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN; break;
default: UNREACHABLE(target); return;
}
Query *queryObject = mState.activeQuery[qType];
if(!queryObject)
{
return error(GL_INVALID_OPERATION);
}
queryObject->end();
mState.activeQuery[qType] = nullptr;
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferNameSpace.remove(0);
mFramebufferNameSpace.insert(0, buffer);
}
void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
{
Renderbuffer *renderbufferObject = mState.renderbuffer;
renderbufferObject->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle) const
{
return mFramebufferNameSpace.find(handle);
}
Fence *Context::getFence(unsigned int handle) const
{
return mFenceNameSpace.find(handle);
}
FenceSync *Context::getFenceSync(GLsync handle) const
{
return mResourceManager->getFenceSync(static_cast<GLuint>(reinterpret_cast<uintptr_t>(handle)));
}
Query *Context::getQuery(unsigned int handle) const
{
return mQueryNameSpace.find(handle);
}
Query *Context::createQuery(unsigned int handle, GLenum type)
{
if(!mQueryNameSpace.isReserved(handle))
{
return nullptr;
}
else
{
Query *query = mQueryNameSpace.find(handle);
if(!query)
{
query = new Query(handle, type);
query->addRef();
mQueryNameSpace.insert(handle, query);
}
return query;
}
}
VertexArray *Context::getVertexArray(GLuint array) const
{
return mVertexArrayNameSpace.find(array);
}
VertexArray *Context::getCurrentVertexArray() const
{
return getVertexArray(mState.vertexArray);
}
bool Context::isVertexArray(GLuint array) const
{
return mVertexArrayNameSpace.isReserved(array);
}
bool Context::hasZeroDivisor() const
{
// Verify there is at least one active attribute with a divisor of zero
es2::Program *programObject = getCurrentProgram();
for(int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
bool active = (programObject->getAttributeStream(attributeIndex) != -1);
if(active && getCurrentVertexArray()->getVertexAttribute(attributeIndex).mDivisor == 0)
{
return true;
}
}
return false;
}
TransformFeedback *Context::getTransformFeedback(GLuint transformFeedback) const
{
return mTransformFeedbackNameSpace.find(transformFeedback);
}
bool Context::isTransformFeedback(GLuint array) const
{
return mTransformFeedbackNameSpace.isReserved(array);
}
Sampler *Context::getSampler(GLuint sampler) const
{
return mResourceManager->getSampler(sampler);
}
bool Context::isSampler(GLuint sampler) const
{
return mResourceManager->isSampler(sampler);
}
Buffer *Context::getArrayBuffer() const
{
return mState.arrayBuffer;
}
Buffer *Context::getElementArrayBuffer() const
{
return getCurrentVertexArray()->getElementArrayBuffer();
}
Buffer *Context::getCopyReadBuffer() const
{
return mState.copyReadBuffer;
}
Buffer *Context::getCopyWriteBuffer() const
{
return mState.copyWriteBuffer;
}
Buffer *Context::getPixelPackBuffer() const
{
return mState.pixelPackBuffer;
}
Buffer *Context::getPixelUnpackBuffer() const
{
return mState.pixelUnpackBuffer;
}
Buffer *Context::getGenericUniformBuffer() const
{
return mState.genericUniformBuffer;
}
GLsizei Context::getRequiredBufferSize(GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type) const
{
GLsizei inputWidth = (mState.unpackParameters.rowLength == 0) ? width : mState.unpackParameters.rowLength;
GLsizei inputPitch = gl::ComputePitch(inputWidth, format, type, mState.unpackParameters.alignment);
GLsizei inputHeight = (mState.unpackParameters.imageHeight == 0) ? height : mState.unpackParameters.imageHeight;
return inputPitch * inputHeight * depth;
}
GLenum Context::getPixels(const GLvoid **pixels, GLenum type, GLsizei imageSize) const
{
if(mState.pixelUnpackBuffer)
{
ASSERT(mState.pixelUnpackBuffer->name != 0);
if(mState.pixelUnpackBuffer->isMapped())
{
return GL_INVALID_OPERATION;
}
size_t offset = static_cast<size_t>((ptrdiff_t)(*pixels));
if(offset % GetTypeSize(type) != 0)
{
return GL_INVALID_OPERATION;
}
if(offset > mState.pixelUnpackBuffer->size())
{
return GL_INVALID_OPERATION;
}
if(mState.pixelUnpackBuffer->size() - offset < static_cast<size_t>(imageSize))
{
return GL_INVALID_OPERATION;
}
*pixels = static_cast<const unsigned char*>(mState.pixelUnpackBuffer->data()) + offset;
}
return GL_NO_ERROR;
}
bool Context::getBuffer(GLenum target, es2::Buffer **buffer) const
{
switch(target)
{
case GL_ARRAY_BUFFER:
*buffer = getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
*buffer = getElementArrayBuffer();
break;
case GL_COPY_READ_BUFFER:
*buffer = getCopyReadBuffer();
break;
case GL_COPY_WRITE_BUFFER:
*buffer = getCopyWriteBuffer();
break;
case GL_PIXEL_PACK_BUFFER:
*buffer = getPixelPackBuffer();
break;
case GL_PIXEL_UNPACK_BUFFER:
*buffer = getPixelUnpackBuffer();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER:
*buffer = static_cast<es2::Buffer*>(mState.genericTransformFeedbackBuffer);
break;
case GL_UNIFORM_BUFFER:
*buffer = getGenericUniformBuffer();
break;
default:
return false;
}
return true;
}
TransformFeedback *Context::getTransformFeedback() const
{
return getTransformFeedback(mState.transformFeedback);
}
Program *Context::getCurrentProgram() const
{
return mResourceManager->getProgram(mState.currentProgram);
}
Texture *Context::getTargetTexture(GLenum target) const
{
Texture *texture = nullptr;
switch(target)
{
case GL_TEXTURE_2D: texture = getTexture2D(); break;
case GL_TEXTURE_2D_ARRAY: texture = getTexture2DArray(); break;
case GL_TEXTURE_3D: texture = getTexture3D(); break;
case GL_TEXTURE_CUBE_MAP: texture = getTextureCubeMap(); break;
case GL_TEXTURE_EXTERNAL_OES: texture = getTextureExternal(); break;
case GL_TEXTURE_RECTANGLE_ARB: texture = getTexture2DRect(); break;
default:
return error(GL_INVALID_ENUM, nullptr);
}
ASSERT(texture); // Must always have a default texture to fall back to.
return texture;
}
Texture2D *Context::getTexture2D() const
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
}
Texture2D *Context::getTexture2D(GLenum target) const
{
switch(target)
{
case GL_TEXTURE_2D: return getTexture2D();
case GL_TEXTURE_RECTANGLE_ARB: return getTexture2DRect();
case GL_TEXTURE_EXTERNAL_OES: return getTextureExternal();
default: UNREACHABLE(target);
}
return nullptr;
}
Texture3D *Context::getTexture3D() const
{
return static_cast<Texture3D*>(getSamplerTexture(mState.activeSampler, TEXTURE_3D));
}
Texture2DArray *Context::getTexture2DArray() const
{
return static_cast<Texture2DArray*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D_ARRAY));
}
TextureCubeMap *Context::getTextureCubeMap() const
{
return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE));
}
Texture2DRect *Context::getTexture2DRect() const
{
return static_cast<Texture2DRect*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D_RECT));
}
TextureExternal *Context::getTextureExternal() const
{
return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL));
}
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const
{
GLuint texid = mState.samplerTexture[type][sampler].name();
if(texid == 0) // Special case: 0 refers to different initial textures based on the target
{
switch(type)
{
case TEXTURE_2D: return mTexture2DZero;
case TEXTURE_3D: return mTexture3DZero;
case TEXTURE_2D_ARRAY: return mTexture2DArrayZero;
case TEXTURE_CUBE: return mTextureCubeMapZero;
case TEXTURE_2D_RECT: return mTexture2DRectZero;
case TEXTURE_EXTERNAL: return mTextureExternalZero;
default: UNREACHABLE(type);
}
}
return mState.samplerTexture[type][sampler];
}
void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch(pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setCompareMode(static_cast<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setCompareFunc(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MAX_ANISOTROPY_EXT: samplerObject->setMaxAnisotropy(static_cast<GLfloat>(param)); break;
default: UNREACHABLE(pname); break;
}
}
void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch(pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setCompareMode(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setCompareFunc(static_cast<GLenum>(roundf(param))); break;
case GL_TEXTURE_MAX_ANISOTROPY_EXT: samplerObject->setMaxAnisotropy(param); break;
default: UNREACHABLE(pname); break;
}
}
GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch(pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLint>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLint>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLint>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLint>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLint>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return static_cast<GLint>(roundf(samplerObject->getMinLod()));
case GL_TEXTURE_MAX_LOD: return static_cast<GLint>(roundf(samplerObject->getMaxLod()));
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLint>(samplerObject->getCompareMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLint>(samplerObject->getCompareFunc());
case GL_TEXTURE_MAX_ANISOTROPY_EXT: return static_cast<GLint>(samplerObject->getMaxAnisotropy());
default: UNREACHABLE(pname); return 0;
}
}
GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch(pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLfloat>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLfloat>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLfloat>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLfloat>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLfloat>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod();
case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod();
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLfloat>(samplerObject->getCompareMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLfloat>(samplerObject->getCompareFunc());
case GL_TEXTURE_MAX_ANISOTROPY_EXT: return samplerObject->getMaxAnisotropy();
default: UNREACHABLE(pname); return 0;
}
}
bool Context::getBooleanv(GLenum pname, GLboolean *params) const
{
switch(pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mState.colorMaskRed;
params[1] = mState.colorMaskGreen;
params[2] = mState.colorMaskBlue;
params[3] = mState.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mState.cullFaceEnabled; break;
case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFillEnabled; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverageEnabled; break;
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverageEnabled; break;
case GL_SCISSOR_TEST: *params = mState.scissorTestEnabled; break;
case GL_STENCIL_TEST: *params = mState.stencilTestEnabled; break;
case GL_DEPTH_TEST: *params = mState.depthTestEnabled; break;
case GL_BLEND: *params = mState.blendEnabled; break;
case GL_DITHER: *params = mState.ditherEnabled; break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX: *params = mState.primitiveRestartFixedIndexEnabled; break;
case GL_RASTERIZER_DISCARD: *params = mState.rasterizerDiscardEnabled; break;
case GL_TRANSFORM_FEEDBACK_ACTIVE:
{
TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
if(transformFeedback)
{
*params = transformFeedback->isActive();
