| //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains logic for simplifying instructions based on information | 
 | // about how they are used. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 |  | 
 | #include "InstCombine.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 |  | 
 | /// ShrinkDemandedConstant - Check to see if the specified operand of the  | 
 | /// specified instruction is a constant integer.  If so, check to see if there | 
 | /// are any bits set in the constant that are not demanded.  If so, shrink the | 
 | /// constant and return true. | 
 | static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,  | 
 |                                    APInt Demanded) { | 
 |   assert(I && "No instruction?"); | 
 |   assert(OpNo < I->getNumOperands() && "Operand index too large"); | 
 |  | 
 |   // If the operand is not a constant integer, nothing to do. | 
 |   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); | 
 |   if (!OpC) return false; | 
 |  | 
 |   // If there are no bits set that aren't demanded, nothing to do. | 
 |   Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); | 
 |   if ((~Demanded & OpC->getValue()) == 0) | 
 |     return false; | 
 |  | 
 |   // This instruction is producing bits that are not demanded. Shrink the RHS. | 
 |   Demanded &= OpC->getValue(); | 
 |   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// SimplifyDemandedInstructionBits - Inst is an integer instruction that | 
 | /// SimplifyDemandedBits knows about.  See if the instruction has any | 
 | /// properties that allow us to simplify its operands. | 
 | bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { | 
 |   unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); | 
 |   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
 |   APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); | 
 |    | 
 |   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,  | 
 |                                      KnownZero, KnownOne, 0); | 
 |   if (V == 0) return false; | 
 |   if (V == &Inst) return true; | 
 |   ReplaceInstUsesWith(Inst, V); | 
 |   return true; | 
 | } | 
 |  | 
 | /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the | 
 | /// specified instruction operand if possible, updating it in place.  It returns | 
 | /// true if it made any change and false otherwise. | 
 | bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,  | 
 |                                         APInt &KnownZero, APInt &KnownOne, | 
 |                                         unsigned Depth) { | 
 |   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, | 
 |                                           KnownZero, KnownOne, Depth); | 
 |   if (NewVal == 0) return false; | 
 |   U = NewVal; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler | 
 | /// value based on the demanded bits.  When this function is called, it is known | 
 | /// that only the bits set in DemandedMask of the result of V are ever used | 
 | /// downstream. Consequently, depending on the mask and V, it may be possible | 
 | /// to replace V with a constant or one of its operands. In such cases, this | 
 | /// function does the replacement and returns true. In all other cases, it | 
 | /// returns false after analyzing the expression and setting KnownOne and known | 
 | /// to be one in the expression.  KnownZero contains all the bits that are known | 
 | /// to be zero in the expression. These are provided to potentially allow the | 
 | /// caller (which might recursively be SimplifyDemandedBits itself) to simplify | 
 | /// the expression. KnownOne and KnownZero always follow the invariant that  | 
 | /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that | 
 | /// the bits in KnownOne and KnownZero may only be accurate for those bits set | 
 | /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero | 
 | /// and KnownOne must all be the same. | 
 | /// | 
 | /// This returns null if it did not change anything and it permits no | 
 | /// simplification.  This returns V itself if it did some simplification of V's | 
 | /// operands based on the information about what bits are demanded. This returns | 
 | /// some other non-null value if it found out that V is equal to another value | 
 | /// in the context where the specified bits are demanded, but not for all users. | 
 | Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, | 
 |                                              APInt &KnownZero, APInt &KnownOne, | 
 |                                              unsigned Depth) { | 
 |   assert(V != 0 && "Null pointer of Value???"); | 
 |   assert(Depth <= 6 && "Limit Search Depth"); | 
 |   uint32_t BitWidth = DemandedMask.getBitWidth(); | 
 |   Type *VTy = V->getType(); | 
 |   assert((TD || !VTy->isPointerTy()) && | 
 |          "SimplifyDemandedBits needs to know bit widths!"); | 
 |   assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && | 
 |          (!VTy->isIntOrIntVectorTy() || | 
 |           VTy->getScalarSizeInBits() == BitWidth) && | 
 |          KnownZero.getBitWidth() == BitWidth && | 
 |          KnownOne.getBitWidth() == BitWidth && | 
 |          "Value *V, DemandedMask, KnownZero and KnownOne " | 
 |          "must have same BitWidth"); | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
 |     // We know all of the bits for a constant! | 
 |     KnownOne = CI->getValue() & DemandedMask; | 
 |     KnownZero = ~KnownOne & DemandedMask; | 
 |     return 0; | 
 |   } | 
 |   if (isa<ConstantPointerNull>(V)) { | 
 |     // We know all of the bits for a constant! | 
 |     KnownOne.clearAllBits(); | 
 |     KnownZero = DemandedMask; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   KnownZero.clearAllBits(); | 
 |   KnownOne.clearAllBits(); | 
 |   if (DemandedMask == 0) {   // Not demanding any bits from V. | 
 |     if (isa<UndefValue>(V)) | 
 |       return 0; | 
 |     return UndefValue::get(VTy); | 
 |   } | 
 |    | 
 |   if (Depth == 6)        // Limit search depth. | 
 |     return 0; | 
 |    | 
 |   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); | 
 |   APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); | 
 |  | 
 |   Instruction *I = dyn_cast<Instruction>(V); | 
 |   if (!I) { | 
 |     ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); | 
 |     return 0;        // Only analyze instructions. | 
 |   } | 
 |  | 
 |   // If there are multiple uses of this value and we aren't at the root, then | 
 |   // we can't do any simplifications of the operands, because DemandedMask | 
 |   // only reflects the bits demanded by *one* of the users. | 
 |   if (Depth != 0 && !I->hasOneUse()) { | 
 |     // Despite the fact that we can't simplify this instruction in all User's | 
 |     // context, we can at least compute the knownzero/knownone bits, and we can | 
 |     // do simplifications that apply to *just* the one user if we know that | 
 |     // this instruction has a simpler value in that context. | 
 |     if (I->getOpcode() == Instruction::And) { | 
 |       // If either the LHS or the RHS are Zero, the result is zero. | 
 |       ComputeMaskedBits(I->getOperand(1), DemandedMask, | 
 |                         RHSKnownZero, RHSKnownOne, Depth+1); | 
 |       ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, | 
 |                         LHSKnownZero, LHSKnownOne, Depth+1); | 
 |        | 
 |       // If all of the demanded bits are known 1 on one side, return the other. | 
 |       // These bits cannot contribute to the result of the 'and' in this | 
 |       // context. | 
 |       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==  | 
 |           (DemandedMask & ~LHSKnownZero)) | 
 |         return I->getOperand(0); | 
 |       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==  | 
 |           (DemandedMask & ~RHSKnownZero)) | 
 |         return I->getOperand(1); | 
 |        | 
 |       // If all of the demanded bits in the inputs are known zeros, return zero. | 
 |       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) | 
 |         return Constant::getNullValue(VTy); | 
 |        | 
 |     } else if (I->getOpcode() == Instruction::Or) { | 
 |       // We can simplify (X|Y) -> X or Y in the user's context if we know that | 
 |       // only bits from X or Y are demanded. | 
 |        | 
 |       // If either the LHS or the RHS are One, the result is One. | 
 |       ComputeMaskedBits(I->getOperand(1), DemandedMask,  | 
 |                         RHSKnownZero, RHSKnownOne, Depth+1); | 
 |       ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,  | 
 |                         LHSKnownZero, LHSKnownOne, Depth+1); | 
 |        | 
 |       // If all of the demanded bits are known zero on one side, return the | 
 |       // other.  These bits cannot contribute to the result of the 'or' in this | 
 |       // context. | 
 |       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==  | 
 |           (DemandedMask & ~LHSKnownOne)) | 
 |         return I->getOperand(0); | 
 |       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==  | 
 |           (DemandedMask & ~RHSKnownOne)) | 
 |         return I->getOperand(1); | 
 |        | 
 |       // If all of the potentially set bits on one side are known to be set on | 
 |       // the other side, just use the 'other' side. | 
 |       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==  | 
 |           (DemandedMask & (~RHSKnownZero))) | 
 |         return I->getOperand(0); | 
 |       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==  | 
 |           (DemandedMask & (~LHSKnownZero))) | 
 |         return I->getOperand(1); | 
 |     } | 
 |      | 
 |     // Compute the KnownZero/KnownOne bits to simplify things downstream. | 
 |     ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // If this is the root being simplified, allow it to have multiple uses, | 
 |   // just set the DemandedMask to all bits so that we can try to simplify the | 
 |   // operands.  This allows visitTruncInst (for example) to simplify the | 
 |   // operand of a trunc without duplicating all the logic below. | 
 |   if (Depth == 0 && !V->hasOneUse()) | 
 |     DemandedMask = APInt::getAllOnesValue(BitWidth); | 
 |    | 
 |   switch (I->getOpcode()) { | 
 |   default: | 
 |     ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); | 
 |     break; | 
 |   case Instruction::And: | 
 |     // If either the LHS or the RHS are Zero, the result is zero. | 
 |     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, | 
 |                              RHSKnownZero, RHSKnownOne, Depth+1) || | 
 |         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, | 
 |                              LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |       return I; | 
 |     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");  | 
 |     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");  | 
 |  | 
 |     // If all of the demanded bits are known 1 on one side, return the other. | 
 |     // These bits cannot contribute to the result of the 'and'. | 
 |     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==  | 
 |         (DemandedMask & ~LHSKnownZero)) | 
 |       return I->getOperand(0); | 
 |     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==  | 
 |         (DemandedMask & ~RHSKnownZero)) | 
 |       return I->getOperand(1); | 
 |      | 
 |     // If all of the demanded bits in the inputs are known zeros, return zero. | 
 |     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) | 
 |       return Constant::getNullValue(VTy); | 
 |        | 
 |     // If the RHS is a constant, see if we can simplify it. | 
 |     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) | 
 |       return I; | 
 |        | 
 |     // Output known-1 bits are only known if set in both the LHS & RHS. | 
 |     KnownOne = RHSKnownOne & LHSKnownOne; | 
 |     // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
 |     KnownZero = RHSKnownZero | LHSKnownZero; | 
 |     break; | 
 |   case Instruction::Or: | 
 |     // If either the LHS or the RHS are One, the result is One. | 
 |     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,  | 
 |                              RHSKnownZero, RHSKnownOne, Depth+1) || | 
 |         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,  | 
 |                              LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |       return I; | 
 |     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");  | 
 |     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If all of the demanded bits are known zero on one side, return the other. | 
 |     // These bits cannot contribute to the result of the 'or'. | 
 |     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==  | 
 |         (DemandedMask & ~LHSKnownOne)) | 
 |       return I->getOperand(0); | 
 |     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==  | 
 |         (DemandedMask & ~RHSKnownOne)) | 
 |       return I->getOperand(1); | 
 |  | 
 |     // If all of the potentially set bits on one side are known to be set on | 
 |     // the other side, just use the 'other' side. | 
 |     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==  | 
 |         (DemandedMask & (~RHSKnownZero))) | 
 |       return I->getOperand(0); | 
 |     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==  | 
 |         (DemandedMask & (~LHSKnownZero))) | 
 |       return I->getOperand(1); | 
 |          | 
 |     // If the RHS is a constant, see if we can simplify it. | 
 |     if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
 |       return I; | 
 |            | 
 |     // Output known-0 bits are only known if clear in both the LHS & RHS. | 
 |     KnownZero = RHSKnownZero & LHSKnownZero; | 
 |     // Output known-1 are known to be set if set in either the LHS | RHS. | 
 |     KnownOne = RHSKnownOne | LHSKnownOne; | 
 |     break; | 
 |   case Instruction::Xor: { | 
 |     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, | 
 |                              RHSKnownZero, RHSKnownOne, Depth+1) || | 
 |         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,  | 
 |                              LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |       return I; | 
 |     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");  | 
 |     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If all of the demanded bits are known zero on one side, return the other. | 
 |     // These bits cannot contribute to the result of the 'xor'. | 
 |     if ((DemandedMask & RHSKnownZero) == DemandedMask) | 
 |       return I->getOperand(0); | 
 |     if ((DemandedMask & LHSKnownZero) == DemandedMask) | 
 |       return I->getOperand(1); | 
 |      | 
 |     // If all of the demanded bits are known to be zero on one side or the | 
 |     // other, turn this into an *inclusive* or. | 
 |     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
 |     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { | 
 |       Instruction *Or =  | 
 |         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), | 
 |                                  I->getName()); | 
 |       return InsertNewInstWith(Or, *I); | 
 |     } | 
 |      | 
 |     // If all of the demanded bits on one side are known, and all of the set | 
 |     // bits on that side are also known to be set on the other side, turn this | 
 |     // into an AND, as we know the bits will be cleared. | 
 |     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
 |     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {  | 
 |       // all known | 
 |       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { | 
 |         Constant *AndC = Constant::getIntegerValue(VTy, | 
 |                                                    ~RHSKnownOne & DemandedMask); | 
 |         Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); | 
 |         return InsertNewInstWith(And, *I); | 
 |       } | 
 |     } | 
 |      | 
 |     // If the RHS is a constant, see if we can simplify it. | 
 |     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. | 
 |     if (ShrinkDemandedConstant(I, 1, DemandedMask)) | 
 |       return I; | 
 |      | 
 |     // If our LHS is an 'and' and if it has one use, and if any of the bits we | 
 |     // are flipping are known to be set, then the xor is just resetting those | 
 |     // bits to zero.  We can just knock out bits from the 'and' and the 'xor', | 
 |     // simplifying both of them. | 
 |     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) | 
 |       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && | 
 |           isa<ConstantInt>(I->getOperand(1)) && | 
 |           isa<ConstantInt>(LHSInst->getOperand(1)) && | 
 |           (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { | 
 |         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); | 
 |         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); | 
 |         APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); | 
 |          | 
 |         Constant *AndC = | 
 |           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); | 
 |         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); | 
 |         InsertNewInstWith(NewAnd, *I); | 
 |          | 
 |         Constant *XorC = | 
 |           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); | 
 |         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); | 
 |         return InsertNewInstWith(NewXor, *I); | 
 |       } | 
 |  | 
 |     // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
 |     KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); | 
 |     // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
 |     KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); | 
 |     break; | 
 |   } | 
 |   case Instruction::Select: | 
 |     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, | 
 |                              RHSKnownZero, RHSKnownOne, Depth+1) || | 
 |         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,  | 
 |                              LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |       return I; | 
 |     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");  | 
 |     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If the operands are constants, see if we can simplify them. | 
 |     if (ShrinkDemandedConstant(I, 1, DemandedMask) || | 
 |         ShrinkDemandedConstant(I, 2, DemandedMask)) | 
 |       return I; | 
 |      | 
 |     // Only known if known in both the LHS and RHS. | 
 |     KnownOne = RHSKnownOne & LHSKnownOne; | 
 |     KnownZero = RHSKnownZero & LHSKnownZero; | 
 |     break; | 
 |   case Instruction::Trunc: { | 
 |     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); | 
 |     DemandedMask = DemandedMask.zext(truncBf); | 
 |     KnownZero = KnownZero.zext(truncBf); | 
 |     KnownOne = KnownOne.zext(truncBf); | 
 |     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,  | 
 |                              KnownZero, KnownOne, Depth+1)) | 
 |       return I; | 
 |     DemandedMask = DemandedMask.trunc(BitWidth); | 
 |     KnownZero = KnownZero.trunc(BitWidth); | 
 |     KnownOne = KnownOne.trunc(BitWidth); | 
 |     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");  | 
 |     break; | 
 |   } | 
 |   case Instruction::BitCast: | 
 |     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) | 
 |       return 0;  // vector->int or fp->int? | 
 |  | 
 |     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { | 
 |       if (VectorType *SrcVTy = | 
 |             dyn_cast<VectorType>(I->getOperand(0)->getType())) { | 
 |         if (DstVTy->getNumElements() != SrcVTy->getNumElements()) | 
 |           // Don't touch a bitcast between vectors of different element counts. | 
 |           return 0; | 
 |       } else | 
 |         // Don't touch a scalar-to-vector bitcast. | 
 |         return 0; | 
 |     } else if (I->getOperand(0)->getType()->isVectorTy()) | 
 |       // Don't touch a vector-to-scalar bitcast. | 
 |       return 0; | 
 |  | 
 |     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, | 
 |                              KnownZero, KnownOne, Depth+1)) | 
 |       return I; | 
 |     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");  | 
 |     break; | 
 |   case Instruction::ZExt: { | 
 |     // Compute the bits in the result that are not present in the input. | 
 |     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); | 
 |      | 
 |     DemandedMask = DemandedMask.trunc(SrcBitWidth); | 
 |     KnownZero = KnownZero.trunc(SrcBitWidth); | 
 |     KnownOne = KnownOne.trunc(SrcBitWidth); | 
 |     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, | 
 |                              KnownZero, KnownOne, Depth+1)) | 
 |       return I; | 
 |     DemandedMask = DemandedMask.zext(BitWidth); | 
 |     KnownZero = KnownZero.zext(BitWidth); | 
 |     KnownOne = KnownOne.zext(BitWidth); | 
 |     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");  | 
 |     // The top bits are known to be zero. | 
 |     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); | 
 |     break; | 
 |   } | 
 |   case Instruction::SExt: { | 
 |     // Compute the bits in the result that are not present in the input. | 
 |     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); | 
 |      | 
 |     APInt InputDemandedBits = DemandedMask &  | 
 |                               APInt::getLowBitsSet(BitWidth, SrcBitWidth); | 
 |  | 
 |     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); | 
 |     // If any of the sign extended bits are demanded, we know that the sign | 
 |     // bit is demanded. | 
 |     if ((NewBits & DemandedMask) != 0) | 
 |       InputDemandedBits.setBit(SrcBitWidth-1); | 
 |        | 
 |     InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); | 
 |     KnownZero = KnownZero.trunc(SrcBitWidth); | 
 |     KnownOne = KnownOne.trunc(SrcBitWidth); | 
 |     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, | 
 |                              KnownZero, KnownOne, Depth+1)) | 
 |       return I; | 
 |     InputDemandedBits = InputDemandedBits.zext(BitWidth); | 
 |     KnownZero = KnownZero.zext(BitWidth); | 
 |     KnownOne = KnownOne.zext(BitWidth); | 
 |     assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");  | 
 |        | 
 |     // If the sign bit of the input is known set or clear, then we know the | 
 |     // top bits of the result. | 
 |  | 
 |     // If the input sign bit is known zero, or if the NewBits are not demanded | 
 |     // convert this into a zero extension. | 
 |     if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { | 
 |       // Convert to ZExt cast | 
 |       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); | 
 |       return InsertNewInstWith(NewCast, *I); | 
 |     } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set | 
 |       KnownOne |= NewBits; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Instruction::Add: { | 
 |     // Figure out what the input bits are.  If the top bits of the and result | 
 |     // are not demanded, then the add doesn't demand them from its input | 
 |     // either. | 
 |     unsigned NLZ = DemandedMask.countLeadingZeros(); | 
 |        | 
 |     // If there is a constant on the RHS, there are a variety of xformations | 
 |     // we can do. | 
 |     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       // If null, this should be simplified elsewhere.  Some of the xforms here | 
 |       // won't work if the RHS is zero. | 
 |       if (RHS->isZero()) | 
 |         break; | 
 |        | 
 |       // If the top bit of the output is demanded, demand everything from the | 
 |       // input.  Otherwise, we demand all the input bits except NLZ top bits. | 
 |       APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); | 
 |  | 
 |       // Find information about known zero/one bits in the input. | 
 |       if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,  | 
 |                                LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |         return I; | 
 |  | 
 |       // If the RHS of the add has bits set that can't affect the input, reduce | 
 |       // the constant. | 
 |       if (ShrinkDemandedConstant(I, 1, InDemandedBits)) | 
 |         return I; | 
 |        | 
 |       // Avoid excess work. | 
 |       if (LHSKnownZero == 0 && LHSKnownOne == 0) | 
 |         break; | 
 |        | 
 |       // Turn it into OR if input bits are zero. | 
 |       if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { | 
 |         Instruction *Or = | 
 |           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), | 
 |                                    I->getName()); | 
 |         return InsertNewInstWith(Or, *I); | 
 |       } | 
 |        | 
 |       // We can say something about the output known-zero and known-one bits, | 
 |       // depending on potential carries from the input constant and the | 
 |       // unknowns.  For example if the LHS is known to have at most the 0x0F0F0 | 
 |       // bits set and the RHS constant is 0x01001, then we know we have a known | 
 |       // one mask of 0x00001 and a known zero mask of 0xE0F0E. | 
 |        | 
 |       // To compute this, we first compute the potential carry bits.  These are | 
 |       // the bits which may be modified.  I'm not aware of a better way to do | 
 |       // this scan. | 
 |       const APInt &RHSVal = RHS->getValue(); | 
 |       APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); | 
 |        | 
 |       // Now that we know which bits have carries, compute the known-1/0 sets. | 
 |        | 
 |       // Bits are known one if they are known zero in one operand and one in the | 
 |       // other, and there is no input carry. | 
 |       KnownOne = ((LHSKnownZero & RHSVal) |  | 
 |                   (LHSKnownOne & ~RHSVal)) & ~CarryBits; | 
 |        | 
 |       // Bits are known zero if they are known zero in both operands and there | 
 |       // is no input carry. | 
 |       KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; | 
 |     } else { | 
 |       // If the high-bits of this ADD are not demanded, then it does not demand | 
 |       // the high bits of its LHS or RHS. | 
 |       if (DemandedMask[BitWidth-1] == 0) { | 
 |         // Right fill the mask of bits for this ADD to demand the most | 
 |         // significant bit and all those below it. | 
 |         APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); | 
 |         if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, | 
 |                                  LHSKnownZero, LHSKnownOne, Depth+1) || | 
 |             SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, | 
 |                                  LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |           return I; | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Instruction::Sub: | 
 |     // If the high-bits of this SUB are not demanded, then it does not demand | 
 |     // the high bits of its LHS or RHS. | 
 |     if (DemandedMask[BitWidth-1] == 0) { | 
 |       // Right fill the mask of bits for this SUB to demand the most | 
 |       // significant bit and all those below it. | 
 |       uint32_t NLZ = DemandedMask.countLeadingZeros(); | 
 |       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); | 
 |       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, | 
 |                                LHSKnownZero, LHSKnownOne, Depth+1) || | 
 |           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, | 
 |                                LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |         return I; | 
 |     } | 
 |     // Otherwise just hand the sub off to ComputeMaskedBits to fill in | 
 |     // the known zeros and ones. | 
 |     ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); | 
 |     break; | 
 |   case Instruction::Shl: | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
 |       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); | 
 |        | 
 |       // If the shift is NUW/NSW, then it does demand the high bits. | 
 |       ShlOperator *IOp = cast<ShlOperator>(I); | 
 |       if (IOp->hasNoSignedWrap()) | 
 |         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); | 
 |       else if (IOp->hasNoUnsignedWrap()) | 
 |         DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); | 
 |        | 
 |       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,  | 
 |                                KnownZero, KnownOne, Depth+1)) | 
 |         return I; | 
 |       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); | 
 |       KnownZero <<= ShiftAmt; | 
 |       KnownOne  <<= ShiftAmt; | 
 |       // low bits known zero. | 
 |       if (ShiftAmt) | 
 |         KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); | 
 |     } | 
 |     break; | 
 |   case Instruction::LShr: | 
 |     // For a logical shift right | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
 |        | 
 |       // Unsigned shift right. | 
 |       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); | 
 |        | 
 |       // If the shift is exact, then it does demand the low bits (and knows that | 
 |       // they are zero). | 
 |       if (cast<LShrOperator>(I)->isExact()) | 
 |         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); | 
 |        | 
 |       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, | 
 |                                KnownZero, KnownOne, Depth+1)) | 
 |         return I; | 
 |       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); | 
 |       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); | 
 |       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt); | 
 |       if (ShiftAmt) { | 
 |         // Compute the new bits that are at the top now. | 
 |         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); | 
 |         KnownZero |= HighBits;  // high bits known zero. | 
 |       } | 
 |     } | 
 |     break; | 
 |   case Instruction::AShr: | 
 |     // If this is an arithmetic shift right and only the low-bit is set, we can | 
 |     // always convert this into a logical shr, even if the shift amount is | 
 |     // variable.  The low bit of the shift cannot be an input sign bit unless | 
 |     // the shift amount is >= the size of the datatype, which is undefined. | 
 |     if (DemandedMask == 1) { | 
 |       // Perform the logical shift right. | 
 |       Instruction *NewVal = BinaryOperator::CreateLShr( | 
 |                         I->getOperand(0), I->getOperand(1), I->getName()); | 
 |       return InsertNewInstWith(NewVal, *I); | 
 |     }     | 
 |  | 
 |     // If the sign bit is the only bit demanded by this ashr, then there is no | 
 |     // need to do it, the shift doesn't change the high bit. | 
 |     if (DemandedMask.isSignBit()) | 
 |       return I->getOperand(0); | 
 |      | 
 |     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); | 
 |        | 
 |       // Signed shift right. | 
 |       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); | 
 |       // If any of the "high bits" are demanded, we should set the sign bit as | 
 |       // demanded. | 
 |       if (DemandedMask.countLeadingZeros() <= ShiftAmt) | 
 |         DemandedMaskIn.setBit(BitWidth-1); | 
 |        | 
 |       // If the shift is exact, then it does demand the low bits (and knows that | 
 |       // they are zero). | 
 |       if (cast<AShrOperator>(I)->isExact()) | 
 |         DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); | 
 |        | 
 |       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, | 
 |                                KnownZero, KnownOne, Depth+1)) | 
 |         return I; | 
 |       assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); | 
 |       // Compute the new bits that are at the top now. | 
 |       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); | 
 |       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); | 
 |       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt); | 
 |          | 
 |       // Handle the sign bits. | 
 |       APInt SignBit(APInt::getSignBit(BitWidth)); | 
 |       // Adjust to where it is now in the mask. | 
 |       SignBit = APIntOps::lshr(SignBit, ShiftAmt);   | 
 |          | 
 |       // If the input sign bit is known to be zero, or if none of the top bits | 
 |       // are demanded, turn this into an unsigned shift right. | 
 |       if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||  | 
 |           (HighBits & ~DemandedMask) == HighBits) { | 
 |         // Perform the logical shift right. | 
 |         Instruction *NewVal = BinaryOperator::CreateLShr( | 
 |                           I->getOperand(0), SA, I->getName()); | 
 |         return InsertNewInstWith(NewVal, *I); | 
 |       } else if ((KnownOne & SignBit) != 0) { // New bits are known one. | 
 |         KnownOne |= HighBits; | 
 |       } | 
 |     } | 
 |     break; | 
 |   case Instruction::SRem: | 
 |     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |       // X % -1 demands all the bits because we don't want to introduce | 
 |       // INT_MIN % -1 (== undef) by accident. | 
 |       if (Rem->isAllOnesValue()) | 
 |         break; | 
 |       APInt RA = Rem->getValue().abs(); | 
 |       if (RA.isPowerOf2()) { | 
 |         if (DemandedMask.ult(RA))    // srem won't affect demanded bits | 
 |           return I->getOperand(0); | 
 |  | 
 |         APInt LowBits = RA - 1; | 
 |         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); | 
 |         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, | 
 |                                  LHSKnownZero, LHSKnownOne, Depth+1)) | 
 |           return I; | 
 |  | 
 |         // The low bits of LHS are unchanged by the srem. | 
 |         KnownZero = LHSKnownZero & LowBits; | 
 |         KnownOne = LHSKnownOne & LowBits; | 
 |  | 
 |         // If LHS is non-negative or has all low bits zero, then the upper bits | 
 |         // are all zero. | 
 |         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) | 
 |           KnownZero |= ~LowBits; | 
 |  | 
 |         // If LHS is negative and not all low bits are zero, then the upper bits | 
 |         // are all one. | 
 |         if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) | 
 |           KnownOne |= ~LowBits; | 
 |  | 
 |         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");  | 
 |       } | 
 |     } | 
 |  | 
 |     // The sign bit is the LHS's sign bit, except when the result of the | 
 |     // remainder is zero. | 
 |     if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { | 
 |       APInt Mask2 = APInt::getSignBit(BitWidth); | 
 |       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); | 
 |       ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, | 
 |                         Depth+1); | 
 |       // If it's known zero, our sign bit is also zero. | 
 |       if (LHSKnownZero.isNegative()) | 
 |         KnownZero |= LHSKnownZero; | 
 |     } | 
 |     break; | 
 |   case Instruction::URem: { | 
 |     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); | 
 |     APInt AllOnes = APInt::getAllOnesValue(BitWidth); | 
 |     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, | 
 |                              KnownZero2, KnownOne2, Depth+1) || | 
 |         SimplifyDemandedBits(I->getOperandUse(1), AllOnes, | 
 |                              KnownZero2, KnownOne2, Depth+1)) | 
 |       return I; | 
 |  | 
 |     unsigned Leaders = KnownZero2.countLeadingOnes(); | 
 |     Leaders = std::max(Leaders, | 
 |                        KnownZero2.countLeadingOnes()); | 
 |     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; | 
 |     break; | 
 |   } | 
 |   case Instruction::Call: | 
 |     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
 |       switch (II->getIntrinsicID()) { | 
 |       default: break; | 
 |       case Intrinsic::bswap: { | 
 |         // If the only bits demanded come from one byte of the bswap result, | 
 |         // just shift the input byte into position to eliminate the bswap. | 
 |         unsigned NLZ = DemandedMask.countLeadingZeros(); | 
 |         unsigned NTZ = DemandedMask.countTrailingZeros(); | 
 |            | 
 |         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then | 
 |         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we | 
 |         // have 14 leading zeros, round to 8. | 
 |         NLZ &= ~7; | 
 |         NTZ &= ~7; | 
 |         // If we need exactly one byte, we can do this transformation. | 
 |         if (BitWidth-NLZ-NTZ == 8) { | 
 |           unsigned ResultBit = NTZ; | 
 |           unsigned InputBit = BitWidth-NTZ-8; | 
 |            | 
 |           // Replace this with either a left or right shift to get the byte into | 
 |           // the right place. | 
 |           Instruction *NewVal; | 
 |           if (InputBit > ResultBit) | 
 |             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), | 
 |                     ConstantInt::get(I->getType(), InputBit-ResultBit)); | 
 |           else | 
 |             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), | 
 |                     ConstantInt::get(I->getType(), ResultBit-InputBit)); | 
 |           NewVal->takeName(I); | 
 |           return InsertNewInstWith(NewVal, *I); | 
 |         } | 
 |            | 
 |         // TODO: Could compute known zero/one bits based on the input. | 
 |         break; | 
 |       } | 
 |       case Intrinsic::x86_sse42_crc32_64_8: | 
 |       case Intrinsic::x86_sse42_crc32_64_64: | 
 |         KnownZero = APInt::getHighBitsSet(64, 32); | 
 |         return 0; | 
 |       } | 
 |     } | 
 |     ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); | 
 |     break; | 
 |   } | 
 |    | 
 |   // If the client is only demanding bits that we know, return the known | 
 |   // constant. | 
 |   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) | 
 |     return Constant::getIntegerValue(VTy, KnownOne); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// SimplifyDemandedVectorElts - The specified value produces a vector with | 
 | /// any number of elements. DemandedElts contains the set of elements that are | 
 | /// actually used by the caller.  This method analyzes which elements of the | 
 | /// operand are undef and returns that information in UndefElts. | 
 | /// | 
 | /// If the information about demanded elements can be used to simplify the | 
 | /// operation, the operation is simplified, then the resultant value is | 
 | /// returned.  This returns null if no change was made. | 
 | Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, | 
 |                                                 APInt &UndefElts, | 
 |                                                 unsigned Depth) { | 
 |   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); | 
 |   APInt EltMask(APInt::getAllOnesValue(VWidth)); | 
 |   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); | 
 |  | 
 |   if (isa<UndefValue>(V)) { | 
 |     // If the entire vector is undefined, just return this info. | 
 |     UndefElts = EltMask; | 
 |     return 0; | 
 |   } | 
 |    | 
 |   if (DemandedElts == 0) { // If nothing is demanded, provide undef. | 
 |     UndefElts = EltMask; | 
 |     return UndefValue::get(V->getType()); | 
 |   } | 
 |  | 
 |   UndefElts = 0; | 
 |   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { | 
 |     Type *EltTy = cast<VectorType>(V->getType())->getElementType(); | 
 |     Constant *Undef = UndefValue::get(EltTy); | 
 |  | 
 |     std::vector<Constant*> Elts; | 
 |     for (unsigned i = 0; i != VWidth; ++i) | 
 |       if (!DemandedElts[i]) {   // If not demanded, set to undef. | 
 |         Elts.push_back(Undef); | 
 |         UndefElts.setBit(i); | 
 |       } else if (isa<UndefValue>(CV->getOperand(i))) {   // Already undef. | 
 |         Elts.push_back(Undef); | 
 |         UndefElts.setBit(i); | 
 |       } else {                               // Otherwise, defined. | 
 |         Elts.push_back(CV->getOperand(i)); | 
 |       } | 
 |  | 
 |     // If we changed the constant, return it. | 
 |     Constant *NewCP = ConstantVector::get(Elts); | 
 |     return NewCP != CV ? NewCP : 0; | 
 |   } | 
 |    | 
 |   if (isa<ConstantAggregateZero>(V)) { | 
 |     // Simplify the CAZ to a ConstantVector where the non-demanded elements are | 
 |     // set to undef. | 
 |      | 
 |     // Check if this is identity. If so, return 0 since we are not simplifying | 
 |     // anything. | 
 |     if (DemandedElts.isAllOnesValue()) | 
 |       return 0; | 
 |      | 
 |     Type *EltTy = cast<VectorType>(V->getType())->getElementType(); | 
 |     Constant *Zero = Constant::getNullValue(EltTy); | 
 |     Constant *Undef = UndefValue::get(EltTy); | 
 |     std::vector<Constant*> Elts; | 
 |     for (unsigned i = 0; i != VWidth; ++i) { | 
 |       Constant *Elt = DemandedElts[i] ? Zero : Undef; | 
 |       Elts.push_back(Elt); | 
 |     } | 
 |     UndefElts = DemandedElts ^ EltMask; | 
 |     return ConstantVector::get(Elts); | 
 |   } | 
 |    | 
 |   // Limit search depth. | 
 |   if (Depth == 10) | 
 |     return 0; | 
 |  | 
 |   // If multiple users are using the root value, proceed with | 
 |   // simplification conservatively assuming that all elements | 
 |   // are needed. | 
 |   if (!V->hasOneUse()) { | 
 |     // Quit if we find multiple users of a non-root value though. | 
 |     // They'll be handled when it's their turn to be visited by | 
 |     // the main instcombine process. | 
 |     if (Depth != 0) | 
 |       // TODO: Just compute the UndefElts information recursively. | 
 |       return 0; | 
 |  | 
 |     // Conservatively assume that all elements are needed. | 
 |     DemandedElts = EltMask; | 
 |   } | 
 |    | 
 |   Instruction *I = dyn_cast<Instruction>(V); | 
 |   if (!I) return 0;        // Only analyze instructions. | 
 |    | 
 |   bool MadeChange = false; | 
 |   APInt UndefElts2(VWidth, 0); | 
 |   Value *TmpV; | 
 |   switch (I->getOpcode()) { | 
 |   default: break; | 
 |      | 
 |   case Instruction::InsertElement: { | 
 |     // If this is a variable index, we don't know which element it overwrites. | 
 |     // demand exactly the same input as we produce. | 
 |     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); | 
 |     if (Idx == 0) { | 
 |       // Note that we can't propagate undef elt info, because we don't know | 
 |       // which elt is getting updated. | 
 |       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
 |                                         UndefElts2, Depth+1); | 
 |       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
 |       break; | 
 |     } | 
 |      | 
 |     // If this is inserting an element that isn't demanded, remove this | 
 |     // insertelement. | 
 |     unsigned IdxNo = Idx->getZExtValue(); | 
 |     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { | 
 |       Worklist.Add(I); | 
 |       return I->getOperand(0); | 
 |     } | 
 |      | 
 |     // Otherwise, the element inserted overwrites whatever was there, so the | 
 |     // input demanded set is simpler than the output set. | 
 |     APInt DemandedElts2 = DemandedElts; | 
 |     DemandedElts2.clearBit(IdxNo); | 
 |     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, | 
 |                                       UndefElts, Depth+1); | 
 |     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
 |  | 
 |     // The inserted element is defined. | 
 |     UndefElts.clearBit(IdxNo); | 
 |     break; | 
 |   } | 
 |   case Instruction::ShuffleVector: { | 
 |     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); | 
 |     uint64_t LHSVWidth = | 
 |       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); | 
 |     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); | 
 |     for (unsigned i = 0; i < VWidth; i++) { | 
 |       if (DemandedElts[i]) { | 
 |         unsigned MaskVal = Shuffle->getMaskValue(i); | 
 |         if (MaskVal != -1u) { | 
 |           assert(MaskVal < LHSVWidth * 2 && | 
 |                  "shufflevector mask index out of range!"); | 
 |           if (MaskVal < LHSVWidth) | 
 |             LeftDemanded.setBit(MaskVal); | 
 |           else | 
 |             RightDemanded.setBit(MaskVal - LHSVWidth); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     APInt UndefElts4(LHSVWidth, 0); | 
 |     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, | 
 |                                       UndefElts4, Depth+1); | 
 |     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
 |  | 
 |     APInt UndefElts3(LHSVWidth, 0); | 
 |     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, | 
 |                                       UndefElts3, Depth+1); | 
 |     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
 |  | 
 |     bool NewUndefElts = false; | 
 |     for (unsigned i = 0; i < VWidth; i++) { | 
 |       unsigned MaskVal = Shuffle->getMaskValue(i); | 
 |       if (MaskVal == -1u) { | 
 |         UndefElts.setBit(i); | 
 |       } else if (!DemandedElts[i]) { | 
 |         NewUndefElts = true; | 
 |         UndefElts.setBit(i); | 
 |       } else if (MaskVal < LHSVWidth) { | 
 |         if (UndefElts4[MaskVal]) { | 
 |           NewUndefElts = true; | 
 |           UndefElts.setBit(i); | 
 |         } | 
 |       } else { | 
 |         if (UndefElts3[MaskVal - LHSVWidth]) { | 
 |           NewUndefElts = true; | 
 |           UndefElts.setBit(i); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (NewUndefElts) { | 
 |       // Add additional discovered undefs. | 
 |       std::vector<Constant*> Elts; | 
 |       for (unsigned i = 0; i < VWidth; ++i) { | 
 |         if (UndefElts[i]) | 
 |           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); | 
 |         else | 
 |           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), | 
 |                                           Shuffle->getMaskValue(i))); | 
 |       } | 
 |       I->setOperand(2, ConstantVector::get(Elts)); | 
 |       MadeChange = true; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Instruction::BitCast: { | 
 |     // Vector->vector casts only. | 
 |     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); | 
 |     if (!VTy) break; | 
 |     unsigned InVWidth = VTy->getNumElements(); | 
 |     APInt InputDemandedElts(InVWidth, 0); | 
 |     unsigned Ratio; | 
 |  | 
 |     if (VWidth == InVWidth) { | 
 |       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same | 
 |       // elements as are demanded of us. | 
 |       Ratio = 1; | 
 |       InputDemandedElts = DemandedElts; | 
 |     } else if (VWidth > InVWidth) { | 
 |       // Untested so far. | 
 |       break; | 
 |        | 
 |       // If there are more elements in the result than there are in the source, | 
 |       // then an input element is live if any of the corresponding output | 
 |       // elements are live. | 
 |       Ratio = VWidth/InVWidth; | 
 |       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { | 
 |         if (DemandedElts[OutIdx]) | 
 |           InputDemandedElts.setBit(OutIdx/Ratio); | 
 |       } | 
 |     } else { | 
 |       // Untested so far. | 
 |       break; | 
 |        | 
 |       // If there are more elements in the source than there are in the result, | 
 |       // then an input element is live if the corresponding output element is | 
 |       // live. | 
 |       Ratio = InVWidth/VWidth; | 
 |       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) | 
 |         if (DemandedElts[InIdx/Ratio]) | 
 |           InputDemandedElts.setBit(InIdx); | 
 |     } | 
 |      | 
 |     // div/rem demand all inputs, because they don't want divide by zero. | 
 |     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, | 
 |                                       UndefElts2, Depth+1); | 
 |     if (TmpV) { | 
 |       I->setOperand(0, TmpV); | 
 |       MadeChange = true; | 
 |     } | 
 |      | 
 |     UndefElts = UndefElts2; | 
 |     if (VWidth > InVWidth) { | 
 |       llvm_unreachable("Unimp"); | 
 |       // If there are more elements in the result than there are in the source, | 
 |       // then an output element is undef if the corresponding input element is | 
 |       // undef. | 
 |       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) | 
 |         if (UndefElts2[OutIdx/Ratio]) | 
 |           UndefElts.setBit(OutIdx); | 
 |     } else if (VWidth < InVWidth) { | 
 |       llvm_unreachable("Unimp"); | 
 |       // If there are more elements in the source than there are in the result, | 
 |       // then a result element is undef if all of the corresponding input | 
 |       // elements are undef. | 
 |       UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef. | 
 |       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) | 
 |         if (!UndefElts2[InIdx])            // Not undef? | 
 |           UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit. | 
 |     } | 
 |     break; | 
 |   } | 
 |   case Instruction::And: | 
 |   case Instruction::Or: | 
 |   case Instruction::Xor: | 
 |   case Instruction::Add: | 
 |   case Instruction::Sub: | 
 |   case Instruction::Mul: | 
 |     // div/rem demand all inputs, because they don't want divide by zero. | 
 |     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, | 
 |                                       UndefElts, Depth+1); | 
 |     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } | 
 |     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, | 
 |                                       UndefElts2, Depth+1); | 
 |     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } | 
 |        | 
 |     // Output elements are undefined if both are undefined.  Consider things | 
 |     // like undef&0.  The result is known zero, not undef. | 
 |     UndefElts &= UndefElts2; | 
 |     break; | 
 |      | 
 |   case Instruction::Call: { | 
 |     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); | 
 |     if (!II) break; | 
 |     switch (II->getIntrinsicID()) { | 
 |     default: break; | 
 |        | 
 |     // Binary vector operations that work column-wise.  A dest element is a | 
 |     // function of the corresponding input elements from the two inputs. | 
 |     case Intrinsic::x86_sse_sub_ss: | 
 |     case Intrinsic::x86_sse_mul_ss: | 
 |     case Intrinsic::x86_sse_min_ss: | 
 |     case Intrinsic::x86_sse_max_ss: | 
 |     case Intrinsic::x86_sse2_sub_sd: | 
 |     case Intrinsic::x86_sse2_mul_sd: | 
 |     case Intrinsic::x86_sse2_min_sd: | 
 |     case Intrinsic::x86_sse2_max_sd: | 
 |       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, | 
 |                                         UndefElts, Depth+1); | 
 |       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } | 
 |       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, | 
 |                                         UndefElts2, Depth+1); | 
 |       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } | 
 |  | 
 |       // If only the low elt is demanded and this is a scalarizable intrinsic, | 
 |       // scalarize it now. | 
 |       if (DemandedElts == 1) { | 
 |         switch (II->getIntrinsicID()) { | 
 |         default: break; | 
 |         case Intrinsic::x86_sse_sub_ss: | 
 |         case Intrinsic::x86_sse_mul_ss: | 
 |         case Intrinsic::x86_sse2_sub_sd: | 
 |         case Intrinsic::x86_sse2_mul_sd: | 
 |           // TODO: Lower MIN/MAX/ABS/etc | 
 |           Value *LHS = II->getArgOperand(0); | 
 |           Value *RHS = II->getArgOperand(1); | 
 |           // Extract the element as scalars. | 
 |           LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,  | 
 |             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); | 
 |           RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, | 
 |             ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); | 
 |            | 
 |           switch (II->getIntrinsicID()) { | 
 |           default: llvm_unreachable("Case stmts out of sync!"); | 
 |           case Intrinsic::x86_sse_sub_ss: | 
 |           case Intrinsic::x86_sse2_sub_sd: | 
 |             TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, | 
 |                                                         II->getName()), *II); | 
 |             break; | 
 |           case Intrinsic::x86_sse_mul_ss: | 
 |           case Intrinsic::x86_sse2_mul_sd: | 
 |             TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, | 
 |                                                          II->getName()), *II); | 
 |             break; | 
 |           } | 
 |            | 
 |           Instruction *New = | 
 |             InsertElementInst::Create( | 
 |               UndefValue::get(II->getType()), TmpV, | 
 |               ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), | 
 |                                       II->getName()); | 
 |           InsertNewInstWith(New, *II); | 
 |           return New; | 
 |         }             | 
 |       } | 
 |          | 
 |       // Output elements are undefined if both are undefined.  Consider things | 
 |       // like undef&0.  The result is known zero, not undef. | 
 |       UndefElts &= UndefElts2; | 
 |       break; | 
 |     } | 
 |     break; | 
 |   } | 
 |   } | 
 |   return MadeChange ? I : 0; | 
 | } |