| //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file declares the Value class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_IR_VALUE_H | 
 | #define LLVM_IR_VALUE_H | 
 |  | 
 | #include "llvm/ADT/iterator_range.h" | 
 | #include "llvm/IR/Use.h" | 
 | #include "llvm/Support/CBindingWrapping.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm-c/Types.h" | 
 | #include <cassert> | 
 | #include <iterator> | 
 |  | 
 | namespace llvm { | 
 |  | 
 | class APInt; | 
 | class Argument; | 
 | class BasicBlock; | 
 | class Constant; | 
 | class ConstantData; | 
 | class ConstantAggregate; | 
 | class DataLayout; | 
 | class Function; | 
 | class GlobalAlias; | 
 | class GlobalIFunc; | 
 | class GlobalIndirectSymbol; | 
 | class GlobalObject; | 
 | class GlobalValue; | 
 | class GlobalVariable; | 
 | class InlineAsm; | 
 | class Instruction; | 
 | class LLVMContext; | 
 | class Module; | 
 | class ModuleSlotTracker; | 
 | class raw_ostream; | 
 | class StringRef; | 
 | class Twine; | 
 | class Type; | 
 |  | 
 | template<typename ValueTy> class StringMapEntry; | 
 | typedef StringMapEntry<Value*> ValueName; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                 Value Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// \brief LLVM Value Representation | 
 | /// | 
 | /// This is a very important LLVM class. It is the base class of all values | 
 | /// computed by a program that may be used as operands to other values. Value is | 
 | /// the super class of other important classes such as Instruction and Function. | 
 | /// All Values have a Type. Type is not a subclass of Value. Some values can | 
 | /// have a name and they belong to some Module.  Setting the name on the Value | 
 | /// automatically updates the module's symbol table. | 
 | /// | 
 | /// Every value has a "use list" that keeps track of which other Values are | 
 | /// using this Value.  A Value can also have an arbitrary number of ValueHandle | 
 | /// objects that watch it and listen to RAUW and Destroy events.  See | 
 | /// llvm/IR/ValueHandle.h for details. | 
 | class Value { | 
 |   Type *VTy; | 
 |   Use *UseList; | 
 |  | 
 |   friend class ValueAsMetadata; // Allow access to IsUsedByMD. | 
 |   friend class ValueHandleBase; | 
 |  | 
 |   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast) | 
 |   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? | 
 |  | 
 | protected: | 
 |   /// \brief Hold subclass data that can be dropped. | 
 |   /// | 
 |   /// This member is similar to SubclassData, however it is for holding | 
 |   /// information which may be used to aid optimization, but which may be | 
 |   /// cleared to zero without affecting conservative interpretation. | 
 |   unsigned char SubclassOptionalData : 7; | 
 |  | 
 | private: | 
 |   /// \brief Hold arbitrary subclass data. | 
 |   /// | 
 |   /// This member is defined by this class, but is not used for anything. | 
 |   /// Subclasses can use it to hold whatever state they find useful.  This | 
 |   /// field is initialized to zero by the ctor. | 
 |   unsigned short SubclassData; | 
 |  | 
 | protected: | 
 |   /// \brief The number of operands in the subclass. | 
 |   /// | 
 |   /// This member is defined by this class, but not used for anything. | 
 |   /// Subclasses can use it to store their number of operands, if they have | 
 |   /// any. | 
 |   /// | 
 |   /// This is stored here to save space in User on 64-bit hosts.  Since most | 
 |   /// instances of Value have operands, 32-bit hosts aren't significantly | 
 |   /// affected. | 
 |   /// | 
 |   /// Note, this should *NOT* be used directly by any class other than User. | 
 |   /// User uses this value to find the Use list. | 
 |   enum : unsigned { NumUserOperandsBits = 28 }; | 
 |   unsigned NumUserOperands : NumUserOperandsBits; | 
 |  | 
 |   // Use the same type as the bitfield above so that MSVC will pack them. | 
 |   unsigned IsUsedByMD : 1; | 
 |   unsigned HasName : 1; | 
 |   unsigned HasHungOffUses : 1; | 
 |   unsigned HasDescriptor : 1; | 
 |  | 
 | private: | 
 |   template <typename UseT> // UseT == 'Use' or 'const Use' | 
 |   class use_iterator_impl | 
 |       : public std::iterator<std::forward_iterator_tag, UseT *> { | 
 |     UseT *U; | 
 |     explicit use_iterator_impl(UseT *u) : U(u) {} | 
 |     friend class Value; | 
 |  | 
 |   public: | 
 |     use_iterator_impl() : U() {} | 
 |  | 
 |     bool operator==(const use_iterator_impl &x) const { return U == x.U; } | 
 |     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } | 
 |  | 
 |     use_iterator_impl &operator++() { // Preincrement | 
 |       assert(U && "Cannot increment end iterator!"); | 
 |       U = U->getNext(); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     use_iterator_impl operator++(int) { // Postincrement | 
 |       auto tmp = *this; | 
 |       ++*this; | 
 |       return tmp; | 
 |     } | 
 |  | 
 |     UseT &operator*() const { | 
 |       assert(U && "Cannot dereference end iterator!"); | 
 |       return *U; | 
 |     } | 
 |  | 
 |     UseT *operator->() const { return &operator*(); } | 
 |  | 
 |     operator use_iterator_impl<const UseT>() const { | 
 |       return use_iterator_impl<const UseT>(U); | 
 |     } | 
 |   }; | 
 |  | 
 |   template <typename UserTy> // UserTy == 'User' or 'const User' | 
 |   class user_iterator_impl | 
 |       : public std::iterator<std::forward_iterator_tag, UserTy *> { | 
 |     use_iterator_impl<Use> UI; | 
 |     explicit user_iterator_impl(Use *U) : UI(U) {} | 
 |     friend class Value; | 
 |  | 
 |   public: | 
 |     user_iterator_impl() = default; | 
 |  | 
 |     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } | 
 |     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } | 
 |  | 
 |     /// \brief Returns true if this iterator is equal to user_end() on the value. | 
 |     bool atEnd() const { return *this == user_iterator_impl(); } | 
 |  | 
 |     user_iterator_impl &operator++() { // Preincrement | 
 |       ++UI; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     user_iterator_impl operator++(int) { // Postincrement | 
 |       auto tmp = *this; | 
 |       ++*this; | 
 |       return tmp; | 
 |     } | 
 |  | 
 |     // Retrieve a pointer to the current User. | 
 |     UserTy *operator*() const { | 
 |       return UI->getUser(); | 
 |     } | 
 |  | 
 |     UserTy *operator->() const { return operator*(); } | 
 |  | 
 |     operator user_iterator_impl<const UserTy>() const { | 
 |       return user_iterator_impl<const UserTy>(*UI); | 
 |     } | 
 |  | 
 |     Use &getUse() const { return *UI; } | 
 |   }; | 
 |  | 
 | protected: | 
 |   Value(Type *Ty, unsigned scid); | 
 |  | 
 | public: | 
 |   Value(const Value &) = delete; | 
 |   void operator=(const Value &) = delete; | 
 |   virtual ~Value(); | 
 |  | 
 |   /// \brief Support for debugging, callable in GDB: V->dump() | 
 |   void dump() const; | 
 |  | 
 |   /// \brief Implement operator<< on Value. | 
 |   /// @{ | 
 |   void print(raw_ostream &O, bool IsForDebug = false) const; | 
 |   void print(raw_ostream &O, ModuleSlotTracker &MST, | 
 |              bool IsForDebug = false) const; | 
 |   /// @} | 
 |  | 
 |   /// \brief Print the name of this Value out to the specified raw_ostream. | 
 |   /// | 
 |   /// This is useful when you just want to print 'int %reg126', not the | 
 |   /// instruction that generated it. If you specify a Module for context, then | 
 |   /// even constanst get pretty-printed; for example, the type of a null | 
 |   /// pointer is printed symbolically. | 
 |   /// @{ | 
 |   void printAsOperand(raw_ostream &O, bool PrintType = true, | 
 |                       const Module *M = nullptr) const; | 
 |   void printAsOperand(raw_ostream &O, bool PrintType, | 
 |                       ModuleSlotTracker &MST) const; | 
 |   /// @} | 
 |  | 
 |   /// \brief All values are typed, get the type of this value. | 
 |   Type *getType() const { return VTy; } | 
 |  | 
 |   /// \brief All values hold a context through their type. | 
 |   LLVMContext &getContext() const; | 
 |  | 
 |   // \brief All values can potentially be named. | 
 |   bool hasName() const { return HasName; } | 
 |   ValueName *getValueName() const; | 
 |   void setValueName(ValueName *VN); | 
 |  | 
 | private: | 
 |   void destroyValueName(); | 
 |   void doRAUW(Value *New, bool NoMetadata); | 
 |   void setNameImpl(const Twine &Name); | 
 |  | 
 | public: | 
 |   /// \brief Return a constant reference to the value's name. | 
 |   /// | 
 |   /// This is cheap and guaranteed to return the same reference as long as the | 
 |   /// value is not modified. | 
 |   StringRef getName() const; | 
 |  | 
 |   /// \brief Change the name of the value. | 
 |   /// | 
 |   /// Choose a new unique name if the provided name is taken. | 
 |   /// | 
 |   /// \param Name The new name; or "" if the value's name should be removed. | 
 |   void setName(const Twine &Name); | 
 |  | 
 |   /// \brief Transfer the name from V to this value. | 
 |   /// | 
 |   /// After taking V's name, sets V's name to empty. | 
 |   /// | 
 |   /// \note It is an error to call V->takeName(V). | 
 |   void takeName(Value *V); | 
 |  | 
 |   /// \brief Change all uses of this to point to a new Value. | 
 |   /// | 
 |   /// Go through the uses list for this definition and make each use point to | 
 |   /// "V" instead of "this".  After this completes, 'this's use list is | 
 |   /// guaranteed to be empty. | 
 |   void replaceAllUsesWith(Value *V); | 
 |  | 
 |   /// \brief Change non-metadata uses of this to point to a new Value. | 
 |   /// | 
 |   /// Go through the uses list for this definition and make each use point to | 
 |   /// "V" instead of "this". This function skips metadata entries in the list. | 
 |   void replaceNonMetadataUsesWith(Value *V); | 
 |  | 
 |   /// replaceUsesOutsideBlock - Go through the uses list for this definition and | 
 |   /// make each use point to "V" instead of "this" when the use is outside the | 
 |   /// block. 'This's use list is expected to have at least one element. | 
 |   /// Unlike replaceAllUsesWith this function does not support basic block | 
 |   /// values or constant users. | 
 |   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); | 
 |  | 
 |   //---------------------------------------------------------------------- | 
 |   // Methods for handling the chain of uses of this Value. | 
 |   // | 
 |   // Materializing a function can introduce new uses, so these methods come in | 
 |   // two variants: | 
 |   // The methods that start with materialized_ check the uses that are | 
 |   // currently known given which functions are materialized. Be very careful | 
 |   // when using them since you might not get all uses. | 
 |   // The methods that don't start with materialized_ assert that modules is | 
 |   // fully materialized. | 
 |   void assertModuleIsMaterialized() const; | 
 |  | 
 |   bool use_empty() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return UseList == nullptr; | 
 |   } | 
 |  | 
 |   typedef use_iterator_impl<Use> use_iterator; | 
 |   typedef use_iterator_impl<const Use> const_use_iterator; | 
 |   use_iterator materialized_use_begin() { return use_iterator(UseList); } | 
 |   const_use_iterator materialized_use_begin() const { | 
 |     return const_use_iterator(UseList); | 
 |   } | 
 |   use_iterator use_begin() { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_use_begin(); | 
 |   } | 
 |   const_use_iterator use_begin() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_use_begin(); | 
 |   } | 
 |   use_iterator use_end() { return use_iterator(); } | 
 |   const_use_iterator use_end() const { return const_use_iterator(); } | 
 |   iterator_range<use_iterator> materialized_uses() { | 
 |     return make_range(materialized_use_begin(), use_end()); | 
 |   } | 
 |   iterator_range<const_use_iterator> materialized_uses() const { | 
 |     return make_range(materialized_use_begin(), use_end()); | 
 |   } | 
 |   iterator_range<use_iterator> uses() { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_uses(); | 
 |   } | 
 |   iterator_range<const_use_iterator> uses() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_uses(); | 
 |   } | 
 |  | 
 |   bool user_empty() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return UseList == nullptr; | 
 |   } | 
 |  | 
 |   typedef user_iterator_impl<User> user_iterator; | 
 |   typedef user_iterator_impl<const User> const_user_iterator; | 
 |   user_iterator materialized_user_begin() { return user_iterator(UseList); } | 
 |   const_user_iterator materialized_user_begin() const { | 
 |     return const_user_iterator(UseList); | 
 |   } | 
 |   user_iterator user_begin() { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_user_begin(); | 
 |   } | 
 |   const_user_iterator user_begin() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_user_begin(); | 
 |   } | 
 |   user_iterator user_end() { return user_iterator(); } | 
 |   const_user_iterator user_end() const { return const_user_iterator(); } | 
 |   User *user_back() { | 
 |     assertModuleIsMaterialized(); | 
 |     return *materialized_user_begin(); | 
 |   } | 
 |   const User *user_back() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return *materialized_user_begin(); | 
 |   } | 
 |   iterator_range<user_iterator> materialized_users() { | 
 |     return make_range(materialized_user_begin(), user_end()); | 
 |   } | 
 |   iterator_range<const_user_iterator> materialized_users() const { | 
 |     return make_range(materialized_user_begin(), user_end()); | 
 |   } | 
 |   iterator_range<user_iterator> users() { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_users(); | 
 |   } | 
 |   iterator_range<const_user_iterator> users() const { | 
 |     assertModuleIsMaterialized(); | 
 |     return materialized_users(); | 
 |   } | 
 |  | 
 |   /// \brief Return true if there is exactly one user of this value. | 
 |   /// | 
 |   /// This is specialized because it is a common request and does not require | 
 |   /// traversing the whole use list. | 
 |   bool hasOneUse() const { | 
 |     const_use_iterator I = use_begin(), E = use_end(); | 
 |     if (I == E) return false; | 
 |     return ++I == E; | 
 |   } | 
 |  | 
 |   /// \brief Return true if this Value has exactly N users. | 
 |   bool hasNUses(unsigned N) const; | 
 |  | 
 |   /// \brief Return true if this value has N users or more. | 
 |   /// | 
 |   /// This is logically equivalent to getNumUses() >= N. | 
 |   bool hasNUsesOrMore(unsigned N) const; | 
 |  | 
 |   /// \brief Check if this value is used in the specified basic block. | 
 |   bool isUsedInBasicBlock(const BasicBlock *BB) const; | 
 |  | 
 |   /// \brief This method computes the number of uses of this Value. | 
 |   /// | 
 |   /// This is a linear time operation.  Use hasOneUse, hasNUses, or | 
 |   /// hasNUsesOrMore to check for specific values. | 
 |   unsigned getNumUses() const; | 
 |  | 
 |   /// \brief This method should only be used by the Use class. | 
 |   void addUse(Use &U) { U.addToList(&UseList); } | 
 |  | 
 |   /// \brief Concrete subclass of this. | 
 |   /// | 
 |   /// An enumeration for keeping track of the concrete subclass of Value that | 
 |   /// is actually instantiated. Values of this enumeration are kept in the | 
 |   /// Value classes SubclassID field. They are used for concrete type | 
 |   /// identification. | 
 |   enum ValueTy { | 
 | #define HANDLE_VALUE(Name) Name##Val, | 
 | #include "llvm/IR/Value.def" | 
 |  | 
 |     // Markers: | 
 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, | 
 | #include "llvm/IR/Value.def" | 
 |   }; | 
 |  | 
 |   /// \brief Return an ID for the concrete type of this object. | 
 |   /// | 
 |   /// This is used to implement the classof checks.  This should not be used | 
 |   /// for any other purpose, as the values may change as LLVM evolves.  Also, | 
 |   /// note that for instructions, the Instruction's opcode is added to | 
 |   /// InstructionVal. So this means three things: | 
 |   /// # there is no value with code InstructionVal (no opcode==0). | 
 |   /// # there are more possible values for the value type than in ValueTy enum. | 
 |   /// # the InstructionVal enumerator must be the highest valued enumerator in | 
 |   ///   the ValueTy enum. | 
 |   unsigned getValueID() const { | 
 |     return SubclassID; | 
 |   } | 
 |  | 
 |   /// \brief Return the raw optional flags value contained in this value. | 
 |   /// | 
 |   /// This should only be used when testing two Values for equivalence. | 
 |   unsigned getRawSubclassOptionalData() const { | 
 |     return SubclassOptionalData; | 
 |   } | 
 |  | 
 |   /// \brief Clear the optional flags contained in this value. | 
 |   void clearSubclassOptionalData() { | 
 |     SubclassOptionalData = 0; | 
 |   } | 
 |  | 
 |   /// \brief Check the optional flags for equality. | 
 |   bool hasSameSubclassOptionalData(const Value *V) const { | 
 |     return SubclassOptionalData == V->SubclassOptionalData; | 
 |   } | 
 |  | 
 |   /// \brief Return true if there is a value handle associated with this value. | 
 |   bool hasValueHandle() const { return HasValueHandle; } | 
 |  | 
 |   /// \brief Return true if there is metadata referencing this value. | 
 |   bool isUsedByMetadata() const { return IsUsedByMD; } | 
 |  | 
 |   /// \brief Return true if this value is a swifterror value. | 
 |   /// | 
 |   /// swifterror values can be either a function argument or an alloca with a | 
 |   /// swifterror attribute. | 
 |   bool isSwiftError() const; | 
 |  | 
 |   /// \brief Strip off pointer casts, all-zero GEPs, and aliases. | 
 |   /// | 
 |   /// Returns the original uncasted value.  If this is called on a non-pointer | 
 |   /// value, it returns 'this'. | 
 |   Value *stripPointerCasts(); | 
 |   const Value *stripPointerCasts() const { | 
 |     return const_cast<Value*>(this)->stripPointerCasts(); | 
 |   } | 
 |  | 
 |   /// \brief Strip off pointer casts and all-zero GEPs. | 
 |   /// | 
 |   /// Returns the original uncasted value.  If this is called on a non-pointer | 
 |   /// value, it returns 'this'. | 
 |   Value *stripPointerCastsNoFollowAliases(); | 
 |   const Value *stripPointerCastsNoFollowAliases() const { | 
 |     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases(); | 
 |   } | 
 |  | 
 |   /// \brief Strip off pointer casts and all-constant inbounds GEPs. | 
 |   /// | 
 |   /// Returns the original pointer value.  If this is called on a non-pointer | 
 |   /// value, it returns 'this'. | 
 |   Value *stripInBoundsConstantOffsets(); | 
 |   const Value *stripInBoundsConstantOffsets() const { | 
 |     return const_cast<Value*>(this)->stripInBoundsConstantOffsets(); | 
 |   } | 
 |  | 
 |   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets(). | 
 |   /// | 
 |   /// Stores the resulting constant offset stripped into the APInt provided. | 
 |   /// The provided APInt will be extended or truncated as needed to be the | 
 |   /// correct bitwidth for an offset of this pointer type. | 
 |   /// | 
 |   /// If this is called on a non-pointer value, it returns 'this'. | 
 |   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | 
 |                                                    APInt &Offset); | 
 |   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | 
 |                                                          APInt &Offset) const { | 
 |     return const_cast<Value *>(this) | 
 |         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); | 
 |   } | 
 |  | 
 |   /// \brief Strip off pointer casts and inbounds GEPs. | 
 |   /// | 
 |   /// Returns the original pointer value.  If this is called on a non-pointer | 
 |   /// value, it returns 'this'. | 
 |   Value *stripInBoundsOffsets(); | 
 |   const Value *stripInBoundsOffsets() const { | 
 |     return const_cast<Value*>(this)->stripInBoundsOffsets(); | 
 |   } | 
 |  | 
 |   /// \brief Returns the number of bytes known to be dereferenceable for the | 
 |   /// pointer value. | 
 |   /// | 
 |   /// If CanBeNull is set by this function the pointer can either be null or be | 
 |   /// dereferenceable up to the returned number of bytes. | 
 |   unsigned getPointerDereferenceableBytes(const DataLayout &DL, | 
 |                                           bool &CanBeNull) const; | 
 |  | 
 |   /// \brief Returns an alignment of the pointer value. | 
 |   /// | 
 |   /// Returns an alignment which is either specified explicitly, e.g. via | 
 |   /// align attribute of a function argument, or guaranteed by DataLayout. | 
 |   unsigned getPointerAlignment(const DataLayout &DL) const; | 
 |  | 
 |   /// \brief Translate PHI node to its predecessor from the given basic block. | 
 |   /// | 
 |   /// If this value is a PHI node with CurBB as its parent, return the value in | 
 |   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is | 
 |   /// useful if you want to know the value something has in a predecessor | 
 |   /// block. | 
 |   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB); | 
 |  | 
 |   const Value *DoPHITranslation(const BasicBlock *CurBB, | 
 |                                 const BasicBlock *PredBB) const{ | 
 |     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB); | 
 |   } | 
 |  | 
 |   /// \brief The maximum alignment for instructions. | 
 |   /// | 
 |   /// This is the greatest alignment value supported by load, store, and alloca | 
 |   /// instructions, and global values. | 
 |   static const unsigned MaxAlignmentExponent = 29; | 
 |   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; | 
 |  | 
 |   /// \brief Mutate the type of this Value to be of the specified type. | 
 |   /// | 
 |   /// Note that this is an extremely dangerous operation which can create | 
 |   /// completely invalid IR very easily.  It is strongly recommended that you | 
 |   /// recreate IR objects with the right types instead of mutating them in | 
 |   /// place. | 
 |   void mutateType(Type *Ty) { | 
 |     VTy = Ty; | 
 |   } | 
 |  | 
 |   /// \brief Sort the use-list. | 
 |   /// | 
 |   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is | 
 |   /// expected to compare two \a Use references. | 
 |   template <class Compare> void sortUseList(Compare Cmp); | 
 |  | 
 |   /// \brief Reverse the use-list. | 
 |   void reverseUseList(); | 
 |  | 
 | private: | 
 |   /// \brief Merge two lists together. | 
 |   /// | 
 |   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes | 
 |   /// "equal" items from L before items from R. | 
 |   /// | 
 |   /// \return the first element in the list. | 
 |   /// | 
 |   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). | 
 |   template <class Compare> | 
 |   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { | 
 |     Use *Merged; | 
 |     Use **Next = &Merged; | 
 |  | 
 |     for (;;) { | 
 |       if (!L) { | 
 |         *Next = R; | 
 |         break; | 
 |       } | 
 |       if (!R) { | 
 |         *Next = L; | 
 |         break; | 
 |       } | 
 |       if (Cmp(*R, *L)) { | 
 |         *Next = R; | 
 |         Next = &R->Next; | 
 |         R = R->Next; | 
 |       } else { | 
 |         *Next = L; | 
 |         Next = &L->Next; | 
 |         L = L->Next; | 
 |       } | 
 |     } | 
 |  | 
 |     return Merged; | 
 |   } | 
 |  | 
 |   /// \brief Tail-recursive helper for \a mergeUseLists(). | 
 |   /// | 
 |   /// \param[out] Next the first element in the list. | 
 |   template <class Compare> | 
 |   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp); | 
 |  | 
 | protected: | 
 |   unsigned short getSubclassDataFromValue() const { return SubclassData; } | 
 |   void setValueSubclassData(unsigned short D) { SubclassData = D; } | 
 | }; | 
 |  | 
 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { | 
 |   V.print(OS); | 
 |   return OS; | 
 | } | 
 |  | 
 | void Use::set(Value *V) { | 
 |   if (Val) removeFromList(); | 
 |   Val = V; | 
 |   if (V) V->addUse(*this); | 
 | } | 
 |  | 
 | Value *Use::operator=(Value *RHS) { | 
 |   set(RHS); | 
 |   return RHS; | 
 | } | 
 |  | 
 | const Use &Use::operator=(const Use &RHS) { | 
 |   set(RHS.Val); | 
 |   return *this; | 
 | } | 
 |  | 
 | template <class Compare> void Value::sortUseList(Compare Cmp) { | 
 |   if (!UseList || !UseList->Next) | 
 |     // No need to sort 0 or 1 uses. | 
 |     return; | 
 |  | 
 |   // Note: this function completely ignores Prev pointers until the end when | 
 |   // they're fixed en masse. | 
 |  | 
 |   // Create a binomial vector of sorted lists, visiting uses one at a time and | 
 |   // merging lists as necessary. | 
 |   const unsigned MaxSlots = 32; | 
 |   Use *Slots[MaxSlots]; | 
 |  | 
 |   // Collect the first use, turning it into a single-item list. | 
 |   Use *Next = UseList->Next; | 
 |   UseList->Next = nullptr; | 
 |   unsigned NumSlots = 1; | 
 |   Slots[0] = UseList; | 
 |  | 
 |   // Collect all but the last use. | 
 |   while (Next->Next) { | 
 |     Use *Current = Next; | 
 |     Next = Current->Next; | 
 |  | 
 |     // Turn Current into a single-item list. | 
 |     Current->Next = nullptr; | 
 |  | 
 |     // Save Current in the first available slot, merging on collisions. | 
 |     unsigned I; | 
 |     for (I = 0; I < NumSlots; ++I) { | 
 |       if (!Slots[I]) | 
 |         break; | 
 |  | 
 |       // Merge two lists, doubling the size of Current and emptying slot I. | 
 |       // | 
 |       // Since the uses in Slots[I] originally preceded those in Current, send | 
