| //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a Union-find algorithm to compute Minimum Spanning Tree |
| // for a given CFG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H |
| #define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "cfgmst" |
| |
| namespace llvm { |
| |
| /// An union-find based Minimum Spanning Tree for CFG |
| /// |
| /// Implements a Union-find algorithm to compute Minimum Spanning Tree |
| /// for a given CFG. |
| template <class Edge, class BBInfo> class CFGMST { |
| public: |
| Function &F; |
| |
| // Store all the edges in CFG. It may contain some stale edges |
| // when Removed is set. |
| std::vector<std::unique_ptr<Edge>> AllEdges; |
| |
| // This map records the auxiliary information for each BB. |
| DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos; |
| |
| // Whehter the function has an exit block with no successors. |
| // (For function with an infinite loop, this block may be absent) |
| bool ExitBlockFound = false; |
| |
| // Find the root group of the G and compress the path from G to the root. |
| BBInfo *findAndCompressGroup(BBInfo *G) { |
| if (G->Group != G) |
| G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group)); |
| return static_cast<BBInfo *>(G->Group); |
| } |
| |
| // Union BB1 and BB2 into the same group and return true. |
| // Returns false if BB1 and BB2 are already in the same group. |
| bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) { |
| BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1)); |
| BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2)); |
| |
| if (BB1G == BB2G) |
| return false; |
| |
| // Make the smaller rank tree a direct child or the root of high rank tree. |
| if (BB1G->Rank < BB2G->Rank) |
| BB1G->Group = BB2G; |
| else { |
| BB2G->Group = BB1G; |
| // If the ranks are the same, increment root of one tree by one. |
| if (BB1G->Rank == BB2G->Rank) |
| BB1G->Rank++; |
| } |
| return true; |
| } |
| |
| // Give BB, return the auxiliary information. |
| BBInfo &getBBInfo(const BasicBlock *BB) const { |
| auto It = BBInfos.find(BB); |
| assert(It->second.get() != nullptr); |
| return *It->second.get(); |
| } |
| |
| // Give BB, return the auxiliary information if it's available. |
| BBInfo *findBBInfo(const BasicBlock *BB) const { |
| auto It = BBInfos.find(BB); |
| if (It == BBInfos.end()) |
| return nullptr; |
| return It->second.get(); |
| } |
| |
| // Traverse the CFG using a stack. Find all the edges and assign the weight. |
| // Edges with large weight will be put into MST first so they are less likely |
| // to be instrumented. |
| void buildEdges() { |
| LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n"); |
| |
| const BasicBlock *Entry = &(F.getEntryBlock()); |
| uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2); |
| Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr, |
| *ExitOutgoing = nullptr, *ExitIncoming = nullptr; |
| uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0; |
| |
| // Add a fake edge to the entry. |
| EntryIncoming = &addEdge(nullptr, Entry, EntryWeight); |
| LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName() |
| << " w = " << EntryWeight << "\n"); |
| |
| // Special handling for single BB functions. |
| if (succ_empty(Entry)) { |
| addEdge(Entry, nullptr, EntryWeight); |
| return; |
| } |
| |
| static const uint32_t CriticalEdgeMultiplier = 1000; |
| |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| Instruction *TI = BB->getTerminator(); |
| uint64_t BBWeight = |
| (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2); |
| uint64_t Weight = 2; |
| if (int successors = TI->getNumSuccessors()) { |
| for (int i = 0; i != successors; ++i) { |
| BasicBlock *TargetBB = TI->getSuccessor(i); |
| bool Critical = isCriticalEdge(TI, i); |
| uint64_t scaleFactor = BBWeight; |
| if (Critical) { |
| if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier) |
| scaleFactor *= CriticalEdgeMultiplier; |
| else |
| scaleFactor = UINT64_MAX; |
| } |
| if (BPI != nullptr) |
| Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor); |
| auto *E = &addEdge(&*BB, TargetBB, Weight); |
| E->IsCritical = Critical; |
| LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to " |
| << TargetBB->getName() << " w=" << Weight << "\n"); |
| |
| // Keep track of entry/exit edges: |
| if (&*BB == Entry) { |
| if (Weight > MaxEntryOutWeight) { |
| MaxEntryOutWeight = Weight; |
| EntryOutgoing = E; |
| } |
| } |
| |