break;
}
else return false;
}
case GL_TRANSFORM_FEEDBACK_PAUSED:
{
TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
if(transformFeedback)
{
*params = transformFeedback->isPaused();
break;
}
else return false;
}
default:
return false;
}
return true;
}
bool Context::getFloatv(GLenum pname, GLfloat *params) const
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch(pname)
{
case GL_LINE_WIDTH: *params = mState.lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = ALIASED_POINT_SIZE_RANGE_MAX;
break;
case GL_DEPTH_RANGE:
params[0] = mState.zNear;
params[1] = mState.zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mState.colorClearValue.red;
params[1] = mState.colorClearValue.green;
params[2] = mState.colorClearValue.blue;
params[3] = mState.colorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mState.blendColor.red;
params[1] = mState.blendColor.green;
params[2] = mState.blendColor.blue;
params[3] = mState.blendColor.alpha;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
*params = MAX_TEXTURE_MAX_ANISOTROPY;
break;
default:
return false;
}
return true;
}
template bool Context::getIntegerv<GLint>(GLenum pname, GLint *params) const;
template bool Context::getIntegerv<GLint64>(GLenum pname, GLint64 *params) const;
template<typename T> bool Context::getIntegerv(GLenum pname, T *params) const
{
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch(pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = MAX_VERTEX_ATTRIBS; return true;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = MAX_VERTEX_UNIFORM_VECTORS; return true;
case GL_MAX_VARYING_VECTORS: *params = MAX_VARYING_VECTORS; return true;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = MAX_COMBINED_TEXTURE_IMAGE_UNITS; return true;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = MAX_VERTEX_TEXTURE_IMAGE_UNITS; return true;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = MAX_TEXTURE_IMAGE_UNITS; return true;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = MAX_FRAGMENT_UNIFORM_VECTORS; return true;
case GL_MAX_RENDERBUFFER_SIZE: *params = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; return true;
case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; return true;
case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ return true;
case GL_ARRAY_BUFFER_BINDING: *params = getArrayBufferName(); return true;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = getElementArrayBufferName(); return true;
// case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING: *params = mState.drawFramebuffer; return true;
case GL_READ_FRAMEBUFFER_BINDING: *params = mState.readFramebuffer; return true;
case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.name(); return true;
case GL_CURRENT_PROGRAM: *params = mState.currentProgram; return true;
case GL_PACK_ALIGNMENT: *params = mState.packParameters.alignment; return true;
case GL_UNPACK_ALIGNMENT: *params = mState.unpackParameters.alignment; return true;
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; return true;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; return true;
case GL_TEXTURE_FILTERING_HINT_CHROMIUM: *params = mState.textureFilteringHint; return true;
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); return true;
case GL_STENCIL_FUNC: *params = mState.stencilFunc; return true;
case GL_STENCIL_REF: *params = mState.stencilRef; return true;
case GL_STENCIL_VALUE_MASK: *params = sw::clampToSignedInt(mState.stencilMask); return true;
case GL_STENCIL_BACK_FUNC: *params = mState.stencilBackFunc; return true;
case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; return true;
case GL_STENCIL_BACK_VALUE_MASK: *params = sw::clampToSignedInt(mState.stencilBackMask); return true;
case GL_STENCIL_FAIL: *params = mState.stencilFail; return true;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; return true;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; return true;
case GL_STENCIL_BACK_FAIL: *params = mState.stencilBackFail; return true;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.stencilBackPassDepthFail; return true;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.stencilBackPassDepthPass; return true;
case GL_DEPTH_FUNC: *params = mState.depthFunc; return true;
case GL_BLEND_SRC_RGB: *params = mState.sourceBlendRGB; return true;
case GL_BLEND_SRC_ALPHA: *params = mState.sourceBlendAlpha; return true;
case GL_BLEND_DST_RGB: *params = mState.destBlendRGB; return true;
case GL_BLEND_DST_ALPHA: *params = mState.destBlendAlpha; return true;
case GL_BLEND_EQUATION_RGB: *params = mState.blendEquationRGB; return true;
case GL_BLEND_EQUATION_ALPHA: *params = mState.blendEquationAlpha; return true;
case GL_STENCIL_WRITEMASK: *params = sw::clampToSignedInt(mState.stencilWritemask); return true;
case GL_STENCIL_BACK_WRITEMASK: *params = sw::clampToSignedInt(mState.stencilBackWritemask); return true;
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; return true;
case GL_SUBPIXEL_BITS: *params = 4; return true;
case GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB:
case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; return true;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE; return true;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; return true;
case GL_MAX_SAMPLES: *params = IMPLEMENTATION_MAX_SAMPLES; return true;
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
Framebuffer *framebuffer = getDrawFramebuffer();
int width, height, samples;
if(framebuffer && (framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE))
{
switch(pname)
{
case GL_SAMPLE_BUFFERS:
if(samples > 1)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = samples;
break;
}
}
else
{
*params = 0;
}
}
return true;
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
{
Framebuffer *framebuffer = getReadFramebuffer();
if(framebuffer)
{
*params = framebuffer->getImplementationColorReadType();
}
else
{
return error(GL_INVALID_OPERATION, true);
}
}
return true;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
{
Framebuffer *framebuffer = getReadFramebuffer();
if(framebuffer)
{
*params = framebuffer->getImplementationColorReadFormat();
}
else
{
return error(GL_INVALID_OPERATION, true);
}
}
return true;
case GL_MAX_VIEWPORT_DIMS:
{
int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE;
params[0] = maxDimension;
params[1] = maxDimension;
}
return true;
case GL_COMPRESSED_TEXTURE_FORMATS:
{
for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++)
{
params[i] = compressedTextureFormats[i];
}
}
return true;
case GL_VIEWPORT:
params[0] = mState.viewportX;
params[1] = mState.viewportY;
params[2] = mState.viewportWidth;
params[3] = mState.viewportHeight;
return true;
case GL_SCISSOR_BOX:
params[0] = mState.scissorX;
params[1] = mState.scissorY;
params[2] = mState.scissorWidth;
params[3] = mState.scissorHeight;
return true;
case GL_CULL_FACE_MODE: *params = mState.cullMode; return true;
case GL_FRONT_FACE: *params = mState.frontFace; return true;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
Renderbuffer *colorbuffer = framebuffer ? framebuffer->getColorbuffer(0) : nullptr;
if(colorbuffer)
{
switch(pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); return true;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); return true;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); return true;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); return true;
}
}
else
{
*params = 0;
}
}
return true;
case GL_DEPTH_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
Renderbuffer *depthbuffer = framebuffer ? framebuffer->getDepthbuffer() : nullptr;
if(depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
return true;
case GL_STENCIL_BITS:
{
Framebuffer *framebuffer = getDrawFramebuffer();
Renderbuffer *stencilbuffer = framebuffer ? framebuffer->getStencilbuffer() : nullptr;
if(stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
return true;
case GL_TEXTURE_BINDING_2D:
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name();
return true;
case GL_TEXTURE_BINDING_CUBE_MAP:
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name();
return true;
case GL_TEXTURE_BINDING_RECTANGLE_ARB:
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_2D_RECT][mState.activeSampler].name();
return true;
case GL_TEXTURE_BINDING_EXTERNAL_OES:
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name();
return true;
case GL_TEXTURE_BINDING_3D_OES:
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_3D][mState.activeSampler].name();
return true;
case GL_DRAW_BUFFER0:
case GL_DRAW_BUFFER1:
case GL_DRAW_BUFFER2:
case GL_DRAW_BUFFER3:
case GL_DRAW_BUFFER4:
case GL_DRAW_BUFFER5:
case GL_DRAW_BUFFER6:
case GL_DRAW_BUFFER7:
case GL_DRAW_BUFFER8:
case GL_DRAW_BUFFER9:
case GL_DRAW_BUFFER10:
case GL_DRAW_BUFFER11:
case GL_DRAW_BUFFER12:
case GL_DRAW_BUFFER13:
case GL_DRAW_BUFFER14:
case GL_DRAW_BUFFER15:
if((pname - GL_DRAW_BUFFER0) < MAX_DRAW_BUFFERS)
{
Framebuffer* framebuffer = getDrawFramebuffer();
*params = framebuffer ? framebuffer->getDrawBuffer(pname - GL_DRAW_BUFFER0) : GL_NONE;
}
else
{
return false;
}
return true;
case GL_MAX_DRAW_BUFFERS:
*params = MAX_DRAW_BUFFERS;
return true;
case GL_MAX_COLOR_ATTACHMENTS: // Note: MAX_COLOR_ATTACHMENTS_EXT added by GL_EXT_draw_buffers
*params = MAX_COLOR_ATTACHMENTS;
return true;
case GL_TEXTURE_BINDING_2D_ARRAY:
if(mState.activeSampler > MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].name();
return true;
case GL_COPY_READ_BUFFER_BINDING:
*params = mState.copyReadBuffer.name();
return true;
case GL_COPY_WRITE_BUFFER_BINDING:
*params = mState.copyWriteBuffer.name();
return true;
case GL_MAJOR_VERSION:
*params = 3;
return true;
case GL_MINOR_VERSION:
*params = 0;
return true;
case GL_MAX_3D_TEXTURE_SIZE:
*params = IMPLEMENTATION_MAX_3D_TEXTURE_SIZE;
return true;
case GL_MAX_ARRAY_TEXTURE_LAYERS:
*params = IMPLEMENTATION_MAX_TEXTURE_SIZE;
return true;
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
*params = MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS;
return true;
case GL_MAX_COMBINED_UNIFORM_BLOCKS:
*params = MAX_VERTEX_UNIFORM_BLOCKS + MAX_FRAGMENT_UNIFORM_BLOCKS;
return true;
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
*params = MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS;
return true;
case GL_MAX_ELEMENT_INDEX:
*params = MAX_ELEMENT_INDEX;
return true;
case GL_MAX_ELEMENTS_INDICES:
*params = MAX_ELEMENTS_INDICES;
return true;
case GL_MAX_ELEMENTS_VERTICES:
*params = MAX_ELEMENTS_VERTICES;
return true;
case GL_MAX_FRAGMENT_INPUT_COMPONENTS:
*params = MAX_FRAGMENT_INPUT_VECTORS * 4;
return true;
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
*params = MAX_FRAGMENT_UNIFORM_BLOCKS;
return true;
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
*params = MAX_FRAGMENT_UNIFORM_COMPONENTS;
return true;
case GL_MAX_PROGRAM_TEXEL_OFFSET:
// Note: SwiftShader has no actual texel offset limit, so this limit can be modified if required.
