|  | //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This transformation analyzes and transforms the induction variables (and | 
|  | // computations derived from them) into forms suitable for efficient execution | 
|  | // on the target. | 
|  | // | 
|  | // This pass performs a strength reduction on array references inside loops that | 
|  | // have as one or more of their components the loop induction variable, it | 
|  | // rewrites expressions to take advantage of scaled-index addressing modes | 
|  | // available on the target, and it performs a variety of other optimizations | 
|  | // related to loop induction variables. | 
|  | // | 
|  | // Terminology note: this code has a lot of handling for "post-increment" or | 
|  | // "post-inc" users. This is not talking about post-increment addressing modes; | 
|  | // it is instead talking about code like this: | 
|  | // | 
|  | //   %i = phi [ 0, %entry ], [ %i.next, %latch ] | 
|  | //   ... | 
|  | //   %i.next = add %i, 1 | 
|  | //   %c = icmp eq %i.next, %n | 
|  | // | 
|  | // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however | 
|  | // it's useful to think about these as the same register, with some uses using | 
|  | // the value of the register before the add and some using // it after. In this | 
|  | // example, the icmp is a post-increment user, since it uses %i.next, which is | 
|  | // the value of the induction variable after the increment. The other common | 
|  | // case of post-increment users is users outside the loop. | 
|  | // | 
|  | // TODO: More sophistication in the way Formulae are generated and filtered. | 
|  | // | 
|  | // TODO: Handle multiple loops at a time. | 
|  | // | 
|  | // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr | 
|  | //       instead of a GlobalValue? | 
|  | // | 
|  | // TODO: When truncation is free, truncate ICmp users' operands to make it a | 
|  | //       smaller encoding (on x86 at least). | 
|  | // | 
|  | // TODO: When a negated register is used by an add (such as in a list of | 
|  | //       multiple base registers, or as the increment expression in an addrec), | 
|  | //       we may not actually need both reg and (-1 * reg) in registers; the | 
|  | //       negation can be implemented by using a sub instead of an add. The | 
|  | //       lack of support for taking this into consideration when making | 
|  | //       register pressure decisions is partly worked around by the "Special" | 
|  | //       use kind. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "loop-reduce" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Analysis/IVUsers.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ValueHandle.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace llvm { | 
|  | cl::opt<bool> EnableNested( | 
|  | "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); | 
|  |  | 
|  | cl::opt<bool> EnableRetry( | 
|  | "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); | 
|  |  | 
|  | // Temporary flag to cleanup congruent phis after LSR phi expansion. | 
|  | // It's currently disabled until we can determine whether it's truly useful or | 
|  | // not. The flag should be removed after the v3.0 release. | 
|  | cl::opt<bool> EnablePhiElim( | 
|  | "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination")); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// RegSortData - This class holds data which is used to order reuse candidates. | 
|  | class RegSortData { | 
|  | public: | 
|  | /// UsedByIndices - This represents the set of LSRUse indices which reference | 
|  | /// a particular register. | 
|  | SmallBitVector UsedByIndices; | 
|  |  | 
|  | RegSortData() {} | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void RegSortData::print(raw_ostream &OS) const { | 
|  | OS << "[NumUses=" << UsedByIndices.count() << ']'; | 
|  | } | 
|  |  | 
|  | void RegSortData::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// RegUseTracker - Map register candidates to information about how they are | 
|  | /// used. | 
|  | class RegUseTracker { | 
|  | typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; | 
|  |  | 
|  | RegUsesTy RegUsesMap; | 
|  | SmallVector<const SCEV *, 16> RegSequence; | 
|  |  | 
|  | public: | 
|  | void CountRegister(const SCEV *Reg, size_t LUIdx); | 
|  | void DropRegister(const SCEV *Reg, size_t LUIdx); | 
|  | void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); | 
