| //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the SmallVector class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_SMALLVECTOR_H |
| #define LLVM_ADT_SMALLVECTOR_H |
| |
| #include "llvm/Support/type_traits.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <cstring> |
| #include <iterator> |
| #include <memory> |
| |
| #ifdef _MSC_VER |
| namespace std { |
| #if _MSC_VER <= 1310 |
| // Work around flawed VC++ implementation of std::uninitialized_copy. Define |
| // additional overloads so that elements with pointer types are recognized as |
| // scalars and not objects, causing bizarre type conversion errors. |
| template<class T1, class T2> |
| inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { |
| _Scalar_ptr_iterator_tag _Cat; |
| return _Cat; |
| } |
| |
| template<class T1, class T2> |
| inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { |
| _Scalar_ptr_iterator_tag _Cat; |
| return _Cat; |
| } |
| #else |
| // FIXME: It is not clear if the problem is fixed in VS 2005. What is clear |
| // is that the above hack won't work if it wasn't fixed. |
| #endif |
| } |
| #endif |
| |
| namespace llvm { |
| |
| /// SmallVectorBase - This is all the non-templated stuff common to all |
| /// SmallVectors. |
| class SmallVectorBase { |
| protected: |
| void *BeginX, *EndX, *CapacityX; |
| |
| // Allocate raw space for N elements of type T. If T has a ctor or dtor, we |
| // don't want it to be automatically run, so we need to represent the space as |
| // something else. An array of char would work great, but might not be |
| // aligned sufficiently. Instead we use some number of union instances for |
| // the space, which guarantee maximal alignment. |
| union U { |
| double D; |
| long double LD; |
| long long L; |
| void *P; |
| } FirstEl; |
| // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| |
| protected: |
| SmallVectorBase(size_t Size) |
| : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {} |
| |
| /// isSmall - Return true if this is a smallvector which has not had dynamic |
| /// memory allocated for it. |
| bool isSmall() const { |
| return BeginX == static_cast<const void*>(&FirstEl); |
| } |
| |
| /// grow_pod - This is an implementation of the grow() method which only works |
| /// on POD-like data types and is out of line to reduce code duplication. |
| void grow_pod(size_t MinSizeInBytes, size_t TSize); |
| |
| public: |
| /// size_in_bytes - This returns size()*sizeof(T). |
| size_t size_in_bytes() const { |
| return size_t((char*)EndX - (char*)BeginX); |
| } |
| |
| /// capacity_in_bytes - This returns capacity()*sizeof(T). |
| size_t capacity_in_bytes() const { |
| return size_t((char*)CapacityX - (char*)BeginX); |
| } |
| |
| bool empty() const { return BeginX == EndX; } |
| }; |
| |
| |
| template <typename T> |
| class SmallVectorTemplateCommon : public SmallVectorBase { |
| protected: |
| void setEnd(T *P) { this->EndX = P; } |
| public: |
| SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {} |
| |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef T value_type; |
| typedef T *iterator; |
| typedef const T *const_iterator; |
| |
| typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
| typedef std::reverse_iterator<iterator> reverse_iterator; |
| |
| typedef T &reference; |
| typedef const T &const_reference; |
| typedef T *pointer; |
| typedef const T *const_pointer; |
| |
| // forward iterator creation methods. |
| iterator begin() { return (iterator)this->BeginX; } |
| const_iterator begin() const { return (const_iterator)this->BeginX; } |
| iterator end() { return (iterator)this->EndX; } |
| const_iterator end() const { return (const_iterator)this->EndX; } |
| protected: |
| iterator capacity_ptr() { return (iterator)this->CapacityX; } |
| const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} |
| public: |
| |
| // reverse iterator creation methods. |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