// In any case, any behavior outside the specified range is valid since the spec mentions:
// (see OpenGL ES 3.0.5, 3.8.10.1 Scale Factor and Level of Detail, p.153)
// "If any of the offset values are outside the range of the implementation-defined values
// MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET, results of the texture lookup are
// undefined."
*params = MAX_PROGRAM_TEXEL_OFFSET;
return true;
case GL_MAX_SERVER_WAIT_TIMEOUT:
*params = 0;
return true;
case GL_MAX_TEXTURE_LOD_BIAS:
*params = MAX_TEXTURE_LOD_BIAS;
return true;
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
*params = sw::MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS;
return true;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
*params = MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS;
return true;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
*params = sw::MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS;
return true;
case GL_MAX_UNIFORM_BLOCK_SIZE:
*params = MAX_UNIFORM_BLOCK_SIZE;
return true;
case GL_MAX_UNIFORM_BUFFER_BINDINGS:
*params = MAX_UNIFORM_BUFFER_BINDINGS;
return true;
case GL_MAX_VARYING_COMPONENTS:
*params = MAX_VARYING_VECTORS * 4;
return true;
case GL_MAX_VERTEX_OUTPUT_COMPONENTS:
*params = MAX_VERTEX_OUTPUT_VECTORS * 4;
return true;
case GL_MAX_VERTEX_UNIFORM_BLOCKS:
*params = MAX_VERTEX_UNIFORM_BLOCKS;
return true;
case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
*params = MAX_VERTEX_UNIFORM_COMPONENTS;
return true;
case GL_MIN_PROGRAM_TEXEL_OFFSET:
// Note: SwiftShader has no actual texel offset limit, so this limit can be modified if required.
// In any case, any behavior outside the specified range is valid since the spec mentions:
// (see OpenGL ES 3.0.5, 3.8.10.1 Scale Factor and Level of Detail, p.153)
// "If any of the offset values are outside the range of the implementation-defined values
// MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET, results of the texture lookup are
// undefined."
*params = MIN_PROGRAM_TEXEL_OFFSET;
return true;
case GL_NUM_EXTENSIONS:
GLuint numExtensions;
getExtensions(0, &numExtensions);
*params = numExtensions;
return true;
case GL_NUM_PROGRAM_BINARY_FORMATS:
*params = NUM_PROGRAM_BINARY_FORMATS;
return true;
case GL_PACK_ROW_LENGTH:
*params = mState.packParameters.rowLength;
return true;
case GL_PACK_SKIP_PIXELS:
*params = mState.packParameters.skipPixels;
return true;
case GL_PACK_SKIP_ROWS:
*params = mState.packParameters.skipRows;
return true;
case GL_PIXEL_PACK_BUFFER_BINDING:
*params = mState.pixelPackBuffer.name();
return true;
case GL_PIXEL_UNPACK_BUFFER_BINDING:
*params = mState.pixelUnpackBuffer.name();
return true;
case GL_PROGRAM_BINARY_FORMATS:
// Since NUM_PROGRAM_BINARY_FORMATS is 0, the input
// should be a 0 sized array, so don't write to params
return true;
case GL_READ_BUFFER:
{
Framebuffer* framebuffer = getReadFramebuffer();
*params = framebuffer ? framebuffer->getReadBuffer() : GL_NONE;
}
return true;
case GL_SAMPLER_BINDING:
*params = mState.sampler[mState.activeSampler].name();
return true;
case GL_UNIFORM_BUFFER_BINDING:
*params = mState.genericUniformBuffer.name();
return true;
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
*params = UNIFORM_BUFFER_OFFSET_ALIGNMENT;
return true;
case GL_UNPACK_IMAGE_HEIGHT:
*params = mState.unpackParameters.imageHeight;
return true;
case GL_UNPACK_ROW_LENGTH:
*params = mState.unpackParameters.rowLength;
return true;
case GL_UNPACK_SKIP_IMAGES:
*params = mState.unpackParameters.skipImages;
return true;
case GL_UNPACK_SKIP_PIXELS:
*params = mState.unpackParameters.skipPixels;
return true;
case GL_UNPACK_SKIP_ROWS:
*params = mState.unpackParameters.skipRows;
return true;
case GL_VERTEX_ARRAY_BINDING:
*params = getCurrentVertexArray()->name;
return true;
case GL_TRANSFORM_FEEDBACK_BINDING:
{
TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
if(transformFeedback)
{
*params = transformFeedback->name;
}
else
{
return false;
}
}
return true;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
{
TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
if(transformFeedback)
{
*params = mState.genericTransformFeedbackBuffer.name();
}
else
{
return false;
}
}
return true;
default:
break;
}
return false;
}
template bool Context::getTransformFeedbackiv<GLint>(GLuint index, GLenum pname, GLint *param) const;
template bool Context::getTransformFeedbackiv<GLint64>(GLuint index, GLenum pname, GLint64 *param) const;
template<typename T> bool Context::getTransformFeedbackiv(GLuint index, GLenum pname, T *param) const
{
TransformFeedback* transformFeedback = getTransformFeedback(mState.transformFeedback);
if(!transformFeedback)
{
return false;
}
switch(pname)
{
case GL_TRANSFORM_FEEDBACK_BINDING: // GLint, initially 0
*param = transformFeedback->name;
break;
case GL_TRANSFORM_FEEDBACK_ACTIVE: // boolean, initially GL_FALSE
*param = transformFeedback->isActive();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING: // name, initially 0
*param = transformFeedback->getBufferName(index);
break;
case GL_TRANSFORM_FEEDBACK_PAUSED: // boolean, initially GL_FALSE
*param = transformFeedback->isPaused();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE: // indexed[n] 64-bit integer, initially 0
if(transformFeedback->getBuffer(index))
{
*param = transformFeedback->getSize(index);
break;
}
else return false;
case GL_TRANSFORM_FEEDBACK_BUFFER_START: // indexed[n] 64-bit integer, initially 0
if(transformFeedback->getBuffer(index))
{
*param = transformFeedback->getOffset(index);
break;
}
else return false;
default:
return false;
}
return true;
}
template bool Context::getUniformBufferiv<GLint>(GLuint index, GLenum pname, GLint *param) const;
template bool Context::getUniformBufferiv<GLint64>(GLuint index, GLenum pname, GLint64 *param) const;
template<typename T> bool Context::getUniformBufferiv(GLuint index, GLenum pname, T *param) const
{
switch(pname)
{
case GL_UNIFORM_BUFFER_BINDING:
case GL_UNIFORM_BUFFER_SIZE:
case GL_UNIFORM_BUFFER_START:
break;
default:
return false;
}
if(index >= MAX_UNIFORM_BUFFER_BINDINGS)
{
return error(GL_INVALID_VALUE, true);
}
const BufferBinding& uniformBuffer = mState.uniformBuffers[index];
switch(pname)
{
case GL_UNIFORM_BUFFER_BINDING: // name, initially 0
*param = uniformBuffer.get().name();
break;
case GL_UNIFORM_BUFFER_SIZE: // indexed[n] 64-bit integer, initially 0
*param = uniformBuffer.getSize();
break;
case GL_UNIFORM_BUFFER_START: // indexed[n] 64-bit integer, initially 0
*param = uniformBuffer.getOffset();
break;
default:
return false;
}
return true;
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) const
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch(pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
{
*type = GL_INT;
*numParams = NUM_COMPRESSED_TEXTURE_FORMATS;
}
break;
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = 0;
}
break;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING: // Same as GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_READ_FRAMEBUFFER_BINDING: // Same as GL_READ_FRAMEBUFFER_BINDING_ANGLE
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
case GL_TEXTURE_FILTERING_HINT_CHROMIUM:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_TEXTURE_BINDING_RECTANGLE_ARB:
case GL_TEXTURE_BINDING_EXTERNAL_OES:
case GL_TEXTURE_BINDING_3D_OES:
case GL_COPY_READ_BUFFER_BINDING:
case GL_COPY_WRITE_BUFFER_BINDING:
case GL_DRAW_BUFFER0:
case GL_DRAW_BUFFER1:
case GL_DRAW_BUFFER2:
case GL_DRAW_BUFFER3:
case GL_DRAW_BUFFER4:
case GL_DRAW_BUFFER5:
case GL_DRAW_BUFFER6:
case GL_DRAW_BUFFER7:
case GL_DRAW_BUFFER8:
case GL_DRAW_BUFFER9:
case GL_DRAW_BUFFER10:
case GL_DRAW_BUFFER11:
case GL_DRAW_BUFFER12:
case GL_DRAW_BUFFER13:
case GL_DRAW_BUFFER14:
case GL_DRAW_BUFFER15:
case GL_MAJOR_VERSION:
case GL_MAX_3D_TEXTURE_SIZE:
case GL_MAX_ARRAY_TEXTURE_LAYERS:
case GL_MAX_COLOR_ATTACHMENTS:
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MAX_COMBINED_UNIFORM_BLOCKS:
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_DRAW_BUFFERS:
case GL_MAX_ELEMENT_INDEX:
case GL_MAX_ELEMENTS_INDICES:
case GL_MAX_ELEMENTS_VERTICES:
case GL_MAX_FRAGMENT_INPUT_COMPONENTS:
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MAX_PROGRAM_TEXEL_OFFSET:
case GL_MAX_SERVER_WAIT_TIMEOUT:
case GL_MAX_TEXTURE_LOD_BIAS:
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
case GL_MAX_UNIFORM_BLOCK_SIZE:
case GL_MAX_UNIFORM_BUFFER_BINDINGS:
case GL_MAX_VARYING_COMPONENTS:
case GL_MAX_VERTEX_OUTPUT_COMPONENTS:
case GL_MAX_VERTEX_UNIFORM_BLOCKS:
case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
case GL_MIN_PROGRAM_TEXEL_OFFSET:
case GL_MINOR_VERSION:
case GL_NUM_EXTENSIONS:
case GL_NUM_PROGRAM_BINARY_FORMATS:
case GL_PACK_ROW_LENGTH:
case GL_PACK_SKIP_PIXELS:
case GL_PACK_SKIP_ROWS:
case GL_PIXEL_PACK_BUFFER_BINDING:
case GL_PIXEL_UNPACK_BUFFER_BINDING:
case GL_PROGRAM_BINARY_FORMATS:
case GL_READ_BUFFER:
case GL_SAMPLER_BINDING:
case GL_TEXTURE_BINDING_2D_ARRAY:
case GL_UNIFORM_BUFFER_BINDING:
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
case GL_UNPACK_IMAGE_HEIGHT:
case GL_UNPACK_ROW_LENGTH:
case GL_UNPACK_SKIP_IMAGES:
case GL_UNPACK_SKIP_PIXELS:
case GL_UNPACK_SKIP_ROWS:
case GL_VERTEX_ARRAY_BINDING:
case GL_TRANSFORM_FEEDBACK_BINDING:
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_SAMPLES:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
break;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
break;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
case GL_PRIMITIVE_RESTART_FIXED_INDEX:
case GL_RASTERIZER_DISCARD:
case GL_TRANSFORM_FEEDBACK_ACTIVE:
case GL_TRANSFORM_FEEDBACK_PAUSED:
{
*type = GL_BOOL;
*numParams = 1;
}
break;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
break;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
break;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
break;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
*type = GL_FLOAT;
*numParams = 1;
break;
default:
return false;
}
return true;
}
void Context::applyScissor(int width, int height)
{
if(mState.scissorTestEnabled)
{
sw::Rect scissor = { mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight };
scissor.clip(0, 0, width, height);
device->setScissorRect(scissor);
device->setScissorEnable(true);
}
else
{
device->setScissorEnable(false);
}
}
// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
bool Context::applyRenderTarget()
{
Framebuffer *framebuffer = getDrawFramebuffer();
int width, height, samples;
if(!framebuffer || (framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION, false);
}
for(int i = 0; i < MAX_DRAW_BUFFERS; i++)
{
if(framebuffer->getDrawBuffer(i) != GL_NONE)
{
egl::Image *renderTarget = framebuffer->getRenderTarget(i);
GLint layer = framebuffer->getColorbufferLayer(i);
device->setRenderTarget(i, renderTarget, layer);
if(renderTarget) renderTarget->release();
}
else
{
device->setRenderTarget(i, nullptr, 0);
}
}
egl::Image *depthBuffer = framebuffer->getDepthBuffer();
GLint dLayer = framebuffer->getDepthbufferLayer();
device->setDepthBuffer(depthBuffer, dLayer);
if(depthBuffer) depthBuffer->release();
egl::Image *stencilBuffer = framebuffer->getStencilBuffer();
GLint sLayer = framebuffer->getStencilbufferLayer();
device->setStencilBuffer(stencilBuffer, sLayer);
if(stencilBuffer) stencilBuffer->release();
Viewport viewport;
float zNear = clamp01(mState.zNear);
float zFar = clamp01(mState.zFar);
viewport.x0 = mState.viewportX;
viewport.y0 = mState.viewportY;
viewport.width = mState.viewportWidth;
viewport.height = mState.viewportHeight;
viewport.minZ = zNear;
viewport.maxZ = zFar;
device->setViewport(viewport);
applyScissor(width, height);
Program *program = getCurrentProgram();
if(program)
{
GLfloat nearFarDiff[3] = {zNear, zFar, zFar - zNear};
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.near"), 1, &nearFarDiff[0]);
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.far"), 1, &nearFarDiff[1]);
program->setUniform1fv(program->getUniformLocation("gl_DepthRange.diff"), 1, &nearFarDiff[2]);
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
void Context::applyState(GLenum drawMode)
{
Framebuffer *framebuffer = getDrawFramebuffer();
bool frontFaceCCW = (mState.frontFace == GL_CCW);
if(mState.cullFaceEnabled)
{
device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace), frontFaceCCW);
}
else
{
device->setCullMode(sw::CULL_NONE, frontFaceCCW);
}
if(mDepthStateDirty)
{
if(mState.depthTestEnabled)
{
device->setDepthBufferEnable(true);
device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc));
}
else
{
device->setDepthBufferEnable(false);
}
mDepthStateDirty = false;
}
if(mBlendStateDirty)
{
if(mState.blendEnabled)
{
device->setAlphaBlendEnable(true);
device->setSeparateAlphaBlendEnable(true);
device->setBlendConstant(es2sw::ConvertColor(mState.blendColor));
device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB));
device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB));
device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB));
device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha));
device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha));
}
else
{
device->setAlphaBlendEnable(false);
}
mBlendStateDirty = false;
}
if(mStencilStateDirty || mFrontFaceDirty)
{
if(mState.stencilTestEnabled && framebuffer->hasStencil())
{
device->setStencilEnable(true);
device->setTwoSidedStencil(true);
// get the maximum size of the stencil ref
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
if(mState.frontFace == GL_CCW)
{
device->setStencilWriteMask(mState.stencilWritemask);
device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMask(mState.stencilMask);
device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMaskCCW(mState.stencilBackWritemask);
device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilBackFunc));
device->setStencilReferenceCCW((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->setStencilMaskCCW(mState.stencilBackMask);
device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackFail));
device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
else
{
device->setStencilWriteMaskCCW(mState.stencilWritemask);
device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMaskCCW(mState.stencilMask);
device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMask(mState.stencilBackWritemask);
device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilBackFunc));
device->setStencilReference((mState.stencilBackRef < (GLint)maxStencil) ? mState.stencilBackRef : maxStencil);
device->setStencilMask(mState.stencilBackMask);
device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilBackFail));
device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthFail));
device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilBackPassDepthPass));
}
}
else
{
device->setStencilEnable(false);
}
mStencilStateDirty = false;
mFrontFaceDirty = false;
}
if(mMaskStateDirty)
{
for(int i = 0; i < MAX_DRAW_BUFFERS; i++)
{
device->setColorWriteMask(i, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
}
device->setDepthWriteEnable(mState.depthMask);
mMaskStateDirty = false;
}
if(mPolygonOffsetStateDirty)
{
if(mState.polygonOffsetFillEnabled)
{
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
if(depthbuffer)
{
device->setSlopeDepthBias(mState.polygonOffsetFactor);
float depthBias = ldexp(mState.polygonOffsetUnits, -23); // We use 32-bit floating-point for all depth formats, with 23 mantissa bits.