|  |  | 
|  | bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; | 
|  |  | 
|  | const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; | 
|  |  | 
|  | void clear(); | 
|  |  | 
|  | typedef SmallVectorImpl<const SCEV *>::iterator iterator; | 
|  | typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; | 
|  | iterator begin() { return RegSequence.begin(); } | 
|  | iterator end()   { return RegSequence.end(); } | 
|  | const_iterator begin() const { return RegSequence.begin(); } | 
|  | const_iterator end() const   { return RegSequence.end(); } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void | 
|  | RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { | 
|  | std::pair<RegUsesTy::iterator, bool> Pair = | 
|  | RegUsesMap.insert(std::make_pair(Reg, RegSortData())); | 
|  | RegSortData &RSD = Pair.first->second; | 
|  | if (Pair.second) | 
|  | RegSequence.push_back(Reg); | 
|  | RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); | 
|  | RSD.UsedByIndices.set(LUIdx); | 
|  | } | 
|  |  | 
|  | void | 
|  | RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { | 
|  | RegUsesTy::iterator It = RegUsesMap.find(Reg); | 
|  | assert(It != RegUsesMap.end()); | 
|  | RegSortData &RSD = It->second; | 
|  | assert(RSD.UsedByIndices.size() > LUIdx); | 
|  | RSD.UsedByIndices.reset(LUIdx); | 
|  | } | 
|  |  | 
|  | void | 
|  | RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { | 
|  | assert(LUIdx <= LastLUIdx); | 
|  |  | 
|  | // Update RegUses. The data structure is not optimized for this purpose; | 
|  | // we must iterate through it and update each of the bit vectors. | 
|  | for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); | 
|  | I != E; ++I) { | 
|  | SmallBitVector &UsedByIndices = I->second.UsedByIndices; | 
|  | if (LUIdx < UsedByIndices.size()) | 
|  | UsedByIndices[LUIdx] = | 
|  | LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; | 
|  | UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { | 
|  | RegUsesTy::const_iterator I = RegUsesMap.find(Reg); | 
|  | if (I == RegUsesMap.end()) | 
|  | return false; | 
|  | const SmallBitVector &UsedByIndices = I->second.UsedByIndices; | 
|  | int i = UsedByIndices.find_first(); | 
|  | if (i == -1) return false; | 
|  | if ((size_t)i != LUIdx) return true; | 
|  | return UsedByIndices.find_next(i) != -1; | 
|  | } | 
|  |  | 
|  | const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { | 
|  | RegUsesTy::const_iterator I = RegUsesMap.find(Reg); | 
|  | assert(I != RegUsesMap.end() && "Unknown register!"); | 
|  | return I->second.UsedByIndices; | 
|  | } | 
|  |  | 
|  | void RegUseTracker::clear() { | 
|  | RegUsesMap.clear(); | 
|  | RegSequence.clear(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Formula - This class holds information that describes a formula for | 
|  | /// computing satisfying a use. It may include broken-out immediates and scaled | 
|  | /// registers. | 
|  | struct Formula { | 
|  | /// AM - This is used to represent complex addressing, as well as other kinds | 
|  | /// of interesting uses. | 
|  | TargetLowering::AddrMode AM; | 
|  |  | 
|  | /// BaseRegs - The list of "base" registers for this use. When this is | 
|  | /// non-empty, AM.HasBaseReg should be set to true. | 
|  | SmallVector<const SCEV *, 2> BaseRegs; | 
|  |  | 
|  | /// ScaledReg - The 'scaled' register for this use. This should be non-null | 
|  | /// when AM.Scale is not zero. | 
|  | const SCEV *ScaledReg; | 
|  |  | 
|  | /// UnfoldedOffset - An additional constant offset which added near the | 
|  | /// use. This requires a temporary register, but the offset itself can | 
|  | /// live in an add immediate field rather than a register. | 
|  | int64_t UnfoldedOffset; | 
|  |  | 
|  | Formula() : ScaledReg(0), UnfoldedOffset(0) {} | 
|  |  | 
|  | void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); | 
|  |  | 
|  | unsigned getNumRegs() const; | 
|  | Type *getType() const; | 
|  |  | 
|  | void DeleteBaseReg(const SCEV *&S); | 
|  |  | 
|  | bool referencesReg(const SCEV *S) const; | 
|  | bool hasRegsUsedByUsesOtherThan(size_t LUIdx, | 
|  | const RegUseTracker &RegUses) const; | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// DoInitialMatch - Recursion helper for InitialMatch. | 
|  | static void DoInitialMatch(const SCEV *S, Loop *L, | 
|  | SmallVectorImpl<const SCEV *> &Good, | 
|  | SmallVectorImpl<const SCEV *> &Bad, | 