 |       // Slots[I] in as the left parameter to maintain a stable sort. | 
 |       Current = mergeUseLists(Slots[I], Current, Cmp); | 
 |       Slots[I] = nullptr; | 
 |     } | 
 |     // Check if this is a new slot. | 
 |     if (I == NumSlots) { | 
 |       ++NumSlots; | 
 |       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); | 
 |     } | 
 |  | 
 |     // Found an open slot. | 
 |     Slots[I] = Current; | 
 |   } | 
 |  | 
 |   // Merge all the lists together. | 
 |   assert(Next && "Expected one more Use"); | 
 |   assert(!Next->Next && "Expected only one Use"); | 
 |   UseList = Next; | 
 |   for (unsigned I = 0; I < NumSlots; ++I) | 
 |     if (Slots[I]) | 
 |       // Since the uses in Slots[I] originally preceded those in UseList, send | 
 |       // Slots[I] in as the left parameter to maintain a stable sort. | 
 |       UseList = mergeUseLists(Slots[I], UseList, Cmp); | 
 |  | 
 |   // Fix the Prev pointers. | 
 |   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { | 
 |     I->setPrev(Prev); | 
 |     Prev = &I->Next; | 
 |   } | 
 | } | 
 |  | 
 | // isa - Provide some specializations of isa so that we don't have to include | 
 | // the subtype header files to test to see if the value is a subclass... | 
 | // | 
 | template <> struct isa_impl<Constant, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() >= Value::ConstantFirstVal && | 
 |       Val.getValueID() <= Value::ConstantLastVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<ConstantData, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() >= Value::ConstantDataFirstVal && | 
 |            Val.getValueID() <= Value::ConstantDataLastVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<ConstantAggregate, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() >= Value::ConstantAggregateFirstVal && | 
 |            Val.getValueID() <= Value::ConstantAggregateLastVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<Argument, Value> { | 
 |   static inline bool doit (const Value &Val) { | 
 |     return Val.getValueID() == Value::ArgumentVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<InlineAsm, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() == Value::InlineAsmVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<Instruction, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() >= Value::InstructionVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<BasicBlock, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() == Value::BasicBlockVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<Function, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() == Value::FunctionVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<GlobalVariable, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() == Value::GlobalVariableVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<GlobalAlias, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() == Value::GlobalAliasVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<GlobalIFunc, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return Val.getValueID() == Value::GlobalIFuncVal; | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<GlobalIndirectSymbol, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<GlobalValue, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct isa_impl<GlobalObject, Value> { | 
 |   static inline bool doit(const Value &Val) { | 
 |     return isa<GlobalVariable>(Val) || isa<Function>(Val); | 
 |   } | 
 | }; | 
 |  | 
 | // Create wrappers for C Binding types (see CBindingWrapping.h). | 
 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) | 
 |  | 
 | // Specialized opaque value conversions. | 
 | inline Value **unwrap(LLVMValueRef *Vals) { | 
 |   return reinterpret_cast<Value**>(Vals); | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { | 
 | #ifndef NDEBUG | 
 |   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) | 
 |     unwrap<T>(*I); // For side effect of calling assert on invalid usage. | 
 | #endif | 
 |   (void)Length; | 
 |   return reinterpret_cast<T**>(Vals); | 
 | } | 
 |  | 
 | inline LLVMValueRef *wrap(const Value **Vals) { | 
 |   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); | 
 | } | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | #endif // LLVM_IR_VALUE_H |