device->setDepthBias(depthBias);
}
}
else
{
device->setSlopeDepthBias(0);
device->setDepthBias(0);
}
mPolygonOffsetStateDirty = false;
}
if(mSampleStateDirty)
{
if(mState.sampleAlphaToCoverageEnabled)
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
}
else
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
}
if(mState.sampleCoverageEnabled)
{
unsigned int mask = 0;
if(mState.sampleCoverageValue != 0)
{
int width, height, samples;
framebuffer->completeness(width, height, samples);
float threshold = 0.5f;
for(int i = 0; i < samples; i++)
{
mask <<= 1;
if((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if(mState.sampleCoverageInvert)
{
mask = ~mask;
}
device->setMultiSampleMask(mask);
}
else
{
device->setMultiSampleMask(0xFFFFFFFF);
}
mSampleStateDirty = false;
}
if(mDitherStateDirty)
{
// UNIMPLEMENTED(); // FIXME
mDitherStateDirty = false;
}
device->setRasterizerDiscard(mState.rasterizerDiscardEnabled);
}
GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count, GLsizei instanceId)
{
TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes, instanceId);
if(err != GL_NO_ERROR)
{
return err;
}
Program *program = getCurrentProgram();
device->resetInputStreams(false);
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if(program->getAttributeStream(i) == -1)
{
continue;
}
sw::Resource *resource = attributes[i].vertexBuffer;
const void *buffer = (char*)resource->data() + attributes[i].offset;
int stride = attributes[i].stride;
buffer = (char*)buffer + stride * base;
sw::Stream attribute(resource, buffer, stride);
attribute.type = attributes[i].type;
attribute.count = attributes[i].count;
attribute.normalized = attributes[i].normalized;
int stream = program->getAttributeStream(i);
device->setInputStream(stream, attribute);
}
return GL_NO_ERROR;
}
// Applies the indices and element array bindings
GLenum Context::applyIndexBuffer(const void *indices, GLuint start, GLuint end, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(mode, type, start, end, count, getCurrentVertexArray()->getElementArrayBuffer(), indices, indexInfo, isPrimitiveRestartFixedIndexEnabled());
if(err == GL_NO_ERROR)
{
device->setIndexBuffer(indexInfo->indexBuffer);
}
return err;
}
// Applies the shaders and shader constants
void Context::applyShaders()
{
Program *programObject = getCurrentProgram();
sw::VertexShader *vertexShader = programObject->getVertexShader();
sw::PixelShader *pixelShader = programObject->getPixelShader();
device->setVertexShader(vertexShader);
device->setPixelShader(pixelShader);
if(programObject->getSerial() != mAppliedProgramSerial)
{
programObject->dirtyAllUniforms();
mAppliedProgramSerial = programObject->getSerial();
}
programObject->applyTransformFeedback(device, getTransformFeedback());
programObject->applyUniformBuffers(device, mState.uniformBuffers);
programObject->applyUniforms(device);
}
void Context::applyTextures()
{
applyTextures(sw::SAMPLER_PIXEL);
applyTextures(sw::SAMPLER_VERTEX);
}
void Context::applyTextures(sw::SamplerType samplerType)
{
Program *programObject = getCurrentProgram();
int samplerCount = (samplerType == sw::SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : MAX_VERTEX_TEXTURE_IMAGE_UNITS; // Range of samplers of given sampler type
for(int samplerIndex = 0; samplerIndex < samplerCount; samplerIndex++)
{
int textureUnit = programObject->getSamplerMapping(samplerType, samplerIndex); // OpenGL texture image unit index
if(textureUnit != -1)
{
TextureType textureType = programObject->getSamplerTextureType(samplerType, samplerIndex);
Texture *texture = getSamplerTexture(textureUnit, textureType);
Sampler *samplerObject = mState.sampler[textureUnit];
if(texture->isSamplerComplete(samplerObject))
{
GLenum wrapS, wrapT, wrapR, minFilter, magFilter, compFunc, compMode;
GLfloat minLOD, maxLOD, maxAnisotropy;
if(samplerObject)
{
wrapS = samplerObject->getWrapS();
wrapT = samplerObject->getWrapT();
wrapR = samplerObject->getWrapR();
minFilter = samplerObject->getMinFilter();
magFilter = samplerObject->getMagFilter();
minLOD = samplerObject->getMinLod();
maxLOD = samplerObject->getMaxLod();
compFunc = samplerObject->getCompareFunc();
compMode = samplerObject->getCompareMode();
maxAnisotropy = samplerObject->getMaxAnisotropy();
}
else
{
wrapS = texture->getWrapS();
wrapT = texture->getWrapT();
wrapR = texture->getWrapR();
minFilter = texture->getMinFilter();
magFilter = texture->getMagFilter();
minLOD = texture->getMinLOD();
maxLOD = texture->getMaxLOD();
compFunc = texture->getCompareFunc();
compMode = texture->getCompareMode();
maxAnisotropy = texture->getMaxAnisotropy();
}
GLint baseLevel = texture->getBaseLevel();
GLint maxLevel = texture->getMaxLevel();
GLenum swizzleR = texture->getSwizzleR();
GLenum swizzleG = texture->getSwizzleG();
GLenum swizzleB = texture->getSwizzleB();
GLenum swizzleA = texture->getSwizzleA();
device->setAddressingModeU(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapS));
device->setAddressingModeV(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapT));
device->setAddressingModeW(samplerType, samplerIndex, es2sw::ConvertTextureWrap(wrapR));
device->setCompareFunc(samplerType, samplerIndex, es2sw::ConvertCompareFunc(compFunc, compMode));
device->setSwizzleR(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleR));
device->setSwizzleG(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleG));
device->setSwizzleB(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleB));
device->setSwizzleA(samplerType, samplerIndex, es2sw::ConvertSwizzleType(swizzleA));
device->setMinLod(samplerType, samplerIndex, minLOD);
device->setMaxLod(samplerType, samplerIndex, maxLOD);
device->setBaseLevel(samplerType, samplerIndex, baseLevel);
device->setMaxLevel(samplerType, samplerIndex, maxLevel);
device->setTextureFilter(samplerType, samplerIndex, es2sw::ConvertTextureFilter(minFilter, magFilter, maxAnisotropy));
device->setMipmapFilter(samplerType, samplerIndex, es2sw::ConvertMipMapFilter(minFilter));
device->setMaxAnisotropy(samplerType, samplerIndex, maxAnisotropy);
device->setHighPrecisionFiltering(samplerType, samplerIndex, mState.textureFilteringHint == GL_NICEST);
device->setSyncRequired(samplerType, samplerIndex, texture->requiresSync());
applyTexture(samplerType, samplerIndex, texture);
}
else
{
applyTexture(samplerType, samplerIndex, nullptr);
}
}
else
{
applyTexture(samplerType, samplerIndex, nullptr);
}
}
}
void Context::applyTexture(sw::SamplerType type, int index, Texture *baseTexture)
{
Program *program = getCurrentProgram();
int sampler = (type == sw::SAMPLER_PIXEL) ? index : 16 + index;
bool textureUsed = false;
if(type == sw::SAMPLER_PIXEL)
{
textureUsed = program->getPixelShader()->usesSampler(index);
}
else if(type == sw::SAMPLER_VERTEX)
{
textureUsed = program->getVertexShader()->usesSampler(index);
}
else UNREACHABLE(type);
sw::Resource *resource = nullptr;
if(baseTexture && textureUsed)
{
resource = baseTexture->getResource();
}
device->setTextureResource(sampler, resource);
if(baseTexture && textureUsed)
{
int baseLevel = baseTexture->getBaseLevel();
int maxLevel = std::min(baseTexture->getTopLevel(), baseTexture->getMaxLevel());
GLenum target = baseTexture->getTarget();
switch(target)
{
case GL_TEXTURE_2D:
case GL_TEXTURE_EXTERNAL_OES:
case GL_TEXTURE_RECTANGLE_ARB:
{
Texture2D *texture = static_cast<Texture2D*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel + baseLevel;
if(surfaceLevel > maxLevel)
{
surfaceLevel = maxLevel;
}
egl::Image *surface = texture->getImage(surfaceLevel);
device->setTextureLevel(sampler, 0, mipmapLevel, surface,
(target == GL_TEXTURE_RECTANGLE_ARB) ? sw::TEXTURE_RECTANGLE : sw::TEXTURE_2D);
}
}
break;
case GL_TEXTURE_3D:
{
Texture3D *texture = static_cast<Texture3D*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel + baseLevel;
if(surfaceLevel > maxLevel)
{
surfaceLevel = maxLevel;
}
egl::Image *surface = texture->getImage(surfaceLevel);
device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_3D);
}
}
break;
case GL_TEXTURE_2D_ARRAY:
{
Texture2DArray *texture = static_cast<Texture2DArray*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel + baseLevel;
if(surfaceLevel > maxLevel)
{
surfaceLevel = maxLevel;
}
egl::Image *surface = texture->getImage(surfaceLevel);
device->setTextureLevel(sampler, 0, mipmapLevel, surface, sw::TEXTURE_2D_ARRAY);
}
}
break;
case GL_TEXTURE_CUBE_MAP:
{
TextureCubeMap *cubeTexture = static_cast<TextureCubeMap*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
cubeTexture->updateBorders(mipmapLevel);
for(int face = 0; face < 6; face++)
{
int surfaceLevel = mipmapLevel + baseLevel;
if(surfaceLevel > maxLevel)
{
surfaceLevel = maxLevel;
}
egl::Image *surface = cubeTexture->getImage(face, surfaceLevel);
device->setTextureLevel(sampler, face, mipmapLevel, surface, sw::TEXTURE_CUBE);
}
}
}
break;
default:
UNIMPLEMENTED();
break;
}
}
else
{
device->setTextureLevel(sampler, 0, 0, 0, sw::TEXTURE_NULL);
}
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
Framebuffer *framebuffer = getReadFramebuffer();
int framebufferWidth, framebufferHeight, framebufferSamples;
if(!framebuffer || (framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(getReadFramebufferName() != 0 && framebufferSamples != 0)
{
return error(GL_INVALID_OPERATION);
}
if(!ValidateReadPixelsFormatType(framebuffer, format, type))
{
return;
}
GLsizei outputWidth = (mState.packParameters.rowLength > 0) ? mState.packParameters.rowLength : width;
GLsizei outputPitch = gl::ComputePitch(outputWidth, format, type, mState.packParameters.alignment);
GLsizei outputHeight = (mState.packParameters.imageHeight == 0) ? height : mState.packParameters.imageHeight;
pixels = getPixelPackBuffer() ? (unsigned char*)getPixelPackBuffer()->data() + (ptrdiff_t)pixels : (unsigned char*)pixels;
pixels = ((char*)pixels) + gl::ComputePackingOffset(format, type, outputWidth, outputHeight, mState.packParameters);
// Sized query sanity check
if(bufSize)
{
int requiredSize = outputPitch * height;
if(requiredSize > *bufSize)
{
return error(GL_INVALID_OPERATION);
}
}
egl::Image *renderTarget = nullptr;
switch(format)
{
case GL_DEPTH_COMPONENT: // GL_NV_read_depth
case GL_DEPTH_STENCIL_OES: // GL_NV_read_depth_stencil
renderTarget = framebuffer->getDepthBuffer();
break;
case GL_STENCIL_INDEX_OES: // GL_NV_read_stencil
renderTarget = framebuffer->getStencilBuffer();
break;
default:
renderTarget = framebuffer->getReadRenderTarget();
break;
}
if(!renderTarget)
{
return error(GL_INVALID_OPERATION);
}
sw::SliceRectF srcRect((float)x, (float)y, (float)(x + width), (float)(y + height), 0);
sw::SliceRect dstRect(0, 0, width, height, 0);
srcRect.clip(0.0f, 0.0f, (float)renderTarget->getWidth(), (float)renderTarget->getHeight());
if(format != GL_DEPTH_STENCIL_OES) // The blitter only handles reading either depth or stencil.