|  | ScalarEvolution &SE) { | 
|  | // Collect expressions which properly dominate the loop header. | 
|  | if (SE.properlyDominates(S, L->getHeader())) { | 
|  | Good.push_back(S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look at add operands. | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); | 
|  | I != E; ++I) | 
|  | DoInitialMatch(*I, L, Good, Bad, SE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look at addrec operands. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) | 
|  | if (!AR->getStart()->isZero()) { | 
|  | DoInitialMatch(AR->getStart(), L, Good, Bad, SE); | 
|  | DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), | 
|  | AR->getStepRecurrence(SE), | 
|  | // FIXME: AR->getNoWrapFlags() | 
|  | AR->getLoop(), SCEV::FlagAnyWrap), | 
|  | L, Good, Bad, SE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a multiplication by -1 (negation) if it didn't fold. | 
|  | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) | 
|  | if (Mul->getOperand(0)->isAllOnesValue()) { | 
|  | SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); | 
|  | const SCEV *NewMul = SE.getMulExpr(Ops); | 
|  |  | 
|  | SmallVector<const SCEV *, 4> MyGood; | 
|  | SmallVector<const SCEV *, 4> MyBad; | 
|  | DoInitialMatch(NewMul, L, MyGood, MyBad, SE); | 
|  | const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( | 
|  | SE.getEffectiveSCEVType(NewMul->getType()))); | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), | 
|  | E = MyGood.end(); I != E; ++I) | 
|  | Good.push_back(SE.getMulExpr(NegOne, *I)); | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), | 
|  | E = MyBad.end(); I != E; ++I) | 
|  | Bad.push_back(SE.getMulExpr(NegOne, *I)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ok, we can't do anything interesting. Just stuff the whole thing into a | 
|  | // register and hope for the best. | 
|  | Bad.push_back(S); | 
|  | } | 
|  |  | 
|  | /// InitialMatch - Incorporate loop-variant parts of S into this Formula, | 
|  | /// attempting to keep all loop-invariant and loop-computable values in a | 
|  | /// single base register. | 
|  | void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { | 
|  | SmallVector<const SCEV *, 4> Good; | 
|  | SmallVector<const SCEV *, 4> Bad; | 
|  | DoInitialMatch(S, L, Good, Bad, SE); | 
|  | if (!Good.empty()) { | 
|  | const SCEV *Sum = SE.getAddExpr(Good); | 
|  | if (!Sum->isZero()) | 
|  | BaseRegs.push_back(Sum); | 
|  | AM.HasBaseReg = true; | 
|  | } | 
|  | if (!Bad.empty()) { | 
|  | const SCEV *Sum = SE.getAddExpr(Bad); | 
|  | if (!Sum->isZero()) | 
|  | BaseRegs.push_back(Sum); | 
|  | AM.HasBaseReg = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getNumRegs - Return the total number of register operands used by this | 
|  | /// formula. This does not include register uses implied by non-constant | 
|  | /// addrec strides. | 
|  | unsigned Formula::getNumRegs() const { | 
|  | return !!ScaledReg + BaseRegs.size(); | 
|  | } | 
|  |  | 
|  | /// getType - Return the type of this formula, if it has one, or null | 
|  | /// otherwise. This type is meaningless except for the bit size. | 
|  | Type *Formula::getType() const { | 
|  | return !BaseRegs.empty() ? BaseRegs.front()->getType() : | 
|  | ScaledReg ? ScaledReg->getType() : | 
|  | AM.BaseGV ? AM.BaseGV->getType() : | 
|  | 0; | 
|  | } | 
|  |  | 
|  | /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. | 
|  | void Formula::DeleteBaseReg(const SCEV *&S) { | 
|  | if (&S != &BaseRegs.back()) | 
|  | std::swap(S, BaseRegs.back()); | 
|  | BaseRegs.pop_back(); | 
|  | } | 
|  |  | 
|  | /// referencesReg - Test if this formula references the given register. | 
|  | bool Formula::referencesReg(const SCEV *S) const { | 
|  | return S == ScaledReg || | 
|  | std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); | 
|  | } | 
|  |  | 
|  | /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers | 
|  | /// which are used by uses other than the use with the given index. | 
|  | bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, | 
|  | const RegUseTracker &RegUses) const { | 
|  | if (ScaledReg) | 
|  | if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) | 
|  | return true; | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), | 
|  | E = BaseRegs.end(); I != E; ++I) | 
|  | if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Formula::print(raw_ostream &OS) const { | 
|  | bool First = true; | 
|  | if (AM.BaseGV) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); | 
|  | } | 
|  | if (AM.BaseOffs != 0) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << AM.BaseOffs; | 
|  | } | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), | 
|  | E = BaseRegs.end(); I != E; ++I) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "reg(" << **I << ')'; | 
|  | } | 
|  | if (AM.HasBaseReg && BaseRegs.empty()) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "**error: HasBaseReg**"; | 
|  | } else if (!AM.HasBaseReg && !BaseRegs.empty()) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "**error: !HasBaseReg**"; | 
|  | } | 
|  | if (AM.Scale != 0) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << AM.Scale << "*reg("; | 
|  | if (ScaledReg) | 
|  | OS << *ScaledReg; | 
|  | else | 
|  | OS << "<unknown>"; | 
|  | OS << ')'; | 
|  | } | 
|  | if (UnfoldedOffset != 0) { | 
|  | if (!First) OS << " + "; else First = false; | 
|  | OS << "imm(" << UnfoldedOffset << ')'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Formula::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | /// isAddRecSExtable - Return true if the given addrec can be sign-extended | 
|  | /// without changing its value. | 
|  | static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { | 
|  | Type *WideTy = | 
|  | IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); | 
|  | return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); | 
|  | } | 
|  |  | 
|  | /// isAddSExtable - Return true if the given add can be sign-extended | 
|  | /// without changing its value. | 
|  | static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { | 
|  | Type *WideTy = | 
|  | IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); | 
|  | return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); | 
|  | } | 
|  |  | 
|  | /// isMulSExtable - Return true if the given mul can be sign-extended | 
|  | /// without changing its value. | 
|  | static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { | 
|  | Type *WideTy = | 
|  | IntegerType::get(SE.getContext(), | 
|  | SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); | 
|  | return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); | 
|  | } | 
|  |  | 
|  | /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined | 
|  | /// and if the remainder is known to be zero,  or null otherwise. If | 
|  | /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified | 
|  | /// to Y, ignoring that the multiplication may overflow, which is useful when | 
|  | /// the result will be used in a context where the most significant bits are | 
|  | /// ignored. | 
|  | static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, | 
|  | ScalarEvolution &SE, | 
|  | bool IgnoreSignificantBits = false) { | 
|  | // Handle the trivial case, which works for any SCEV type. | 
|  | if (LHS == RHS) | 
|  | return SE.getConstant(LHS->getType(), 1); | 
|  |  | 
|  | // Handle a few RHS special cases. | 
|  | const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); | 
|  | if (RC) { | 
|  | const APInt &RA = RC->getValue()->getValue(); | 
|  | // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do | 
|  | // some folding. | 
|  | if (RA.isAllOnesValue()) | 
|  | return SE.getMulExpr(LHS, RC); | 
|  | // Handle x /s 1 as x. | 
|  | if (RA == 1) | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | // Check for a division of a constant by a constant. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { | 
|  | if (!RC) | 
|  | return 0; | 
|  | const APInt &LA = C->getValue()->getValue(); | 
|  | const APInt &RA = RC->getValue()->getValue(); | 
|  | if (LA.srem(RA) != 0) | 
|  | return 0; | 
|  | return SE.getConstant(LA.sdiv(RA)); | 
|  | } | 
|  |  | 
|  | // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { | 
|  | if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { | 
|  | const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, | 
|  | IgnoreSignificantBits); | 
|  | if (!Step) return 0; | 
|  | const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, | 
|  | IgnoreSignificantBits); | 
|  | if (!Start) return 0; | 
|  | // FlagNW is independent of the start value, step direction, and is | 
|  | // preserved with smaller magnitude steps. | 
|  | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Distribute the sdiv over add operands, if the add doesn't overflow. | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { | 
