|  | //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SmallBitVector class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_SMALLBITVECTOR_H | 
|  | #define LLVM_ADT_SMALLBITVECTOR_H | 
|  |  | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <cassert> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array), | 
|  | /// optimized for the case when the array is small.  It contains one | 
|  | /// pointer-sized field, which is directly used as a plain collection of bits | 
|  | /// when possible, or as a pointer to a larger heap-allocated array when | 
|  | /// necessary.  This allows normal "small" cases to be fast without losing | 
|  | /// generality for large inputs. | 
|  | /// | 
|  | class SmallBitVector { | 
|  | // TODO: In "large" mode, a pointer to a BitVector is used, leading to an | 
|  | // unnecessary level of indirection. It would be more efficient to use a | 
|  | // pointer to memory containing size, allocation size, and the array of bits. | 
|  | uintptr_t X; | 
|  |  | 
|  | enum { | 
|  | // The number of bits in this class. | 
|  | NumBaseBits = sizeof(uintptr_t) * CHAR_BIT, | 
|  |  | 
|  | // One bit is used to discriminate between small and large mode. The | 
|  | // remaining bits are used for the small-mode representation. | 
|  | SmallNumRawBits = NumBaseBits - 1, | 
|  |  | 
|  | // A few more bits are used to store the size of the bit set in small mode. | 
|  | // Theoretically this is a ceil-log2. These bits are encoded in the most | 
|  | // significant bits of the raw bits. | 
|  | SmallNumSizeBits = (NumBaseBits == 32 ? 5 : | 
|  | NumBaseBits == 64 ? 6 : | 
|  | SmallNumRawBits), | 
|  |  | 
|  | // The remaining bits are used to store the actual set in small mode. | 
|  | SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits | 
|  | }; | 
|  |  | 
|  | public: | 
|  | // Encapsulation of a single bit. | 
|  | class reference { | 
|  | SmallBitVector &TheVector; | 
|  | unsigned BitPos; | 
|  |  | 
|  | public: | 
|  | reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {} | 
|  |  | 
|  | reference& operator=(reference t) { | 
|  | *this = bool(t); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | reference& operator=(bool t) { | 
|  | if (t) | 
|  | TheVector.set(BitPos); | 
|  | else | 
|  | TheVector.reset(BitPos); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | operator bool() const { | 
|  | return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos); | 
|  | } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | bool isSmall() const { | 
|  | return X & uintptr_t(1); | 
|  | } | 
|  |  | 
|  | BitVector *getPointer() const { | 
|  | assert(!isSmall()); | 
|  | return reinterpret_cast<BitVector *>(X); | 
|  | } | 
|  |  | 
|  | void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { | 
|  | X = 1; | 
|  | setSmallSize(NewSize); | 
|  | setSmallBits(NewSmallBits); | 
|  | } | 
|  |  | 
|  | void switchToLarge(BitVector *BV) { | 
|  | X = reinterpret_cast<uintptr_t>(BV); | 
|  | assert(!isSmall() && "Tried to use an unaligned pointer"); | 
|  | } | 
|  |  | 
|  | // Return all the bits used for the "small" representation; this includes | 
|  | // bits for the size as well as the element bits. | 
|  | uintptr_t getSmallRawBits() const { | 
|  | assert(isSmall()); | 
|  | return X >> 1; | 
|  | } | 
|  |  | 
|  | void setSmallRawBits(uintptr_t NewRawBits) { | 
|  | assert(isSmall()); | 
|  | X = (NewRawBits << 1) | uintptr_t(1); | 
|  | } | 
