| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //    http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include "ShaderCore.hpp" | 
 |  | 
 | #include "Device/Renderer.hpp" | 
 | #include "Vulkan/VkDebug.hpp" | 
 |  | 
 | #include <limits.h> | 
 |  | 
 | namespace sw | 
 | { | 
 | 	Vector4s::Vector4s() | 
 | 	{ | 
 | 	} | 
 |  | 
 | 	Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) | 
 | 	{ | 
 | 		this->x = Short4(x); | 
 | 		this->y = Short4(y); | 
 | 		this->z = Short4(z); | 
 | 		this->w = Short4(w); | 
 | 	} | 
 |  | 
 | 	Vector4s::Vector4s(const Vector4s &rhs) | 
 | 	{ | 
 | 		x = rhs.x; | 
 | 		y = rhs.y; | 
 | 		z = rhs.z; | 
 | 		w = rhs.w; | 
 | 	} | 
 |  | 
 | 	Vector4s &Vector4s::operator=(const Vector4s &rhs) | 
 | 	{ | 
 | 		x = rhs.x; | 
 | 		y = rhs.y; | 
 | 		z = rhs.z; | 
 | 		w = rhs.w; | 
 |  | 
 | 		return *this; | 
 | 	} | 
 |  | 
 | 	Short4 &Vector4s::operator[](int i) | 
 | 	{ | 
 | 		switch(i) | 
 | 		{ | 
 | 		case 0: return x; | 
 | 		case 1: return y; | 
 | 		case 2: return z; | 
 | 		case 3: return w; | 
 | 		} | 
 |  | 
 | 		return x; | 
 | 	} | 
 |  | 
 | 	Vector4f::Vector4f() | 
 | 	{ | 
 | 	} | 
 |  | 
 | 	Vector4f::Vector4f(float x, float y, float z, float w) | 
 | 	{ | 
 | 		this->x = Float4(x); | 
 | 		this->y = Float4(y); | 
 | 		this->z = Float4(z); | 
 | 		this->w = Float4(w); | 
 | 	} | 
 |  | 
 | 	Vector4f::Vector4f(const Vector4f &rhs) | 
 | 	{ | 
 | 		x = rhs.x; | 
 | 		y = rhs.y; | 
 | 		z = rhs.z; | 
 | 		w = rhs.w; | 
 | 	} | 
 |  | 
 | 	Vector4f &Vector4f::operator=(const Vector4f &rhs) | 
 | 	{ | 
 | 		x = rhs.x; | 
 | 		y = rhs.y; | 
 | 		z = rhs.z; | 
 | 		w = rhs.w; | 
 |  | 
 | 		return *this; | 
 | 	} | 
 |  | 
 | 	Float4 &Vector4f::operator[](int i) | 
 | 	{ | 
 | 		switch(i) | 
 | 		{ | 
 | 		case 0: return x; | 
 | 		case 1: return y; | 
 | 		case 2: return z; | 
 | 		case 3: return w; | 
 | 		} | 
 |  | 
 | 		return x; | 
 | 	} | 
 |  | 
 | 	Float4 exponential2(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// This implementation is based on 2^(i + f) = 2^i * 2^f, | 
 | 		// where i is the integer part of x and f is the fraction. | 
 |  | 
 | 		// For 2^i we can put the integer part directly in the exponent of | 
 | 		// the IEEE-754 floating-point number. Clamp to prevent overflow | 
 | 		// past the representation of infinity. | 
 | 		Float4 x0 = x; | 
 | 		x0 = Min(x0, As<Float4>(Int4(0x43010000)));   // 129.00000e+0f | 
 | 		x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF)));   // -126.99999e+0f | 
 |  | 
 | 		Int4 i = RoundInt(x0 - Float4(0.5f)); | 
 | 		Float4 ii = As<Float4>((i + Int4(127)) << 23);   // Add single-precision bias, and shift into exponent. | 
 |  | 
 | 		// For the fractional part use a polynomial | 
 | 		// which approximates 2^f in the 0 to 1 range. | 
 | 		Float4 f = x0 - Float4(i); | 
 | 		Float4 ff = As<Float4>(Int4(0x3AF61905));     // 1.8775767e-3f | 
 | 		ff = ff * f + As<Float4>(Int4(0x3C134806));   // 8.9893397e-3f | 
 | 		ff = ff * f + As<Float4>(Int4(0x3D64AA23));   // 5.5826318e-2f | 
 | 		ff = ff * f + As<Float4>(Int4(0x3E75EAD4));   // 2.4015361e-1f | 
 | 		ff = ff * f + As<Float4>(Int4(0x3F31727B));   // 6.9315308e-1f | 
 | 		ff = ff * f + Float4(1.0f); | 
 |  | 
 | 		return ii * ff; | 
 | 	} | 
 |  | 
 | 	Float4 logarithm2(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		Float4 x0; | 
 | 		Float4 x1; | 
 | 		Float4 x2; | 
 | 		Float4 x3; | 
 |  | 
 | 		x0 = x; | 
 |  | 
 | 		x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000)); | 
 | 		x1 = As<Float4>(As<UInt4>(x1) >> 8); | 
 | 		x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f))); | 
 | 		x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f);   // FIXME: (x1 - 1.4960938f) * 256.0f; | 
 | 		x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f))); | 
 |  | 
 | 		x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); | 
 | 		x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); | 
 | 		x2 /= x3; | 
 |  | 
 | 		x1 += (x0 - Float4(1.0f)) * x2; | 
 |  | 
 | 		Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000)); | 
 | 		return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1))); | 
 | 	} | 
 |  | 
 | 	Float4 exponential(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// FIXME: Propagate the constant | 
 | 		return exponential2(Float4(1.44269504f) * x, pp);   // 1/ln(2) | 
 | 	} | 
 |  | 
 | 	Float4 logarithm(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// FIXME: Propagate the constant | 
 | 		return Float4(6.93147181e-1f) * logarithm2(x, pp);   // ln(2) | 
 | 	} | 
 |  | 
 | 	Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp) | 
 | 	{ | 
 | 		Float4 log = logarithm2(x, pp); | 
 | 		log *= y; | 
 | 		return exponential2(log, pp); | 
 | 	} | 
 |  | 
 | 	Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2) | 
 | 	{ | 
 | 		Float4 rcp = Rcp_pp(x, exactAtPow2); | 
 |  | 
 | 		if(!pp) | 
 | 		{ | 
 | 			rcp = (rcp + rcp) - (x * rcp * rcp); | 
 | 		} | 
 |  | 
 | 		if(finite) | 
 | 		{ | 
 | 			int big = 0x7F7FFFFF; | 
 | 			rcp = Min(rcp, Float4((float&)big)); | 
 | 		} | 
 |  | 
 | 		return rcp; | 
 | 	} | 
 |  | 
 | 	Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) | 
 | 	{ | 
 | 		Float4 abs = x; | 
 |  | 
 | 		if(absolute) | 
 | 		{ | 
 | 			abs = Abs(abs); | 
 | 		} | 
 |  | 
 | 		Float4 rsq; | 
 |  | 
 | 		if(!pp) | 
 | 		{ | 
 | 			rsq = Float4(1.0f) / Sqrt(abs); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			rsq = RcpSqrt_pp(abs); | 
 |  | 
 | 			if(!pp) | 
 | 			{ | 
 | 				rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f); | 
 | 			} | 
 |  | 
 | 			rsq = As<Float4>(CmpNEQ(As<Int4>(abs), Int4(0x7F800000)) & As<Int4>(rsq)); | 
 | 		} | 
 |  | 
 | 		return rsq; | 
 | 	} | 
 |  | 
 | 	Float4 modulo(RValue<Float4> x, RValue<Float4> y) | 
 | 	{ | 
 | 		return x - y * Floor(x / y); | 
 | 	} | 
 |  | 
 | 	Float4 sine_pi(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		const Float4 A = Float4(-4.05284734e-1f);   // -4/pi^2 | 
 | 		const Float4 B = Float4(1.27323954e+0f);    // 4/pi | 
 | 		const Float4 C = Float4(7.75160950e-1f); | 
 | 		const Float4 D = Float4(2.24839049e-1f); | 
 |  | 
 | 		// Parabola approximating sine | 
 | 		Float4 sin = x * (Abs(x) * A + B); | 
 |  | 
 | 		// Improve precision from 0.06 to 0.001 | 
 | 		if(true) | 
 | 		{ | 
 | 			sin = sin * (Abs(sin) * D + C); | 
 | 		} | 
 |  | 
 | 		return sin; | 
 | 	} | 
 |  | 
 | 	Float4 cosine_pi(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// cos(x) = sin(x + pi/2) | 
 | 		Float4 y = x + Float4(1.57079632e+0f); | 
 |  | 
 | 		// Wrap around | 
 | 		y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f))); | 
 |  | 
 | 		return sine_pi(y, pp); | 
 | 	} | 
 |  | 
 | 	Float4 sine(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// Reduce to [-0.5, 0.5] range | 
 | 		Float4 y = x * Float4(1.59154943e-1f);   // 1/2pi | 
 | 		y = y - Round(y); | 
 |  | 
 | 		if(!pp) | 
 | 		{ | 
 | 			// From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" | 
 | 			// This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: | 
 | 			// !pp : 17 mul, 7 add, 1 sub, 1 reciprocal | 
 | 			//  pp : 4 mul, 2 add, 2 abs | 
 |  | 
 | 			Float4 y2 = y * y; | 
 | 			Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); | 
 | 			Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); | 
 | 			Float4 c2 = (c1 * c1) - (s1 * s1); | 
 | 			Float4 s2 = Float4(2.0f) * s1 * c1; | 
 | 			return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); | 
 | 		} | 
 |  | 
 | 		const Float4 A = Float4(-16.0f); | 
 | 		const Float4 B = Float4(8.0f); | 
 | 		const Float4 C = Float4(7.75160950e-1f); | 
 | 		const Float4 D = Float4(2.24839049e-1f); | 
 |  | 
 | 		// Parabola approximating sine | 
 | 		Float4 sin = y * (Abs(y) * A + B); | 
 |  | 
 | 		// Improve precision from 0.06 to 0.001 | 
 | 		if(true) | 
 | 		{ | 
 | 			sin = sin * (Abs(sin) * D + C); | 
 | 		} | 
 |  | 
 | 		return sin; | 
 | 	} | 
 |  | 
 | 	Float4 cosine(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// cos(x) = sin(x + pi/2) | 
 | 		Float4 y = x + Float4(1.57079632e+0f); | 
 | 		return sine(y, pp); | 
 | 	} | 
 |  | 
 | 	Float4 tangent(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		return sine(x, pp) / cosine(x, pp); | 
 | 	} | 
 |  | 
 | 	Float4 arccos(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		// pi/2 - arcsin(x) | 
 | 		return Float4(1.57079632e+0f) - arcsin(x); | 
 | 	} | 
 |  | 
 | 	Float4 arcsin(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		if(false) // Simpler implementation fails even lowp precision tests | 
 | 		{ | 
 | 			// x*(pi/2-sqrt(1-x*x)*pi/5) | 
 | 			return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x*x) * Float4(6.28318531e-1f)); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			// From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
 | 			const Float4 half_pi(1.57079632f); | 
 | 			const Float4 a0(1.5707288f); | 
 | 			const Float4 a1(-0.2121144f); | 
 | 			const Float4 a2(0.0742610f); | 
 | 			const Float4 a3(-0.0187293f); | 
 | 			Float4 absx = Abs(x); | 
 | 			return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ | 
 | 			       (As<Int4>(x) & Int4(0x80000000))); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Approximation of atan in [0..1] | 
 | 	Float4 arctan_01(Float4 x, bool pp) | 
 | 	{ | 
 | 		if(pp) | 
 | 		{ | 
 | 			return x * (Float4(-0.27f) * x + Float4(1.05539816f)); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			// From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
 | 			const Float4 a2(-0.3333314528f); | 
 | 			const Float4 a4(0.1999355085f); | 
 | 			const Float4 a6(-0.1420889944f); | 
 | 			const Float4 a8(0.1065626393f); | 
 | 			const Float4 a10(-0.0752896400f); | 
 | 			const Float4 a12(0.0429096138f); | 
 | 			const Float4 a14(-0.0161657367f); | 
 | 			const Float4 a16(0.0028662257f); | 
 | 			Float4 x2 = x * x; | 
 | 			return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	Float4 arctan(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		Float4 absx = Abs(x); | 
 | 		Int4 O = CmpNLT(absx, Float4(1.0f)); | 
 | 		Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select | 
 |  | 
 | 		const Float4 half_pi(1.57079632f); | 
 | 		Float4 theta = arctan_01(y, pp); | 
 | 		return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select | 
 | 		       (As<Int4>(x) & Int4(0x80000000))); | 
 | 	} | 
 |  | 
 | 	Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		const Float4 pi(3.14159265f);            // pi | 
 | 		const Float4 minus_pi(-3.14159265f);     // -pi | 
 | 		const Float4 half_pi(1.57079632f);       // pi/2 | 
 | 		const Float4 quarter_pi(7.85398163e-1f); // pi/4 | 
 |  | 
 | 		// Rotate to upper semicircle when in lower semicircle | 
 | 		Int4 S = CmpLT(y, Float4(0.0f)); | 
 | 		Float4 theta = As<Float4>(S & As<Int4>(minus_pi)); | 
 | 		Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x)); | 
 | 		Float4 y0 = Abs(y); | 
 |  | 
 | 		// Rotate to right quadrant when in left quadrant | 
 | 		Int4 Q = CmpLT(x0, Float4(0.0f)); | 
 | 		theta += As<Float4>(Q & As<Int4>(half_pi)); | 
 | 		Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0)));  // FIXME: Vector select | 
 | 		Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select | 
 |  | 
 | 		// Mirror to first octant when in second octant | 
 | 		Int4 O = CmpNLT(y1, x1); | 
 | 		Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select | 
 | 		Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select | 
 |  | 
 | 		// Approximation of atan in [0..1] | 
 | 		Int4 zero_x = CmpEQ(x2, Float4(0.0f)); | 
 | 		Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 | 
 | 		Float4 atan2_theta = arctan_01(y2 / x2, pp); | 
 | 		theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select | 
 | 		                    (inf_y & As<Int4>(quarter_pi))); | 
 |  | 
 | 		// Recover loss of precision for tiny theta angles | 
 | 		Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta | 
 | 		return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select | 
 | 	} | 
 |  | 
 | 	Float4 sineh(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); | 
 | 	} | 
 |  | 
 | 	Float4 cosineh(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); | 
 | 	} | 
 |  | 
 | 	Float4 tangenth(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		Float4 e_x = exponential(x, pp); | 
 | 		Float4 e_minus_x = exponential(-x, pp); | 
 | 		return (e_x - e_minus_x) / (e_x + e_minus_x); | 
 | 	} | 
 |  | 
 | 	Float4 arccosh(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); | 
 | 	} | 
 |  | 
 | 	Float4 arcsinh(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); | 
 | 	} | 
 |  | 
 | 	Float4 arctanh(RValue<Float4> x, bool pp) | 
 | 	{ | 
 | 		return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); | 
 | 	} | 
 |  | 
 | 	Float4 dot2(const Vector4f &v0, const Vector4f &v1) | 
 | 	{ | 
 | 		return v0.x * v1.x + v0.y * v1.y; | 
 | 	} | 
 |  | 
 | 	Float4 dot3(const Vector4f &v0, const Vector4f &v1) | 
 | 	{ | 
 | 		return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; | 
 | 	} | 
 |  | 
 | 	Float4 dot4(const Vector4f &v0, const Vector4f &v1) | 
 | 	{ | 
 | 		return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; | 
 | 	} | 
 |  | 
 | 	void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
 | 	{ | 
 | 		Int2 tmp0 = UnpackHigh(row0, row1); | 
 | 		Int2 tmp1 = UnpackHigh(row2, row3); | 
 | 		Int2 tmp2 = UnpackLow(row0, row1); | 
 | 		Int2 tmp3 = UnpackLow(row2, row3); | 
 |  | 
 | 		row0 = UnpackLow(tmp2, tmp3); | 
 | 		row1 = UnpackHigh(tmp2, tmp3); | 
 | 		row2 = UnpackLow(tmp0, tmp1); | 
 | 		row3 = UnpackHigh(tmp0, tmp1); | 
 | 	} | 
 |  | 
 | 	void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
 | 	{ | 
 | 		Int2 tmp0 = UnpackHigh(row0, row1); | 
 | 		Int2 tmp1 = UnpackHigh(row2, row3); | 
 | 		Int2 tmp2 = UnpackLow(row0, row1); | 
 | 		Int2 tmp3 = UnpackLow(row2, row3); | 
 |  | 
 | 		row0 = UnpackLow(tmp2, tmp3); | 
 | 		row1 = UnpackHigh(tmp2, tmp3); | 
 | 		row2 = UnpackLow(tmp0, tmp1); | 
 | 	} | 
 |  | 
 | 	void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | 	{ | 
 | 		Float4 tmp0 = UnpackLow(row0, row1); | 
 | 		Float4 tmp1 = UnpackLow(row2, row3); | 
 | 		Float4 tmp2 = UnpackHigh(row0, row1); | 
 | 		Float4 tmp3 = UnpackHigh(row2, row3); | 
 |  | 
 | 		row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 		row1 = Float4(tmp0.zw, tmp1.zw); | 
 | 		row2 = Float4(tmp2.xy, tmp3.xy); | 
 | 		row3 = Float4(tmp2.zw, tmp3.zw); | 
 | 	} | 
 |  | 
 | 	void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | 	{ | 
 | 		Float4 tmp0 = UnpackLow(row0, row1); | 
 | 		Float4 tmp1 = UnpackLow(row2, row3); | 
 | 		Float4 tmp2 = UnpackHigh(row0, row1); | 
 | 		Float4 tmp3 = UnpackHigh(row2, row3); | 
 |  | 
 | 		row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 		row1 = Float4(tmp0.zw, tmp1.zw); | 
 | 		row2 = Float4(tmp2.xy, tmp3.xy); | 
 | 	} | 
 |  | 
 | 	void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | 	{ | 
 | 		Float4 tmp0 = UnpackLow(row0, row1); | 
 | 		Float4 tmp1 = UnpackLow(row2, row3); | 
 |  | 
 | 		row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 		row1 = Float4(tmp0.zw, tmp1.zw); | 
 | 	} | 
 |  | 
 | 	void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | 	{ | 
 | 		Float4 tmp0 = UnpackLow(row0, row1); | 
 | 		Float4 tmp1 = UnpackLow(row2, row3); | 
 |  | 
 | 		row0 = Float4(tmp0.xy, tmp1.xy); | 
 | 	} | 
 |  | 
 | 	void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
 | 	{ | 
 | 		Float4 tmp01 = UnpackLow(row0, row1); | 
 | 		Float4 tmp23 = UnpackHigh(row0, row1); | 
 |  | 
 | 		row0 = tmp01; | 
 | 		row1 = Float4(tmp01.zw, row1.zw); | 
 | 		row2 = tmp23; | 
 | 		row3 = Float4(tmp23.zw, row3.zw); | 
 | 	} | 
 |  | 
 | 	void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) | 
 | 	{ | 
 | 		switch(N) | 
 | 		{ | 
 | 		case 1: transpose4x1(row0, row1, row2, row3); break; | 
 | 		case 2: transpose4x2(row0, row1, row2, row3); break; | 
 | 		case 3: transpose4x3(row0, row1, row2, row3); break; | 
 | 		case 4: transpose4x4(row0, row1, row2, row3); break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	UInt4 halfToFloatBits(UInt4 halfBits) | 
 | 	{ | 
 | 		static const uint32_t mask_nosign = 0x7FFF; | 
 | 		static const uint32_t magic = (254 - 15) << 23; | 
 | 		static const uint32_t was_infnan = 0x7BFF; | 
 | 		static const uint32_t exp_infnan = 255 << 23; | 
 |  | 
 | 		UInt4 expmant = halfBits & UInt4(mask_nosign); | 
 | 		return As<UInt4>(As<Float4>(expmant << 13) * As<Float4>(UInt4(magic))) | | 
 | 		((halfBits ^ UInt4(expmant)) << 16) | | 
 | 		(CmpNLE(As<UInt4>(expmant), UInt4(was_infnan)) & UInt4(exp_infnan)); | 
 | 	} | 
 | } |