| auto *TargetTI = TargetBB->getTerminator(); |
| if (TargetTI && !TargetTI->getNumSuccessors()) { |
| if (Weight > MaxExitInWeight) { |
| MaxExitInWeight = Weight; |
| ExitIncoming = E; |
| } |
| } |
| } |
| } else { |
| ExitBlockFound = true; |
| Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight); |
| if (BBWeight > MaxExitOutWeight) { |
| MaxExitOutWeight = BBWeight; |
| ExitOutgoing = ExitO; |
| } |
| LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to fake exit" |
| << " w = " << BBWeight << "\n"); |
| } |
| } |
| |
| // Entry/exit edge adjustment heurisitic: |
| // prefer instrumenting entry edge over exit edge |
| // if possible. Those exit edges may never have a chance to be |
| // executed (for instance the program is an event handling loop) |
| // before the profile is asynchronously dumped. |
| // |
| // If EntryIncoming and ExitOutgoing has similar weight, make sure |
| // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing |
| // and ExitIncoming has similar weight, make sure ExitIncoming becomes |
| // the min-edge. |
| uint64_t EntryInWeight = EntryWeight; |
| |
| if (EntryInWeight >= MaxExitOutWeight && |
| EntryInWeight * 2 < MaxExitOutWeight * 3) { |
| EntryIncoming->Weight = MaxExitOutWeight; |
| ExitOutgoing->Weight = EntryInWeight + 1; |
| } |
| |
| if (MaxEntryOutWeight >= MaxExitInWeight && |
| MaxEntryOutWeight * 2 < MaxExitInWeight * 3) { |
| EntryOutgoing->Weight = MaxExitInWeight; |
| ExitIncoming->Weight = MaxEntryOutWeight + 1; |
| } |
| } |
| |
| // Sort CFG edges based on its weight. |
| void sortEdgesByWeight() { |
| llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1, |
| const std::unique_ptr<Edge> &Edge2) { |
| return Edge1->Weight > Edge2->Weight; |
| }); |
| } |
| |
| // Traverse all the edges and compute the Minimum Weight Spanning Tree |
| // using union-find algorithm. |
| void computeMinimumSpanningTree() { |
| // First, put all the critical edge with landing-pad as the Dest to MST. |
| // This works around the insufficient support of critical edges split |
| // when destination BB is a landing pad. |
| for (auto &Ei : AllEdges) { |
| if (Ei->Removed) |
| continue; |
| if (Ei->IsCritical) { |
| if (Ei->DestBB && Ei->DestBB->isLandingPad()) { |
| if (unionGroups(Ei->SrcBB, Ei->DestBB)) |
| Ei->InMST = true; |
| } |
| } |
| } |
| |
| for (auto &Ei : AllEdges) { |
| if (Ei->Removed) |
| continue; |
| // If we detect infinite loops, force |
| // instrumenting the entry edge: |
| if (!ExitBlockFound && Ei->SrcBB == nullptr) |
| continue; |
| if (unionGroups(Ei->SrcBB, Ei->DestBB)) |
| Ei->InMST = true; |
| } |
| } |
| |
| // Dump the Debug information about the instrumentation. |
| void dumpEdges(raw_ostream &OS, const Twine &Message) const { |
| if (!Message.str().empty()) |
| OS << Message << "\n"; |
| OS << " Number of Basic Blocks: " << BBInfos.size() << "\n"; |
| for (auto &BI : BBInfos) { |
| const BasicBlock *BB = BI.first; |
| OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " " |
| << BI.second->infoString() << "\n"; |
| } |
| |
| OS << " Number of Edges: " << AllEdges.size() |
| << " (*: Instrument, C: CriticalEdge, -: Removed)\n"; |
| uint32_t Count = 0; |
| for (auto &EI : AllEdges) |
| OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->" |
| << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n"; |
| } |
| |
| // Add an edge to AllEdges with weight W. |
| Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) { |
| uint32_t Index = BBInfos.size(); |
| auto Iter = BBInfos.end(); |
| bool Inserted; |
| std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr)); |
| if (Inserted) { |
| // Newly inserted, update the real info. |
| Iter->second = std::move(std::make_unique<BBInfo>(Index)); |
| Index++; |
| } |
| std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr)); |
| if (Inserted) |
| // Newly inserted, update the real info. |
| Iter->second = std::move(std::make_unique<BBInfo>(Index)); |
| AllEdges.emplace_back(new Edge(Src, Dest, W)); |
| return *AllEdges.back(); |
| } |
| |
| BranchProbabilityInfo *BPI; |
| BlockFrequencyInfo *BFI; |
| |
| public: |
| CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr, |
| BlockFrequencyInfo *BFI_ = nullptr) |
| : F(Func), BPI(BPI_), BFI(BFI_) { |
| buildEdges(); |
| sortEdgesByWeight(); |
| computeMinimumSpanningTree(); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #undef DEBUG_TYPE // "cfgmst" |
| |
| #endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H |