{
sw::Surface *externalSurface = sw::Surface::create(width, height, 1, es2::ConvertReadFormatType(format, type), pixels, outputPitch, outputPitch * outputHeight);
device->blit(renderTarget, srcRect, externalSurface, dstRect, false, false, false);
externalSurface->lockExternal(0, 0, 0, sw::LOCK_READONLY, sw::PUBLIC);
externalSurface->unlockExternal();
delete externalSurface;
}
else // format == GL_DEPTH_STENCIL_OES
{
ASSERT(renderTarget->getInternalFormat() == sw::FORMAT_D32F_LOCKABLE);
float *depth = (float*)renderTarget->lockInternal((int)srcRect.x0, (int)srcRect.y0, 0, sw::LOCK_READONLY, sw::PUBLIC);
uint8_t *stencil = (uint8_t*)renderTarget->lockStencil((int)srcRect.x0, (int)srcRect.y0, 0, sw::PUBLIC);
switch(type)
{
case GL_UNSIGNED_INT_24_8_OES:
{
uint32_t *output = (uint32_t*)pixels;
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
output[x] = ((uint32_t)roundf(depth[x] * 0xFFFFFF00) & 0xFFFFFF00) | stencil[x];
}
depth += renderTarget->getInternalPitchP();
stencil += renderTarget->getStencilPitchB();
(uint8_t*&)output += outputPitch;
}
}
break;
case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
{
struct D32FS8 { float depth32f; unsigned int stencil24_8; };
D32FS8 *output = (D32FS8*)pixels;
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
output[x].depth32f = depth[x];
output[x].stencil24_8 = stencil[x];
}
depth += renderTarget->getInternalPitchP();
stencil += renderTarget->getStencilPitchB();
(uint8_t*&)output += outputPitch;
}
}
break;
default: UNREACHABLE(type);
}
renderTarget->unlockInternal();
renderTarget->unlockStencil();
}
renderTarget->release();
}
void Context::clear(GLbitfield mask)
{
if(mState.rasterizerDiscardEnabled)
{
return;
}
Framebuffer *framebuffer = getDrawFramebuffer();
if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(!applyRenderTarget())
{
return;
}
if(mask & GL_COLOR_BUFFER_BIT)
{
unsigned int rgbaMask = getColorMask();
if(rgbaMask != 0)
{
device->clearColor(mState.colorClearValue.red, mState.colorClearValue.green, mState.colorClearValue.blue, mState.colorClearValue.alpha, rgbaMask);
}
}
if(mask & GL_DEPTH_BUFFER_BIT)
{
if(mState.depthMask != 0)
{
float depth = clamp01(mState.depthClearValue);
device->clearDepth(depth);
}
}
if(mask & GL_STENCIL_BUFFER_BIT)
{
if(mState.stencilWritemask != 0)
{
int stencil = mState.stencilClearValue & 0x000000FF;
device->clearStencil(stencil, mState.stencilWritemask);
}
}
}
void Context::clearColorBuffer(GLint drawbuffer, void *value, sw::Format format)
{
unsigned int rgbaMask = getColorMask();
if(rgbaMask && !mState.rasterizerDiscardEnabled)
{
Framebuffer *framebuffer = getDrawFramebuffer();
if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
egl::Image *colorbuffer = framebuffer->getRenderTarget(drawbuffer);
if(colorbuffer)
{
sw::Rect clearRect = colorbuffer->getRect();
if(mState.scissorTestEnabled)
{
clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
}
device->clear(value, format, colorbuffer, clearRect, rgbaMask);
colorbuffer->release();
}
}
}
void Context::clearColorBuffer(GLint drawbuffer, const GLint *value)
{
clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32I);
}
void Context::clearColorBuffer(GLint drawbuffer, const GLuint *value)
{
clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32UI);
}
void Context::clearColorBuffer(GLint drawbuffer, const GLfloat *value)
{
clearColorBuffer(drawbuffer, (void*)value, sw::FORMAT_A32B32G32R32F);
}
void Context::clearDepthBuffer(const GLfloat value)
{
if(mState.depthMask && !mState.rasterizerDiscardEnabled)
{
Framebuffer *framebuffer = getDrawFramebuffer();
if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
egl::Image *depthbuffer = framebuffer->getDepthBuffer();
if(depthbuffer)
{
float depth = clamp01(value);
sw::Rect clearRect = depthbuffer->getRect();
if(mState.scissorTestEnabled)
{
clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
}
depthbuffer->clearDepth(depth, clearRect.x0, clearRect.y0, clearRect.width(), clearRect.height());
depthbuffer->release();
}
}
}
void Context::clearStencilBuffer(const GLint value)
{
if(mState.stencilWritemask && !mState.rasterizerDiscardEnabled)
{
Framebuffer *framebuffer = getDrawFramebuffer();
if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
egl::Image *stencilbuffer = framebuffer->getStencilBuffer();
if(stencilbuffer)
{
unsigned char stencil = value < 0 ? 0 : static_cast<unsigned char>(value & 0x000000FF);
sw::Rect clearRect = stencilbuffer->getRect();
if(mState.scissorTestEnabled)
{
clearRect.clip(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
}
stencilbuffer->clearStencil(stencil, static_cast<unsigned char>(mState.stencilWritemask), clearRect.x0, clearRect.y0, clearRect.width(), clearRect.height());
stencilbuffer->release();
}
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instanceCount)
{
if(!applyRenderTarget())
{
return;
}
if(mState.currentProgram == 0)
{
return; // Nothing to process.
}
sw::DrawType primitiveType;
int primitiveCount;
int verticesPerPrimitive;
if(!es2sw::ConvertPrimitiveType(mode, count, GL_NONE, primitiveType, primitiveCount, verticesPerPrimitive))
{
return error(GL_INVALID_ENUM);
}
applyState(mode);
for(int i = 0; i < instanceCount; ++i)
{
device->setInstanceID(i);
GLenum err = applyVertexBuffer(0, first, count, i);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if(!getCurrentProgram()->validateSamplers(false))
{
return error(GL_INVALID_OPERATION);
}
if(primitiveCount <= 0)
{
return;
}
TransformFeedback* transformFeedback = getTransformFeedback();
if(!cullSkipsDraw(mode) || (transformFeedback->isActive() && !transformFeedback->isPaused()))
{
device->drawPrimitive(primitiveType, primitiveCount);
}
if(transformFeedback)
{
transformFeedback->addVertexOffset(primitiveCount * verticesPerPrimitive);
}
}
}
void Context::drawElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void *indices, GLsizei instanceCount)
{
if(!applyRenderTarget())
{
return;
}
if(mState.currentProgram == 0)
{
return; // Nothing to process.
}
if(count == 0)
{
return;
}
if(!indices && !getCurrentVertexArray()->getElementArrayBuffer())
{
return error(GL_INVALID_OPERATION);
}
GLenum internalMode = mode;
if(isPrimitiveRestartFixedIndexEnabled())
{
switch(mode)
{
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
internalMode = GL_TRIANGLES;
break;
case GL_LINE_LOOP:
case GL_LINE_STRIP:
internalMode = GL_LINES;
break;
default:
break;
}
}
sw::DrawType primitiveType;
int primitiveCount;
int verticesPerPrimitive;
if(!es2sw::ConvertPrimitiveType(internalMode, count, type, primitiveType, primitiveCount, verticesPerPrimitive))
{
return error(GL_INVALID_ENUM);
}
TranslatedIndexData indexInfo(primitiveCount);
GLenum err = applyIndexBuffer(indices, start, end, count, mode, type, &indexInfo);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyState(internalMode);
for(int i = 0; i < instanceCount; ++i)
{
device->setInstanceID(i);
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount, i);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyShaders();
applyTextures();
if(!getCurrentProgram()->validateSamplers(false))
{
return error(GL_INVALID_OPERATION);
}
if(primitiveCount <= 0)
{
return;
}
TransformFeedback* transformFeedback = getTransformFeedback();
if(!cullSkipsDraw(internalMode) || (transformFeedback->isActive() && !transformFeedback->isPaused()))
{
device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, indexInfo.primitiveCount);
}
if(transformFeedback)
{
transformFeedback->addVertexOffset(indexInfo.primitiveCount * verticesPerPrimitive);
}
}
}
void Context::blit(sw::Surface *source, const sw::SliceRect &sRect, sw::Surface *dest, const sw::SliceRect &dRect)
{
sw::SliceRectF sRectF((float)sRect.x0, (float)sRect.y0, (float)sRect.x1, (float)sRect.y1, sRect.slice);
device->blit(source, sRectF, dest, dRect, false);
}
void Context::finish()
{
device->finish();
}
void Context::flush()
{
// We don't queue anything without processing it as fast as possible
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if(mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if(mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if(mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if(mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if(mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
int Context::getSupportedMultisampleCount(int requested)
{
int supported = 0;
for(int i = NUM_MULTISAMPLE_COUNTS - 1; i >= 0; i--)
{
if(supported >= requested)
{
return supported;
}
supported = multisampleCount[i];
}
return supported;
}
void Context::detachBuffer(GLuint buffer)
{
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if(mState.copyReadBuffer.name() == buffer)
{
mState.copyReadBuffer = nullptr;
}
if(mState.copyWriteBuffer.name() == buffer)
{
mState.copyWriteBuffer = nullptr;
}
if(mState.pixelPackBuffer.name() == buffer)
{
mState.pixelPackBuffer = nullptr;
}
if(mState.pixelUnpackBuffer.name() == buffer)
{
mState.pixelUnpackBuffer = nullptr;
}
if(mState.genericUniformBuffer.name() == buffer)
{
mState.genericUniformBuffer = nullptr;
}
if (mState.genericTransformFeedbackBuffer.name() == buffer)
{
mState.genericTransformFeedbackBuffer = nullptr;
}
if(getArrayBufferName() == buffer)
{
mState.arrayBuffer = nullptr;
}
// Only detach from the current transform feedback
TransformFeedback* currentTransformFeedback = getTransformFeedback();
if(currentTransformFeedback)
{
currentTransformFeedback->detachBuffer(buffer);
}
// Only detach from the current vertex array
VertexArray* currentVertexArray = getCurrentVertexArray();
if(currentVertexArray)
{
currentVertexArray->detachBuffer(buffer);
}
for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer)
{
mState.vertexAttribute[attribute].mBoundBuffer = nullptr;
}
}
}
void Context::detachTexture(GLuint texture)
{
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for(int sampler = 0; sampler < MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
{
if(mState.samplerTexture[type][sampler].name() == texture)
{
mState.samplerTexture[type][sampler] = nullptr;
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if(readFramebuffer)
{
readFramebuffer->detachTexture(texture);
}
if(drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if(mState.readFramebuffer == framebuffer)
{
bindReadFramebuffer(0);
}
if(mState.drawFramebuffer == framebuffer)
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if(mState.renderbuffer.name() == renderbuffer)
{
bindRenderbuffer(0);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if(readFramebuffer)
{
readFramebuffer->detachRenderbuffer(renderbuffer);
}
if(drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachRenderbuffer(renderbuffer);
}
}
void Context::detachSampler(GLuint sampler)
{
// [OpenGL ES 3.0.2] section 3.8.2 pages 123-124:
// If a sampler object that is currently bound to one or more texture units is
// deleted, it is as though BindSampler is called once for each texture unit to
// which the sampler is bound, with unit set to the texture unit and sampler set to zero.