| |
| size_type size() const { return end()-begin(); } |
| size_type max_size() const { return size_type(-1) / sizeof(T); } |
| |
| /// capacity - Return the total number of elements in the currently allocated |
| /// buffer. |
| size_t capacity() const { return capacity_ptr() - begin(); } |
| |
| /// data - Return a pointer to the vector's buffer, even if empty(). |
| pointer data() { return pointer(begin()); } |
| /// data - Return a pointer to the vector's buffer, even if empty(). |
| const_pointer data() const { return const_pointer(begin()); } |
| |
| reference operator[](unsigned idx) { |
| assert(begin() + idx < end()); |
| return begin()[idx]; |
| } |
| const_reference operator[](unsigned idx) const { |
| assert(begin() + idx < end()); |
| return begin()[idx]; |
| } |
| |
| reference front() { |
| return begin()[0]; |
| } |
| const_reference front() const { |
| return begin()[0]; |
| } |
| |
| reference back() { |
| return end()[-1]; |
| } |
| const_reference back() const { |
| return end()[-1]; |
| } |
| }; |
| |
| /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method |
| /// implementations that are designed to work with non-POD-like T's. |
| template <typename T, bool isPodLike> |
| class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| public: |
| SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| |
| static void destroy_range(T *S, T *E) { |
| while (S != E) { |
| --E; |
| E->~T(); |
| } |
| } |
| |
| /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template<typename It1, typename It2> |
| static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| std::uninitialized_copy(I, E, Dest); |
| } |
| |
| /// grow - double the size of the allocated memory, guaranteeing space for at |
| /// least one more element or MinSize if specified. |
| void grow(size_t MinSize = 0); |
| }; |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool isPodLike> |
| void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) { |
| size_t CurCapacity = this->capacity(); |
| size_t CurSize = this->size(); |
| size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero. |
| if (NewCapacity < MinSize) |
| NewCapacity = MinSize; |
| T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T))); |
| |
| // Copy the elements over. |
| this->uninitialized_copy(this->begin(), this->end(), NewElts); |
| |
| // Destroy the original elements. |
| destroy_range(this->begin(), this->end()); |
| |
| // If this wasn't grown from the inline copy, deallocate the old space. |
| if (!this->isSmall()) |
| free(this->begin()); |
| |
| this->setEnd(NewElts+CurSize); |
| this->BeginX = NewElts; |
| this->CapacityX = this->begin()+NewCapacity; |
| } |
| |
| |
| /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method |
| /// implementations that are designed to work with POD-like T's. |
| template <typename T> |
| class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| public: |
| SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| |
| // No need to do a destroy loop for POD's. |
| static void destroy_range(T *, T *) {} |
| |
| /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template<typename It1, typename It2> |
| static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| // Arbitrary iterator types; just use the basic implementation. |
| std::uninitialized_copy(I, E, Dest); |
| } |
| |
| /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template<typename T1, typename T2> |
| static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) { |
| // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| // use memcpy here. |
| memcpy(Dest, I, (E-I)*sizeof(T)); |
| } |
| |
| /// grow - double the size of the allocated memory, guaranteeing space for at |
| /// least one more element or MinSize if specified. |
| void grow(size_t MinSize = 0) { |
| this->grow_pod(MinSize*sizeof(T), sizeof(T)); |
| } |
| }; |
| |
| |
| /// SmallVectorImpl - This class consists of common code factored out of the |
| /// SmallVector class to reduce code duplication based on the SmallVector 'N' |
| /// template parameter. |
| template <typename T> |
| class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> { |
| typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass; |
| |
| SmallVectorImpl(const SmallVectorImpl&); // DISABLED. |
| public: |
| typedef typename SuperClass::iterator iterator; |
| typedef typename SuperClass::size_type size_type; |
| |
| // Default ctor - Initialize to empty. |
| explicit SmallVectorImpl(unsigned N) |
| : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) { |
| } |
| |
| ~SmallVectorImpl() { |
| // Destroy the constructed elements in the vector. |
| this->destroy_range(this->begin(), this->end()); |
| |
| // If this wasn't grown from the inline copy, deallocate the old space. |
| if (!this->isSmall()) |
| free(this->begin()); |
| } |
| |
| |
| void clear() { |
| this->destroy_range(this->begin(), this->end()); |
| this->EndX = this->BeginX; |
| } |
| |
| void resize(unsigned N) { |
| if (N < this->size()) { |
| this->destroy_range(this->begin()+N, this->end()); |
| this->setEnd(this->begin()+N); |
| } else if (N > this->size()) { |
| if (this->capacity() < N) |
| this->grow(N); |
| this->construct_range(this->end(), this->begin()+N, T()); |
| this->setEnd(this->begin()+N); |
| } |
| } |
| |
| void resize(unsigned N, const T &NV) { |
| if (N < this->size()) { |
| this->destroy_range(this->begin()+N, this->end()); |
| this->setEnd(this->begin()+N); |
| } else if (N > this->size()) { |
| if (this->capacity() < N) |
| this->grow(N); |
| construct_range(this->end(), this->begin()+N, NV); |
| this->setEnd(this->begin()+N); |
| } |
| } |
| |
| void reserve(unsigned N) { |
| if (this->capacity() < N) |
| this->grow(N); |
| } |
| |
| void push_back(const T &Elt) { |
| if (this->EndX < this->CapacityX) { |
| Retry: |
| new (this->end()) T(Elt); |
| this->setEnd(this->end()+1); |
| return; |
| } |
| this->grow(); |
| goto Retry; |
| } |
| |
| void pop_back() { |
| this->setEnd(this->end()-1); |
| this->end()->~T(); |
| } |
| |
| T pop_back_val() { |
| T Result = this->back(); |
| pop_back(); |
| return Result; |
| } |
| |
| void swap(SmallVectorImpl &RHS); |
| |
| /// append - Add the specified range to the end of the SmallVector. |
| /// |
| template<typename in_iter> |
| void append(in_iter in_start, in_iter in_end) { |
| size_type NumInputs = std::distance(in_start, in_end); |
| // Grow allocated space if needed. |
| if (NumInputs > size_type(this->capacity_ptr()-this->end())) |
| this->grow(this->size()+NumInputs); |
| |
| // Copy the new elements over. |
| // TODO: NEED To compile time dispatch on whether in_iter is a random access |
| // iterator to use the fast uninitialized_copy. |
| std::uninitialized_copy(in_start, in_end, this->end()); |
| this->setEnd(this->end() + NumInputs); |
| } |
| |
| /// append - Add the specified range to the end of the SmallVector. |
| /// |
| void append(size_type NumInputs, const T &Elt) { |
| // Grow allocated space if needed. |
| if (NumInputs > size_type(this->capacity_ptr()-this->end())) |
| this->grow(this->size()+NumInputs); |
| |
| // Copy the new elements over. |
| std::uninitialized_fill_n(this->end(), NumInputs, Elt); |
| this->setEnd(this->end() + NumInputs); |
| } |
| |
| void assign(unsigned NumElts, const T &Elt) { |
| clear(); |
| if (this->capacity() < NumElts) |
| this->grow(NumElts); |
| this->setEnd(this->begin()+NumElts); |
| construct_range(this->begin(), this->end(), Elt); |
| } |
| |
| iterator erase(iterator I) { |
| iterator N = I; |
| // Shift all elts down one. |
| std::copy(I+1, this->end(), I); |
| // Drop the last elt. |
| pop_back(); |
| return(N); |
| } |
| |
| iterator erase(iterator S, iterator E) { |
| iterator N = S; |
| // Shift all elts down. |
| iterator I = std::copy(E, this->end(), S); |
| // Drop the last elts. |
| this->destroy_range(I, this->end()); |
| this->setEnd(I); |
| return(N); |
| } |
| |
| iterator insert(iterator I, const T &Elt) { |
| if (I == this->end()) { // Important special case for empty vector. |
| push_back(Elt); |
| return this->end()-1; |
| } |
| |
| if (this->EndX < this->CapacityX) { |
| Retry: |
| new (this->end()) T(this->back()); |
| this->setEnd(this->end()+1); |
| // Push everything else over. |
| std::copy_backward(I, this->end()-1, this->end()); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference. |
| const T *EltPtr = &Elt; |
| if (I <= EltPtr && EltPtr < this->EndX) |
| ++EltPtr; |
| |
| *I = *EltPtr; |
| return I; |
| } |
| size_t EltNo = I-this->begin(); |
| this->grow(); |
| I = this->begin()+EltNo; |
| goto Retry; |
| } |
| |
| iterator insert(iterator I, size_type NumToInsert, const T &Elt) { |
| if (I == this->end()) { // Important special case for empty vector. |
| append(NumToInsert, Elt); |
| return this->end()-1; |
| } |
| |
| // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| size_t InsertElt = I - this->begin(); |
| |
| // Ensure there is enough space. |
| reserve(static_cast<unsigned>(this->size() + NumToInsert)); |
| |
| // Uninvalidate the iterator. |
| I = this->begin()+InsertElt; |
| |
| // If there are more elements between the insertion point and the end of the |
| // range than there are being inserted, we can use a simple approach to |
| // insertion. Since we already reserved space, we know that this won't |
| // reallocate the vector. |
| if (size_t(this->end()-I) >= NumToInsert) { |
| T *OldEnd = this->end(); |
| append(this->end()-NumToInsert, this->end()); |
| |
| // Copy the existing elements that get replaced. |
| std::copy_backward(I, OldEnd-NumToInsert, OldEnd); |
| |
| std::fill_n(I, NumToInsert, Elt); |
| return I; |
| } |
| |
| // Otherwise, we're inserting more elements than exist already, and we're |
| // not inserting at the end. |
| |
| // Copy over the elements that we're about to overwrite. |
| T *OldEnd = this->end(); |
| this->setEnd(this->end() + NumToInsert); |
| size_t NumOverwritten = OldEnd-I; |
| this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); |
| |
| // Replace the overwritten part. |
| std::fill_n(I, NumOverwritten, Elt); |
| |
| // Insert the non-overwritten middle part. |
| std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); |
| return I; |
| } |
| |
| template<typename ItTy> |
| iterator insert(iterator I, ItTy From, ItTy To) { |
| if (I == this->end()) { // Important special case for empty vector. |
| append(From, To); |
| return this->end()-1; |
| } |
| |
| size_t NumToInsert = std::distance(From, To); |
| // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| size_t InsertElt = I - this->begin(); |
| |
| // Ensure there is enough space. |
| reserve(static_cast<unsigned>(this->size() + NumToInsert)); |
| |
| // Uninvalidate the iterator. |
| I = this->begin()+InsertElt; |
| |
| // If there are more elements between the insertion point and the end of the |
| // range than there are being inserted, we can use a simple approach to |
| // insertion. Since we already reserved space, we know that this won't |
| // reallocate the vector. |
| if (size_t(this->end()-I) >= NumToInsert) { |
| T *OldEnd = this->end(); |
| append(this->end()-NumToInsert, this->end()); |
| |
| // Copy the existing elements that get replaced. |
| std::copy_backward(I, OldEnd-NumToInsert, OldEnd); |
| |
| std::copy(From, To, I); |
| return I; |
| } |
| |
| // Otherwise, we're inserting more elements than exist already, and we're |
| // not inserting at the end. |
| |
| // Copy over the elements that we're about to overwrite. |
| T *OldEnd = this->end(); |
| this->setEnd(this->end() + NumToInsert); |
| size_t NumOverwritten = OldEnd-I; |
| this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); |
| |
| // Replace the overwritten part. |
| for (; NumOverwritten > 0; --NumOverwritten) { |
| *I = *From; |
| ++I; ++From; |
| } |
| |
| // Insert the non-overwritten middle part. |
| this->uninitialized_copy(From, To, OldEnd); |
| return I; |
| } |
| |
| const SmallVectorImpl |
| &operator=(const SmallVectorImpl &RHS); |
| |
| bool operator==(const SmallVectorImpl &RHS) const { |
| if (this->size() != RHS.size()) return false; |
| return std::equal(this->begin(), this->end(), RHS.begin()); |
| } |
| bool operator!=(const SmallVectorImpl &RHS) const { |
| return !(*this == RHS); |
| } |
| |
| bool operator<(const SmallVectorImpl &RHS) const { |
| return std::lexicographical_compare(this->begin(), this->end(), |
| RHS.begin(), RHS.end()); |
| } |
| |
| /// set_size - Set the array size to \arg N, which the current array must have |
| /// enough capacity for. |
| /// |
| /// This does not construct or destroy any elements in the vector. |
| /// |
| /// Clients can use this in conjunction with capacity() to write past the end |
| /// of the buffer when they know that more elements are available, and only |
| /// update the size later. This avoids the cost of value initializing elements |
| /// which will only be overwritten. |
| void set_size(unsigned N) { |
| assert(N <= this->capacity()); |
| this->setEnd(this->begin() + N); |
| } |
| |
| private: |
| static void construct_range(T *S, T *E, const T &Elt) { |
| for (; S != E; ++S) |
| new (S) T(Elt); |
| } |
| }; |
| |
| |
| template <typename T> |
| void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
| if (this == &RHS) return; |
| |
| // We can only avoid copying elements if neither vector is small. |
| if (!this->isSmall() && !RHS.isSmall()) { |
| std::swap(this->BeginX, RHS.BeginX); |
| std::swap(this->EndX, RHS.EndX); |
| std::swap(this->CapacityX, RHS.CapacityX); |
| return; |
| } |
| if (RHS.size() > this->capacity()) |
| this->grow(RHS.size()); |
| if (this->size() > RHS.capacity()) |
| RHS.grow(this->size()); |
| |
| // Swap the shared elements. |
| size_t NumShared = this->size(); |
| if (NumShared > RHS.size()) NumShared = RHS.size(); |
| for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i) |
| std::swap((*this)[i], RHS[i]); |
| |
| // Copy over the extra elts. |
| if (this->size() > RHS.size()) { |
| size_t EltDiff = this->size() - RHS.size(); |
| this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
| RHS.setEnd(RHS.end()+EltDiff); |
| this->destroy_range(this->begin()+NumShared, this->end()); |
| this->setEnd(this->begin()+NumShared); |
| } else if (RHS.size() > this->size()) { |
| size_t EltDiff = RHS.size() - this->size(); |
| this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
| this->setEnd(this->end() + EltDiff); |
| this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
| RHS.setEnd(RHS.begin()+NumShared); |
| } |
| } |
| |
| template <typename T> |
| const SmallVectorImpl<T> &SmallVectorImpl<T>:: |
| operator=(const SmallVectorImpl<T> &RHS) { |
| // Avoid self-assignment. |
| if (this == &RHS) return *this; |
| |
| // If we already have sufficient space, assign the common elements, then |
| // destroy any excess. |
| size_t RHSSize = RHS.size(); |
| size_t CurSize = this->size(); |
| if (CurSize >= RHSSize) { |
| // Assign common elements. |
| iterator NewEnd; |
| if (RHSSize) |
| NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
| else |
| NewEnd = this->begin(); |
| |
| // Destroy excess elements. |
| this->destroy_range(NewEnd, this->end()); |
| |
| // Trim. |
| this->setEnd(NewEnd); |
| return *this; |
| } |
| |
| // If we have to grow to have enough elements, destroy the current elements. |
| // This allows us to avoid copying them during the grow. |
| if (this->capacity() < RHSSize) { |
| // Destroy current elements. |
| this->destroy_range(this->begin(), this->end()); |
| this->setEnd(this->begin()); |
| CurSize = 0; |
| this->grow(RHSSize); |