|  |  | 
|  | // Return the size. | 
|  | size_t getSmallSize() const { | 
|  | return getSmallRawBits() >> SmallNumDataBits; | 
|  | } | 
|  |  | 
|  | void setSmallSize(size_t Size) { | 
|  | setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); | 
|  | } | 
|  |  | 
|  | // Return the element bits. | 
|  | uintptr_t getSmallBits() const { | 
|  | return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize()); | 
|  | } | 
|  |  | 
|  | void setSmallBits(uintptr_t NewBits) { | 
|  | setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) | | 
|  | (getSmallSize() << SmallNumDataBits)); | 
|  | } | 
|  |  | 
|  | public: | 
|  | /// SmallBitVector default ctor - Creates an empty bitvector. | 
|  | SmallBitVector() : X(1) {} | 
|  |  | 
|  | /// SmallBitVector ctor - Creates a bitvector of specified number of bits. All | 
|  | /// bits are initialized to the specified value. | 
|  | explicit SmallBitVector(unsigned s, bool t = false) { | 
|  | if (s <= SmallNumDataBits) | 
|  | switchToSmall(t ? ~uintptr_t(0) : 0, s); | 
|  | else | 
|  | switchToLarge(new BitVector(s, t)); | 
|  | } | 
|  |  | 
|  | /// SmallBitVector copy ctor. | 
|  | SmallBitVector(const SmallBitVector &RHS) { | 
|  | if (RHS.isSmall()) | 
|  | X = RHS.X; | 
|  | else | 
|  | switchToLarge(new BitVector(*RHS.getPointer())); | 
|  | } | 
|  |  | 
|  | ~SmallBitVector() { | 
|  | if (!isSmall()) | 
|  | delete getPointer(); | 
|  | } | 
|  |  | 
|  | /// empty - Tests whether there are no bits in this bitvector. | 
|  | bool empty() const { | 
|  | return isSmall() ? getSmallSize() == 0 : getPointer()->empty(); | 
|  | } | 
|  |  | 
|  | /// size - Returns the number of bits in this bitvector. | 
|  | size_t size() const { | 
|  | return isSmall() ? getSmallSize() : getPointer()->size(); | 
|  | } | 
|  |  | 
|  | /// count - Returns the number of bits which are set. | 
|  | unsigned count() const { | 
|  | if (isSmall()) { | 
|  | uintptr_t Bits = getSmallBits(); | 
|  | if (sizeof(uintptr_t) * CHAR_BIT == 32) | 
|  | return CountPopulation_32(Bits); | 
|  | if (sizeof(uintptr_t) * CHAR_BIT == 64) | 
|  | return CountPopulation_64(Bits); | 
|  | assert(0 && "Unsupported!"); | 
|  | } | 
|  | return getPointer()->count(); | 
|  | } | 
|  |  | 
|  | /// any - Returns true if any bit is set. | 
|  | bool any() const { | 
|  | if (isSmall()) | 
|  | return getSmallBits() != 0; | 
|  | return getPointer()->any(); | 
|  | } | 
|  |  | 
|  | /// all - Returns true if all bits are set. | 
|  | bool all() const { | 
|  | if (isSmall()) | 
|  | return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1; | 
|  | return getPointer()->all(); | 
|  | } | 
|  |  | 
|  | /// none - Returns true if none of the bits are set. | 
|  | bool none() const { | 
|  | if (isSmall()) | 
|  | return getSmallBits() == 0; | 
|  | return getPointer()->none(); | 
|  | } | 
|  |  | 
|  | /// find_first - Returns the index of the first set bit, -1 if none | 
|  | /// of the bits are set. | 
|  | int find_first() const { | 
|  | if (isSmall()) { | 
|  | uintptr_t Bits = getSmallBits(); | 
|  | if (Bits == 0) | 
|  | return -1; | 
|  | if (sizeof(uintptr_t) * CHAR_BIT == 32) | 
|  | return CountTrailingZeros_32(Bits); | 
|  | if (sizeof(uintptr_t) * CHAR_BIT == 64) | 
|  | return CountTrailingZeros_64(Bits); | 
|  | assert(0 && "Unsupported!"); | 
|  | } | 
|  | return getPointer()->find_first(); | 
|  | } | 
|  |  | 
|  | /// find_next - Returns the index of the next set bit following the | 