for(size_t textureUnit = 0; textureUnit < MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++textureUnit)
{
gl::BindingPointer<Sampler> &samplerBinding = mState.sampler[textureUnit];
if(samplerBinding.name() == sampler)
{
samplerBinding = nullptr;
}
}
}
bool Context::cullSkipsDraw(GLenum drawMode)
{
return mState.cullFaceEnabled && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
}
bool Context::isTriangleMode(GLenum drawMode)
{
switch(drawMode)
{
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
return true;
case GL_POINTS:
case GL_LINES:
case GL_LINE_LOOP:
case GL_LINE_STRIP:
return false;
default: UNREACHABLE(drawMode);
}
return false;
}
void Context::setVertexAttrib(GLuint index, const GLfloat *values)
{
ASSERT(index < MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].setCurrentValue(values);
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::setVertexAttrib(GLuint index, const GLint *values)
{
ASSERT(index < MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].setCurrentValue(values);
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::setVertexAttrib(GLuint index, const GLuint *values)
{
ASSERT(index < MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].setCurrentValue(values);
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, bool filter, bool allowPartialDepthStencilBlit)
{
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
int readBufferWidth, readBufferHeight, readBufferSamples;
int drawBufferWidth, drawBufferHeight, drawBufferSamples;
if(!readFramebuffer || (readFramebuffer->completeness(readBufferWidth, readBufferHeight, readBufferSamples) != GL_FRAMEBUFFER_COMPLETE) ||
!drawFramebuffer || (drawFramebuffer->completeness(drawBufferWidth, drawBufferHeight, drawBufferSamples) != GL_FRAMEBUFFER_COMPLETE))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(drawBufferSamples > 1)
{
return error(GL_INVALID_OPERATION);
}
sw::SliceRect sourceRect;
sw::SliceRect destRect;
bool flipX = (srcX0 < srcX1) ^ (dstX0 < dstX1);
bool flipY = (srcY0 < srcY1) ^ (dstY0 < dstY1);
if(srcX0 < srcX1)
{
sourceRect.x0 = srcX0;
sourceRect.x1 = srcX1;
}
else
{
sourceRect.x0 = srcX1;
sourceRect.x1 = srcX0;
}
if(dstX0 < dstX1)
{
destRect.x0 = dstX0;
destRect.x1 = dstX1;
}
else
{
destRect.x0 = dstX1;
destRect.x1 = dstX0;
}
if(srcY0 < srcY1)
{
sourceRect.y0 = srcY0;
sourceRect.y1 = srcY1;
}
else
{
sourceRect.y0 = srcY1;
sourceRect.y1 = srcY0;
}
if(dstY0 < dstY1)
{
destRect.y0 = dstY0;
destRect.y1 = dstY1;
}
else
{
destRect.y0 = dstY1;
destRect.y1 = dstY0;
}
sw::RectF sourceScissoredRect(static_cast<float>(sourceRect.x0), static_cast<float>(sourceRect.y0),
static_cast<float>(sourceRect.x1), static_cast<float>(sourceRect.y1));
sw::Rect destScissoredRect = destRect;
if(mState.scissorTestEnabled) // Only write to parts of the destination framebuffer which pass the scissor test
{
sw::Rect scissorRect(mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight);
Device::ClipDstRect(sourceScissoredRect, destScissoredRect, scissorRect, flipX, flipY);
}
sw::SliceRectF sourceTrimmedRect = sourceScissoredRect;
sw::SliceRect destTrimmedRect = destScissoredRect;
// The source & destination rectangles also may need to be trimmed if
// they fall out of the bounds of the actual draw and read surfaces.
sw::Rect sourceTrimRect(0, 0, readBufferWidth, readBufferHeight);
Device::ClipSrcRect(sourceTrimmedRect, destTrimmedRect, sourceTrimRect, flipX, flipY);
sw::Rect destTrimRect(0, 0, drawBufferWidth, drawBufferHeight);
Device::ClipDstRect(sourceTrimmedRect, destTrimmedRect, destTrimRect, flipX, flipY);
bool partialBufferCopy = false;
if(sourceTrimmedRect.y1 - sourceTrimmedRect.y0 < readBufferHeight ||
sourceTrimmedRect.x1 - sourceTrimmedRect.x0 < readBufferWidth ||
destTrimmedRect.y1 - destTrimmedRect.y0 < drawBufferHeight ||
destTrimmedRect.x1 - destTrimmedRect.x0 < drawBufferWidth ||
sourceTrimmedRect.y0 != 0 || destTrimmedRect.y0 != 0 || sourceTrimmedRect.x0 != 0 || destTrimmedRect.x0 != 0)
{
partialBufferCopy = true;
}
bool sameBounds = (srcX0 == dstX0 && srcY0 == dstY0 && srcX1 == dstX1 && srcY1 == dstY1);
bool blitRenderTarget = false;
bool blitDepth = false;
bool blitStencil = false;
if(mask & GL_COLOR_BUFFER_BIT)
{
GLenum readColorbufferType = readFramebuffer->getReadBufferType();
GLenum drawColorbufferType = drawFramebuffer->getColorbufferType(0);
const bool validReadType = readColorbufferType == GL_TEXTURE_2D || readColorbufferType == GL_TEXTURE_RECTANGLE_ARB || Framebuffer::IsRenderbuffer(readColorbufferType);
const bool validDrawType = drawColorbufferType == GL_TEXTURE_2D || drawColorbufferType == GL_TEXTURE_RECTANGLE_ARB || Framebuffer::IsRenderbuffer(drawColorbufferType);
if(!validReadType || !validDrawType)
{
return error(GL_INVALID_OPERATION);
}
if(partialBufferCopy && readBufferSamples > 1 && !sameBounds)
{
return error(GL_INVALID_OPERATION);
}
// The GL ES 3.0.2 spec (pg 193) states that:
// 1) If the read buffer is fixed point format, the draw buffer must be as well
// 2) If the read buffer is an unsigned integer format, the draw buffer must be
// as well
// 3) If the read buffer is a signed integer format, the draw buffer must be as
// well
es2::Renderbuffer *readRenderbuffer = readFramebuffer->getReadColorbuffer();
es2::Renderbuffer *drawRenderbuffer = drawFramebuffer->getColorbuffer(0);
GLint readFormat = readRenderbuffer->getFormat();
GLint drawFormat = drawRenderbuffer->getFormat();
GLenum readComponentType = GetComponentType(readFormat, GL_COLOR_ATTACHMENT0);
GLenum drawComponentType = GetComponentType(drawFormat, GL_COLOR_ATTACHMENT0);
bool readFixedPoint = ((readComponentType == GL_UNSIGNED_NORMALIZED) ||
(readComponentType == GL_SIGNED_NORMALIZED));
bool drawFixedPoint = ((drawComponentType == GL_UNSIGNED_NORMALIZED) ||
(drawComponentType == GL_SIGNED_NORMALIZED));
bool readFixedOrFloat = (readFixedPoint || (readComponentType == GL_FLOAT));
bool drawFixedOrFloat = (drawFixedPoint || (drawComponentType == GL_FLOAT));
if(readFixedOrFloat != drawFixedOrFloat)
{
return error(GL_INVALID_OPERATION);
}
if((readComponentType == GL_UNSIGNED_INT) && (drawComponentType != GL_UNSIGNED_INT))
{
return error(GL_INVALID_OPERATION);
}
if((readComponentType == GL_INT) && (drawComponentType != GL_INT))
{
return error(GL_INVALID_OPERATION);
}
// Cannot filter integer data
if(((readComponentType == GL_UNSIGNED_INT) || (readComponentType == GL_INT)) && filter)
{
return error(GL_INVALID_OPERATION);
}
if((readRenderbuffer->getSamples() > 0) && (readFormat != drawFormat))
{
// RGBA8 and BGRA8 should be interchangeable here
if(!(((readFormat == GL_RGBA8) && (drawFormat == GL_BGRA8_EXT)) ||
((readFormat == GL_BGRA8_EXT) && (drawFormat == GL_RGBA8))))
{
return error(GL_INVALID_OPERATION);
}
}
blitRenderTarget = true;
}
if(mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT))
{
Renderbuffer *readDSBuffer = nullptr;
Renderbuffer *drawDSBuffer = nullptr;
if(mask & GL_DEPTH_BUFFER_BIT)
{
if(readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
{
GLenum readDepthBufferType = readFramebuffer->getDepthbufferType();
GLenum drawDepthBufferType = drawFramebuffer->getDepthbufferType();
if((readDepthBufferType != drawDepthBufferType) &&
!(Framebuffer::IsRenderbuffer(readDepthBufferType) && Framebuffer::IsRenderbuffer(drawDepthBufferType)))
{
return error(GL_INVALID_OPERATION);
}
blitDepth = true;
readDSBuffer = readFramebuffer->getDepthbuffer();
drawDSBuffer = drawFramebuffer->getDepthbuffer();
if(readDSBuffer->getFormat() != drawDSBuffer->getFormat())
{
return error(GL_INVALID_OPERATION);
}
}
}
if(mask & GL_STENCIL_BUFFER_BIT)
{
if(readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
{
GLenum readStencilBufferType = readFramebuffer->getStencilbufferType();
GLenum drawStencilBufferType = drawFramebuffer->getStencilbufferType();
if((readStencilBufferType != drawStencilBufferType) &&
!(Framebuffer::IsRenderbuffer(readStencilBufferType) && Framebuffer::IsRenderbuffer(drawStencilBufferType)))
{
return error(GL_INVALID_OPERATION);
}
blitStencil = true;
readDSBuffer = readFramebuffer->getStencilbuffer();
drawDSBuffer = drawFramebuffer->getStencilbuffer();
if(readDSBuffer->getFormat() != drawDSBuffer->getFormat())
{
return error(GL_INVALID_OPERATION);
}
}
}
if(partialBufferCopy && !allowPartialDepthStencilBlit)
{
ERR("Only whole-buffer depth and stencil blits are supported by ANGLE_framebuffer_blit.");
return error(GL_INVALID_OPERATION); // Only whole-buffer copies are permitted
}
// OpenGL ES 3.0.4 spec, p.199:
// ...an INVALID_OPERATION error is generated if the formats of the read
// and draw framebuffers are not identical or if the source and destination
// rectangles are not defined with the same(X0, Y 0) and (X1, Y 1) bounds.
