blob: ca0c0aee55422e31f9b61676cd58e1d0a284b3c3 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Reactor.hpp"
#include "x86.hpp"
#include "CPUID.hpp"
#include "Thread.hpp"
#include "ExecutableMemory.hpp"
#include "MutexLock.hpp"
#undef min
#undef max
#if REACTOR_LLVM_VERSION < 7
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include "../lib/ExecutionEngine/JIT/JIT.h"
#include "LLVMRoutine.hpp"
#include "LLVMRoutineManager.hpp"
#define ARGS(...) __VA_ARGS__
#else
#include "llvm/Analysis/LoopPass.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "LLVMRoutine.hpp"
#define ARGS(...) {__VA_ARGS__}
#define CreateCall2 CreateCall
#define CreateCall3 CreateCall
#include <unordered_map>
#endif
#include <numeric>
#include <fstream>
#if defined(__i386__) || defined(__x86_64__)
#include <xmmintrin.h>
#endif
#include <math.h>
#if defined(__x86_64__) && defined(_WIN32)
extern "C" void X86CompilationCallback()
{
assert(false); // UNIMPLEMENTED
}
#endif
#if defined(_WIN32)
extern "C"
{
bool (*CodeAnalystInitialize)() = 0;
void (*CodeAnalystCompleteJITLog)() = 0;
bool (*CodeAnalystLogJITCode)(const void *jitCodeStartAddr, unsigned int jitCodeSize, const wchar_t *functionName) = 0;
}
#endif
#if REACTOR_LLVM_VERSION < 7
namespace llvm
{
extern bool JITEmitDebugInfo;
}
#endif
namespace rr
{
class LLVMReactorJIT;
}
namespace
{
rr::LLVMReactorJIT *reactorJIT = nullptr;
llvm::IRBuilder<> *builder = nullptr;
llvm::LLVMContext *context = nullptr;
llvm::Module *module = nullptr;
llvm::Function *function = nullptr;
rr::MutexLock codegenMutex;
#if REACTOR_LLVM_VERSION >= 7
llvm::Value *lowerPAVG(llvm::Value *x, llvm::Value *y)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::VectorType *extTy =
llvm::VectorType::getExtendedElementVectorType(ty);
x = ::builder->CreateZExt(x, extTy);
y = ::builder->CreateZExt(y, extTy);
// (x + y + 1) >> 1
llvm::Constant *one = llvm::ConstantInt::get(extTy, 1);
llvm::Value *res = ::builder->CreateAdd(x, y);
res = ::builder->CreateAdd(res, one);
res = ::builder->CreateLShr(res, one);
return ::builder->CreateTrunc(res, ty);
}
llvm::Value *lowerPMINMAX(llvm::Value *x, llvm::Value *y,
llvm::ICmpInst::Predicate pred)
{
return ::builder->CreateSelect(::builder->CreateICmp(pred, x, y), x, y);
}
llvm::Value *lowerPCMP(llvm::ICmpInst::Predicate pred, llvm::Value *x,
llvm::Value *y, llvm::Type *dstTy)
{
return ::builder->CreateSExt(::builder->CreateICmp(pred, x, y), dstTy, "");
}
#if defined(__i386__) || defined(__x86_64__)
llvm::Value *lowerPMOV(llvm::Value *op, llvm::Type *dstType, bool sext)
{
llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(op->getType());
llvm::VectorType *dstTy = llvm::cast<llvm::VectorType>(dstType);
llvm::Value *undef = llvm::UndefValue::get(srcTy);
llvm::SmallVector<uint32_t, 16> mask(dstTy->getNumElements());
std::iota(mask.begin(), mask.end(), 0);
llvm::Value *v = ::builder->CreateShuffleVector(op, undef, mask);
return sext ? ::builder->CreateSExt(v, dstTy)
: ::builder->CreateZExt(v, dstTy);
}
llvm::Value *lowerPABS(llvm::Value *v)
{
llvm::Value *zero = llvm::Constant::getNullValue(v->getType());
llvm::Value *cmp = ::builder->CreateICmp(llvm::ICmpInst::ICMP_SGT, v, zero);
llvm::Value *neg = ::builder->CreateNeg(v);
return ::builder->CreateSelect(cmp, v, neg);
}
#endif // defined(__i386__) || defined(__x86_64__)
#if !defined(__i386__) && !defined(__x86_64__)
llvm::Value *lowerPFMINMAX(llvm::Value *x, llvm::Value *y,
llvm::FCmpInst::Predicate pred)
{
return ::builder->CreateSelect(::builder->CreateFCmp(pred, x, y), x, y);
}
llvm::Value *lowerRound(llvm::Value *x)
{
llvm::Function *nearbyint = llvm::Intrinsic::getDeclaration(
::module, llvm::Intrinsic::nearbyint, {x->getType()});
return ::builder->CreateCall(nearbyint, ARGS(x));
}
llvm::Value *lowerRoundInt(llvm::Value *x, llvm::Type *ty)
{
return ::builder->CreateFPToSI(lowerRound(x), ty);
}
llvm::Value *lowerFloor(llvm::Value *x)
{
llvm::Function *floor = llvm::Intrinsic::getDeclaration(
::module, llvm::Intrinsic::floor, {x->getType()});
return ::builder->CreateCall(floor, ARGS(x));
}
llvm::Value *lowerTrunc(llvm::Value *x)
{
llvm::Function *trunc = llvm::Intrinsic::getDeclaration(
::module, llvm::Intrinsic::trunc, {x->getType()});
return ::builder->CreateCall(trunc, ARGS(x));
}
// Packed add/sub saturatation
llvm::Value *lowerPSAT(llvm::Value *x, llvm::Value *y, bool isAdd, bool isSigned)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty);
unsigned numBits = ty->getScalarSizeInBits();
llvm::Value *max, *min, *extX, *extY;
if (isSigned)
{
max = llvm::ConstantInt::get(extTy, (1LL << (numBits - 1)) - 1, true);
min = llvm::ConstantInt::get(extTy, (-1LL << (numBits - 1)), true);
extX = ::builder->CreateSExt(x, extTy);
extY = ::builder->CreateSExt(y, extTy);
}
else
{
assert(numBits <= 64);
uint64_t maxVal = (numBits == 64) ? ~0ULL : (1ULL << numBits) - 1;
max = llvm::ConstantInt::get(extTy, maxVal, false);
min = llvm::ConstantInt::get(extTy, 0, false);
extX = ::builder->CreateZExt(x, extTy);
extY = ::builder->CreateZExt(y, extTy);
}
llvm::Value *res = isAdd ? ::builder->CreateAdd(extX, extY)
: ::builder->CreateSub(extX, extY);
res = lowerPMINMAX(res, min, llvm::ICmpInst::ICMP_SGT);
res = lowerPMINMAX(res, max, llvm::ICmpInst::ICMP_SLT);
return ::builder->CreateTrunc(res, ty);
}
llvm::Value *lowerPUADDSAT(llvm::Value *x, llvm::Value *y)
{
return lowerPSAT(x, y, true, false);
}
llvm::Value *lowerPSADDSAT(llvm::Value *x, llvm::Value *y)
{
return lowerPSAT(x, y, true, true);
}
llvm::Value *lowerPUSUBSAT(llvm::Value *x, llvm::Value *y)
{
return lowerPSAT(x, y, false, false);
}
llvm::Value *lowerPSSUBSAT(llvm::Value *x, llvm::Value *y)
{
return lowerPSAT(x, y, false, true);
}
llvm::Value *lowerSQRT(llvm::Value *x)
{
llvm::Function *sqrt = llvm::Intrinsic::getDeclaration(
::module, llvm::Intrinsic::sqrt, {x->getType()});
return ::builder->CreateCall(sqrt, ARGS(x));
}
llvm::Value *lowerRCP(llvm::Value *x)
{
llvm::Type *ty = x->getType();
llvm::Constant *one;
if (llvm::VectorType *vectorTy = llvm::dyn_cast<llvm::VectorType>(ty))
{
one = llvm::ConstantVector::getSplat(
vectorTy->getNumElements(),
llvm::ConstantFP::get(vectorTy->getElementType(), 1));
}
else
{
one = llvm::ConstantFP::get(ty, 1);
}
return ::builder->CreateFDiv(one, x);
}
llvm::Value *lowerRSQRT(llvm::Value *x)
{
return lowerRCP(lowerSQRT(x));
}
llvm::Value *lowerVectorShl(llvm::Value *x, uint64_t scalarY)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::Value *y = llvm::ConstantVector::getSplat(
ty->getNumElements(),
llvm::ConstantInt::get(ty->getElementType(), scalarY));
return ::builder->CreateShl(x, y);
}
llvm::Value *lowerVectorAShr(llvm::Value *x, uint64_t scalarY)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::Value *y = llvm::ConstantVector::getSplat(
ty->getNumElements(),
llvm::ConstantInt::get(ty->getElementType(), scalarY));
return ::builder->CreateAShr(x, y);
}
llvm::Value *lowerVectorLShr(llvm::Value *x, uint64_t scalarY)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::Value *y = llvm::ConstantVector::getSplat(
ty->getNumElements(),
llvm::ConstantInt::get(ty->getElementType(), scalarY));
return ::builder->CreateLShr(x, y);
}
llvm::Value *lowerMulAdd(llvm::Value *x, llvm::Value *y)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty);
llvm::Value *extX = ::builder->CreateSExt(x, extTy);
llvm::Value *extY = ::builder->CreateSExt(y, extTy);
llvm::Value *mult = ::builder->CreateMul(extX, extY);
llvm::Value *undef = llvm::UndefValue::get(extTy);
llvm::SmallVector<uint32_t, 16> evenIdx;
llvm::SmallVector<uint32_t, 16> oddIdx;
for (uint64_t i = 0, n = ty->getNumElements(); i < n; i += 2)
{
evenIdx.push_back(i);
oddIdx.push_back(i + 1);
}
llvm::Value *lhs = ::builder->CreateShuffleVector(mult, undef, evenIdx);
llvm::Value *rhs = ::builder->CreateShuffleVector(mult, undef, oddIdx);
return ::builder->CreateAdd(lhs, rhs);
}
llvm::Value *lowerMulHigh(llvm::Value *x, llvm::Value *y, bool sext)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty);
llvm::Value *extX, *extY;
if (sext)
{
extX = ::builder->CreateSExt(x, extTy);
extY = ::builder->CreateSExt(y, extTy);
}
else
{
extX = ::builder->CreateZExt(x, extTy);
extY = ::builder->CreateZExt(y, extTy);
}
llvm::Value *mult = ::builder->CreateMul(extX, extY);
llvm::IntegerType *intTy = llvm::cast<llvm::IntegerType>(ty->getElementType());
llvm::Value *mulh = ::builder->CreateAShr(mult, intTy->getIntegerBitWidth());
return ::builder->CreateTrunc(mulh, ty);
}
llvm::Value *lowerPack(llvm::Value *x, llvm::Value *y, bool isSigned)
{
llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(x->getType());
llvm::VectorType *dstTy = llvm::VectorType::getTruncatedElementVectorType(srcTy);
llvm::IntegerType *dstElemTy =
llvm::cast<llvm::IntegerType>(dstTy->getElementType());
uint64_t truncNumBits = dstElemTy->getIntegerBitWidth();
assert(truncNumBits < 64 && "shift 64 must be handled separately");
llvm::Constant *max, *min;
if (isSigned)
{
max = llvm::ConstantInt::get(srcTy, (1LL << (truncNumBits - 1)) - 1, true);
min = llvm::ConstantInt::get(srcTy, (-1LL << (truncNumBits - 1)), true);
}
else
{
max = llvm::ConstantInt::get(srcTy, (1ULL << truncNumBits) - 1, false);
min = llvm::ConstantInt::get(srcTy, 0, false);
}
x = lowerPMINMAX(x, min, llvm::ICmpInst::ICMP_SGT);
x = lowerPMINMAX(x, max, llvm::ICmpInst::ICMP_SLT);
y = lowerPMINMAX(y, min, llvm::ICmpInst::ICMP_SGT);
y = lowerPMINMAX(y, max, llvm::ICmpInst::ICMP_SLT);
x = ::builder->CreateTrunc(x, dstTy);
y = ::builder->CreateTrunc(y, dstTy);
llvm::SmallVector<uint32_t, 16> index(srcTy->getNumElements() * 2);
std::iota(index.begin(), index.end(), 0);
return ::builder->CreateShuffleVector(x, y, index);
}
llvm::Value *lowerSignMask(llvm::Value *x, llvm::Type *retTy)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::Constant *zero = llvm::ConstantInt::get(ty, 0);
llvm::Value *cmp = ::builder->CreateICmpSLT(x, zero);
llvm::Value *ret = ::builder->CreateZExt(
::builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy);
for (uint64_t i = 1, n = ty->getNumElements(); i < n; ++i)
{
llvm::Value *elem = ::builder->CreateZExt(
::builder->CreateExtractElement(cmp, i), retTy);
ret = ::builder->CreateOr(ret, ::builder->CreateShl(elem, i));
}
return ret;
}
llvm::Value *lowerFPSignMask(llvm::Value *x, llvm::Type *retTy)
{
llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
llvm::Constant *zero = llvm::ConstantFP::get(ty, 0);
llvm::Value *cmp = ::builder->CreateFCmpULT(x, zero);
llvm::Value *ret = ::builder->CreateZExt(
::builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy);
for (uint64_t i = 1, n = ty->getNumElements(); i < n; ++i)
{
llvm::Value *elem = ::builder->CreateZExt(
::builder->CreateExtractElement(cmp, i), retTy);
ret = ::builder->CreateOr(ret, ::builder->CreateShl(elem, i));
}
return ret;
}
#endif // !defined(__i386__) && !defined(__x86_64__)
#endif // REACTOR_LLVM_VERSION >= 7
}
namespace rr
{
#if REACTOR_LLVM_VERSION < 7
class LLVMReactorJIT
{
private:
std::string arch;
llvm::SmallVector<std::string, 16> mattrs;
llvm::ExecutionEngine *executionEngine;
LLVMRoutineManager *routineManager;
public:
LLVMReactorJIT(const std::string &arch_,
const llvm::SmallVectorImpl<std::string> &mattrs_) :
arch(arch_),
mattrs(mattrs_.begin(), mattrs_.end()),
executionEngine(nullptr),
routineManager(nullptr)
{
}
void startSession()
{
std::string error;
::module = new llvm::Module("", *::context);
routineManager = new LLVMRoutineManager();
llvm::TargetMachine *targetMachine =
llvm::EngineBuilder::selectTarget(
::module, arch, "", mattrs, llvm::Reloc::Default,
llvm::CodeModel::JITDefault, &error);
executionEngine = llvm::JIT::createJIT(
::module, &error, routineManager, llvm::CodeGenOpt::Aggressive,
true, targetMachine);
}
void endSession()
{
delete executionEngine;
executionEngine = nullptr;
routineManager = nullptr;
::function = nullptr;
::module = nullptr;
}
LLVMRoutine *acquireRoutine(llvm::Function *func)
{
void *entry = executionEngine->getPointerToFunction(::function);
return routineManager->acquireRoutine(entry);
}
void optimize(llvm::Module *module)
{
static llvm::PassManager *passManager = nullptr;
if(!passManager)
{
passManager = new llvm::PassManager();
passManager->add(new llvm::TargetData(*executionEngine->getTargetData()));
passManager->add(llvm::createScalarReplAggregatesPass());
for(int pass = 0; pass < 10 && optimization[pass] != Disabled; pass++)
{
switch(optimization[pass])
{
case Disabled: break;
case CFGSimplification: passManager->add(llvm::createCFGSimplificationPass()); break;
case LICM: passManager->add(llvm::createLICMPass()); break;
case AggressiveDCE: passManager->add(llvm::createAggressiveDCEPass()); break;
case GVN: passManager->add(llvm::createGVNPass()); break;
case InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break;
case Reassociate: passManager->add(llvm::createReassociatePass()); break;
case DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break;
case SCCP: passManager->add(llvm::createSCCPPass()); break;
case ScalarReplAggregates: passManager->add(llvm::createScalarReplAggregatesPass()); break;
default:
assert(false);
}
}
}
passManager->run(*::module);
}
};
#else
class ExternalFunctionSymbolResolver
{
private:
using FunctionMap = std::unordered_map<std::string, void *>;
FunctionMap func_;
public:
ExternalFunctionSymbolResolver()
{
func_.emplace("floorf", reinterpret_cast<void*>(floorf));
func_.emplace("nearbyintf", reinterpret_cast<void*>(nearbyintf));
func_.emplace("truncf", reinterpret_cast<void*>(truncf));
}
void *findSymbol(const std::string &name) const
{
FunctionMap::const_iterator it = func_.find(name);
return (it != func_.end()) ? it->second : nullptr;
}
};
class LLVMReactorJIT
{
private:
using ObjLayer = llvm::orc::RTDyldObjectLinkingLayer;
using CompileLayer = llvm::orc::IRCompileLayer<ObjLayer, llvm::orc::SimpleCompiler>;
llvm::orc::ExecutionSession session;
ExternalFunctionSymbolResolver externalSymbolResolver;
std::shared_ptr<llvm::orc::SymbolResolver> resolver;
std::unique_ptr<llvm::TargetMachine> targetMachine;
const llvm::DataLayout dataLayout;
ObjLayer objLayer;
CompileLayer compileLayer;
size_t emittedFunctionsNum;
public:
LLVMReactorJIT(const char *arch, const llvm::SmallVectorImpl<std::string>& mattrs,
const llvm::TargetOptions &targetOpts):
resolver(createLegacyLookupResolver(
session,
[this](const std::string &name) {
void *func = externalSymbolResolver.findSymbol(name);
if (func != nullptr)
{
return llvm::JITSymbol(
reinterpret_cast<uintptr_t>(func), llvm::JITSymbolFlags::Absolute);
}
return objLayer.findSymbol(name, true);
},
[](llvm::Error err) {
if (err)
{
// TODO: Log the symbol resolution errors.
return;
}
})),
targetMachine(llvm::EngineBuilder()
.setMArch(arch)
.setMAttrs(mattrs)
.setTargetOptions(targetOpts)
.selectTarget()),
dataLayout(targetMachine->createDataLayout()),
objLayer(
session,
[this](llvm::orc::VModuleKey) {
return ObjLayer::Resources{
std::make_shared<llvm::SectionMemoryManager>(),
resolver};
}),
compileLayer(objLayer, llvm::orc::SimpleCompiler(*targetMachine)),
emittedFunctionsNum(0)
{
}
void startSession()
{
::module = new llvm::Module("", *::context);
}
void endSession()
{
::function = nullptr;
::module = nullptr;
}
LLVMRoutine *acquireRoutine(llvm::Function *func)
{
std::string name = "f" + llvm::Twine(emittedFunctionsNum++).str();
func->setName(name);
func->setLinkage(llvm::GlobalValue::ExternalLinkage);
func->setDoesNotThrow();
std::unique_ptr<llvm::Module> mod(::module);
::module = nullptr;
mod->setDataLayout(dataLayout);
auto moduleKey = session.allocateVModule();
llvm::cantFail(compileLayer.addModule(moduleKey, std::move(mod)));
llvm::JITSymbol symbol = compileLayer.findSymbolIn(moduleKey, name, false);
llvm::Expected<llvm::JITTargetAddress> expectAddr = symbol.getAddress();
if (!expectAddr)
{
return nullptr;
}
void *addr = reinterpret_cast<void *>(static_cast<intptr_t>(expectAddr.get()));
return new LLVMRoutine(addr, releaseRoutineCallback, this, moduleKey);
}
void optimize(llvm::Module *module)
{
std::unique_ptr<llvm::legacy::PassManager> passManager(
new llvm::legacy::PassManager());
passManager->add(llvm::createSROAPass());
for(int pass = 0; pass < 10 && optimization[pass] != Disabled; pass++)
{
switch(optimization[pass])
{
case Disabled: break;
case CFGSimplification: passManager->add(llvm::createCFGSimplificationPass()); break;
case LICM: passManager->add(llvm::createLICMPass()); break;
case AggressiveDCE: passManager->add(llvm::createAggressiveDCEPass()); break;
case GVN: passManager->add(llvm::createGVNPass()); break;
case InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break;
case Reassociate: passManager->add(llvm::createReassociatePass()); break;
case DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break;
case SCCP: passManager->add(llvm::createSCCPPass()); break;
case ScalarReplAggregates: passManager->add(llvm::createSROAPass()); break;
default:
assert(false);
}
}
passManager->run(*::module);
}
private:
void releaseRoutineModule(llvm::orc::VModuleKey moduleKey)
{
llvm::cantFail(compileLayer.removeModule(moduleKey));
}
static void releaseRoutineCallback(LLVMReactorJIT *jit, uint64_t moduleKey)
{
jit->releaseRoutineModule(moduleKey);
}
};
#endif
Optimization optimization[10] = {InstructionCombining, Disabled};
enum EmulatedType
{
Type_v2i32,
Type_v4i16,
Type_v2i16,
Type_v8i8,
Type_v4i8,
Type_v2f32,
EmulatedTypeCount
};
llvm::Type *T(Type *t)
{
uintptr_t type = reinterpret_cast<uintptr_t>(t);
if(type < EmulatedTypeCount)
{
// Use 128-bit vectors to implement logically shorter ones.
switch(type)
{
case Type_v2i32: return T(Int4::getType());
case Type_v4i16: return T(Short8::getType());
case Type_v2i16: return T(Short8::getType());
case Type_v8i8: return T(Byte16::getType());
case Type_v4i8: return T(Byte16::getType());
case Type_v2f32: return T(Float4::getType());
default: assert(false);
}
}
return reinterpret_cast<llvm::Type*>(t);
}
inline Type *T(llvm::Type *t)
{
return reinterpret_cast<Type*>(t);
}
Type *T(EmulatedType t)
{
return reinterpret_cast<Type*>(t);
}
inline llvm::Value *V(Value *t)
{
return reinterpret_cast<llvm::Value*>(t);
}
inline Value *V(llvm::Value *t)
{
return reinterpret_cast<Value*>(t);
}
inline std::vector<llvm::Type*> &T(std::vector<Type*> &t)
{
return reinterpret_cast<std::vector<llvm::Type*>&>(t);
}
inline llvm::BasicBlock *B(BasicBlock *t)
{
return reinterpret_cast<llvm::BasicBlock*>(t);
}
inline BasicBlock *B(llvm::BasicBlock *t)
{
return reinterpret_cast<BasicBlock*>(t);
}
static size_t typeSize(Type *type)
{
uintptr_t t = reinterpret_cast<uintptr_t>(type);
if(t < EmulatedTypeCount)
{
switch(t)
{
case Type_v2i32: return 8;
case Type_v4i16: return 8;
case Type_v2i16: return 4;
case Type_v8i8: return 8;
case Type_v4i8: return 4;
case Type_v2f32: return 8;
default: assert(false);
}
}
return T(type)->getPrimitiveSizeInBits() / 8;
}
static unsigned int elementCount(Type *type)
{
uintptr_t t = reinterpret_cast<uintptr_t>(type);
if(t < EmulatedTypeCount)
{
switch(t)
{
case Type_v2i32: return 2;
case Type_v4i16: return 4;
case Type_v2i16: return 2;
case Type_v8i8: return 8;
case Type_v4i8: return 4;
case Type_v2f32: return 2;
default: assert(false);
}
}
return llvm::cast<llvm::VectorType>(T(type))->getNumElements();
}
Nucleus::Nucleus()
{
::codegenMutex.lock(); // Reactor and LLVM are currently not thread safe
llvm::InitializeNativeTarget();
#if REACTOR_LLVM_VERSION >= 7
llvm::InitializeNativeTargetAsmPrinter();
llvm::InitializeNativeTargetAsmParser();
#endif
if(!::context)
{
::context = new llvm::LLVMContext();
}
#if defined(__x86_64__)
static const char arch[] = "x86-64";
#elif defined(__i386__)
static const char arch[] = "x86";
#elif defined(__aarch64__)
static const char arch[] = "arm64";
#elif defined(__arm__)
static const char arch[] = "arm";
#else
#error "unknown architecture"
#endif
llvm::SmallVector<std::string, 1> mattrs;
#if defined(__i386__) || defined(__x86_64__)
mattrs.push_back(CPUID::supportsMMX() ? "+mmx" : "-mmx");
mattrs.push_back(CPUID::supportsCMOV() ? "+cmov" : "-cmov");
mattrs.push_back(CPUID::supportsSSE() ? "+sse" : "-sse");
mattrs.push_back(CPUID::supportsSSE2() ? "+sse2" : "-sse2");
mattrs.push_back(CPUID::supportsSSE3() ? "+sse3" : "-sse3");
mattrs.push_back(CPUID::supportsSSSE3() ? "+ssse3" : "-ssse3");
#if REACTOR_LLVM_VERSION < 7
mattrs.push_back(CPUID::supportsSSE4_1() ? "+sse41" : "-sse41");
#else
mattrs.push_back(CPUID::supportsSSE4_1() ? "+sse4.1" : "-sse4.1");
#endif
#elif defined(__arm__)
#if __ARM_ARCH >= 8
mattrs.push_back("+armv8-a");
#else
// armv7-a requires compiler-rt routines; otherwise, compiled kernel
// might fail to link.
#endif
#endif
#if REACTOR_LLVM_VERSION < 7
llvm::JITEmitDebugInfo = false;
llvm::UnsafeFPMath = true;
// llvm::NoInfsFPMath = true;
// llvm::NoNaNsFPMath = true;
#else
llvm::TargetOptions targetOpts;
targetOpts.UnsafeFPMath = false;
// targetOpts.NoInfsFPMath = true;
// targetOpts.NoNaNsFPMath = true;
#endif
if(!::reactorJIT)
{
#if REACTOR_LLVM_VERSION < 7
::reactorJIT = new LLVMReactorJIT(arch, mattrs);
#else
::reactorJIT = new LLVMReactorJIT(arch, mattrs, targetOpts);
#endif
}
::reactorJIT->startSession();
if(!::builder)
{
::builder = new llvm::IRBuilder<>(*::context);
#if defined(_WIN32) && REACTOR_LLVM_VERSION < 7
HMODULE CodeAnalyst = LoadLibrary("CAJitNtfyLib.dll");
if(CodeAnalyst)
{
CodeAnalystInitialize = (bool(*)())GetProcAddress(CodeAnalyst, "CAJIT_Initialize");
CodeAnalystCompleteJITLog = (void(*)())GetProcAddress(CodeAnalyst, "CAJIT_CompleteJITLog");
CodeAnalystLogJITCode = (bool(*)(const void*, unsigned int, const wchar_t*))GetProcAddress(CodeAnalyst, "CAJIT_LogJITCode");
CodeAnalystInitialize();
}
#endif
}
}
Nucleus::~Nucleus()
{
::reactorJIT->endSession();
::codegenMutex.unlock();
}
Routine *Nucleus::acquireRoutine(const wchar_t *name, bool runOptimizations)
{
if(::builder->GetInsertBlock()->empty() || !::builder->GetInsertBlock()->back().isTerminator())
{
llvm::Type *type = ::function->getReturnType();
if(type->isVoidTy())
{
createRetVoid();
}
else
{
createRet(V(llvm::UndefValue::get(type)));
}
}
if(false)
{
#if REACTOR_LLVM_VERSION < 7
std::string error;
#else
std::error_code error;
#endif
llvm::raw_fd_ostream file("llvm-dump-unopt.txt", error);
::module->print(file, 0);
}
if(runOptimizations)
{
optimize();
}
if(false)
{
#if REACTOR_LLVM_VERSION < 7
std::string error;
#else
std::error_code error;
#endif
llvm::raw_fd_ostream file("llvm-dump-opt.txt", error);
::module->print(file, 0);
}
LLVMRoutine *routine = ::reactorJIT->acquireRoutine(::function);
#if defined(_WIN32) && REACTOR_LLVM_VERSION < 7
if(CodeAnalystLogJITCode)
{
CodeAnalystLogJITCode(routine->getEntry(), routine->getCodeSize(), name);
}
#endif
return routine;
}
void Nucleus::optimize()
{
::reactorJIT->optimize(::module);
}
Value *Nucleus::allocateStackVariable(Type *type, int arraySize)
{
// Need to allocate it in the entry block for mem2reg to work
llvm::BasicBlock &entryBlock = ::function->getEntryBlock();
llvm::Instruction *declaration;
if(arraySize)
{
#if REACTOR_LLVM_VERSION < 7
declaration = new llvm::AllocaInst(T(type), V(Nucleus::createConstantInt(arraySize)));
#else
declaration = new llvm::AllocaInst(T(type), 0, V(Nucleus::createConstantInt(arraySize)));
#endif
}
else
{
#if REACTOR_LLVM_VERSION < 7
declaration = new llvm::AllocaInst(T(type), (llvm::Value*)nullptr);
#else
declaration = new llvm::AllocaInst(T(type), 0, (llvm::Value*)nullptr);
#endif
}
entryBlock.getInstList().push_front(declaration);
return V(declaration);
}
BasicBlock *Nucleus::createBasicBlock()
{
return B(llvm::BasicBlock::Create(*::context, "", ::function));
}
BasicBlock *Nucleus::getInsertBlock()
{
return B(::builder->GetInsertBlock());
}
void Nucleus::setInsertBlock(BasicBlock *basicBlock)
{
// assert(::builder->GetInsertBlock()->back().isTerminator());
::builder->SetInsertPoint(B(basicBlock));
}
void Nucleus::createFunction(Type *ReturnType, std::vector<Type*> &Params)
{
llvm::FunctionType *functionType = llvm::FunctionType::get(T(ReturnType), T(Params), false);
::function = llvm::Function::Create(functionType, llvm::GlobalValue::InternalLinkage, "", ::module);
::function->setCallingConv(llvm::CallingConv::C);
#if defined(_WIN32) && REACTOR_LLVM_VERSION >= 7
// FIXME(capn):
// On Windows, stack memory is committed in increments of 4 kB pages, with the last page
// having a trap which allows the OS to grow the stack. For functions with a stack frame
// larger than 4 kB this can cause an issue when a variable is accessed beyond the guard
// page. Therefore the compiler emits a call to __chkstk in the function prolog to probe
// the stack and ensure all pages have been committed. This is currently broken in LLVM
// JIT, but we can prevent emitting the stack probe call:
::function->addFnAttr("stack-probe-size", "1048576");
#endif
::builder->SetInsertPoint(llvm::BasicBlock::Create(*::context, "", ::function));
}
Value *Nucleus::getArgument(unsigned int index)
{
llvm::Function::arg_iterator args = ::function->arg_begin();
while(index)
{
args++;
index--;
}
return V(&*args);
}
void Nucleus::createRetVoid()
{
::builder->CreateRetVoid();
}
void Nucleus::createRet(Value *v)
{
::builder->CreateRet(V(v));
}
void Nucleus::createBr(BasicBlock *dest)
{
::builder->CreateBr(B(dest));
}
void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse)
{
::builder->CreateCondBr(V(cond), B(ifTrue), B(ifFalse));
}
Value *Nucleus::createAdd(Value *lhs, Value *rhs)
{
return V(::builder->CreateAdd(V(lhs), V(rhs)));
}
Value *Nucleus::createSub(Value *lhs, Value *rhs)
{
return V(::builder->CreateSub(V(lhs), V(rhs)));
}
Value *Nucleus::createMul(Value *lhs, Value *rhs)
{
return V(::builder->CreateMul(V(lhs), V(rhs)));
}
Value *Nucleus::createUDiv(Value *lhs, Value *rhs)
{
return V(::builder->CreateUDiv(V(lhs), V(rhs)));
}
Value *Nucleus::createSDiv(Value *lhs, Value *rhs)
{
return V(::builder->CreateSDiv(V(lhs), V(rhs)));
}
Value *Nucleus::createFAdd(Value *lhs, Value *rhs)
{
return V(::builder->CreateFAdd(V(lhs), V(rhs)));
}
Value *Nucleus::createFSub(Value *lhs, Value *rhs)
{
return V(::builder->CreateFSub(V(lhs), V(rhs)));
}
Value *Nucleus::createFMul(Value *lhs, Value *rhs)
{
return V(::builder->CreateFMul(V(lhs), V(rhs)));
}
Value *Nucleus::createFDiv(Value *lhs, Value *rhs)
{
return V(::builder->CreateFDiv(V(lhs), V(rhs)));
}
Value *Nucleus::createURem(Value *lhs, Value *rhs)
{
return V(::builder->CreateURem(V(lhs), V(rhs)));
}
Value *Nucleus::createSRem(Value *lhs, Value *rhs)
{
return V(::builder->CreateSRem(V(lhs), V(rhs)));
}
Value *Nucleus::createFRem(Value *lhs, Value *rhs)
{
return V(::builder->CreateFRem(V(lhs), V(rhs)));
}
Value *Nucleus::createShl(Value *lhs, Value *rhs)
{
return V(::builder->CreateShl(V(lhs), V(rhs)));
}
Value *Nucleus::createLShr(Value *lhs, Value *rhs)
{
return V(::builder->CreateLShr(V(lhs), V(rhs)));
}
Value *Nucleus::createAShr(Value *lhs, Value *rhs)
{
return V(::builder->CreateAShr(V(lhs), V(rhs)));
}
Value *Nucleus::createAnd(Value *lhs, Value *rhs)
{
return V(::builder->CreateAnd(V(lhs), V(rhs)));
}
Value *Nucleus::createOr(Value *lhs, Value *rhs)
{
return V(::builder->CreateOr(V(lhs), V(rhs)));
}
Value *Nucleus::createXor(Value *lhs, Value *rhs)
{
return V(::builder->CreateXor(V(lhs), V(rhs)));
}
Value *Nucleus::createNeg(Value *v)
{
return V(::builder->CreateNeg(V(v)));
}
Value *Nucleus::createFNeg(Value *v)
{
return V(::builder->CreateFNeg(V(v)));
}
Value *Nucleus::createNot(Value *v)
{
return V(::builder->CreateNot(V(v)));
}
Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int alignment)
{
uintptr_t t = reinterpret_cast<uintptr_t>(type);
if(t < EmulatedTypeCount)
{
switch(t)
{
case Type_v2i32:
case Type_v4i16:
case Type_v8i8:
case Type_v2f32:
return createBitCast(
createInsertElement(
V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::getType()), 2))),
createLoad(createBitCast(ptr, Pointer<Long>::getType()), Long::getType(), isVolatile, alignment),
0),
type);
case Type_v2i16:
case Type_v4i8:
if(alignment != 0) // Not a local variable (all vectors are 128-bit).
{
Value *u = V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::getType()), 2)));
Value *i = createLoad(createBitCast(ptr, Pointer<Int>::getType()), Int::getType(), isVolatile, alignment);
i = createZExt(i, Long::getType());
Value *v = createInsertElement(u, i, 0);
return createBitCast(v, type);
}
break;
default:
assert(false);
}
}
assert(V(ptr)->getType()->getContainedType(0) == T(type));
return V(::builder->Insert(new llvm::LoadInst(V(ptr), "", isVolatile, alignment)));
}
Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int alignment)
{
uintptr_t t = reinterpret_cast<uintptr_t>(type);
if(t < EmulatedTypeCount)
{
switch(t)
{
case Type_v2i32:
case Type_v4i16:
case Type_v8i8:
case Type_v2f32:
createStore(
createExtractElement(
createBitCast(value, T(llvm::VectorType::get(T(Long::getType()), 2))), Long::getType(), 0),
createBitCast(ptr, Pointer<Long>::getType()),
Long::getType(), isVolatile, alignment);
return value;
case Type_v2i16:
case Type_v4i8:
if(alignment != 0) // Not a local variable (all vectors are 128-bit).
{
createStore(
createExtractElement(createBitCast(value, Int4::getType()), Int::getType(), 0),
createBitCast(ptr, Pointer<Int>::getType()),
Int::getType(), isVolatile, alignment);
return value;
}
break;
default:
assert(false);
}
}
assert(V(ptr)->getType()->getContainedType(0) == T(type));
::builder->Insert(new llvm::StoreInst(V(value), V(ptr), isVolatile, alignment));
return value;
}
Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex)
{
if(sizeof(void*) == 8)
{
if(unsignedIndex)
{
index = createZExt(index, Long::getType());
}
else
{
index = createSExt(index, Long::getType());
}
index = createMul(index, createConstantLong((int64_t)typeSize(type)));
}
else
{
index = createMul(index, createConstantInt((int)typeSize(type)));
}
assert(V(ptr)->getType()->getContainedType(0) == T(type));
return createBitCast(
V(::builder->CreateGEP(V(createBitCast(ptr, T(llvm::PointerType::get(T(Byte::getType()), 0)))), V(index))),
T(llvm::PointerType::get(T(type), 0)));
}
Value *Nucleus::createAtomicAdd(Value *ptr, Value *value)
{
return V(::builder->CreateAtomicRMW(llvm::AtomicRMWInst::Add, V(ptr), V(value), llvm::AtomicOrdering::SequentiallyConsistent));
}
Value *Nucleus::createTrunc(Value *v, Type *destType)
{
return V(::builder->CreateTrunc(V(v), T(destType)));
}
Value *Nucleus::createZExt(Value *v, Type *destType)
{
return V(::builder->CreateZExt(V(v), T(destType)));
}
Value *Nucleus::createSExt(Value *v, Type *destType)
{
return V(::builder->CreateSExt(V(v), T(destType)));
}
Value *Nucleus::createFPToSI(Value *v, Type *destType)
{
return V(::builder->CreateFPToSI(V(v), T(destType)));
}
Value *Nucleus::createSIToFP(Value *v, Type *destType)
{
return V(::builder->CreateSIToFP(V(v), T(destType)));
}
Value *Nucleus::createFPTrunc(Value *v, Type *destType)
{
return V(::builder->CreateFPTrunc(V(v), T(destType)));
}
Value *Nucleus::createFPExt(Value *v, Type *destType)
{
return V(::builder->CreateFPExt(V(v), T(destType)));
}
Value *Nucleus::createBitCast(Value *v, Type *destType)
{
// Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need
// support for casting between scalars and wide vectors. Emulate them by writing to the stack and
// reading back as the destination type.
if(!V(v)->getType()->isVectorTy() && T(destType)->isVectorTy())
{
Value *readAddress = allocateStackVariable(destType);
Value *writeAddress = createBitCast(readAddress, T(llvm::PointerType::get(V(v)->getType(), 0)));
createStore(v, writeAddress, T(V(v)->getType()));
return createLoad(readAddress, destType);
}
else if(V(v)->getType()->isVectorTy() && !T(destType)->isVectorTy())
{
Value *writeAddress = allocateStackVariable(T(V(v)->getType()));
createStore(v, writeAddress, T(V(v)->getType()));
Value *readAddress = createBitCast(writeAddress, T(llvm::PointerType::get(T(destType), 0)));
return createLoad(readAddress, destType);
}
return V(::builder->CreateBitCast(V(v), T(destType)));
}
Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpEQ(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpNE(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpNE(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpUGT(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpUGE(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpULT(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpULT(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpULE(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpULE(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpSGT(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpSGE(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpSLT(V(lhs), V(rhs)));
}
Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs)
{
return V(::builder->CreateICmpSLE(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpOEQ(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpOGT(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpOGE(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpOLT(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpOLE(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpONE(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpORD(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpUNO(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpUEQ(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpUGT(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpUGE(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpULT(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpULE(V(lhs), V(rhs)));
}
Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs)
{
return V(::builder->CreateFCmpULE(V(lhs), V(rhs)));
}
Value *Nucleus::createExtractElement(Value *vector, Type *type, int index)
{
assert(V(vector)->getType()->getContainedType(0) == T(type));
return V(::builder->CreateExtractElement(V(vector), V(createConstantInt(index))));
}
Value *Nucleus::createInsertElement(Value *vector, Value *element, int index)
{
return V(::builder->CreateInsertElement(V(vector), V(element), V(createConstantInt(index))));
}
Value *Nucleus::createShuffleVector(Value *v1, Value *v2, const int *select)
{
int size = llvm::cast<llvm::VectorType>(V(v1)->getType())->getNumElements();
const int maxSize = 16;
llvm::Constant *swizzle[maxSize];
assert(size <= maxSize);
for(int i = 0; i < size; i++)
{
swizzle[i] = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), select[i]);
}
llvm::Value *shuffle = llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(swizzle, size));
return V(::builder->CreateShuffleVector(V(v1), V(v2), shuffle));
}
Value *Nucleus::createSelect(Value *c, Value *ifTrue, Value *ifFalse)
{
return V(::builder->CreateSelect(V(c), V(ifTrue), V(ifFalse)));
}
SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases)
{
return reinterpret_cast<SwitchCases*>(::builder->CreateSwitch(V(control), B(defaultBranch), numCases));
}
void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch)
{
llvm::SwitchInst *sw = reinterpret_cast<llvm::SwitchInst *>(switchCases);
sw->addCase(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), label, true), B(branch));
}
void Nucleus::createUnreachable()
{
::builder->CreateUnreachable();
}
static Value *createSwizzle4(Value *val, unsigned char select)
{
int swizzle[4] =
{
(select >> 0) & 0x03,
(select >> 2) & 0x03,
(select >> 4) & 0x03,
(select >> 6) & 0x03,
};
return Nucleus::createShuffleVector(val, val, swizzle);
}
static Value *createMask4(Value *lhs, Value *rhs, unsigned char select)
{
bool mask[4] = {false, false, false, false};
mask[(select >> 0) & 0x03] = true;
mask[(select >> 2) & 0x03] = true;
mask[(select >> 4) & 0x03] = true;
mask[(select >> 6) & 0x03] = true;
int swizzle[4] =
{
mask[0] ? 4 : 0,
mask[1] ? 5 : 1,
mask[2] ? 6 : 2,
mask[3] ? 7 : 3,
};
return Nucleus::createShuffleVector(lhs, rhs, swizzle);
}
Type *Nucleus::getPointerType(Type *ElementType)
{
return T(llvm::PointerType::get(T(ElementType), 0));
}
Value *Nucleus::createNullValue(Type *Ty)
{
return V(llvm::Constant::getNullValue(T(Ty)));
}
Value *Nucleus::createConstantLong(int64_t i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt64Ty(*::context), i, true));
}
Value *Nucleus::createConstantInt(int i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), i, true));
}
Value *Nucleus::createConstantInt(unsigned int i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), i, false));
}
Value *Nucleus::createConstantBool(bool b)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt1Ty(*::context), b));
}
Value *Nucleus::createConstantByte(signed char i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*::context), i, true));
}
Value *Nucleus::createConstantByte(unsigned char i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*::context), i, false));
}
Value *Nucleus::createConstantShort(short i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*::context), i, true));
}
Value *Nucleus::createConstantShort(unsigned short i)
{
return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*::context), i, false));
}
Value *Nucleus::createConstantFloat(float x)
{
return V(llvm::ConstantFP::get(T(Float::getType()), x));
}
Value *Nucleus::createNullPointer(Type *Ty)
{
return V(llvm::ConstantPointerNull::get(llvm::PointerType::get(T(Ty), 0)));
}
Value *Nucleus::createConstantVector(const int64_t *constants, Type *type)
{
assert(llvm::isa<llvm::VectorType>(T(type)));
const int numConstants = elementCount(type); // Number of provided constants for the (emulated) type.
const int numElements = llvm::cast<llvm::VectorType>(T(type))->getNumElements(); // Number of elements of the underlying vector type.
assert(numElements <= 16 && numConstants <= numElements);
llvm::Constant *constantVector[16];
for(int i = 0; i < numElements; i++)
{
constantVector[i] = llvm::ConstantInt::get(T(type)->getContainedType(0), constants[i % numConstants]);
}
return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(constantVector, numElements)));
}
Value *Nucleus::createConstantVector(const double *constants, Type *type)
{
assert(llvm::isa<llvm::VectorType>(T(type)));
const int numConstants = elementCount(type); // Number of provided constants for the (emulated) type.
const int numElements = llvm::cast<llvm::VectorType>(T(type))->getNumElements(); // Number of elements of the underlying vector type.
assert(numElements <= 8 && numConstants <= numElements);
llvm::Constant *constantVector[8];
for(int i = 0; i < numElements; i++)
{
constantVector[i] = llvm::ConstantFP::get(T(type)->getContainedType(0), constants[i % numConstants]);
}
return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(constantVector, numElements)));
}
Type *Void::getType()
{
return T(llvm::Type::getVoidTy(*::context));
}
Bool::Bool(Argument<Bool> argument)
{
storeValue(argument.value);
}
Bool::Bool(bool x)
{
storeValue(Nucleus::createConstantBool(x));
}
Bool::Bool(RValue<Bool> rhs)
{
storeValue(rhs.value);
}
Bool::Bool(const Bool &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Bool::Bool(const Reference<Bool> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Bool> Bool::operator=(RValue<Bool> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Bool> Bool::operator=(const Bool &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Bool>(value);
}
RValue<Bool> Bool::operator=(const Reference<Bool> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Bool>(value);
}
RValue<Bool> operator!(RValue<Bool> val)
{
return RValue<Bool>(Nucleus::createNot(val.value));
}
RValue<Bool> operator&&(RValue<Bool> lhs, RValue<Bool> rhs)
{
return RValue<Bool>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Bool> operator||(RValue<Bool> lhs, RValue<Bool> rhs)
{
return RValue<Bool>(Nucleus::createOr(lhs.value, rhs.value));
}
Type *Bool::getType()
{
return T(llvm::Type::getInt1Ty(*::context));
}
Byte::Byte(Argument<Byte> argument)
{
storeValue(argument.value);
}
Byte::Byte(RValue<Int> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, Byte::getType());
storeValue(integer);
}
Byte::Byte(RValue<UInt> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, Byte::getType());
storeValue(integer);
}
Byte::Byte(RValue<UShort> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, Byte::getType());
storeValue(integer);
}
Byte::Byte(int x)
{
storeValue(Nucleus::createConstantByte((unsigned char)x));
}
Byte::Byte(unsigned char x)
{
storeValue(Nucleus::createConstantByte(x));
}
Byte::Byte(RValue<Byte> rhs)
{
storeValue(rhs.value);
}
Byte::Byte(const Byte &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Byte::Byte(const Reference<Byte> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Byte> Byte::operator=(RValue<Byte> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Byte> Byte::operator=(const Byte &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Byte>(value);
}
RValue<Byte> Byte::operator=(const Reference<Byte> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Byte>(value);
}
RValue<Byte> operator+(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Byte> operator-(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<Byte> operator*(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<Byte> operator/(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createUDiv(lhs.value, rhs.value));
}
RValue<Byte> operator%(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createURem(lhs.value, rhs.value));
}
RValue<Byte> operator&(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Byte> operator|(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Byte> operator^(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<Byte> operator<<(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<Byte> operator>>(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Byte>(Nucleus::createLShr(lhs.value, rhs.value));
}
RValue<Byte> operator+=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs + rhs;
}
RValue<Byte> operator-=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs - rhs;
}
RValue<Byte> operator*=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs * rhs;
}
RValue<Byte> operator/=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs / rhs;
}
RValue<Byte> operator%=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs % rhs;
}
RValue<Byte> operator&=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs & rhs;
}
RValue<Byte> operator|=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs | rhs;
}
RValue<Byte> operator^=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<Byte> operator<<=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs << rhs;
}
RValue<Byte> operator>>=(Byte &lhs, RValue<Byte> rhs)
{
return lhs = lhs >> rhs;
}
RValue<Byte> operator+(RValue<Byte> val)
{
return val;
}
RValue<Byte> operator-(RValue<Byte> val)
{
return RValue<Byte>(Nucleus::createNeg(val.value));
}
RValue<Byte> operator~(RValue<Byte> val)
{
return RValue<Byte>(Nucleus::createNot(val.value));
}
RValue<Byte> operator++(Byte &val, int) // Post-increment
{
RValue<Byte> res = val;
Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantByte((unsigned char)1));
val.storeValue(inc);
return res;
}
const Byte &operator++(Byte &val) // Pre-increment
{
Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantByte((unsigned char)1));
val.storeValue(inc);
return val;
}
RValue<Byte> operator--(Byte &val, int) // Post-decrement
{
RValue<Byte> res = val;
Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantByte((unsigned char)1));
val.storeValue(inc);
return res;
}
const Byte &operator--(Byte &val) // Pre-decrement
{
Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantByte((unsigned char)1));
val.storeValue(inc);
return val;
}
RValue<Bool> operator<(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<Byte> lhs, RValue<Byte> rhs)
{
return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
}
Type *Byte::getType()
{
return T(llvm::Type::getInt8Ty(*::context));
}
SByte::SByte(Argument<SByte> argument)
{
storeValue(argument.value);
}
SByte::SByte(RValue<Int> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, SByte::getType());
storeValue(integer);
}
SByte::SByte(RValue<Short> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, SByte::getType());
storeValue(integer);
}
SByte::SByte(signed char x)
{
storeValue(Nucleus::createConstantByte(x));
}
SByte::SByte(RValue<SByte> rhs)
{
storeValue(rhs.value);
}
SByte::SByte(const SByte &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
SByte::SByte(const Reference<SByte> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<SByte> SByte::operator=(RValue<SByte> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<SByte> SByte::operator=(const SByte &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<SByte>(value);
}
RValue<SByte> SByte::operator=(const Reference<SByte> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<SByte>(value);
}
RValue<SByte> operator+(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<SByte> operator-(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<SByte> operator*(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<SByte> operator/(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createSDiv(lhs.value, rhs.value));
}
RValue<SByte> operator%(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createSRem(lhs.value, rhs.value));
}
RValue<SByte> operator&(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<SByte> operator|(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<SByte> operator^(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<SByte> operator<<(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<SByte> operator>>(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<SByte>(Nucleus::createAShr(lhs.value, rhs.value));
}
RValue<SByte> operator+=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs + rhs;
}
RValue<SByte> operator-=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs - rhs;
}
RValue<SByte> operator*=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs * rhs;
}
RValue<SByte> operator/=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs / rhs;
}
RValue<SByte> operator%=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs % rhs;
}
RValue<SByte> operator&=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs & rhs;
}
RValue<SByte> operator|=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs | rhs;
}
RValue<SByte> operator^=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<SByte> operator<<=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs << rhs;
}
RValue<SByte> operator>>=(SByte &lhs, RValue<SByte> rhs)
{
return lhs = lhs >> rhs;
}
RValue<SByte> operator+(RValue<SByte> val)
{
return val;
}
RValue<SByte> operator-(RValue<SByte> val)
{
return RValue<SByte>(Nucleus::createNeg(val.value));
}
RValue<SByte> operator~(RValue<SByte> val)
{
return RValue<SByte>(Nucleus::createNot(val.value));
}
RValue<SByte> operator++(SByte &val, int) // Post-increment
{
RValue<SByte> res = val;
Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantByte((signed char)1));
val.storeValue(inc);
return res;
}
const SByte &operator++(SByte &val) // Pre-increment
{
Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantByte((signed char)1));
val.storeValue(inc);
return val;
}
RValue<SByte> operator--(SByte &val, int) // Post-decrement
{
RValue<SByte> res = val;
Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantByte((signed char)1));
val.storeValue(inc);
return res;
}
const SByte &operator--(SByte &val) // Pre-decrement
{
Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantByte((signed char)1));
val.storeValue(inc);
return val;
}
RValue<Bool> operator<(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<SByte> lhs, RValue<SByte> rhs)
{
return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
}
Type *SByte::getType()
{
return T(llvm::Type::getInt8Ty(*::context));
}
Short::Short(Argument<Short> argument)
{
storeValue(argument.value);
}
Short::Short(RValue<Int> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, Short::getType());
storeValue(integer);
}
Short::Short(short x)
{
storeValue(Nucleus::createConstantShort(x));
}
Short::Short(RValue<Short> rhs)
{
storeValue(rhs.value);
}
Short::Short(const Short &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Short::Short(const Reference<Short> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Short> Short::operator=(RValue<Short> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Short> Short::operator=(const Short &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Short>(value);
}
RValue<Short> Short::operator=(const Reference<Short> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Short>(value);
}
RValue<Short> operator+(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Short> operator-(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<Short> operator*(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<Short> operator/(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createSDiv(lhs.value, rhs.value));
}
RValue<Short> operator%(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createSRem(lhs.value, rhs.value));
}
RValue<Short> operator&(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Short> operator|(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Short> operator^(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<Short> operator<<(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<Short> operator>>(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Short>(Nucleus::createAShr(lhs.value, rhs.value));
}
RValue<Short> operator+=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs + rhs;
}
RValue<Short> operator-=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs - rhs;
}
RValue<Short> operator*=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs * rhs;
}
RValue<Short> operator/=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs / rhs;
}
RValue<Short> operator%=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs % rhs;
}
RValue<Short> operator&=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs & rhs;
}
RValue<Short> operator|=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs | rhs;
}
RValue<Short> operator^=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<Short> operator<<=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs << rhs;
}
RValue<Short> operator>>=(Short &lhs, RValue<Short> rhs)
{
return lhs = lhs >> rhs;
}
RValue<Short> operator+(RValue<Short> val)
{
return val;
}
RValue<Short> operator-(RValue<Short> val)
{
return RValue<Short>(Nucleus::createNeg(val.value));
}
RValue<Short> operator~(RValue<Short> val)
{
return RValue<Short>(Nucleus::createNot(val.value));
}
RValue<Short> operator++(Short &val, int) // Post-increment
{
RValue<Short> res = val;
Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantShort((short)1));
val.storeValue(inc);
return res;
}
const Short &operator++(Short &val) // Pre-increment
{
Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantShort((short)1));
val.storeValue(inc);
return val;
}
RValue<Short> operator--(Short &val, int) // Post-decrement
{
RValue<Short> res = val;
Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantShort((short)1));
val.storeValue(inc);
return res;
}
const Short &operator--(Short &val) // Pre-decrement
{
Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantShort((short)1));
val.storeValue(inc);
return val;
}
RValue<Bool> operator<(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<Short> lhs, RValue<Short> rhs)
{
return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
}
Type *Short::getType()
{
return T(llvm::Type::getInt16Ty(*::context));
}
UShort::UShort(Argument<UShort> argument)
{
storeValue(argument.value);
}
UShort::UShort(RValue<UInt> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, UShort::getType());
storeValue(integer);
}
UShort::UShort(RValue<Int> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, UShort::getType());
storeValue(integer);
}
UShort::UShort(unsigned short x)
{
storeValue(Nucleus::createConstantShort(x));
}
UShort::UShort(RValue<UShort> rhs)
{
storeValue(rhs.value);
}
UShort::UShort(const UShort &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UShort::UShort(const Reference<UShort> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<UShort> UShort::operator=(RValue<UShort> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<UShort> UShort::operator=(const UShort &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort>(value);
}
RValue<UShort> UShort::operator=(const Reference<UShort> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort>(value);
}
RValue<UShort> operator+(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<UShort> operator-(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<UShort> operator*(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<UShort> operator/(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createUDiv(lhs.value, rhs.value));
}
RValue<UShort> operator%(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createURem(lhs.value, rhs.value));
}
RValue<UShort> operator&(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<UShort> operator|(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<UShort> operator^(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<UShort> operator<<(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<UShort> operator>>(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<UShort>(Nucleus::createLShr(lhs.value, rhs.value));
}
RValue<UShort> operator+=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs + rhs;
}
RValue<UShort> operator-=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs - rhs;
}
RValue<UShort> operator*=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs * rhs;
}
RValue<UShort> operator/=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs / rhs;
}
RValue<UShort> operator%=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs % rhs;
}
RValue<UShort> operator&=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs & rhs;
}
RValue<UShort> operator|=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs | rhs;
}
RValue<UShort> operator^=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<UShort> operator<<=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs << rhs;
}
RValue<UShort> operator>>=(UShort &lhs, RValue<UShort> rhs)
{
return lhs = lhs >> rhs;
}
RValue<UShort> operator+(RValue<UShort> val)
{
return val;
}
RValue<UShort> operator-(RValue<UShort> val)
{
return RValue<UShort>(Nucleus::createNeg(val.value));
}
RValue<UShort> operator~(RValue<UShort> val)
{
return RValue<UShort>(Nucleus::createNot(val.value));
}
RValue<UShort> operator++(UShort &val, int) // Post-increment
{
RValue<UShort> res = val;
Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantShort((unsigned short)1));
val.storeValue(inc);
return res;
}
const UShort &operator++(UShort &val) // Pre-increment
{
Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantShort((unsigned short)1));
val.storeValue(inc);
return val;
}
RValue<UShort> operator--(UShort &val, int) // Post-decrement
{
RValue<UShort> res = val;
Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantShort((unsigned short)1));
val.storeValue(inc);
return res;
}
const UShort &operator--(UShort &val) // Pre-decrement
{
Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantShort((unsigned short)1));
val.storeValue(inc);
return val;
}
RValue<Bool> operator<(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<UShort> lhs, RValue<UShort> rhs)
{
return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
}
Type *UShort::getType()
{
return T(llvm::Type::getInt16Ty(*::context));
}
Byte4::Byte4(RValue<Byte8> cast)
{
storeValue(Nucleus::createBitCast(cast.value, getType()));
}
Byte4::Byte4(const Reference<Byte4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Type *Byte4::getType()
{
return T(Type_v4i8);
}
Type *SByte4::getType()
{
return T(Type_v4i8);
}
Byte8::Byte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7)
{
int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Byte8::Byte8(RValue<Byte8> rhs)
{
storeValue(rhs.value);
}
Byte8::Byte8(const Byte8 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Byte8::Byte8(const Reference<Byte8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Byte8> Byte8::operator=(RValue<Byte8> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Byte8> Byte8::operator=(const Byte8 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Byte8>(value);
}
RValue<Byte8> Byte8::operator=(const Reference<Byte8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Byte8>(value);
}
RValue<Byte8> operator+(RValue<Byte8> lhs, RValue<Byte8> rhs)
{
return RValue<Byte8>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Byte8> operator-(RValue<Byte8> lhs, RValue<Byte8> rhs)
{
return RValue<Byte8>(Nucleus::createSub(lhs.value, rhs.value));
}
// RValue<Byte8> operator*(RValue<Byte8> lhs, RValue<Byte8> rhs)
// {
// return RValue<Byte8>(Nucleus::createMul(lhs.value, rhs.value));
// }
// RValue<Byte8> operator/(RValue<Byte8> lhs, RValue<Byte8> rhs)
// {
// return RValue<Byte8>(Nucleus::createUDiv(lhs.value, rhs.value));
// }
// RValue<Byte8> operator%(RValue<Byte8> lhs, RValue<Byte8> rhs)
// {
// return RValue<Byte8>(Nucleus::createURem(lhs.value, rhs.value));
// }
RValue<Byte8> operator&(RValue<Byte8> lhs, RValue<Byte8> rhs)
{
return RValue<Byte8>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Byte8> operator|(RValue<Byte8> lhs, RValue<Byte8> rhs)
{
return RValue<Byte8>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Byte8> operator^(RValue<Byte8> lhs, RValue<Byte8> rhs)
{
return RValue<Byte8>(Nucleus::createXor(lhs.value, rhs.value));
}
// RValue<Byte8> operator<<(RValue<Byte8> lhs, unsigned char rhs)
// {
// return RValue<Byte8>(Nucleus::createShl(lhs.value, rhs.value));
// }
// RValue<Byte8> operator>>(RValue<Byte8> lhs, unsigned char rhs)
// {
// return RValue<Byte8>(Nucleus::createLShr(lhs.value, rhs.value));
// }
RValue<Byte8> operator+=(Byte8 &lhs, RValue<Byte8> rhs)
{
return lhs = lhs + rhs;
}
RValue<Byte8> operator-=(Byte8 &lhs, RValue<Byte8> rhs)
{
return lhs = lhs - rhs;
}
// RValue<Byte8> operator*=(Byte8 &lhs, RValue<Byte8> rhs)
// {
// return lhs = lhs * rhs;
// }
// RValue<Byte8> operator/=(Byte8 &lhs, RValue<Byte8> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<Byte8> operator%=(Byte8 &lhs, RValue<Byte8> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<Byte8> operator&=(Byte8 &lhs, RValue<Byte8> rhs)
{
return lhs = lhs & rhs;
}
RValue<Byte8> operator|=(Byte8 &lhs, RValue<Byte8> rhs)
{
return lhs = lhs | rhs;
}
RValue<Byte8> operator^=(Byte8 &lhs, RValue<Byte8> rhs)
{
return lhs = lhs ^ rhs;
}
// RValue<Byte8> operator<<=(Byte8 &lhs, RValue<Byte8> rhs)
// {
// return lhs = lhs << rhs;
// }
// RValue<Byte8> operator>>=(Byte8 &lhs, RValue<Byte8> rhs)
// {
// return lhs = lhs >> rhs;
// }
// RValue<Byte8> operator+(RValue<Byte8> val)
// {
// return val;
// }
// RValue<Byte8> operator-(RValue<Byte8> val)
// {
// return RValue<Byte8>(Nucleus::createNeg(val.value));
// }
RValue<Byte8> operator~(RValue<Byte8> val)
{
return RValue<Byte8>(Nucleus::createNot(val.value));
}
RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::paddusb(x, y);
#else
return As<Byte8>(V(lowerPUADDSAT(V(x.value), V(y.value))));
#endif
}
RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psubusb(x, y);
#else
return As<Byte8>(V(lowerPUSUBSAT(V(x.value), V(y.value))));
#endif
}
RValue<Short4> Unpack(RValue<Byte4> x)
{
int shuffle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}; // Real type is v16i8
return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle));
}
RValue<Short4> Unpack(RValue<Byte4> x, RValue<Byte4> y)
{
return UnpackLow(As<Byte8>(x), As<Byte8>(y));
}
RValue<Short4> UnpackLow(RValue<Byte8> x, RValue<Byte8> y)
{
int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8
return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Short4> UnpackHigh(RValue<Byte8> x, RValue<Byte8> y)
{
int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8
auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE));
}
RValue<Int> SignMask(RValue<Byte8> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmovmskb(x);
#else
return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType()))));
#endif
}
// RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y)
// {
//#if defined(__i386__) || defined(__x86_64__)
// return x86::pcmpgtb(x, y); // FIXME: Signedness
//#else
// return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType()))));
//#endif
// }
RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pcmpeqb(x, y);
#else
return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
}
Type *Byte8::getType()
{
return T(Type_v8i8);
}
SByte8::SByte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7)
{
int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7};
Value *vector = Nucleus::createConstantVector(constantVector, getType());
storeValue(Nucleus::createBitCast(vector, getType()));
}
SByte8::SByte8(RValue<SByte8> rhs)
{
storeValue(rhs.value);
}
SByte8::SByte8(const SByte8 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
SByte8::SByte8(const Reference<SByte8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<SByte8> SByte8::operator=(RValue<SByte8> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<SByte8> SByte8::operator=(const SByte8 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<SByte8>(value);
}
RValue<SByte8> SByte8::operator=(const Reference<SByte8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<SByte8>(value);
}
RValue<SByte8> operator+(RValue<SByte8> lhs, RValue<SByte8> rhs)
{
return RValue<SByte8>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<SByte8> operator-(RValue<SByte8> lhs, RValue<SByte8> rhs)
{
return RValue<SByte8>(Nucleus::createSub(lhs.value, rhs.value));
}
// RValue<SByte8> operator*(RValue<SByte8> lhs, RValue<SByte8> rhs)
// {
// return RValue<SByte8>(Nucleus::createMul(lhs.value, rhs.value));
// }
// RValue<SByte8> operator/(RValue<SByte8> lhs, RValue<SByte8> rhs)
// {
// return RValue<SByte8>(Nucleus::createSDiv(lhs.value, rhs.value));
// }
// RValue<SByte8> operator%(RValue<SByte8> lhs, RValue<SByte8> rhs)
// {
// return RValue<SByte8>(Nucleus::createSRem(lhs.value, rhs.value));
// }
RValue<SByte8> operator&(RValue<SByte8> lhs, RValue<SByte8> rhs)
{
return RValue<SByte8>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<SByte8> operator|(RValue<SByte8> lhs, RValue<SByte8> rhs)
{
return RValue<SByte8>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<SByte8> operator^(RValue<SByte8> lhs, RValue<SByte8> rhs)
{
return RValue<SByte8>(Nucleus::createXor(lhs.value, rhs.value));
}
// RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs)
// {
// return RValue<SByte8>(Nucleus::createShl(lhs.value, rhs.value));
// }
// RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
// {
// return RValue<SByte8>(Nucleus::createAShr(lhs.value, rhs.value));
// }
RValue<SByte8> operator+=(SByte8 &lhs, RValue<SByte8> rhs)
{
return lhs = lhs + rhs;
}
RValue<SByte8> operator-=(SByte8 &lhs, RValue<SByte8> rhs)
{
return lhs = lhs - rhs;
}
// RValue<SByte8> operator*=(SByte8 &lhs, RValue<SByte8> rhs)
// {
// return lhs = lhs * rhs;
// }
// RValue<SByte8> operator/=(SByte8 &lhs, RValue<SByte8> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<SByte8> operator%=(SByte8 &lhs, RValue<SByte8> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<SByte8> operator&=(SByte8 &lhs, RValue<SByte8> rhs)
{
return lhs = lhs & rhs;
}
RValue<SByte8> operator|=(SByte8 &lhs, RValue<SByte8> rhs)
{
return lhs = lhs | rhs;
}
RValue<SByte8> operator^=(SByte8 &lhs, RValue<SByte8> rhs)
{
return lhs = lhs ^ rhs;
}
// RValue<SByte8> operator<<=(SByte8 &lhs, RValue<SByte8> rhs)
// {
// return lhs = lhs << rhs;
// }
// RValue<SByte8> operator>>=(SByte8 &lhs, RValue<SByte8> rhs)
// {
// return lhs = lhs >> rhs;
// }
// RValue<SByte8> operator+(RValue<SByte8> val)
// {
// return val;
// }
// RValue<SByte8> operator-(RValue<SByte8> val)
// {
// return RValue<SByte8>(Nucleus::createNeg(val.value));
// }
RValue<SByte8> operator~(RValue<SByte8> val)
{
return RValue<SByte8>(Nucleus::createNot(val.value));
}
RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::paddsb(x, y);
#else
return As<SByte8>(V(lowerPSADDSAT(V(x.value), V(y.value))));
#endif
}
RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psubsb(x, y);
#else
return As<SByte8>(V(lowerPSSUBSAT(V(x.value), V(y.value))));
#endif
}
RValue<Short4> UnpackLow(RValue<SByte8> x, RValue<SByte8> y)
{
int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8
return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Short4> UnpackHigh(RValue<SByte8> x, RValue<SByte8> y)
{
int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8
auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE));
}
RValue<Int> SignMask(RValue<SByte8> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmovmskb(As<Byte8>(x));
#else
return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType()))));
#endif
}
RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pcmpgtb(x, y);
#else
return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
}
RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pcmpeqb(As<Byte8>(x), As<Byte8>(y));
#else
return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
}
Type *SByte8::getType()
{
return T(Type_v8i8);
}
Byte16::Byte16(RValue<Byte16> rhs)
{
storeValue(rhs.value);
}
Byte16::Byte16(const Byte16 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Byte16::Byte16(const Reference<Byte16> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Byte16> Byte16::operator=(RValue<Byte16> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Byte16> Byte16::operator=(const Byte16 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Byte16>(value);
}
RValue<Byte16> Byte16::operator=(const Reference<Byte16> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Byte16>(value);
}
Type *Byte16::getType()
{
return T(llvm::VectorType::get(T(Byte::getType()), 16));
}
Type *SByte16::getType()
{
return T(llvm::VectorType::get(T(SByte::getType()), 16));
}
Short2::Short2(RValue<Short4> cast)
{
storeValue(Nucleus::createBitCast(cast.value, getType()));
}
Type *Short2::getType()
{
return T(Type_v2i16);
}
UShort2::UShort2(RValue<UShort4> cast)
{
storeValue(Nucleus::createBitCast(cast.value, getType()));
}
Type *UShort2::getType()
{
return T(Type_v2i16);
}
Short4::Short4(RValue<Int> cast)
{
Value *vector = loadValue();
Value *element = Nucleus::createTrunc(cast.value, Short::getType());
Value *insert = Nucleus::createInsertElement(vector, element, 0);
Value *swizzle = Swizzle(RValue<Short4>(insert), 0x00).value;
storeValue(swizzle);
}
Short4::Short4(RValue<Int4> cast)
{
int select[8] = {0, 2, 4, 6, 0, 2, 4, 6};
Value *short8 = Nucleus::createBitCast(cast.value, Short8::getType());
Value *packed = Nucleus::createShuffleVector(short8, short8, select);
Value *short4 = As<Short4>(Int2(As<Int4>(packed))).value;
storeValue(short4);
}
// Short4::Short4(RValue<Float> cast)
// {
// }
Short4::Short4(RValue<Float4> cast)
{
Int4 v4i32 = Int4(cast);
#if defined(__i386__) || defined(__x86_64__)
v4i32 = As<Int4>(x86::packssdw(v4i32, v4i32));
#else
Value *v = v4i32.loadValue();
v4i32 = As<Int4>(V(lowerPack(V(v), V(v), true)));
#endif
storeValue(As<Short4>(Int2(v4i32)).value);
}
Short4::Short4(short xyzw)
{
int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Short4::Short4(short x, short y, short z, short w)
{
int64_t constantVector[4] = {x, y, z, w};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Short4::Short4(RValue<Short4> rhs)
{
storeValue(rhs.value);
}
Short4::Short4(const Short4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Short4::Short4(const Reference<Short4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Short4::Short4(RValue<UShort4> rhs)
{
storeValue(rhs.value);
}
Short4::Short4(const UShort4 &rhs)
{
storeValue(rhs.loadValue());
}
Short4::Short4(const Reference<UShort4> &rhs)
{
storeValue(rhs.loadValue());
}
RValue<Short4> Short4::operator=(RValue<Short4> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Short4> Short4::operator=(const Short4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Short4>(value);
}
RValue<Short4> Short4::operator=(const Reference<Short4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Short4>(value);
}
RValue<Short4> Short4::operator=(RValue<UShort4> rhs)
{
storeValue(rhs.value);
return RValue<Short4>(rhs);
}
RValue<Short4> Short4::operator=(const UShort4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Short4>(value);
}
RValue<Short4> Short4::operator=(const Reference<UShort4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Short4>(value);
}
RValue<Short4> operator+(RValue<Short4> lhs, RValue<Short4> rhs)
{
return RValue<Short4>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Short4> operator-(RValue<Short4> lhs, RValue<Short4> rhs)
{
return RValue<Short4>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<Short4> operator*(RValue<Short4> lhs, RValue<Short4> rhs)
{
return RValue<Short4>(Nucleus::createMul(lhs.value, rhs.value));
}
// RValue<Short4> operator/(RValue<Short4> lhs, RValue<Short4> rhs)
// {
// return RValue<Short4>(Nucleus::createSDiv(lhs.value, rhs.value));
// }
// RValue<Short4> operator%(RValue<Short4> lhs, RValue<Short4> rhs)
// {
// return RValue<Short4>(Nucleus::createSRem(lhs.value, rhs.value));
// }
RValue<Short4> operator&(RValue<Short4> lhs, RValue<Short4> rhs)
{
return RValue<Short4>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Short4> operator|(RValue<Short4> lhs, RValue<Short4> rhs)
{
return RValue<Short4>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Short4> operator^(RValue<Short4> lhs, RValue<Short4> rhs)
{
return RValue<Short4>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<Short4>(Nucleus::createShl(lhs.value, rhs.value));
return x86::psllw(lhs, rhs);
#else
return As<Short4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psraw(lhs, rhs);
#else
return As<Short4>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
}
RValue<Short4> operator+=(Short4 &lhs, RValue<Short4> rhs)
{
return lhs = lhs + rhs;
}
RValue<Short4> operator-=(Short4 &lhs, RValue<Short4> rhs)
{
return lhs = lhs - rhs;
}
RValue<Short4> operator*=(Short4 &lhs, RValue<Short4> rhs)
{
return lhs = lhs * rhs;
}
// RValue<Short4> operator/=(Short4 &lhs, RValue<Short4> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<Short4> operator%=(Short4 &lhs, RValue<Short4> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<Short4> operator&=(Short4 &lhs, RValue<Short4> rhs)
{
return lhs = lhs & rhs;
}
RValue<Short4> operator|=(Short4 &lhs, RValue<Short4> rhs)
{
return lhs = lhs | rhs;
}
RValue<Short4> operator^=(Short4 &lhs, RValue<Short4> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<Short4> operator<<=(Short4 &lhs, unsigned char rhs)
{
return lhs = lhs << rhs;
}
RValue<Short4> operator>>=(Short4 &lhs, unsigned char rhs)
{
return lhs = lhs >> rhs;
}
// RValue<Short4> operator+(RValue<Short4> val)
// {
// return val;
// }
RValue<Short4> operator-(RValue<Short4> val)
{
return RValue<Short4>(Nucleus::createNeg(val.value));
}
RValue<Short4> operator~(RValue<Short4> val)
{
return RValue<Short4>(Nucleus::createNot(val.value));
}
RValue<Short4> RoundShort4(RValue<Float4> cast)
{
RValue<Int4> int4 = RoundInt(cast);
return As<Short4>(PackSigned(int4, int4));
}
RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmaxsw(x, y);
#else
return RValue<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT)));
#endif
}
RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pminsw(x, y);
#else
return RValue<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT)));
#endif
}
RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::paddsw(x, y);
#else
return As<Short4>(V(lowerPSADDSAT(V(x.value), V(y.value))));
#endif
}
RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psubsw(x, y);
#else
return As<Short4>(V(lowerPSSUBSAT(V(x.value), V(y.value))));
#endif
}
RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmulhw(x, y);
#else
return As<Short4>(V(lowerMulHigh(V(x.value), V(y.value), true)));
#endif
}
RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmaddwd(x, y);
#else
return As<Int2>(V(lowerMulAdd(V(x.value), V(y.value))));
#endif
}
RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
auto result = x86::packsswb(x, y);
#else
auto result = V(lowerPack(V(x.value), V(y.value), true));
#endif
return As<SByte8>(Swizzle(As<Int4>(result), 0x88));
}
RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
auto result = x86::packuswb(x, y);
#else
auto result = V(lowerPack(V(x.value), V(y.value), false));
#endif
return As<Byte8>(Swizzle(As<Int4>(result), 0x88));
}
RValue<Int2> UnpackLow(RValue<Short4> x, RValue<Short4> y)
{
int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; // Real type is v8i16
return As<Int2>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Int2> UnpackHigh(RValue<Short4> x, RValue<Short4> y)
{
int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; // Real type is v8i16
auto lowHigh = RValue<Short8>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
return As<Int2>(Swizzle(As<Int4>(lowHigh), 0xEE));
}
RValue<Short4> Swizzle(RValue<Short4> x, unsigned char select)
{
// Real type is v8i16
int shuffle[8] =
{
(select >> 0) & 0x03,
(select >> 2) & 0x03,
(select >> 4) & 0x03,
(select >> 6) & 0x03,
(select >> 0) & 0x03,
(select >> 2) & 0x03,
(select >> 4) & 0x03,
(select >> 6) & 0x03,
};
return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle));
}
RValue<Short4> Insert(RValue<Short4> val, RValue<Short> element, int i)
{
return RValue<Short4>(Nucleus::createInsertElement(val.value, element.value, i));
}
RValue<Short> Extract(RValue<Short4> val, int i)
{
return RValue<Short>(Nucleus::createExtractElement(val.value, Short::getType(), i));
}
RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pcmpgtw(x, y);
#else
return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Short4::getType()))));
#endif
}
RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pcmpeqw(x, y);
#else
return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Short4::getType()))));
#endif
}
Type *Short4::getType()
{
return T(Type_v4i16);
}
UShort4::UShort4(RValue<Int4> cast)
{
*this = Short4(cast);
}
UShort4::UShort4(RValue<Float4> cast, bool saturate)
{
if(saturate)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
Int4 int4(Min(cast, Float4(0xFFFF))); // packusdw takes care of 0x0000 saturation
*this = As<Short4>(PackUnsigned(int4, int4));
}
else
#endif
{
*this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000))));
}
}
else
{
*this = Short4(Int4(cast));
}
}
UShort4::UShort4(unsigned short xyzw)
{
int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
UShort4::UShort4(unsigned short x, unsigned short y, unsigned short z, unsigned short w)
{
int64_t constantVector[4] = {x, y, z, w};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
UShort4::UShort4(RValue<UShort4> rhs)
{
storeValue(rhs.value);
}
UShort4::UShort4(const UShort4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UShort4::UShort4(const Reference<UShort4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UShort4::UShort4(RValue<Short4> rhs)
{
storeValue(rhs.value);
}
UShort4::UShort4(const Short4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UShort4::UShort4(const Reference<Short4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<UShort4> UShort4::operator=(RValue<UShort4> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<UShort4> UShort4::operator=(const UShort4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort4>(value);
}
RValue<UShort4> UShort4::operator=(const Reference<UShort4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort4>(value);
}
RValue<UShort4> UShort4::operator=(RValue<Short4> rhs)
{
storeValue(rhs.value);
return RValue<UShort4>(rhs);
}
RValue<UShort4> UShort4::operator=(const Short4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort4>(value);
}
RValue<UShort4> UShort4::operator=(const Reference<Short4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort4>(value);
}
RValue<UShort4> operator+(RValue<UShort4> lhs, RValue<UShort4> rhs)
{
return RValue<UShort4>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<UShort4> operator-(RValue<UShort4> lhs, RValue<UShort4> rhs)
{
return RValue<UShort4>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<UShort4> operator*(RValue<UShort4> lhs, RValue<UShort4> rhs)
{
return RValue<UShort4>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<UShort4> operator&(RValue<UShort4> lhs, RValue<UShort4> rhs)
{
return RValue<UShort4>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<UShort4> operator|(RValue<UShort4> lhs, RValue<UShort4> rhs)
{
return RValue<UShort4>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<UShort4> operator^(RValue<UShort4> lhs, RValue<UShort4> rhs)
{
return RValue<UShort4>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<Short4>(Nucleus::createShl(lhs.value, rhs.value));
return As<UShort4>(x86::psllw(As<Short4>(lhs), rhs));
#else
return As<UShort4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<Short4>(Nucleus::createLShr(lhs.value, rhs.value));
return x86::psrlw(lhs, rhs);
#else
return As<UShort4>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
}
RValue<UShort4> operator<<=(UShort4 &lhs, unsigned char rhs)
{
return lhs = lhs << rhs;
}
RValue<UShort4> operator>>=(UShort4 &lhs, unsigned char rhs)
{
return lhs = lhs >> rhs;
}
RValue<UShort4> operator~(RValue<UShort4> val)
{
return RValue<UShort4>(Nucleus::createNot(val.value));
}
RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y)
{
return RValue<UShort4>(Max(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u));
}
RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y)
{
return RValue<UShort4>(Min(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u));
}
RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::paddusw(x, y);
#else
return As<UShort4>(V(lowerPUADDSAT(V(x.value), V(y.value))));
#endif
}
RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psubusw(x, y);
#else
return As<UShort4>(V(lowerPUSUBSAT(V(x.value), V(y.value))));
#endif
}
RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmulhuw(x, y);
#else
return As<UShort4>(V(lowerMulHigh(V(x.value), V(y.value), false)));
#endif
}
RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pavgw(x, y);
#else
return As<UShort4>(V(lowerPAVG(V(x.value), V(y.value))));
#endif
}
Type *UShort4::getType()
{
return T(Type_v4i16);
}
Short8::Short8(short c)
{
int64_t constantVector[8] = {c, c, c, c, c, c, c, c};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Short8::Short8(short c0, short c1, short c2, short c3, short c4, short c5, short c6, short c7)
{
int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Short8::Short8(RValue<Short8> rhs)
{
storeValue(rhs.value);
}
Short8::Short8(const Reference<Short8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Short8::Short8(RValue<Short4> lo, RValue<Short4> hi)
{
int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11}; // Real type is v8i16
Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);
storeValue(packed);
}
RValue<Short8> operator+(RValue<Short8> lhs, RValue<Short8> rhs)
{
return RValue<Short8>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Short8> operator&(RValue<Short8> lhs, RValue<Short8> rhs)
{
return RValue<Short8>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psllw(lhs, rhs);
#else
return As<Short8>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psraw(lhs, rhs);
#else
return As<Short8>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
}
RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmaddwd(x, y);
#else
return As<Int4>(V(lowerMulAdd(V(x.value), V(y.value))));
#endif
}
RValue<Int4> Abs(RValue<Int4> x)
{
auto negative = x >> 31;
return (x ^ negative) - negative;
}
RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmulhw(x, y);
#else
return As<Short8>(V(lowerMulHigh(V(x.value), V(y.value), true)));
#endif
}
Type *Short8::getType()
{
return T(llvm::VectorType::get(T(Short::getType()), 8));
}
UShort8::UShort8(unsigned short c)
{
int64_t constantVector[8] = {c, c, c, c, c, c, c, c};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
UShort8::UShort8(unsigned short c0, unsigned short c1, unsigned short c2, unsigned short c3, unsigned short c4, unsigned short c5, unsigned short c6, unsigned short c7)
{
int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
UShort8::UShort8(RValue<UShort8> rhs)
{
storeValue(rhs.value);
}
UShort8::UShort8(const Reference<UShort8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UShort8::UShort8(RValue<UShort4> lo, RValue<UShort4> hi)
{
int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11}; // Real type is v8i16
Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);
storeValue(packed);
}
RValue<UShort8> UShort8::operator=(RValue<UShort8> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<UShort8> UShort8::operator=(const UShort8 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort8>(value);
}
RValue<UShort8> UShort8::operator=(const Reference<UShort8> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UShort8>(value);
}
RValue<UShort8> operator&(RValue<UShort8> lhs, RValue<UShort8> rhs)
{
return RValue<UShort8>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return As<UShort8>(x86::psllw(As<Short8>(lhs), rhs));
#else
return As<UShort8>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psrlw(lhs, rhs); // FIXME: Fallback required
#else
return As<UShort8>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
}
RValue<UShort8> operator+(RValue<UShort8> lhs, RValue<UShort8> rhs)
{
return RValue<UShort8>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<UShort8> operator*(RValue<UShort8> lhs, RValue<UShort8> rhs)
{
return RValue<UShort8>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<UShort8> operator+=(UShort8 &lhs, RValue<UShort8> rhs)
{
return lhs = lhs + rhs;
}
RValue<UShort8> operator~(RValue<UShort8> val)
{
return RValue<UShort8>(Nucleus::createNot(val.value));
}
RValue<UShort8> Swizzle(RValue<UShort8> x, char select0, char select1, char select2, char select3, char select4, char select5, char select6, char select7)
{
int pshufb[16] =
{
select0 + 0,
select0 + 1,
select1 + 0,
select1 + 1,
select2 + 0,
select2 + 1,
select3 + 0,
select3 + 1,
select4 + 0,
select4 + 1,
select5 + 0,
select5 + 1,
select6 + 0,
select6 + 1,
select7 + 0,
select7 + 1,
};
Value *byte16 = Nucleus::createBitCast(x.value, Byte16::getType());
Value *shuffle = Nucleus::createShuffleVector(byte16, byte16, pshufb);
Value *short8 = Nucleus::createBitCast(shuffle, UShort8::getType());
return RValue<UShort8>(short8);
}
RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pmulhuw(x, y);
#else
return As<UShort8>(V(lowerMulHigh(V(x.value), V(y.value), false)));
#endif
}
Type *UShort8::getType()
{
return T(llvm::VectorType::get(T(UShort::getType()), 8));
}
Int::Int(Argument<Int> argument)
{
storeValue(argument.value);
}
Int::Int(RValue<Byte> cast)
{
Value *integer = Nucleus::createZExt(cast.value, Int::getType());
storeValue(integer);
}
Int::Int(RValue<SByte> cast)
{
Value *integer = Nucleus::createSExt(cast.value, Int::getType());
storeValue(integer);
}
Int::Int(RValue<Short> cast)
{
Value *integer = Nucleus::createSExt(cast.value, Int::getType());
storeValue(integer);
}
Int::Int(RValue<UShort> cast)
{
Value *integer = Nucleus::createZExt(cast.value, Int::getType());
storeValue(integer);
}
Int::Int(RValue<Int2> cast)
{
*this = Extract(cast, 0);
}
Int::Int(RValue<Long> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, Int::getType());
storeValue(integer);
}
Int::Int(RValue<Float> cast)
{
Value *integer = Nucleus::createFPToSI(cast.value, Int::getType());
storeValue(integer);
}
Int::Int(int x)
{
storeValue(Nucleus::createConstantInt(x));
}
Int::Int(RValue<Int> rhs)
{
storeValue(rhs.value);
}
Int::Int(RValue<UInt> rhs)
{
storeValue(rhs.value);
}
Int::Int(const Int &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int::Int(const Reference<Int> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int::Int(const UInt &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int::Int(const Reference<UInt> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Int> Int::operator=(int rhs)
{
return RValue<Int>(storeValue(Nucleus::createConstantInt(rhs)));
}
RValue<Int> Int::operator=(RValue<Int> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Int> Int::operator=(RValue<UInt> rhs)
{
storeValue(rhs.value);
return RValue<Int>(rhs);
}
RValue<Int> Int::operator=(const Int &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int>(value);
}
RValue<Int> Int::operator=(const Reference<Int> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int>(value);
}
RValue<Int> Int::operator=(const UInt &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int>(value);
}
RValue<Int> Int::operator=(const Reference<UInt> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int>(value);
}
RValue<Int> operator+(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Int> operator-(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<Int> operator*(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<Int> operator/(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createSDiv(lhs.value, rhs.value));
}
RValue<Int> operator%(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createSRem(lhs.value, rhs.value));
}
RValue<Int> operator&(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Int> operator|(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Int> operator^(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<Int> operator<<(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<Int> operator>>(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Int>(Nucleus::createAShr(lhs.value, rhs.value));
}
RValue<Int> operator+=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs + rhs;
}
RValue<Int> operator-=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs - rhs;
}
RValue<Int> operator*=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs * rhs;
}
RValue<Int> operator/=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs / rhs;
}
RValue<Int> operator%=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs % rhs;
}
RValue<Int> operator&=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs & rhs;
}
RValue<Int> operator|=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs | rhs;
}
RValue<Int> operator^=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<Int> operator<<=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs << rhs;
}
RValue<Int> operator>>=(Int &lhs, RValue<Int> rhs)
{
return lhs = lhs >> rhs;
}
RValue<Int> operator+(RValue<Int> val)
{
return val;
}
RValue<Int> operator-(RValue<Int> val)
{
return RValue<Int>(Nucleus::createNeg(val.value));
}
RValue<Int> operator~(RValue<Int> val)
{
return RValue<Int>(Nucleus::createNot(val.value));
}
RValue<Int> operator++(Int &val, int) // Post-increment
{
RValue<Int> res = val;
Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantInt(1));
val.storeValue(inc);
return res;
}
const Int &operator++(Int &val) // Pre-increment
{
Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1));
val.storeValue(inc);
return val;
}
RValue<Int> operator--(Int &val, int) // Post-decrement
{
RValue<Int> res = val;
Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantInt(1));
val.storeValue(inc);
return res;
}
const Int &operator--(Int &val) // Pre-decrement
{
Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1));
val.storeValue(inc);
return val;
}
RValue<Bool> operator<(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<Int> lhs, RValue<Int> rhs)
{
return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
}
RValue<Int> Max(RValue<Int> x, RValue<Int> y)
{
return IfThenElse(x > y, x, y);
}
RValue<Int> Min(RValue<Int> x, RValue<Int> y)
{
return IfThenElse(x < y, x, y);
}
RValue<Int> Clamp(RValue<Int> x, RValue<Int> min, RValue<Int> max)
{
return Min(Max(x, min), max);
}
RValue<Int> RoundInt(RValue<Float> cast)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::cvtss2si(cast);
#else
return RValue<Int>(V(lowerRoundInt(V(cast.value), T(Int::getType()))));
#endif
}
Type *Int::getType()
{
return T(llvm::Type::getInt32Ty(*::context));
}
Long::Long(RValue<Int> cast)
{
Value *integer = Nucleus::createSExt(cast.value, Long::getType());
storeValue(integer);
}
Long::Long(RValue<UInt> cast)
{
Value *integer = Nucleus::createZExt(cast.value, Long::getType());
storeValue(integer);
}
Long::Long(RValue<Long> rhs)
{
storeValue(rhs.value);
}
RValue<Long> Long::operator=(int64_t rhs)
{
return RValue<Long>(storeValue(Nucleus::createConstantLong(rhs)));
}
RValue<Long> Long::operator=(RValue<Long> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Long> Long::operator=(const Long &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Long>(value);
}
RValue<Long> Long::operator=(const Reference<Long> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Long>(value);
}
RValue<Long> operator+(RValue<Long> lhs, RValue<Long> rhs)
{
return RValue<Long>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Long> operator-(RValue<Long> lhs, RValue<Long> rhs)
{
return RValue<Long>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<Long> operator+=(Long &lhs, RValue<Long> rhs)
{
return lhs = lhs + rhs;
}
RValue<Long> operator-=(Long &lhs, RValue<Long> rhs)
{
return lhs = lhs - rhs;
}
RValue<Long> AddAtomic(RValue<Pointer<Long> > x, RValue<Long> y)
{
return RValue<Long>(Nucleus::createAtomicAdd(x.value, y.value));
}
Type *Long::getType()
{
return T(llvm::Type::getInt64Ty(*::context));
}
UInt::UInt(Argument<UInt> argument)
{
storeValue(argument.value);
}
UInt::UInt(RValue<UShort> cast)
{
Value *integer = Nucleus::createZExt(cast.value, UInt::getType());
storeValue(integer);
}
UInt::UInt(RValue<Long> cast)
{
Value *integer = Nucleus::createTrunc(cast.value, UInt::getType());
storeValue(integer);
}
UInt::UInt(RValue<Float> cast)
{
// Note: createFPToUI is broken, must perform conversion using createFPtoSI
// Value *integer = Nucleus::createFPToUI(cast.value, UInt::getType());
// Smallest positive value representable in UInt, but not in Int
const unsigned int ustart = 0x80000000u;
const float ustartf = float(ustart);
// If the value is negative, store 0, otherwise store the result of the conversion
storeValue((~(As<Int>(cast) >> 31) &
// Check if the value can be represented as an Int
IfThenElse(cast >= ustartf,
// If the value is too large, subtract ustart and re-add it after conversion.
As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)),
// Otherwise, just convert normally
Int(cast))).value);
}
UInt::UInt(int x)
{
storeValue(Nucleus::createConstantInt(x));
}
UInt::UInt(unsigned int x)
{
storeValue(Nucleus::createConstantInt(x));
}
UInt::UInt(RValue<UInt> rhs)
{
storeValue(rhs.value);
}
UInt::UInt(RValue<Int> rhs)
{
storeValue(rhs.value);
}
UInt::UInt(const UInt &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt::UInt(const Reference<UInt> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt::UInt(const Int &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt::UInt(const Reference<Int> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<UInt> UInt::operator=(unsigned int rhs)
{
return RValue<UInt>(storeValue(Nucleus::createConstantInt(rhs)));
}
RValue<UInt> UInt::operator=(RValue<UInt> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<UInt> UInt::operator=(RValue<Int> rhs)
{
storeValue(rhs.value);
return RValue<UInt>(rhs);
}
RValue<UInt> UInt::operator=(const UInt &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt>(value);
}
RValue<UInt> UInt::operator=(const Reference<UInt> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt>(value);
}
RValue<UInt> UInt::operator=(const Int &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt>(value);
}
RValue<UInt> UInt::operator=(const Reference<Int> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt>(value);
}
RValue<UInt> operator+(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<UInt> operator-(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<UInt> operator*(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<UInt> operator/(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createUDiv(lhs.value, rhs.value));
}
RValue<UInt> operator%(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createURem(lhs.value, rhs.value));
}
RValue<UInt> operator&(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<UInt> operator|(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<UInt> operator^(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<UInt> operator<<(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<UInt> operator>>(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<UInt>(Nucleus::createLShr(lhs.value, rhs.value));
}
RValue<UInt> operator+=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs + rhs;
}
RValue<UInt> operator-=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs - rhs;
}
RValue<UInt> operator*=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs * rhs;
}
RValue<UInt> operator/=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs / rhs;
}
RValue<UInt> operator%=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs % rhs;
}
RValue<UInt> operator&=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs & rhs;
}
RValue<UInt> operator|=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs | rhs;
}
RValue<UInt> operator^=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<UInt> operator<<=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs << rhs;
}
RValue<UInt> operator>>=(UInt &lhs, RValue<UInt> rhs)
{
return lhs = lhs >> rhs;
}
RValue<UInt> operator+(RValue<UInt> val)
{
return val;
}
RValue<UInt> operator-(RValue<UInt> val)
{
return RValue<UInt>(Nucleus::createNeg(val.value));
}
RValue<UInt> operator~(RValue<UInt> val)
{
return RValue<UInt>(Nucleus::createNot(val.value));
}
RValue<UInt> operator++(UInt &val, int) // Post-increment
{
RValue<UInt> res = val;
Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantInt(1));
val.storeValue(inc);
return res;
}
const UInt &operator++(UInt &val) // Pre-increment
{
Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1));
val.storeValue(inc);
return val;
}
RValue<UInt> operator--(UInt &val, int) // Post-decrement
{
RValue<UInt> res = val;
Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantInt(1));
val.storeValue(inc);
return res;
}
const UInt &operator--(UInt &val) // Pre-decrement
{
Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1));
val.storeValue(inc);
return val;
}
RValue<UInt> Max(RValue<UInt> x, RValue<UInt> y)
{
return IfThenElse(x > y, x, y);
}
RValue<UInt> Min(RValue<UInt> x, RValue<UInt> y)
{
return IfThenElse(x < y, x, y);
}
RValue<UInt> Clamp(RValue<UInt> x, RValue<UInt> min, RValue<UInt> max)
{
return Min(Max(x, min), max);
}
RValue<Bool> operator<(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<UInt> lhs, RValue<UInt> rhs)
{
return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
}
// RValue<UInt> RoundUInt(RValue<Float> cast)
// {
//#if defined(__i386__) || defined(__x86_64__)
// return x86::cvtss2si(val); // FIXME: Unsigned
//#else
// return IfThenElse(cast > 0.0f, Int(cast + 0.5f), Int(cast - 0.5f));
//#endif
// }
Type *UInt::getType()
{
return T(llvm::Type::getInt32Ty(*::context));
}
// Int2::Int2(RValue<Int> cast)
// {
// Value *extend = Nucleus::createZExt(cast.value, Long::getType());
// Value *vector = Nucleus::createBitCast(extend, Int2::getType());
//
// int shuffle[2] = {0, 0};
// Value *replicate = Nucleus::createShuffleVector(vector, vector, shuffle);
//
// storeValue(replicate);
// }
Int2::Int2(RValue<Int4> cast)
{
storeValue(Nucleus::createBitCast(cast.value, getType()));
}
Int2::Int2(int x, int y)
{
int64_t constantVector[2] = {x, y};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Int2::Int2(RValue<Int2> rhs)
{
storeValue(rhs.value);
}
Int2::Int2(const Int2 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int2::Int2(const Reference<Int2> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int2::Int2(RValue<Int> lo, RValue<Int> hi)
{
int shuffle[4] = {0, 4, 1, 5};
Value *packed = Nucleus::createShuffleVector(Int4(lo).loadValue(), Int4(hi).loadValue(), shuffle);
storeValue(Nucleus::createBitCast(packed, Int2::getType()));
}
RValue<Int2> Int2::operator=(RValue<Int2> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Int2> Int2::operator=(const Int2 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int2>(value);
}
RValue<Int2> Int2::operator=(const Reference<Int2> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int2>(value);
}
RValue<Int2> operator+(RValue<Int2> lhs, RValue<Int2> rhs)
{
return RValue<Int2>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Int2> operator-(RValue<Int2> lhs, RValue<Int2> rhs)
{
return RValue<Int2>(Nucleus::createSub(lhs.value, rhs.value));
}
// RValue<Int2> operator*(RValue<Int2> lhs, RValue<Int2> rhs)
// {
// return RValue<Int2>(Nucleus::createMul(lhs.value, rhs.value));
// }
// RValue<Int2> operator/(RValue<Int2> lhs, RValue<Int2> rhs)
// {
// return RValue<Int2>(Nucleus::createSDiv(lhs.value, rhs.value));
// }
// RValue<Int2> operator%(RValue<Int2> lhs, RValue<Int2> rhs)
// {
// return RValue<Int2>(Nucleus::createSRem(lhs.value, rhs.value));
// }
RValue<Int2> operator&(RValue<Int2> lhs, RValue<Int2> rhs)
{
return RValue<Int2>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Int2> operator|(RValue<Int2> lhs, RValue<Int2> rhs)
{
return RValue<Int2>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Int2> operator^(RValue<Int2> lhs, RValue<Int2> rhs)
{
return RValue<Int2>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<Int2>(Nucleus::createShl(lhs.value, rhs.value));
return x86::pslld(lhs, rhs);
#else
return As<Int2>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<Int2>(Nucleus::createAShr(lhs.value, rhs.value));
return x86::psrad(lhs, rhs);
#else
return As<Int2>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
}
RValue<Int2> operator+=(Int2 &lhs, RValue<Int2> rhs)
{
return lhs = lhs + rhs;
}
RValue<Int2> operator-=(Int2 &lhs, RValue<Int2> rhs)
{
return lhs = lhs - rhs;
}
// RValue<Int2> operator*=(Int2 &lhs, RValue<Int2> rhs)
// {
// return lhs = lhs * rhs;
// }
// RValue<Int2> operator/=(Int2 &lhs, RValue<Int2> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<Int2> operator%=(Int2 &lhs, RValue<Int2> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<Int2> operator&=(Int2 &lhs, RValue<Int2> rhs)
{
return lhs = lhs & rhs;
}
RValue<Int2> operator|=(Int2 &lhs, RValue<Int2> rhs)
{
return lhs = lhs | rhs;
}
RValue<Int2> operator^=(Int2 &lhs, RValue<Int2> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<Int2> operator<<=(Int2 &lhs, unsigned char rhs)
{
return lhs = lhs << rhs;
}
RValue<Int2> operator>>=(Int2 &lhs, unsigned char rhs)
{
return lhs = lhs >> rhs;
}
// RValue<Int2> operator+(RValue<Int2> val)
// {
// return val;
// }
// RValue<Int2> operator-(RValue<Int2> val)
// {
// return RValue<Int2>(Nucleus::createNeg(val.value));
// }
RValue<Int2> operator~(RValue<Int2> val)
{
return RValue<Int2>(Nucleus::createNot(val.value));
}
RValue<Short4> UnpackLow(RValue<Int2> x, RValue<Int2> y)
{
int shuffle[4] = {0, 4, 1, 5}; // Real type is v4i32
return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Short4> UnpackHigh(RValue<Int2> x, RValue<Int2> y)
{
int shuffle[4] = {0, 4, 1, 5}; // Real type is v4i32
auto lowHigh = RValue<Int4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
return As<Short4>(Swizzle(lowHigh, 0xEE));
}
RValue<Int> Extract(RValue<Int2> val, int i)
{
return RValue<Int>(Nucleus::createExtractElement(val.value, Int::getType(), i));
}
RValue<Int2> Insert(RValue<Int2> val, RValue<Int> element, int i)
{
return RValue<Int2>(Nucleus::createInsertElement(val.value, element.value, i));
}
Type *Int2::getType()
{
return T(Type_v2i32);
}
UInt2::UInt2(unsigned int x, unsigned int y)
{
int64_t constantVector[2] = {x, y};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
UInt2::UInt2(RValue<UInt2> rhs)
{
storeValue(rhs.value);
}
UInt2::UInt2(const UInt2 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt2::UInt2(const Reference<UInt2> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<UInt2> UInt2::operator=(RValue<UInt2> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<UInt2> UInt2::operator=(const UInt2 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt2>(value);
}
RValue<UInt2> UInt2::operator=(const Reference<UInt2> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt2>(value);
}
RValue<UInt2> operator+(RValue<UInt2> lhs, RValue<UInt2> rhs)
{
return RValue<UInt2>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<UInt2> operator-(RValue<UInt2> lhs, RValue<UInt2> rhs)
{
return RValue<UInt2>(Nucleus::createSub(lhs.value, rhs.value));
}
// RValue<UInt2> operator*(RValue<UInt2> lhs, RValue<UInt2> rhs)
// {
// return RValue<UInt2>(Nucleus::createMul(lhs.value, rhs.value));
// }
// RValue<UInt2> operator/(RValue<UInt2> lhs, RValue<UInt2> rhs)
// {
// return RValue<UInt2>(Nucleus::createUDiv(lhs.value, rhs.value));
// }
// RValue<UInt2> operator%(RValue<UInt2> lhs, RValue<UInt2> rhs)
// {
// return RValue<UInt2>(Nucleus::createURem(lhs.value, rhs.value));
// }
RValue<UInt2> operator&(RValue<UInt2> lhs, RValue<UInt2> rhs)
{
return RValue<UInt2>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<UInt2> operator|(RValue<UInt2> lhs, RValue<UInt2> rhs)
{
return RValue<UInt2>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<UInt2> operator^(RValue<UInt2> lhs, RValue<UInt2> rhs)
{
return RValue<UInt2>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<UInt2>(Nucleus::createShl(lhs.value, rhs.value));
return As<UInt2>(x86::pslld(As<Int2>(lhs), rhs));
#else
return As<UInt2>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
// return RValue<UInt2>(Nucleus::createLShr(lhs.value, rhs.value));
return x86::psrld(lhs, rhs);
#else
return As<UInt2>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
}
RValue<UInt2> operator+=(UInt2 &lhs, RValue<UInt2> rhs)
{
return lhs = lhs + rhs;
}
RValue<UInt2> operator-=(UInt2 &lhs, RValue<UInt2> rhs)
{
return lhs = lhs - rhs;
}
// RValue<UInt2> operator*=(UInt2 &lhs, RValue<UInt2> rhs)
// {
// return lhs = lhs * rhs;
// }
// RValue<UInt2> operator/=(UInt2 &lhs, RValue<UInt2> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<UInt2> operator%=(UInt2 &lhs, RValue<UInt2> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<UInt2> operator&=(UInt2 &lhs, RValue<UInt2> rhs)
{
return lhs = lhs & rhs;
}
RValue<UInt2> operator|=(UInt2 &lhs, RValue<UInt2> rhs)
{
return lhs = lhs | rhs;
}
RValue<UInt2> operator^=(UInt2 &lhs, RValue<UInt2> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<UInt2> operator<<=(UInt2 &lhs, unsigned char rhs)
{
return lhs = lhs << rhs;
}
RValue<UInt2> operator>>=(UInt2 &lhs, unsigned char rhs)
{
return lhs = lhs >> rhs;
}
// RValue<UInt2> operator+(RValue<UInt2> val)
// {
// return val;
// }
// RValue<UInt2> operator-(RValue<UInt2> val)
// {
// return RValue<UInt2>(Nucleus::createNeg(val.value));
// }
RValue<UInt2> operator~(RValue<UInt2> val)
{
return RValue<UInt2>(Nucleus::createNot(val.value));
}
Type *UInt2::getType()
{
return T(Type_v2i32);
}
Int4::Int4() : XYZW(this)
{
}
Int4::Int4(RValue<Byte4> cast) : XYZW(this)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
*this = x86::pmovzxbd(As<Byte16>(cast));
}
else
#endif
{
int swizzle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};
Value *a = Nucleus::createBitCast(cast.value, Byte16::getType());
Value *b = Nucleus::createShuffleVector(a, Nucleus::createNullValue(Byte16::getType()), swizzle);
int swizzle2[8] = {0, 8, 1, 9, 2, 10, 3, 11};
Value *c = Nucleus::createBitCast(b, Short8::getType());
Value *d = Nucleus::createShuffleVector(c, Nucleus::createNullValue(Short8::getType()), swizzle2);
*this = As<Int4>(d);
}
}
Int4::Int4(RValue<SByte4> cast) : XYZW(this)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
*this = x86::pmovsxbd(As<SByte16>(cast));
}
else
#endif
{
int swizzle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7};
Value *a = Nucleus::createBitCast(cast.value, Byte16::getType());
Value *b = Nucleus::createShuffleVector(a, a, swizzle);
int swizzle2[8] = {0, 0, 1, 1, 2, 2, 3, 3};
Value *c = Nucleus::createBitCast(b, Short8::getType());
Value *d = Nucleus::createShuffleVector(c, c, swizzle2);
*this = As<Int4>(d) >> 24;
}
}
Int4::Int4(RValue<Float4> cast) : XYZW(this)
{
Value *xyzw = Nucleus::createFPToSI(cast.value, Int4::getType());
storeValue(xyzw);
}
Int4::Int4(RValue<Short4> cast) : XYZW(this)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
*this = x86::pmovsxwd(As<Short8>(cast));
}
else
#endif
{
int swizzle[8] = {0, 0, 1, 1, 2, 2, 3, 3};
Value *c = Nucleus::createShuffleVector(cast.value, cast.value, swizzle);
*this = As<Int4>(c) >> 16;
}
}
Int4::Int4(RValue<UShort4> cast) : XYZW(this)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
*this = x86::pmovzxwd(As<UShort8>(cast));
}
else
#endif
{
int swizzle[8] = {0, 8, 1, 9, 2, 10, 3, 11};
Value *c = Nucleus::createShuffleVector(cast.value, Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle);
*this = As<Int4>(c);
}
}
Int4::Int4(int xyzw) : XYZW(this)
{
constant(xyzw, xyzw, xyzw, xyzw);
}
Int4::Int4(int x, int yzw) : XYZW(this)
{
constant(x, yzw, yzw, yzw);
}
Int4::Int4(int x, int y, int zw) : XYZW(this)
{
constant(x, y, zw, zw);
}
Int4::Int4(int x, int y, int z, int w) : XYZW(this)
{
constant(x, y, z, w);
}
void Int4::constant(int x, int y, int z, int w)
{
int64_t constantVector[4] = {x, y, z, w};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Int4::Int4(RValue<Int4> rhs) : XYZW(this)
{
storeValue(rhs.value);
}
Int4::Int4(const Int4 &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int4::Int4(const Reference<Int4> &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int4::Int4(RValue<UInt4> rhs) : XYZW(this)
{
storeValue(rhs.value);
}
Int4::Int4(const UInt4 &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int4::Int4(const Reference<UInt4> &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Int4::Int4(RValue<Int2> lo, RValue<Int2> hi) : XYZW(this)
{
int shuffle[4] = {0, 1, 4, 5}; // Real type is v4i32
Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);
storeValue(packed);
}
Int4::Int4(RValue<Int> rhs) : XYZW(this)
{
Value *vector = loadValue();
Value *insert = Nucleus::createInsertElement(vector, rhs.value, 0);
int swizzle[4] = {0, 0, 0, 0};
Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle);
storeValue(replicate);
}
Int4::Int4(const Int &rhs) : XYZW(this)
{
*this = RValue<Int>(rhs.loadValue());
}
Int4::Int4(const Reference<Int> &rhs) : XYZW(this)
{
*this = RValue<Int>(rhs.loadValue());
}
RValue<Int4> Int4::operator=(RValue<Int4> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Int4> Int4::operator=(const Int4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int4>(value);
}
RValue<Int4> Int4::operator=(const Reference<Int4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Int4>(value);
}
RValue<Int4> operator+(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<Int4> operator-(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<Int4> operator*(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<Int4> operator/(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createSDiv(lhs.value, rhs.value));
}
RValue<Int4> operator%(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createSRem(lhs.value, rhs.value));
}
RValue<Int4> operator&(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<Int4> operator|(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<Int4> operator^(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::pslld(lhs, rhs);
#else
return As<Int4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psrad(lhs, rhs);
#else
return As<Int4>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
}
RValue<Int4> operator<<(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<Int4> operator>>(RValue<Int4> lhs, RValue<Int4> rhs)
{
return RValue<Int4>(Nucleus::createAShr(lhs.value, rhs.value));
}
RValue<Int4> operator+=(Int4 &lhs, RValue<Int4> rhs)
{
return lhs = lhs + rhs;
}
RValue<Int4> operator-=(Int4 &lhs, RValue<Int4> rhs)
{
return lhs = lhs - rhs;
}
RValue<Int4> operator*=(Int4 &lhs, RValue<Int4> rhs)
{
return lhs = lhs * rhs;
}
// RValue<Int4> operator/=(Int4 &lhs, RValue<Int4> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<Int4> operator%=(Int4 &lhs, RValue<Int4> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<Int4> operator&=(Int4 &lhs, RValue<Int4> rhs)
{
return lhs = lhs & rhs;
}
RValue<Int4> operator|=(Int4 &lhs, RValue<Int4> rhs)
{
return lhs = lhs | rhs;
}
RValue<Int4> operator^=(Int4 &lhs, RValue<Int4> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<Int4> operator<<=(Int4 &lhs, unsigned char rhs)
{
return lhs = lhs << rhs;
}
RValue<Int4> operator>>=(Int4 &lhs, unsigned char rhs)
{
return lhs = lhs >> rhs;
}
RValue<Int4> operator+(RValue<Int4> val)
{
return val;
}
RValue<Int4> operator-(RValue<Int4> val)
{
return RValue<Int4>(Nucleus::createNeg(val.value));
}
RValue<Int4> operator~(RValue<Int4> val)
{
return RValue<Int4>(Nucleus::createNot(val.value));
}
RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType()));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
}
RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value, y.value), Int4::getType()));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
}
RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value, y.value), Int4::getType()));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
}
RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType()));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
}
RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value, y.value), Int4::getType()));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
}
RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value, y.value), Int4::getType()));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
}
RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::pmaxsd(x, y);
}
else
#endif
{
RValue<Int4> greater = CmpNLE(x, y);
return (x & greater) | (y & ~greater);
}
}
RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::pminsd(x, y);
}
else
#endif
{
RValue<Int4> less = CmpLT(x, y);
return (x & less) | (y & ~less);
}
}
RValue<Int4> RoundInt(RValue<Float4> cast)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::cvtps2dq(cast);
#else
return As<Int4>(V(lowerRoundInt(V(cast.value), T(Int4::getType()))));
#endif
}
RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::packssdw(x, y);
#else
return As<Short8>(V(lowerPack(V(x.value), V(y.value), true)));
#endif
}
RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::packusdw(x, y);
#else
return As<UShort8>(V(lowerPack(V(x.value), V(y.value), false)));
#endif
}
RValue<Int> Extract(RValue<Int4> x, int i)
{
return RValue<Int>(Nucleus::createExtractElement(x.value, Int::getType(), i));
}
RValue<Int4> Insert(RValue<Int4> x, RValue<Int> element, int i)
{
return RValue<Int4>(Nucleus::createInsertElement(x.value, element.value, i));
}
RValue<Int> SignMask(RValue<Int4> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::movmskps(As<Float4>(x));
#else
return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType()))));
#endif
}
RValue<Int4> Swizzle(RValue<Int4> x, unsigned char select)
{
return RValue<Int4>(createSwizzle4(x.value, select));
}
Type *Int4::getType()
{
return T(llvm::VectorType::get(T(Int::getType()), 4));
}
UInt4::UInt4() : XYZW(this)
{
}
UInt4::UInt4(RValue<Float4> cast) : XYZW(this)
{
// Note: createFPToUI is broken, must perform conversion using createFPtoSI
// Value *xyzw = Nucleus::createFPToUI(cast.value, UInt4::getType());
// Smallest positive value representable in UInt, but not in Int
const unsigned int ustart = 0x80000000u;
const float ustartf = float(ustart);
// Check if the value can be represented as an Int
Int4 uiValue = CmpNLT(cast, Float4(ustartf));
// If the value is too large, subtract ustart and re-add it after conversion.
uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) |
// Otherwise, just convert normally
(~uiValue & Int4(cast));
// If the value is negative, store 0, otherwise store the result of the conversion
storeValue((~(As<Int4>(cast) >> 31) & uiValue).value);
}
UInt4::UInt4(int xyzw) : XYZW(this)
{
constant(xyzw, xyzw, xyzw, xyzw);
}
UInt4::UInt4(int x, int yzw) : XYZW(this)
{
constant(x, yzw, yzw, yzw);
}
UInt4::UInt4(int x, int y, int zw) : XYZW(this)
{
constant(x, y, zw, zw);
}
UInt4::UInt4(int x, int y, int z, int w) : XYZW(this)
{
constant(x, y, z, w);
}
void UInt4::constant(int x, int y, int z, int w)
{
int64_t constantVector[4] = {x, y, z, w};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
UInt4::UInt4(RValue<UInt4> rhs) : XYZW(this)
{
storeValue(rhs.value);
}
UInt4::UInt4(const UInt4 &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt4::UInt4(const Reference<UInt4> &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt4::UInt4(RValue<Int4> rhs) : XYZW(this)
{
storeValue(rhs.value);
}
UInt4::UInt4(const Int4 &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt4::UInt4(const Reference<Int4> &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
UInt4::UInt4(RValue<UInt2> lo, RValue<UInt2> hi) : XYZW(this)
{
int shuffle[4] = {0, 1, 4, 5}; // Real type is v4i32
Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);
storeValue(packed);
}
RValue<UInt4> UInt4::operator=(RValue<UInt4> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<UInt4> UInt4::operator=(const UInt4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt4>(value);
}
RValue<UInt4> UInt4::operator=(const Reference<UInt4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<UInt4>(value);
}
RValue<UInt4> operator+(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createAdd(lhs.value, rhs.value));
}
RValue<UInt4> operator-(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createSub(lhs.value, rhs.value));
}
RValue<UInt4> operator*(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createMul(lhs.value, rhs.value));
}
RValue<UInt4> operator/(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createUDiv(lhs.value, rhs.value));
}
RValue<UInt4> operator%(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createURem(lhs.value, rhs.value));
}
RValue<UInt4> operator&(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createAnd(lhs.value, rhs.value));
}
RValue<UInt4> operator|(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createOr(lhs.value, rhs.value));
}
RValue<UInt4> operator^(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createXor(lhs.value, rhs.value));
}
RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return As<UInt4>(x86::pslld(As<Int4>(lhs), rhs));
#else
return As<UInt4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
}
RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::psrld(lhs, rhs);
#else
return As<UInt4>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
}
RValue<UInt4> operator<<(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createShl(lhs.value, rhs.value));
}
RValue<UInt4> operator>>(RValue<UInt4> lhs, RValue<UInt4> rhs)
{
return RValue<UInt4>(Nucleus::createLShr(lhs.value, rhs.value));
}
RValue<UInt4> operator+=(UInt4 &lhs, RValue<UInt4> rhs)
{
return lhs = lhs + rhs;
}
RValue<UInt4> operator-=(UInt4 &lhs, RValue<UInt4> rhs)
{
return lhs = lhs - rhs;
}
RValue<UInt4> operator*=(UInt4 &lhs, RValue<UInt4> rhs)
{
return lhs = lhs * rhs;
}
// RValue<UInt4> operator/=(UInt4 &lhs, RValue<UInt4> rhs)
// {
// return lhs = lhs / rhs;
// }
// RValue<UInt4> operator%=(UInt4 &lhs, RValue<UInt4> rhs)
// {
// return lhs = lhs % rhs;
// }
RValue<UInt4> operator&=(UInt4 &lhs, RValue<UInt4> rhs)
{
return lhs = lhs & rhs;
}
RValue<UInt4> operator|=(UInt4 &lhs, RValue<UInt4> rhs)
{
return lhs = lhs | rhs;
}
RValue<UInt4> operator^=(UInt4 &lhs, RValue<UInt4> rhs)
{
return lhs = lhs ^ rhs;
}
RValue<UInt4> operator<<=(UInt4 &lhs, unsigned char rhs)
{
return lhs = lhs << rhs;
}
RValue<UInt4> operator>>=(UInt4 &lhs, unsigned char rhs)
{
return lhs = lhs >> rhs;
}
RValue<UInt4> operator+(RValue<UInt4> val)
{
return val;
}
RValue<UInt4> operator-(RValue<UInt4> val)
{
return RValue<UInt4>(Nucleus::createNeg(val.value));
}
RValue<UInt4> operator~(RValue<UInt4> val)
{
return RValue<UInt4>(Nucleus::createNot(val.value));
}
RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType()));
return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF);
}
RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y)
{
return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value, y.value), Int4::getType()));
}
RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULE(x.value, y.value), Int4::getType()));
return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF);
}
RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y)
{
return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType()));
}
RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y)
{
// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
// Restore the following line when LLVM is updated to a version where this issue is fixed.
// return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGE(x.value, y.value), Int4::getType()));
return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF);
}
RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y)
{
return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value, y.value), Int4::getType()));
}
RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::pmaxud(x, y);
}
else
#endif
{
RValue<UInt4> greater = CmpNLE(x, y);
return (x & greater) | (y & ~greater);
}
}
RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::pminud(x, y);
}
else
#endif
{
RValue<UInt4> less = CmpLT(x, y);
return (x & less) | (y & ~less);
}
}
Type *UInt4::getType()
{
return T(llvm::VectorType::get(T(UInt::getType()), 4));
}
Float::Float(RValue<Int> cast)
{
Value *integer = Nucleus::createSIToFP(cast.value, Float::getType());
storeValue(integer);
}
Float::Float(RValue<UInt> cast)
{
RValue<Float> result = Float(Int(cast & UInt(0x7FFFFFFF))) +
As<Float>((As<Int>(cast) >> 31) & As<Int>(Float(0x80000000u)));
storeValue(result.value);
}
Float::Float(float x)
{
storeValue(Nucleus::createConstantFloat(x));
}
Float::Float(RValue<Float> rhs)
{
storeValue(rhs.value);
}
Float::Float(const Float &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Float::Float(const Reference<Float> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
}
RValue<Float> Float::operator=(RValue<Float> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Float> Float::operator=(const Float &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Float>(value);
}
RValue<Float> Float::operator=(const Reference<Float> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Float>(value);
}
RValue<Float> operator+(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Float>(Nucleus::createFAdd(lhs.value, rhs.value));
}
RValue<Float> operator-(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Float>(Nucleus::createFSub(lhs.value, rhs.value));
}
RValue<Float> operator*(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Float>(Nucleus::createFMul(lhs.value, rhs.value));
}
RValue<Float> operator/(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Float>(Nucleus::createFDiv(lhs.value, rhs.value));
}
RValue<Float> operator+=(Float &lhs, RValue<Float> rhs)
{
return lhs = lhs + rhs;
}
RValue<Float> operator-=(Float &lhs, RValue<Float> rhs)
{
return lhs = lhs - rhs;
}
RValue<Float> operator*=(Float &lhs, RValue<Float> rhs)
{
return lhs = lhs * rhs;
}
RValue<Float> operator/=(Float &lhs, RValue<Float> rhs)
{
return lhs = lhs / rhs;
}
RValue<Float> operator+(RValue<Float> val)
{
return val;
}
RValue<Float> operator-(RValue<Float> val)
{
return RValue<Float>(Nucleus::createFNeg(val.value));
}
RValue<Bool> operator<(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Bool>(Nucleus::createFCmpOLT(lhs.value, rhs.value));
}
RValue<Bool> operator<=(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Bool>(Nucleus::createFCmpOLE(lhs.value, rhs.value));
}
RValue<Bool> operator>(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Bool>(Nucleus::createFCmpOGT(lhs.value, rhs.value));
}
RValue<Bool> operator>=(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Bool>(Nucleus::createFCmpOGE(lhs.value, rhs.value));
}
RValue<Bool> operator!=(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Bool>(Nucleus::createFCmpONE(lhs.value, rhs.value));
}
RValue<Bool> operator==(RValue<Float> lhs, RValue<Float> rhs)
{
return RValue<Bool>(Nucleus::createFCmpOEQ(lhs.value, rhs.value));
}
RValue<Float> Abs(RValue<Float> x)
{
return IfThenElse(x > 0.0f, x, -x);
}
RValue<Float> Max(RValue<Float> x, RValue<Float> y)
{
return IfThenElse(x > y, x, y);
}
RValue<Float> Min(RValue<Float> x, RValue<Float> y)
{
return IfThenElse(x < y, x, y);
}
RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2)
{
#if defined(__i386__) || defined(__x86_64__)
if(exactAtPow2)
{
// rcpss uses a piecewise-linear approximation which minimizes the relative error
// but is not exact at power-of-two values. Rectify by multiplying by the inverse.
return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f))));
}
return x86::rcpss(x);
#else
return As<Float>(V(lowerRCP(V(x.value))));
#endif
}
RValue<Float> RcpSqrt_pp(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::rsqrtss(x);
#else
return As<Float>(V(lowerRSQRT(V(x.value))));
#endif
}
RValue<Float> Sqrt(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::sqrtss(x);
#else
return As<Float>(V(lowerSQRT(V(x.value))));
#endif
}
RValue<Float> Round(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::roundss(x, 0);
}
else
{
return Float4(Round(Float4(x))).x;
}
#else
return RValue<Float>(V(lowerRound(V(x.value))));
#endif
}
RValue<Float> Trunc(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::roundss(x, 3);
}
else
{
return Float(Int(x)); // Rounded toward zero
}
#else
return RValue<Float>(V(lowerTrunc(V(x.value))));
#endif
}
RValue<Float> Frac(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x - x86::floorss(x);
}
else
{
return Float4(Frac(Float4(x))).x;
}
#else
// x - floor(x) can be 1.0 for very small negative x.
// Clamp against the value just below 1.0.
return Min(x - Floor(x), As<Float>(Int(0x3F7FFFFF)));
#endif
}
RValue<Float> Floor(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::floorss(x);
}
else
{
return Float4(Floor(Float4(x))).x;
}
#else
return RValue<Float>(V(lowerFloor(V(x.value))));
#endif
}
RValue<Float> Ceil(RValue<Float> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::ceilss(x);
}
else
#endif
{
return Float4(Ceil(Float4(x))).x;
}
}
Type *Float::getType()
{
return T(llvm::Type::getFloatTy(*::context));
}
Float2::Float2(RValue<Float4> cast)
{
storeValue(Nucleus::createBitCast(cast.value, getType()));
}
Type *Float2::getType()
{
return T(Type_v2f32);
}
Float4::Float4(RValue<Byte4> cast) : XYZW(this)
{
Value *a = Int4(cast).loadValue();
Value *xyzw = Nucleus::createSIToFP(a, Float4::getType());
storeValue(xyzw);
}
Float4::Float4(RValue<SByte4> cast) : XYZW(this)
{
Value *a = Int4(cast).loadValue();
Value *xyzw = Nucleus::createSIToFP(a, Float4::getType());
storeValue(xyzw);
}
Float4::Float4(RValue<Short4> cast) : XYZW(this)
{
Int4 c(cast);
storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType()));
}
Float4::Float4(RValue<UShort4> cast) : XYZW(this)
{
Int4 c(cast);
storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType()));
}
Float4::Float4(RValue<Int4> cast) : XYZW(this)
{
Value *xyzw = Nucleus::createSIToFP(cast.value, Float4::getType());
storeValue(xyzw);
}
Float4::Float4(RValue<UInt4> cast) : XYZW(this)
{
RValue<Float4> result = Float4(Int4(cast & UInt4(0x7FFFFFFF))) +
As<Float4>((As<Int4>(cast) >> 31) & As<Int4>(Float4(0x80000000u)));
storeValue(result.value);
}
Float4::Float4() : XYZW(this)
{
}
Float4::Float4(float xyzw) : XYZW(this)
{
constant(xyzw, xyzw, xyzw, xyzw);
}
Float4::Float4(float x, float yzw) : XYZW(this)
{
constant(x, yzw, yzw, yzw);
}
Float4::Float4(float x, float y, float zw) : XYZW(this)
{
constant(x, y, zw, zw);
}
Float4::Float4(float x, float y, float z, float w) : XYZW(this)
{
constant(x, y, z, w);
}
void Float4::constant(float x, float y, float z, float w)
{
double constantVector[4] = {x, y, z, w};
storeValue(Nucleus::createConstantVector(constantVector, getType()));
}
Float4::Float4(RValue<Float4> rhs) : XYZW(this)
{
storeValue(rhs.value);
}
Float4::Float4(const Float4 &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Float4::Float4(const Reference<Float4> &rhs) : XYZW(this)
{
Value *value = rhs.loadValue();
storeValue(value);
}
Float4::Float4(RValue<Float> rhs) : XYZW(this)
{
Value *vector = loadValue();
Value *insert = Nucleus::createInsertElement(vector, rhs.value, 0);
int swizzle[4] = {0, 0, 0, 0};
Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle);
storeValue(replicate);
}
Float4::Float4(const Float &rhs) : XYZW(this)
{
*this = RValue<Float>(rhs.loadValue());
}
Float4::Float4(const Reference<Float> &rhs) : XYZW(this)
{
*this = RValue<Float>(rhs.loadValue());
}
RValue<Float4> Float4::operator=(float x)
{
return *this = Float4(x, x, x, x);
}
RValue<Float4> Float4::operator=(RValue<Float4> rhs)
{
storeValue(rhs.value);
return rhs;
}
RValue<Float4> Float4::operator=(const Float4 &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Float4>(value);
}
RValue<Float4> Float4::operator=(const Reference<Float4> &rhs)
{
Value *value = rhs.loadValue();
storeValue(value);
return RValue<Float4>(value);
}
RValue<Float4> Float4::operator=(RValue<Float> rhs)
{
return *this = Float4(rhs);
}
RValue<Float4> Float4::operator=(const Float &rhs)
{
return *this = Float4(rhs);
}
RValue<Float4> Float4::operator=(const Reference<Float> &rhs)
{
return *this = Float4(rhs);
}
RValue<Float4> operator+(RValue<Float4> lhs, RValue<Float4> rhs)
{
return RValue<Float4>(Nucleus::createFAdd(lhs.value, rhs.value));
}
RValue<Float4> operator-(RValue<Float4> lhs, RValue<Float4> rhs)
{
return RValue<Float4>(Nucleus::createFSub(lhs.value, rhs.value));
}
RValue<Float4> operator*(RValue<Float4> lhs, RValue<Float4> rhs)
{
return RValue<Float4>(Nucleus::createFMul(lhs.value, rhs.value));
}
RValue<Float4> operator/(RValue<Float4> lhs, RValue<Float4> rhs)
{
return RValue<Float4>(Nucleus::createFDiv(lhs.value, rhs.value));
}
RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs)
{
return RValue<Float4>(Nucleus::createFRem(lhs.value, rhs.value));
}
RValue<Float4> operator+=(Float4 &lhs, RValue<Float4> rhs)
{
return lhs = lhs + rhs;
}
RValue<Float4> operator-=(Float4 &lhs, RValue<Float4> rhs)
{
return lhs = lhs - rhs;
}
RValue<Float4> operator*=(Float4 &lhs, RValue<Float4> rhs)
{
return lhs = lhs * rhs;
}
RValue<Float4> operator/=(Float4 &lhs, RValue<Float4> rhs)
{
return lhs = lhs / rhs;
}
RValue<Float4> operator%=(Float4 &lhs, RValue<Float4> rhs)
{
return lhs = lhs % rhs;
}
RValue<Float4> operator+(RValue<Float4> val)
{
return val;
}
RValue<Float4> operator-(RValue<Float4> val)
{
return RValue<Float4>(Nucleus::createFNeg(val.value));
}
RValue<Float4> Abs(RValue<Float4> x)
{
Value *vector = Nucleus::createBitCast(x.value, Int4::getType());
int64_t constantVector[4] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, Int4::getType()));
return As<Float4>(result);
}
RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::maxps(x, y);
#else
return As<Float4>(V(lowerPFMINMAX(V(x.value), V(y.value), llvm::FCmpInst::FCMP_OGT)));
#endif
}
RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::minps(x, y);
#else
return As<Float4>(V(lowerPFMINMAX(V(x.value), V(y.value), llvm::FCmpInst::FCMP_OLT)));
#endif
}
RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2)
{
#if defined(__i386__) || defined(__x86_64__)
if(exactAtPow2)
{
// rcpps uses a piecewise-linear approximation which minimizes the relative error
// but is not exact at power-of-two values. Rectify by multiplying by the inverse.
return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f))));
}
return x86::rcpps(x);
#else
return As<Float4>(V(lowerRCP(V(x.value))));
#endif
}
RValue<Float4> RcpSqrt_pp(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::rsqrtps(x);
#else
return As<Float4>(V(lowerRSQRT(V(x.value))));
#endif
}
RValue<Float4> Sqrt(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::sqrtps(x);
#else
return As<Float4>(V(lowerSQRT(V(x.value))));
#endif
}
RValue<Float4> Insert(RValue<Float4> x, RValue<Float> element, int i)
{
return RValue<Float4>(Nucleus::createInsertElement(x.value, element.value, i));
}
RValue<Float> Extract(RValue<Float4> x, int i)
{
return RValue<Float>(Nucleus::createExtractElement(x.value, Float::getType(), i));
}
RValue<Float4> Swizzle(RValue<Float4> x, unsigned char select)
{
return RValue<Float4>(createSwizzle4(x.value, select));
}
RValue<Float4> ShuffleLowHigh(RValue<Float4> x, RValue<Float4> y, unsigned char imm)
{
int shuffle[4] =
{
((imm >> 0) & 0x03) + 0,
((imm >> 2) & 0x03) + 0,
((imm >> 4) & 0x03) + 4,
((imm >> 6) & 0x03) + 4,
};
return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Float4> UnpackLow(RValue<Float4> x, RValue<Float4> y)
{
int shuffle[4] = {0, 4, 1, 5};
return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Float4> UnpackHigh(RValue<Float4> x, RValue<Float4> y)
{
int shuffle[4] = {2, 6, 3, 7};
return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
}
RValue<Float4> Mask(Float4 &lhs, RValue<Float4> rhs, unsigned char select)
{
Value *vector = lhs.loadValue();
Value *result = createMask4(vector, rhs.value, select);
lhs.storeValue(result);
return RValue<Float4>(result);
}
RValue<Int> SignMask(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
return x86::movmskps(x);
#else
return As<Int>(V(lowerFPSignMask(V(x.value), T(Int::getType()))));
#endif
}
RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y)
{
// return As<Int4>(x86::cmpeqps(x, y));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOEQ(x.value, y.value), Int4::getType()));
}
RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y)
{
// return As<Int4>(x86::cmpltps(x, y));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLT(x.value, y.value), Int4::getType()));
}
RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y)
{
// return As<Int4>(x86::cmpleps(x, y));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLE(x.value, y.value), Int4::getType()));
}
RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y)
{
// return As<Int4>(x86::cmpneqps(x, y));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpONE(x.value, y.value), Int4::getType()));
}
RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y)
{
// return As<Int4>(x86::cmpnltps(x, y));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGE(x.value, y.value), Int4::getType()));
}
RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y)
{
// return As<Int4>(x86::cmpnleps(x, y));
return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGT(x.value, y.value), Int4::getType()));
}
RValue<Int4> IsInf(RValue<Float4> x)
{
return CmpEQ(As<Int4>(x) & Int4(0x7FFFFFFF), Int4(0x7F800000));
}
RValue<Int4> IsNan(RValue<Float4> x)
{
return ~CmpEQ(x, x);
}
RValue<Float4> Round(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::roundps(x, 0);
}
else
{
return Float4(RoundInt(x));
}
#else
return RValue<Float4>(V(lowerRound(V(x.value))));
#endif
}
RValue<Float4> Trunc(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::roundps(x, 3);
}
else
{
return Float4(Int4(x));
}
#else
return RValue<Float4>(V(lowerTrunc(V(x.value))));
#endif
}
RValue<Float4> Frac(RValue<Float4> x)
{
Float4 frc;
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
frc = x - Floor(x);
}
else
{
frc = x - Float4(Int4(x)); // Signed fractional part.
frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f))); // Add 1.0 if negative.
}
#else
frc = x - Floor(x);
#endif
// x - floor(x) can be 1.0 for very small negative x.
// Clamp against the value just below 1.0.
return Min(frc, As<Float4>(Int4(0x3F7FFFFF)));
}
RValue<Float4> Floor(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::floorps(x);
}
else
{
return x - Frac(x);
}
#else
return RValue<Float4>(V(lowerFloor(V(x.value))));
#endif
}
RValue<Float4> Ceil(RValue<Float4> x)
{
#if defined(__i386__) || defined(__x86_64__)
if(CPUID::supportsSSE4_1())
{
return x86::ceilps(x);
}
else
#endif
{
return -Floor(-x);
}
}
Type *Float4::getType()
{
return T(llvm::VectorType::get(T(Float::getType()), 4));
}
RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, int offset)
{
return lhs + RValue<Int>(Nucleus::createConstantInt(offset));
}
RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<Int> offset)
{
return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, false));
}
RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<UInt> offset)
{
return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, true));
}
RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, int offset)
{
return lhs = lhs + offset;
}
RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<Int> offset)
{
return lhs = lhs + offset;
}
RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<UInt> offset)
{
return lhs = lhs + offset;
}
RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, int offset)
{
return lhs + -offset;
}
RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<Int> offset)
{
return lhs + -offset;
}
RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<UInt> offset)
{
return lhs + -offset;
}
RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, int offset)
{
return lhs = lhs - offset;
}
RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<Int> offset)
{
return lhs = lhs - offset;
}
RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<UInt> offset)
{
return lhs = lhs - offset;
}
void Return()
{
Nucleus::createRetVoid();
Nucleus::setInsertBlock(Nucleus::createBasicBlock());
Nucleus::createUnreachable();
}
void Return(RValue<Int> ret)
{
Nucleus::createRet(ret.value);
Nucleus::setInsertBlock(Nucleus::createBasicBlock());
Nucleus::createUnreachable();
}
void branch(RValue<Bool> cmp, BasicBlock *bodyBB, BasicBlock *endBB)
{
Nucleus::createCondBr(cmp.value, bodyBB, endBB);
Nucleus::setInsertBlock(bodyBB);
}
RValue<Long> Ticks()
{
llvm::Function *rdtsc = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::readcyclecounter);
return RValue<Long>(V(::builder->CreateCall(rdtsc)));
}
}
namespace rr
{
#if defined(__i386__) || defined(__x86_64__)
namespace x86
{
RValue<Int> cvtss2si(RValue<Float> val)
{
llvm::Function *cvtss2si = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_cvtss2si);
Float4 vector;
vector.x = val;
return RValue<Int>(V(::builder->CreateCall(cvtss2si, ARGS(V(RValue<Float4>(vector).value)))));
}
RValue<Int4> cvtps2dq(RValue<Float4> val)
{
llvm::Function *cvtps2dq = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_cvtps2dq);
return RValue<Int4>(V(::builder->CreateCall(cvtps2dq, ARGS(V(val.value)))));
}
RValue<Float> rcpss(RValue<Float> val)
{
llvm::Function *rcpss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rcp_ss);
Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0);
return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(rcpss, ARGS(V(vector)))), Float::getType(), 0));
}
RValue<Float> sqrtss(RValue<Float> val)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *sqrtss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_sqrt_ss);
Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0);
return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(sqrtss, ARGS(V(vector)))), Float::getType(), 0));
#else
llvm::Function *sqrt = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::sqrt, {V(val.value)->getType()});
return RValue<Float>(V(::builder->CreateCall(sqrt, ARGS(V(val.value)))));
#endif
}
RValue<Float> rsqrtss(RValue<Float> val)
{
llvm::Function *rsqrtss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rsqrt_ss);
Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0);
return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(rsqrtss, ARGS(V(vector)))), Float::getType(), 0));
}
RValue<Float4> rcpps(RValue<Float4> val)
{
llvm::Function *rcpps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rcp_ps);
return RValue<Float4>(V(::builder->CreateCall(rcpps, ARGS(V(val.value)))));
}
RValue<Float4> sqrtps(RValue<Float4> val)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *sqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_sqrt_ps);
#else
llvm::Function *sqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::sqrt, {V(val.value)->getType()});
#endif
return RValue<Float4>(V(::builder->CreateCall(sqrtps, ARGS(V(val.value)))));
}
RValue<Float4> rsqrtps(RValue<Float4> val)
{
llvm::Function *rsqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rsqrt_ps);
return RValue<Float4>(V(::builder->CreateCall(rsqrtps, ARGS(V(val.value)))));
}
RValue<Float4> maxps(RValue<Float4> x, RValue<Float4> y)
{
llvm::Function *maxps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_max_ps);
return RValue<Float4>(V(::builder->CreateCall2(maxps, ARGS(V(x.value), V(y.value)))));
}
RValue<Float4> minps(RValue<Float4> x, RValue<Float4> y)
{
llvm::Function *minps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_min_ps);
return RValue<Float4>(V(::builder->CreateCall2(minps, ARGS(V(x.value), V(y.value)))));
}
RValue<Float> roundss(RValue<Float> val, unsigned char imm)
{
llvm::Function *roundss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_round_ss);
Value *undef = V(llvm::UndefValue::get(T(Float4::getType())));
Value *vector = Nucleus::createInsertElement(undef, val.value, 0);
return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall3(roundss, ARGS(V(undef), V(vector), V(Nucleus::createConstantInt(imm))))), Float::getType(), 0));
}
RValue<Float> floorss(RValue<Float> val)
{
return roundss(val, 1);
}
RValue<Float> ceilss(RValue<Float> val)
{
return roundss(val, 2);
}
RValue<Float4> roundps(RValue<Float4> val, unsigned char imm)
{
llvm::Function *roundps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_round_ps);
return RValue<Float4>(V(::builder->CreateCall2(roundps, ARGS(V(val.value), V(Nucleus::createConstantInt(imm))))));
}
RValue<Float4> floorps(RValue<Float4> val)
{
return roundps(val, 1);
}
RValue<Float4> ceilps(RValue<Float4> val)
{
return roundps(val, 2);
}
RValue<Int4> pabsd(RValue<Int4> x)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pabsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_ssse3_pabs_d_128);
return RValue<Int4>(V(::builder->CreateCall(pabsd, ARGS(V(x.value)))));
#else
return RValue<Int4>(V(lowerPABS(V(x.value))));
#endif
}
RValue<Short4> paddsw(RValue<Short4> x, RValue<Short4> y)
{
llvm::Function *paddsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_padds_w);
return As<Short4>(V(::builder->CreateCall2(paddsw, ARGS(V(x.value), V(y.value)))));
}
RValue<Short4> psubsw(RValue<Short4> x, RValue<Short4> y)
{
llvm::Function *psubsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubs_w);
return As<Short4>(V(::builder->CreateCall2(psubsw, ARGS(V(x.value), V(y.value)))));
}
RValue<UShort4> paddusw(RValue<UShort4> x, RValue<UShort4> y)
{
llvm::Function *paddusw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_paddus_w);
return As<UShort4>(V(::builder->CreateCall2(paddusw, ARGS(V(x.value), V(y.value)))));
}
RValue<UShort4> psubusw(RValue<UShort4> x, RValue<UShort4> y)
{
llvm::Function *psubusw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubus_w);
return As<UShort4>(V(::builder->CreateCall2(psubusw, ARGS(V(x.value), V(y.value)))));
}
RValue<SByte8> paddsb(RValue<SByte8> x, RValue<SByte8> y)
{
llvm::Function *paddsb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_padds_b);
return As<SByte8>(V(::builder->CreateCall2(paddsb, ARGS(V(x.value), V(y.value)))));
}
RValue<SByte8> psubsb(RValue<SByte8> x, RValue<SByte8> y)
{
llvm::Function *psubsb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubs_b);
return As<SByte8>(V(::builder->CreateCall2(psubsb, ARGS(V(x.value), V(y.value)))));
}
RValue<Byte8> paddusb(RValue<Byte8> x, RValue<Byte8> y)
{
llvm::Function *paddusb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_paddus_b);
return As<Byte8>(V(::builder->CreateCall2(paddusb, ARGS(V(x.value), V(y.value)))));
}
RValue<Byte8> psubusb(RValue<Byte8> x, RValue<Byte8> y)
{
llvm::Function *psubusb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubus_b);
return As<Byte8>(V(::builder->CreateCall2(psubusb, ARGS(V(x.value), V(y.value)))));
}
RValue<UShort4> pavgw(RValue<UShort4> x, RValue<UShort4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pavgw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pavg_w);
return As<UShort4>(V(::builder->CreateCall2(pavgw, ARGS(V(x.value), V(y.value)))));
#else
return As<UShort4>(V(lowerPAVG(V(x.value), V(y.value))));
#endif
}
RValue<Short4> pmaxsw(RValue<Short4> x, RValue<Short4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmaxsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmaxs_w);
return As<Short4>(V(::builder->CreateCall2(pmaxsw, ARGS(V(x.value), V(y.value)))));
#else
return As<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT)));
#endif
}
RValue<Short4> pminsw(RValue<Short4> x, RValue<Short4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pminsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmins_w);
return As<Short4>(V(::builder->CreateCall2(pminsw, ARGS(V(x.value), V(y.value)))));
#else
return As<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT)));
#endif
}
RValue<Short4> pcmpgtw(RValue<Short4> x, RValue<Short4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pcmpgtw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpgt_w);
return As<Short4>(V(::builder->CreateCall2(pcmpgtw, ARGS(V(x.value), V(y.value)))));
#else
return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Short4::getType()))));
#endif
}
RValue<Short4> pcmpeqw(RValue<Short4> x, RValue<Short4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pcmpeqw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpeq_w);
return As<Short4>(V(::builder->CreateCall2(pcmpeqw, ARGS(V(x.value), V(y.value)))));
#else
return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Short4::getType()))));
#endif
}
RValue<Byte8> pcmpgtb(RValue<SByte8> x, RValue<SByte8> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pcmpgtb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpgt_b);
return As<Byte8>(V(::builder->CreateCall2(pcmpgtb, ARGS(V(x.value), V(y.value)))));
#else
return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
}
RValue<Byte8> pcmpeqb(RValue<Byte8> x, RValue<Byte8> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pcmpeqb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpeq_b);
return As<Byte8>(V(::builder->CreateCall2(pcmpeqb, ARGS(V(x.value), V(y.value)))));
#else
return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
}
RValue<Short4> packssdw(RValue<Int2> x, RValue<Int2> y)
{
llvm::Function *packssdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packssdw_128);
return As<Short4>(V(::builder->CreateCall2(packssdw, ARGS(V(x.value), V(y.value)))));
}
RValue<Short8> packssdw(RValue<Int4> x, RValue<Int4> y)
{
llvm::Function *packssdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packssdw_128);
return RValue<Short8>(V(::builder->CreateCall2(packssdw, ARGS(V(x.value), V(y.value)))));
}
RValue<SByte8> packsswb(RValue<Short4> x, RValue<Short4> y)
{
llvm::Function *packsswb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packsswb_128);
return As<SByte8>(V(::builder->CreateCall2(packsswb, ARGS(V(x.value), V(y.value)))));
}
RValue<Byte8> packuswb(RValue<Short4> x, RValue<Short4> y)
{
llvm::Function *packuswb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packuswb_128);
return As<Byte8>(V(::builder->CreateCall2(packuswb, ARGS(V(x.value), V(y.value)))));
}
RValue<UShort8> packusdw(RValue<Int4> x, RValue<Int4> y)
{
if(CPUID::supportsSSE4_1())
{
llvm::Function *packusdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_packusdw);
return RValue<UShort8>(V(::builder->CreateCall2(packusdw, ARGS(V(x.value), V(y.value)))));
}
else
{
RValue<Int4> bx = (x & ~(x >> 31)) - Int4(0x8000);
RValue<Int4> by = (y & ~(y >> 31)) - Int4(0x8000);
return As<UShort8>(packssdw(bx, by) + Short8(0x8000u));
}
}
RValue<UShort4> psrlw(RValue<UShort4> x, unsigned char y)
{
llvm::Function *psrlw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_w);
return As<UShort4>(V(::builder->CreateCall2(psrlw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<UShort8> psrlw(RValue<UShort8> x, unsigned char y)
{
llvm::Function *psrlw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_w);
return RValue<UShort8>(V(::builder->CreateCall2(psrlw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Short4> psraw(RValue<Short4> x, unsigned char y)
{
llvm::Function *psraw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_w);
return As<Short4>(V(::builder->CreateCall2(psraw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Short8> psraw(RValue<Short8> x, unsigned char y)
{
llvm::Function *psraw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_w);
return RValue<Short8>(V(::builder->CreateCall2(psraw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Short4> psllw(RValue<Short4> x, unsigned char y)
{
llvm::Function *psllw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_w);
return As<Short4>(V(::builder->CreateCall2(psllw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Short8> psllw(RValue<Short8> x, unsigned char y)
{
llvm::Function *psllw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_w);
return RValue<Short8>(V(::builder->CreateCall2(psllw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Int2> pslld(RValue<Int2> x, unsigned char y)
{
llvm::Function *pslld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_d);
return As<Int2>(V(::builder->CreateCall2(pslld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Int4> pslld(RValue<Int4> x, unsigned char y)
{
llvm::Function *pslld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_d);
return RValue<Int4>(V(::builder->CreateCall2(pslld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Int2> psrad(RValue<Int2> x, unsigned char y)
{
llvm::Function *psrad = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_d);
return As<Int2>(V(::builder->CreateCall2(psrad, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Int4> psrad(RValue<Int4> x, unsigned char y)
{
llvm::Function *psrad = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_d);
return RValue<Int4>(V(::builder->CreateCall2(psrad, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<UInt2> psrld(RValue<UInt2> x, unsigned char y)
{
llvm::Function *psrld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_d);
return As<UInt2>(V(::builder->CreateCall2(psrld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<UInt4> psrld(RValue<UInt4> x, unsigned char y)
{
llvm::Function *psrld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_d);
return RValue<UInt4>(V(::builder->CreateCall2(psrld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
}
RValue<Int4> pmaxsd(RValue<Int4> x, RValue<Int4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmaxsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmaxsd);
return RValue<Int4>(V(::builder->CreateCall2(pmaxsd, ARGS(V(x.value), V(y.value)))));
#else
return RValue<Int4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT)));
#endif
}
RValue<Int4> pminsd(RValue<Int4> x, RValue<Int4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pminsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pminsd);
return RValue<Int4>(V(::builder->CreateCall2(pminsd, ARGS(V(x.value), V(y.value)))));
#else
return RValue<Int4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT)));
#endif
}
RValue<UInt4> pmaxud(RValue<UInt4> x, RValue<UInt4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmaxud = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmaxud);
return RValue<UInt4>(V(::builder->CreateCall2(pmaxud, ARGS(V(x.value), V(y.value)))));
#else
return RValue<UInt4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_UGT)));
#endif
}
RValue<UInt4> pminud(RValue<UInt4> x, RValue<UInt4> y)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pminud = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pminud);
return RValue<UInt4>(V(::builder->CreateCall2(pminud, ARGS(V(x.value), V(y.value)))));
#else
return RValue<UInt4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_ULT)));
#endif
}
RValue<Short4> pmulhw(RValue<Short4> x, RValue<Short4> y)
{
llvm::Function *pmulhw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulh_w);
return As<Short4>(V(::builder->CreateCall2(pmulhw, ARGS(V(x.value), V(y.value)))));
}
RValue<UShort4> pmulhuw(RValue<UShort4> x, RValue<UShort4> y)
{
llvm::Function *pmulhuw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulhu_w);
return As<UShort4>(V(::builder->CreateCall2(pmulhuw, ARGS(V(x.value), V(y.value)))));
}
RValue<Int2> pmaddwd(RValue<Short4> x, RValue<Short4> y)
{
llvm::Function *pmaddwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmadd_wd);
return As<Int2>(V(::builder->CreateCall2(pmaddwd, ARGS(V(x.value), V(y.value)))));
}
RValue<Short8> pmulhw(RValue<Short8> x, RValue<Short8> y)
{
llvm::Function *pmulhw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulh_w);
return RValue<Short8>(V(::builder->CreateCall2(pmulhw, ARGS(V(x.value), V(y.value)))));
}
RValue<UShort8> pmulhuw(RValue<UShort8> x, RValue<UShort8> y)
{
llvm::Function *pmulhuw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulhu_w);
return RValue<UShort8>(V(::builder->CreateCall2(pmulhuw, ARGS(V(x.value), V(y.value)))));
}
RValue<Int4> pmaddwd(RValue<Short8> x, RValue<Short8> y)
{
llvm::Function *pmaddwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmadd_wd);
return RValue<Int4>(V(::builder->CreateCall2(pmaddwd, ARGS(V(x.value), V(y.value)))));
}
RValue<Int> movmskps(RValue<Float4> x)
{
llvm::Function *movmskps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_movmsk_ps);
return RValue<Int>(V(::builder->CreateCall(movmskps, ARGS(V(x.value)))));
}
RValue<Int> pmovmskb(RValue<Byte8> x)
{
llvm::Function *pmovmskb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmovmskb_128);
return RValue<Int>(V(::builder->CreateCall(pmovmskb, ARGS(V(x.value))))) & 0xFF;
}
RValue<Int4> pmovzxbd(RValue<Byte16> x)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmovzxbd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovzxbd);
return RValue<Int4>(V(::builder->CreateCall(pmovzxbd, ARGS(V(x.value)))));
#else
return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), false)));
#endif
}
RValue<Int4> pmovsxbd(RValue<SByte16> x)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmovsxbd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovsxbd);
return RValue<Int4>(V(::builder->CreateCall(pmovsxbd, ARGS(V(x.value)))));
#else
return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), true)));
#endif
}
RValue<Int4> pmovzxwd(RValue<UShort8> x)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmovzxwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovzxwd);
return RValue<Int4>(V(::builder->CreateCall(pmovzxwd, ARGS(V(x.value)))));
#else
return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), false)));
#endif
}
RValue<Int4> pmovsxwd(RValue<Short8> x)
{
#if REACTOR_LLVM_VERSION < 7
llvm::Function *pmovsxwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovsxwd);
return RValue<Int4>(V(::builder->CreateCall(pmovsxwd, ARGS(V(x.value)))));
#else
return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), true)));
#endif
}
}
#endif // defined(__i386__) || defined(__x86_64__)
}