|  | /// "Prev" bit. Returns -1 if the next set bit is not found. | 
|  | int find_next(unsigned Prev) const { | 
|  | if (isSmall()) { | 
|  | uintptr_t Bits = getSmallBits(); | 
|  | // Mask off previous bits. | 
|  | Bits &= ~uintptr_t(0) << (Prev + 1); | 
|  | if (Bits == 0 || Prev + 1 >= getSmallSize()) | 
|  | return -1; | 
|  | if (sizeof(uintptr_t) * CHAR_BIT == 32) | 
|  | return CountTrailingZeros_32(Bits); | 
|  | if (sizeof(uintptr_t) * CHAR_BIT == 64) | 
|  | return CountTrailingZeros_64(Bits); | 
|  | assert(0 && "Unsupported!"); | 
|  | } | 
|  | return getPointer()->find_next(Prev); | 
|  | } | 
|  |  | 
|  | /// clear - Clear all bits. | 
|  | void clear() { | 
|  | if (!isSmall()) | 
|  | delete getPointer(); | 
|  | switchToSmall(0, 0); | 
|  | } | 
|  |  | 
|  | /// resize - Grow or shrink the bitvector. | 
|  | void resize(unsigned N, bool t = false) { | 
|  | if (!isSmall()) { | 
|  | getPointer()->resize(N, t); | 
|  | } else if (SmallNumDataBits >= N) { | 
|  | uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0; | 
|  | setSmallSize(N); | 
|  | setSmallBits(NewBits | getSmallBits()); | 
|  | } else { | 
|  | BitVector *BV = new BitVector(N, t); | 
|  | uintptr_t OldBits = getSmallBits(); | 
|  | for (size_t i = 0, e = getSmallSize(); i != e; ++i) | 
|  | (*BV)[i] = (OldBits >> i) & 1; | 
|  | switchToLarge(BV); | 
|  | } | 
|  | } | 
|  |  | 
|  | void reserve(unsigned N) { | 
|  | if (isSmall()) { | 
|  | if (N > SmallNumDataBits) { | 
|  | uintptr_t OldBits = getSmallRawBits(); | 
|  | size_t SmallSize = getSmallSize(); | 
|  | BitVector *BV = new BitVector(SmallSize); | 
|  | for (size_t i = 0; i < SmallSize; ++i) | 
|  | if ((OldBits >> i) & 1) | 
|  | BV->set(i); | 
|  | BV->reserve(N); | 
|  | switchToLarge(BV); | 
|  | } | 
|  | } else { | 
|  | getPointer()->reserve(N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set, reset, flip | 
|  | SmallBitVector &set() { | 
|  | if (isSmall()) | 
|  | setSmallBits(~uintptr_t(0)); | 
|  | else | 
|  | getPointer()->set(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &set(unsigned Idx) { | 
|  | if (isSmall()) | 
|  | setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); | 
|  | else | 
|  | getPointer()->set(Idx); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &reset() { | 
|  | if (isSmall()) | 
|  | setSmallBits(0); | 
|  | else | 
|  | getPointer()->reset(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &reset(unsigned Idx) { | 
|  | if (isSmall()) | 
|  | setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); | 
|  | else | 
|  | getPointer()->reset(Idx); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &flip() { | 
|  | if (isSmall()) | 
|  | setSmallBits(~getSmallBits()); | 
|  | else | 
|  | getPointer()->flip(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &flip(unsigned Idx) { | 
|  | if (isSmall()) | 
|  | setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); | 
|  | else | 
|  | getPointer()->flip(Idx); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // No argument flip. | 
|  | SmallBitVector operator~() const { | 
|  | return SmallBitVector(*this).flip(); | 
|  | } | 
|  |  | 
|  | // Indexing. | 
|  | reference operator[](unsigned Idx) { | 
|  | assert(Idx < size() && "Out-of-bounds Bit access."); | 
|  | return reference(*this, Idx); | 
|  | } | 
|  |  | 
|  | bool operator[](unsigned Idx) const { | 
|  | assert(Idx < size() && "Out-of-bounds Bit access."); | 