// If SAMPLE_BUFFERS for the draw framebuffer is greater than zero, an
// INVALID_OPERATION error is generated.
if((drawDSBuffer && drawDSBuffer->getSamples() > 1) ||
((readDSBuffer && readDSBuffer->getSamples() > 1) &&
(!sameBounds || (drawDSBuffer->getFormat() != readDSBuffer->getFormat()))))
{
return error(GL_INVALID_OPERATION);
}
}
if(blitRenderTarget || blitDepth || blitStencil)
{
if(flipX)
{
swap(destTrimmedRect.x0, destTrimmedRect.x1);
}
if(flipY)
{
swap(destTrimmedRect.y0, destTrimmedRect.y1);
}
if(blitRenderTarget)
{
egl::Image *readRenderTarget = readFramebuffer->getReadRenderTarget();
egl::Image *drawRenderTarget = drawFramebuffer->getRenderTarget(0);
bool success = device->stretchRect(readRenderTarget, &sourceTrimmedRect, drawRenderTarget, &destTrimmedRect, (filter ? Device::USE_FILTER : 0) | Device::COLOR_BUFFER);
readRenderTarget->release();
drawRenderTarget->release();
if(!success)
{
ERR("BlitFramebuffer failed.");
return;
}
}
if(blitDepth)
{
egl::Image *readRenderTarget = readFramebuffer->getDepthBuffer();
egl::Image *drawRenderTarget = drawFramebuffer->getDepthBuffer();
bool success = device->stretchRect(readRenderTarget, &sourceTrimmedRect, drawRenderTarget, &destTrimmedRect, (filter ? Device::USE_FILTER : 0) | Device::DEPTH_BUFFER);
readRenderTarget->release();
drawRenderTarget->release();
if(!success)
{
ERR("BlitFramebuffer failed.");
return;
}
}
if(blitStencil)
{
egl::Image *readRenderTarget = readFramebuffer->getStencilBuffer();
egl::Image *drawRenderTarget = drawFramebuffer->getStencilBuffer();
bool success = device->stretchRect(readRenderTarget, &sourceTrimmedRect, drawRenderTarget, &destTrimmedRect, (filter ? Device::USE_FILTER : 0) | Device::STENCIL_BUFFER);
readRenderTarget->release();
drawRenderTarget->release();
if(!success)
{
ERR("BlitFramebuffer failed.");
return;
}
}
}
}
void Context::bindTexImage(gl::Surface *surface)
{
bool isRect = (surface->getTextureTarget() == EGL_TEXTURE_RECTANGLE_ANGLE);
es2::Texture2D *textureObject = isRect ? getTexture2DRect() : getTexture2D();
if(textureObject)
{
textureObject->bindTexImage(surface);
}
}
EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
{
GLenum textureTarget = GL_NONE;
switch(target)
{
case EGL_GL_TEXTURE_2D_KHR:
textureTarget = GL_TEXTURE_2D;
break;
case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR:
case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR:
case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR:
case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR:
case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR:
case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR:
textureTarget = GL_TEXTURE_CUBE_MAP;
break;
case EGL_GL_RENDERBUFFER_KHR:
break;
default:
return EGL_BAD_PARAMETER;
}
if(textureLevel >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
{
return EGL_BAD_MATCH;
}
if(textureTarget != GL_NONE)
{
es2::Texture *texture = getTexture(name);
if(!texture || texture->getTarget() != textureTarget)
{
return EGL_BAD_PARAMETER;
}
if(texture->isShared(textureTarget, textureLevel)) // Bound to an EGLSurface or already an EGLImage sibling
{
return EGL_BAD_ACCESS;
}
if(textureLevel != 0 && !texture->isSamplerComplete(nullptr))
{
return EGL_BAD_PARAMETER;
}
if(textureLevel == 0 && !(texture->isSamplerComplete(nullptr) && texture->getTopLevel() == 0))
{
return EGL_BAD_PARAMETER;
}
}
else if(target == EGL_GL_RENDERBUFFER_KHR)
{
es2::Renderbuffer *renderbuffer = getRenderbuffer(name);
if(!renderbuffer)
{
return EGL_BAD_PARAMETER;
}
if(renderbuffer->isShared()) // Already an EGLImage sibling
{
return EGL_BAD_ACCESS;
}
}
else UNREACHABLE(target);
return EGL_SUCCESS;
}
egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
{
GLenum textureTarget = GL_NONE;
switch(target)
{
case EGL_GL_TEXTURE_2D_KHR: textureTarget = GL_TEXTURE_2D; break;
case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X; break;
case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_X; break;
case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Y; break;
case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Y; break;
case EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_Z; break;
case EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR: textureTarget = GL_TEXTURE_CUBE_MAP_NEGATIVE_Z; break;
}
if(textureTarget != GL_NONE)
{
es2::Texture *texture = getTexture(name);
return texture->createSharedImage(textureTarget, textureLevel);
}
else if(target == EGL_GL_RENDERBUFFER_KHR)
{
es2::Renderbuffer *renderbuffer = getRenderbuffer(name);
return renderbuffer->createSharedImage();
}
else UNREACHABLE(target);
return nullptr;
}
egl::Image *Context::getSharedImage(GLeglImageOES image)
{
return display->getSharedImage(image);
}
Device *Context::getDevice()
{
return device;
}
const GLubyte *Context::getExtensions(GLuint index, GLuint *numExt) const
{
// Keep list sorted in following order:
// OES extensions
// EXT extensions
// Vendor extensions
static const char *extensions[] =
{
"GL_OES_compressed_ETC1_RGB8_texture",
"GL_OES_depth24",
"GL_OES_depth32",
"GL_OES_depth_texture",
"GL_OES_depth_texture_cube_map",
"GL_OES_EGL_image",
"GL_OES_EGL_image_external",
"GL_OES_EGL_image_external_essl3", // client version is always 3, so this is fine
"GL_OES_EGL_sync",
"GL_OES_element_index_uint",
"GL_OES_fbo_render_mipmap",
"GL_OES_framebuffer_object",
"GL_OES_packed_depth_stencil",
"GL_OES_rgb8_rgba8",
"GL_OES_standard_derivatives",
"GL_OES_surfaceless_context",
"GL_OES_texture_float",
"GL_OES_texture_float_linear",
"GL_OES_texture_half_float",
"GL_OES_texture_half_float_linear",
"GL_OES_texture_npot",
"GL_OES_texture_3D",
"GL_OES_vertex_array_object",
"GL_OES_vertex_half_float",
"GL_EXT_blend_minmax",
"GL_EXT_color_buffer_float", // OpenGL ES 3.0 specific.
"GL_EXT_color_buffer_half_float",
"GL_EXT_draw_buffers",
"GL_EXT_instanced_arrays",
"GL_EXT_occlusion_query_boolean",
"GL_EXT_read_format_bgra",
"GL_EXT_texture_compression_dxt1",
"GL_EXT_texture_filter_anisotropic",
"GL_EXT_texture_format_BGRA8888",
"GL_EXT_texture_rg",
#if (ASTC_SUPPORT)
"GL_KHR_texture_compression_astc_hdr",
"GL_KHR_texture_compression_astc_ldr",
#endif
"GL_ARB_texture_rectangle",
"GL_ANGLE_framebuffer_blit",
"GL_ANGLE_framebuffer_multisample",
"GL_ANGLE_instanced_arrays",
"GL_ANGLE_texture_compression_dxt3",
"GL_ANGLE_texture_compression_dxt5",
"GL_APPLE_texture_format_BGRA8888",
"GL_CHROMIUM_color_buffer_float_rgba", // A subset of EXT_color_buffer_float on top of OpenGL ES 2.0
"GL_CHROMIUM_texture_filtering_hint",
"GL_NV_depth_buffer_float2",
"GL_NV_fence",
"GL_NV_framebuffer_blit",
"GL_NV_read_depth",
"GL_NV_read_depth_stencil",
"GL_NV_read_stencil",
};
GLuint numExtensions = sizeof(extensions) / sizeof(extensions[0]);
if(numExt)
{
*numExt = numExtensions;
return nullptr;
}
if(index == GL_INVALID_INDEX)
{
static std::string extensionsCat;
if(extensionsCat.empty() && (numExtensions > 0))
{
for(const char *extension : extensions)
{
extensionsCat += std::string(extension) + " ";
}
}
return (const GLubyte*)extensionsCat.c_str();
}
if(index >= numExtensions)
{
return nullptr;
}
return (const GLubyte*)extensions[index];
}
}
NO_SANITIZE_FUNCTION egl::Context *es2CreateContext(egl::Display *display, const egl::Context *shareContext, const egl::Config *config)
{
return new es2::Context(display, static_cast<const es2::Context*>(shareContext), config);
}