| } else if (CurSize) { |
| // Otherwise, use assignment for the already-constructed elements. |
| std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| } |
| |
| // Copy construct the new elements in place. |
| this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
| this->begin()+CurSize); |
| |
| // Set end. |
| this->setEnd(this->begin()+RHSSize); |
| return *this; |
| } |
| |
| |
| /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized |
| /// for the case when the array is small. It contains some number of elements |
| /// in-place, which allows it to avoid heap allocation when the actual number of |
| /// elements is below that threshold. This allows normal "small" cases to be |
| /// fast without losing generality for large inputs. |
| /// |
| /// Note that this does not attempt to be exception safe. |
| /// |
| template <typename T, unsigned N> |
| class SmallVector : public SmallVectorImpl<T> { |
| /// InlineElts - These are 'N-1' elements that are stored inline in the body |
| /// of the vector. The extra '1' element is stored in SmallVectorImpl. |
| typedef typename SmallVectorImpl<T>::U U; |
| enum { |
| // MinUs - The number of U's require to cover N T's. |
| MinUs = (static_cast<unsigned int>(sizeof(T))*N + |
| static_cast<unsigned int>(sizeof(U)) - 1) / |
| static_cast<unsigned int>(sizeof(U)), |
| |
| // NumInlineEltsElts - The number of elements actually in this array. There |
| // is already one in the parent class, and we have to round up to avoid |
| // having a zero-element array. |
| NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, |
| |
| // NumTsAvailable - The number of T's we actually have space for, which may |
| // be more than N due to rounding. |
| NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/ |
| static_cast<unsigned int>(sizeof(T)) |
| }; |
| U InlineElts[NumInlineEltsElts]; |
| public: |
| SmallVector() : SmallVectorImpl<T>(NumTsAvailable) { |
| } |
| |
| explicit SmallVector(unsigned Size, const T &Value = T()) |
| : SmallVectorImpl<T>(NumTsAvailable) { |
| this->reserve(Size); |
| while (Size--) |
| this->push_back(Value); |
| } |
| |
| template<typename ItTy> |
| SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) { |
| this->append(S, E); |
| } |
| |
| SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(RHS); |
| } |
| |
| const SmallVector &operator=(const SmallVector &RHS) { |
| SmallVectorImpl<T>::operator=(RHS); |
| return *this; |
| } |
| |
| }; |
| |
| /// Specialize SmallVector at N=0. This specialization guarantees |
| /// that it can be instantiated at an incomplete T if none of its |
| /// members are required. |
| template <typename T> |
| class SmallVector<T,0> : public SmallVectorImpl<T> { |
| public: |
| SmallVector() : SmallVectorImpl<T>(0) {} |
| |
| explicit SmallVector(unsigned Size, const T &Value = T()) |
| : SmallVectorImpl<T>(0) { |
| this->reserve(Size); |
| while (Size--) |
| this->push_back(Value); |
| } |
| |
| template<typename ItTy> |
| SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(0) { |
| this->append(S, E); |
| } |
| |
| SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(0) { |
| SmallVectorImpl<T>::operator=(RHS); |
| } |
| |
| SmallVector &operator=(const SmallVectorImpl<T> &RHS) { |
| return SmallVectorImpl<T>::operator=(RHS); |
| } |
| |
| }; |
| |
| template<typename T, unsigned N> |
| static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
| return X.capacity_in_bytes(); |
| } |
| |
| } // End llvm namespace |
| |
| namespace std { |
| /// Implement std::swap in terms of SmallVector swap. |
| template<typename T> |
| inline void |
| swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
| LHS.swap(RHS); |
| } |
| |
| /// Implement std::swap in terms of SmallVector swap. |
| template<typename T, unsigned N> |
| inline void |
| swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
| LHS.swap(RHS); |
| } |
| } |
| |
| #endif |