|  | if (isSmall()) | 
|  | return ((getSmallBits() >> Idx) & 1) != 0; | 
|  | return getPointer()->operator[](Idx); | 
|  | } | 
|  |  | 
|  | bool test(unsigned Idx) const { | 
|  | return (*this)[Idx]; | 
|  | } | 
|  |  | 
|  | // Comparison operators. | 
|  | bool operator==(const SmallBitVector &RHS) const { | 
|  | if (size() != RHS.size()) | 
|  | return false; | 
|  | if (isSmall()) | 
|  | return getSmallBits() == RHS.getSmallBits(); | 
|  | else | 
|  | return *getPointer() == *RHS.getPointer(); | 
|  | } | 
|  |  | 
|  | bool operator!=(const SmallBitVector &RHS) const { | 
|  | return !(*this == RHS); | 
|  | } | 
|  |  | 
|  | // Intersection, union, disjoint union. | 
|  | SmallBitVector &operator&=(const SmallBitVector &RHS) { | 
|  | resize(std::max(size(), RHS.size())); | 
|  | if (isSmall()) | 
|  | setSmallBits(getSmallBits() & RHS.getSmallBits()); | 
|  | else if (!RHS.isSmall()) | 
|  | getPointer()->operator&=(*RHS.getPointer()); | 
|  | else { | 
|  | SmallBitVector Copy = RHS; | 
|  | Copy.resize(size()); | 
|  | getPointer()->operator&=(*Copy.getPointer()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &operator|=(const SmallBitVector &RHS) { | 
|  | resize(std::max(size(), RHS.size())); | 
|  | if (isSmall()) | 
|  | setSmallBits(getSmallBits() | RHS.getSmallBits()); | 
|  | else if (!RHS.isSmall()) | 
|  | getPointer()->operator|=(*RHS.getPointer()); | 
|  | else { | 
|  | SmallBitVector Copy = RHS; | 
|  | Copy.resize(size()); | 
|  | getPointer()->operator|=(*Copy.getPointer()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallBitVector &operator^=(const SmallBitVector &RHS) { | 
|  | resize(std::max(size(), RHS.size())); | 
|  | if (isSmall()) | 
|  | setSmallBits(getSmallBits() ^ RHS.getSmallBits()); | 
|  | else if (!RHS.isSmall()) | 
|  | getPointer()->operator^=(*RHS.getPointer()); | 
|  | else { | 
|  | SmallBitVector Copy = RHS; | 
|  | Copy.resize(size()); | 
|  | getPointer()->operator^=(*Copy.getPointer()); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Assignment operator. | 
|  | const SmallBitVector &operator=(const SmallBitVector &RHS) { | 
|  | if (isSmall()) { | 
|  | if (RHS.isSmall()) | 
|  | X = RHS.X; | 
|  | else | 
|  | switchToLarge(new BitVector(*RHS.getPointer())); | 
|  | } else { | 
|  | if (!RHS.isSmall()) | 
|  | *getPointer() = *RHS.getPointer(); | 
|  | else { | 
|  | delete getPointer(); | 
|  | X = RHS.X; | 
|  | } | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void swap(SmallBitVector &RHS) { | 
|  | std::swap(X, RHS.X); | 
|  | } | 
|  | }; | 
|  |  | 
|  | inline SmallBitVector | 
|  | operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { | 
|  | SmallBitVector Result(LHS); | 
|  | Result &= RHS; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | inline SmallBitVector | 
|  | operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { | 
|  | SmallBitVector Result(LHS); | 
|  | Result |= RHS; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | inline SmallBitVector | 
|  | operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { | 
|  | SmallBitVector Result(LHS); | 
|  | Result ^= RHS; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | } // End llvm namespace | 
|  |  | 
|  | namespace std { | 
|  | /// Implement std::swap in terms of BitVector swap. | 
|  | inline void | 
|  | swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { | 
|  | LHS.swap(RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif |