|  | //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file transforms calls of the current function (self recursion) followed | 
|  | // by a return instruction with a branch to the entry of the function, creating | 
|  | // a loop.  This pass also implements the following extensions to the basic | 
|  | // algorithm: | 
|  | // | 
|  | //  1. Trivial instructions between the call and return do not prevent the | 
|  | //     transformation from taking place, though currently the analysis cannot | 
|  | //     support moving any really useful instructions (only dead ones). | 
|  | //  2. This pass transforms functions that are prevented from being tail | 
|  | //     recursive by an associative and commutative expression to use an | 
|  | //     accumulator variable, thus compiling the typical naive factorial or | 
|  | //     'fib' implementation into efficient code. | 
|  | //  3. TRE is performed if the function returns void, if the return | 
|  | //     returns the result returned by the call, or if the function returns a | 
|  | //     run-time constant on all exits from the function.  It is possible, though | 
|  | //     unlikely, that the return returns something else (like constant 0), and | 
|  | //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in | 
|  | //     the function return the exact same value. | 
|  | //  4. If it can prove that callees do not access their caller stack frame, | 
|  | //     they are marked as eligible for tail call elimination (by the code | 
|  | //     generator). | 
|  | // | 
|  | // There are several improvements that could be made: | 
|  | // | 
|  | //  1. If the function has any alloca instructions, these instructions will be | 
|  | //     moved out of the entry block of the function, causing them to be | 
|  | //     evaluated each time through the tail recursion.  Safely keeping allocas | 
|  | //     in the entry block requires analysis to proves that the tail-called | 
|  | //     function does not read or write the stack object. | 
|  | //  2. Tail recursion is only performed if the call immediately precedes the | 
|  | //     return instruction.  It's possible that there could be a jump between | 
|  | //     the call and the return. | 
|  | //  3. There can be intervening operations between the call and the return that | 
|  | //     prevent the TRE from occurring.  For example, there could be GEP's and | 
|  | //     stores to memory that will not be read or written by the call.  This | 
|  | //     requires some substantial analysis (such as with DSA) to prove safe to | 
|  | //     move ahead of the call, but doing so could allow many more TREs to be | 
|  | //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. | 
|  | //  4. The algorithm we use to detect if callees access their caller stack | 
|  | //     frames is very primitive. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "tailcallelim" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumEliminated, "Number of tail calls removed"); | 
|  | STATISTIC(NumRetDuped,   "Number of return duplicated"); | 
|  | STATISTIC(NumAccumAdded, "Number of accumulators introduced"); | 
|  |  | 
|  | namespace { | 
|  | struct TailCallElim : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | TailCallElim() : FunctionPass(ID) { | 
|  | initializeTailCallElimPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual bool runOnFunction(Function &F); | 
|  |  | 
|  | private: | 
|  | CallInst *FindTRECandidate(Instruction *I, | 
|  | bool CannotTailCallElimCallsMarkedTail); | 
|  | bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, | 
|  | BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, | 
|  | SmallVector<PHINode*, 8> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail); | 
|  | bool FoldReturnAndProcessPred(BasicBlock *BB, | 
|  | ReturnInst *Ret, BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, | 
|  | SmallVector<PHINode*, 8> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail); | 
|  | bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, | 
|  | SmallVector<PHINode*, 8> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail); | 
|  | bool CanMoveAboveCall(Instruction *I, CallInst *CI); | 
|  | Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char TailCallElim::ID = 0; | 
|  | INITIALIZE_PASS(TailCallElim, "tailcallelim", | 
|  | "Tail Call Elimination", false, false) | 
|  |  | 
|  | // Public interface to the TailCallElimination pass | 
|  | FunctionPass *llvm::createTailCallEliminationPass() { | 
|  | return new TailCallElim(); | 
|  | } | 
|  |  | 
|  | /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by | 
|  | /// callees of this function.  We only do very simple analysis right now, this | 
|  | /// could be expanded in the future to use mod/ref information for particular | 
|  | /// call sites if desired. | 
|  | static bool AllocaMightEscapeToCalls(AllocaInst *AI) { | 
|  | // FIXME: do simple 'address taken' analysis. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CheckForEscapingAllocas - Scan the specified basic block for alloca | 
|  | /// instructions.  If it contains any that might be accessed by calls, return | 
|  | /// true. | 
|  | static bool CheckForEscapingAllocas(BasicBlock *BB, | 
|  | bool &CannotTCETailMarkedCall) { | 
|  | bool RetVal = false; | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { | 
|  | RetVal |= AllocaMightEscapeToCalls(AI); | 
|  |  | 
|  | // If this alloca is in the body of the function, or if it is a variable | 
|  | // sized allocation, we cannot tail call eliminate calls marked 'tail' | 
|  | // with this mechanism. | 
|  | if (BB != &BB->getParent()->getEntryBlock() || | 
|  | !isa<ConstantInt>(AI->getArraySize())) | 
|  | CannotTCETailMarkedCall = true; | 
|  | } | 
|  | return RetVal; | 
|  | } | 
|  |  | 
|  | bool TailCallElim::runOnFunction(Function &F) { | 
|  | // If this function is a varargs function, we won't be able to PHI the args | 
|  | // right, so don't even try to convert it... | 
|  | if (F.getFunctionType()->isVarArg()) return false; | 
|  |  | 
|  | BasicBlock *OldEntry = 0; | 
|  | bool TailCallsAreMarkedTail = false; | 
|  | SmallVector<PHINode*, 8> ArgumentPHIs; | 
|  | bool MadeChange = false; | 
|  | bool FunctionContainsEscapingAllocas = false; | 
|  |  | 
|  | // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls | 
|  | // marked with the 'tail' attribute, because doing so would cause the stack | 
|  | // size to increase (real TCE would deallocate variable sized allocas, TCE | 
|  | // doesn't). | 
|  | bool CannotTCETailMarkedCall = false; | 
|  |  | 
|  | // Loop over the function, looking for any returning blocks, and keeping track | 
|  | // of whether this function has any non-trivially used allocas. | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall) | 
|  | break; | 
|  |  | 
|  | FunctionContainsEscapingAllocas |= | 
|  | CheckForEscapingAllocas(BB, CannotTCETailMarkedCall); | 
|  | } | 
|  |  | 
|  | /// FIXME: The code generator produces really bad code when an 'escaping | 
|  | /// alloca' is changed from being a static alloca to being a dynamic alloca. | 
|  | /// Until this is resolved, disable this transformation if that would ever | 
|  | /// happen.  This bug is PR962. | 
|  | if (FunctionContainsEscapingAllocas) | 
|  | return false; | 
|  |  | 
|  | // Second pass, change any tail calls to loops. | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { | 
|  | bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, | 
|  | ArgumentPHIs,CannotTCETailMarkedCall); | 
|  | if (!Change && BB->getFirstNonPHIOrDbg() == Ret) | 
|  | Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, | 
|  | TailCallsAreMarkedTail, ArgumentPHIs, | 
|  | CannotTCETailMarkedCall); | 
|  | MadeChange |= Change; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we eliminated any tail recursions, it's possible that we inserted some | 
|  | // silly PHI nodes which just merge an initial value (the incoming operand) | 
|  | // with themselves.  Check to see if we did and clean up our mess if so.  This | 
|  | // occurs when a function passes an argument straight through to its tail | 
|  | // call. | 
|  | if (!ArgumentPHIs.empty()) { | 
|  | for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { | 
|  | PHINode *PN = ArgumentPHIs[i]; | 
|  |  | 
|  | // If the PHI Node is a dynamic constant, replace it with the value it is. | 
|  | if (Value *PNV = SimplifyInstruction(PN)) { | 
|  | PN->replaceAllUsesWith(PNV); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, if this function contains no non-escaping allocas, or calls | 
|  | // setjmp, mark all calls in the function as eligible for tail calls | 
|  | //(there is no stack memory for them to access). | 
|  | if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice()) | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
|  | CI->setTailCall(); | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// CanMoveAboveCall - Return true if it is safe to move the specified | 
|  | /// instruction from after the call to before the call, assuming that all | 
|  | /// instructions between the call and this instruction are movable. | 
|  | /// | 
|  | bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { | 
|  | // FIXME: We can move load/store/call/free instructions above the call if the | 
|  | // call does not mod/ref the memory location being processed. | 
|  | if (I->mayHaveSideEffects())  // This also handles volatile loads. | 
|  | return false; | 
|  |  | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | 
|  | // Loads may always be moved above calls without side effects. | 
|  | if (CI->mayHaveSideEffects()) { | 
|  | // Non-volatile loads may be moved above a call with side effects if it | 
|  | // does not write to memory and the load provably won't trap. | 
|  | // FIXME: Writes to memory only matter if they may alias the pointer | 
|  | // being loaded from. | 
|  | if (CI->mayWriteToMemory() || | 
|  | !isSafeToLoadUnconditionally(L->getPointerOperand(), L, | 
|  | L->getAlignment())) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, if this is a side-effect free instruction, check to make sure | 
|  | // that it does not use the return value of the call.  If it doesn't use the | 
|  | // return value of the call, it must only use things that are defined before | 
|  | // the call, or movable instructions between the call and the instruction | 
|  | // itself. | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
|  | if (I->getOperand(i) == CI) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // isDynamicConstant - Return true if the specified value is the same when the | 
|  | // return would exit as it was when the initial iteration of the recursive | 
|  | // function was executed. | 
|  | // | 
|  | // We currently handle static constants and arguments that are not modified as | 
|  | // part of the recursion. | 
|  | // | 
|  | static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { | 
|  | if (isa<Constant>(V)) return true; // Static constants are always dyn consts | 
|  |  | 
|  | // Check to see if this is an immutable argument, if so, the value | 
|  | // will be available to initialize the accumulator. | 
|  | if (Argument *Arg = dyn_cast<Argument>(V)) { | 
|  | // Figure out which argument number this is... | 
|  | unsigned ArgNo = 0; | 
|  | Function *F = CI->getParent()->getParent(); | 
|  | for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) | 
|  | ++ArgNo; | 
|  |  | 
|  | // If we are passing this argument into call as the corresponding | 
|  | // argument operand, then the argument is dynamically constant. | 
|  | // Otherwise, we cannot transform this function safely. | 
|  | if (CI->getArgOperand(ArgNo) == Arg) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Switch cases are always constant integers. If the value is being switched | 
|  | // on and the return is only reachable from one of its cases, it's | 
|  | // effectively constant. | 
|  | if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) | 
|  | if (SI->getCondition() == V) | 
|  | return SI->getDefaultDest() != RI->getParent(); | 
|  |  | 
|  | // Not a constant or immutable argument, we can't safely transform. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // getCommonReturnValue - Check to see if the function containing the specified | 
|  | // tail call consistently returns the same runtime-constant value at all exit | 
|  | // points except for IgnoreRI.  If so, return the returned value. | 
|  | // | 
|  | static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { | 
|  | Function *F = CI->getParent()->getParent(); | 
|  | Value *ReturnedValue = 0; | 
|  |  | 
|  | for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { | 
|  | ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); | 
|  | if (RI == 0 || RI == IgnoreRI) continue; | 
|  |  | 
|  | // We can only perform this transformation if the value returned is | 
|  | // evaluatable at the start of the initial invocation of the function, | 
|  | // instead of at the end of the evaluation. | 
|  | // | 
|  | Value *RetOp = RI->getOperand(0); | 
|  | if (!isDynamicConstant(RetOp, CI, RI)) | 
|  | return 0; | 
|  |  | 
|  | if (ReturnedValue && RetOp != ReturnedValue) | 
|  | return 0;     // Cannot transform if differing values are returned. | 
|  | ReturnedValue = RetOp; | 
|  | } | 
|  | return ReturnedValue; | 
|  | } | 
|  |  | 
|  | /// CanTransformAccumulatorRecursion - If the specified instruction can be | 
|  | /// transformed using accumulator recursion elimination, return the constant | 
|  | /// which is the start of the accumulator value.  Otherwise return null. | 
|  | /// | 
|  | Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, | 
|  | CallInst *CI) { | 
|  | if (!I->isAssociative() || !I->isCommutative()) return 0; | 
|  | assert(I->getNumOperands() == 2 && | 
|  | "Associative/commutative operations should have 2 args!"); | 
|  |  | 
|  | // Exactly one operand should be the result of the call instruction. | 
|  | if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || | 
|  | (I->getOperand(0) != CI && I->getOperand(1) != CI)) | 
|  | return 0; | 
|  |  | 
|  | // The only user of this instruction we allow is a single return instruction. | 
|  | if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back())) | 
|  | return 0; | 
|  |  | 
|  | // Ok, now we have to check all of the other return instructions in this | 
|  | // function.  If they return non-constants or differing values, then we cannot | 
|  | // transform the function safely. | 
|  | return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI); | 
|  | } | 
|  |  | 
|  | static Instruction *FirstNonDbg(BasicBlock::iterator I) { | 
|  | while (isa<DbgInfoIntrinsic>(I)) | 
|  | ++I; | 
|  | return &*I; | 
|  | } | 
|  |  | 
|  | CallInst* | 
|  | TailCallElim::FindTRECandidate(Instruction *TI, | 
|  | bool CannotTailCallElimCallsMarkedTail) { | 
|  | BasicBlock *BB = TI->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | if (&BB->front() == TI) // Make sure there is something before the terminator. | 
|  | return 0; | 
|  |  | 
|  | // Scan backwards from the return, checking to see if there is a tail call in | 
|  | // this block.  If so, set CI to it. | 
|  | CallInst *CI = 0; | 
|  | BasicBlock::iterator BBI = TI; | 
|  | while (true) { | 
|  | CI = dyn_cast<CallInst>(BBI); | 
|  | if (CI && CI->getCalledFunction() == F) | 
|  | break; | 
|  |  | 
|  | if (BBI == BB->begin()) | 
|  | return 0;          // Didn't find a potential tail call. | 
|  | --BBI; | 
|  | } | 
|  |  | 
|  | // If this call is marked as a tail call, and if there are dynamic allocas in | 
|  | // the function, we cannot perform this optimization. | 
|  | if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) | 
|  | return 0; | 
|  |  | 
|  | // As a special case, detect code like this: | 
|  | //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call | 
|  | // and disable this xform in this case, because the code generator will | 
|  | // lower the call to fabs into inline code. | 
|  | if (BB == &F->getEntryBlock() && | 
|  | FirstNonDbg(BB->front()) == CI && | 
|  | FirstNonDbg(llvm::next(BB->begin())) == TI && | 
|  | callIsSmall(F)) { | 
|  | // A single-block function with just a call and a return. Check that | 
|  | // the arguments match. | 
|  | CallSite::arg_iterator I = CallSite(CI).arg_begin(), | 
|  | E = CallSite(CI).arg_end(); | 
|  | Function::arg_iterator FI = F->arg_begin(), | 
|  | FE = F->arg_end(); | 
|  | for (; I != E && FI != FE; ++I, ++FI) | 
|  | if (*I != &*FI) break; | 
|  | if (I == E && FI == FE) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, | 
|  | BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, | 
|  | SmallVector<PHINode*, 8> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail) { | 
|  | // If we are introducing accumulator recursion to eliminate operations after | 
|  | // the call instruction that are both associative and commutative, the initial | 
|  | // value for the accumulator is placed in this variable.  If this value is set | 
|  | // then we actually perform accumulator recursion elimination instead of | 
|  | // simple tail recursion elimination.  If the operation is an LLVM instruction | 
|  | // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then | 
|  | // we are handling the case when the return instruction returns a constant C | 
|  | // which is different to the constant returned by other return instructions | 
|  | // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a | 
|  | // special case of accumulator recursion, the operation being "return C". | 
|  | Value *AccumulatorRecursionEliminationInitVal = 0; | 
|  | Instruction *AccumulatorRecursionInstr = 0; | 
|  |  | 
|  | // Ok, we found a potential tail call.  We can currently only transform the | 
|  | // tail call if all of the instructions between the call and the return are | 
|  | // movable to above the call itself, leaving the call next to the return. | 
|  | // Check that this is the case now. | 
|  | BasicBlock::iterator BBI = CI; | 
|  | for (++BBI; &*BBI != Ret; ++BBI) { | 
|  | if (CanMoveAboveCall(BBI, CI)) continue; | 
|  |  | 
|  | // If we can't move the instruction above the call, it might be because it | 
|  | // is an associative and commutative operation that could be transformed | 
|  | // using accumulator recursion elimination.  Check to see if this is the | 
|  | // case, and if so, remember the initial accumulator value for later. | 
|  | if ((AccumulatorRecursionEliminationInitVal = | 
|  | CanTransformAccumulatorRecursion(BBI, CI))) { | 
|  | // Yes, this is accumulator recursion.  Remember which instruction | 
|  | // accumulates. | 
|  | AccumulatorRecursionInstr = BBI; | 
|  | } else { | 
|  | return false;   // Otherwise, we cannot eliminate the tail recursion! | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can only transform call/return pairs that either ignore the return value | 
|  | // of the call and return void, ignore the value of the call and return a | 
|  | // constant, return the value returned by the tail call, or that are being | 
|  | // accumulator recursion variable eliminated. | 
|  | if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && | 
|  | !isa<UndefValue>(Ret->getReturnValue()) && | 
|  | AccumulatorRecursionEliminationInitVal == 0 && | 
|  | !getCommonReturnValue(0, CI)) { | 
|  | // One case remains that we are able to handle: the current return | 
|  | // instruction returns a constant, and all other return instructions | 
|  | // return a different constant. | 
|  | if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) | 
|  | return false; // Current return instruction does not return a constant. | 
|  | // Check that all other return instructions return a common constant.  If | 
|  | // so, record it in AccumulatorRecursionEliminationInitVal. | 
|  | AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); | 
|  | if (!AccumulatorRecursionEliminationInitVal) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *BB = Ret->getParent(); | 
|  | Function *F = BB->getParent(); | 
|  |  | 
|  | // OK! We can transform this tail call.  If this is the first one found, | 
|  | // create the new entry block, allowing us to branch back to the old entry. | 
|  | if (OldEntry == 0) { | 
|  | OldEntry = &F->getEntryBlock(); | 
|  | BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); | 
|  | NewEntry->takeName(OldEntry); | 
|  | OldEntry->setName("tailrecurse"); | 
|  | BranchInst::Create(OldEntry, NewEntry); | 
|  |  | 
|  | // If this tail call is marked 'tail' and if there are any allocas in the | 
|  | // entry block, move them up to the new entry block. | 
|  | TailCallsAreMarkedTail = CI->isTailCall(); | 
|  | if (TailCallsAreMarkedTail) | 
|  | // Move all fixed sized allocas from OldEntry to NewEntry. | 
|  | for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), | 
|  | NEBI = NewEntry->begin(); OEBI != E; ) | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) | 
|  | if (isa<ConstantInt>(AI->getArraySize())) | 
|  | AI->moveBefore(NEBI); | 
|  |  | 
|  | // Now that we have created a new block, which jumps to the entry | 
|  | // block, insert a PHI node for each argument of the function. | 
|  | // For now, we initialize each PHI to only have the real arguments | 
|  | // which are passed in. | 
|  | Instruction *InsertPos = OldEntry->begin(); | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I) { | 
|  | PHINode *PN = PHINode::Create(I->getType(), 2, | 
|  | I->getName() + ".tr", InsertPos); | 
|  | I->replaceAllUsesWith(PN); // Everyone use the PHI node now! | 
|  | PN->addIncoming(I, NewEntry); | 
|  | ArgumentPHIs.push_back(PN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this function has self recursive calls in the tail position where some | 
|  | // are marked tail and some are not, only transform one flavor or another.  We | 
|  | // have to choose whether we move allocas in the entry block to the new entry | 
|  | // block or not, so we can't make a good choice for both.  NOTE: We could do | 
|  | // slightly better here in the case that the function has no entry block | 
|  | // allocas. | 
|  | if (TailCallsAreMarkedTail && !CI->isTailCall()) | 
|  | return false; | 
|  |  | 
|  | // Ok, now that we know we have a pseudo-entry block WITH all of the | 
|  | // required PHI nodes, add entries into the PHI node for the actual | 
|  | // parameters passed into the tail-recursive call. | 
|  | for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) | 
|  | ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); | 
|  |  | 
|  | // If we are introducing an accumulator variable to eliminate the recursion, | 
|  | // do so now.  Note that we _know_ that no subsequent tail recursion | 
|  | // eliminations will happen on this function because of the way the | 
|  | // accumulator recursion predicate is set up. | 
|  | // | 
|  | if (AccumulatorRecursionEliminationInitVal) { | 
|  | Instruction *AccRecInstr = AccumulatorRecursionInstr; | 
|  | // Start by inserting a new PHI node for the accumulator. | 
|  | pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); | 
|  | PHINode *AccPN = | 
|  | PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), | 
|  | std::distance(PB, PE) + 1, | 
|  | "accumulator.tr", OldEntry->begin()); | 
|  |  | 
|  | // Loop over all of the predecessors of the tail recursion block.  For the | 
|  | // real entry into the function we seed the PHI with the initial value, | 
|  | // computed earlier.  For any other existing branches to this block (due to | 
|  | // other tail recursions eliminated) the accumulator is not modified. | 
|  | // Because we haven't added the branch in the current block to OldEntry yet, | 
|  | // it will not show up as a predecessor. | 
|  | for (pred_iterator PI = PB; PI != PE; ++PI) { | 
|  | BasicBlock *P = *PI; | 
|  | if (P == &F->getEntryBlock()) | 
|  | AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); | 
|  | else | 
|  | AccPN->addIncoming(AccPN, P); | 
|  | } | 
|  |  | 
|  | if (AccRecInstr) { | 
|  | // Add an incoming argument for the current block, which is computed by | 
|  | // our associative and commutative accumulator instruction. | 
|  | AccPN->addIncoming(AccRecInstr, BB); | 
|  |  | 
|  | // Next, rewrite the accumulator recursion instruction so that it does not | 
|  | // use the result of the call anymore, instead, use the PHI node we just | 
|  | // inserted. | 
|  | AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); | 
|  | } else { | 
|  | // Add an incoming argument for the current block, which is just the | 
|  | // constant returned by the current return instruction. | 
|  | AccPN->addIncoming(Ret->getReturnValue(), BB); | 
|  | } | 
|  |  | 
|  | // Finally, rewrite any return instructions in the program to return the PHI | 
|  | // node instead of the "initval" that they do currently.  This loop will | 
|  | // actually rewrite the return value we are destroying, but that's ok. | 
|  | for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) | 
|  | RI->setOperand(0, AccPN); | 
|  | ++NumAccumAdded; | 
|  | } | 
|  |  | 
|  | // Now that all of the PHI nodes are in place, remove the call and | 
|  | // ret instructions, replacing them with an unconditional branch. | 
|  | BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); | 
|  | NewBI->setDebugLoc(CI->getDebugLoc()); | 
|  |  | 
|  | BB->getInstList().erase(Ret);  // Remove return. | 
|  | BB->getInstList().erase(CI);   // Remove call. | 
|  | ++NumEliminated; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, | 
|  | ReturnInst *Ret, BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, | 
|  | SmallVector<PHINode*, 8> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail) { | 
|  | bool Change = false; | 
|  |  | 
|  | // If the return block contains nothing but the return and PHI's, | 
|  | // there might be an opportunity to duplicate the return in its | 
|  | // predecessors and perform TRC there. Look for predecessors that end | 
|  | // in unconditional branch and recursive call(s). | 
|  | SmallVector<BranchInst*, 8> UncondBranchPreds; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *Pred = *PI; | 
|  | TerminatorInst *PTI = Pred->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) | 
|  | if (BI->isUnconditional()) | 
|  | UncondBranchPreds.push_back(BI); | 
|  | } | 
|  |  | 
|  | while (!UncondBranchPreds.empty()) { | 
|  | BranchInst *BI = UncondBranchPreds.pop_back_val(); | 
|  | BasicBlock *Pred = BI->getParent(); | 
|  | if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ | 
|  | DEBUG(dbgs() << "FOLDING: " << *BB | 
|  | << "INTO UNCOND BRANCH PRED: " << *Pred); | 
|  | EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), | 
|  | OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, | 
|  | CannotTailCallElimCallsMarkedTail); | 
|  | ++NumRetDuped; | 
|  | Change = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Change; | 
|  | } | 
|  |  | 
|  | bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, | 
|  | bool &TailCallsAreMarkedTail, | 
|  | SmallVector<PHINode*, 8> &ArgumentPHIs, | 
|  | bool CannotTailCallElimCallsMarkedTail) { | 
|  | CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); | 
|  | if (!CI) | 
|  | return false; | 
|  |  | 
|  | return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, | 
|  | ArgumentPHIs, | 
|  | CannotTailCallElimCallsMarkedTail); | 
|  | } |