|  | if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { | 
|  | SmallVector<const SCEV *, 8> Ops; | 
|  | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); | 
|  | I != E; ++I) { | 
|  | const SCEV *Op = getExactSDiv(*I, RHS, SE, | 
|  | IgnoreSignificantBits); | 
|  | if (!Op) return 0; | 
|  | Ops.push_back(Op); | 
|  | } | 
|  | return SE.getAddExpr(Ops); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Check for a multiply operand that we can pull RHS out of. | 
|  | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { | 
|  | if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | bool Found = false; | 
|  | for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); | 
|  | I != E; ++I) { | 
|  | const SCEV *S = *I; | 
|  | if (!Found) | 
|  | if (const SCEV *Q = getExactSDiv(S, RHS, SE, | 
|  | IgnoreSignificantBits)) { | 
|  | S = Q; | 
|  | Found = true; | 
|  | } | 
|  | Ops.push_back(S); | 
|  | } | 
|  | return Found ? SE.getMulExpr(Ops) : 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Otherwise we don't know. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// ExtractImmediate - If S involves the addition of a constant integer value, | 
|  | /// return that integer value, and mutate S to point to a new SCEV with that | 
|  | /// value excluded. | 
|  | static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { | 
|  | if (C->getValue()->getValue().getMinSignedBits() <= 64) { | 
|  | S = SE.getConstant(C->getType(), 0); | 
|  | return C->getValue()->getSExtValue(); | 
|  | } | 
|  | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); | 
|  | int64_t Result = ExtractImmediate(NewOps.front(), SE); | 
|  | if (Result != 0) | 
|  | S = SE.getAddExpr(NewOps); | 
|  | return Result; | 
|  | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); | 
|  | int64_t Result = ExtractImmediate(NewOps.front(), SE); | 
|  | if (Result != 0) | 
|  | S = SE.getAddRecExpr(NewOps, AR->getLoop(), | 
|  | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | SCEV::FlagAnyWrap); | 
|  | return Result; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// ExtractSymbol - If S involves the addition of a GlobalValue address, | 
|  | /// return that symbol, and mutate S to point to a new SCEV with that | 
|  | /// value excluded. | 
|  | static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { | 
|  | S = SE.getConstant(GV->getType(), 0); | 
|  | return GV; | 
|  | } | 
|  | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); | 
|  | GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); | 
|  | if (Result) | 
|  | S = SE.getAddExpr(NewOps); | 
|  | return Result; | 
|  | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); | 
|  | GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); | 
|  | if (Result) | 
|  | S = SE.getAddRecExpr(NewOps, AR->getLoop(), | 
|  | // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | SCEV::FlagAnyWrap); | 
|  | return Result; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// isAddressUse - Returns true if the specified instruction is using the | 
|  | /// specified value as an address. | 
|  | static bool isAddressUse(Instruction *Inst, Value *OperandVal) { | 
|  | bool isAddress = isa<LoadInst>(Inst); | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | if (SI->getOperand(1) == OperandVal) | 
|  | isAddress = true; | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { | 
|  | // Addressing modes can also be folded into prefetches and a variety | 
|  | // of intrinsics. | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::prefetch: | 
|  | case Intrinsic::x86_sse_storeu_ps: | 
|  | case Intrinsic::x86_sse2_storeu_pd: | 
|  | case Intrinsic::x86_sse2_storeu_dq: | 
|  | case Intrinsic::x86_sse2_storel_dq: | 
|  | if (II->getArgOperand(0) == OperandVal) | 
|  | isAddress = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return isAddress; | 
|  | } | 
|  |  | 
|  | /// getAccessType - Return the type of the memory being accessed. | 
|  | static Type *getAccessType(const Instruction *Inst) { | 
|  | Type *AccessTy = Inst->getType(); | 
|  | if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) | 
|  | AccessTy = SI->getOperand(0)->getType(); | 
|  | else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { | 
|  | // Addressing modes can also be folded into prefetches and a variety | 
|  | // of intrinsics. | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::x86_sse_storeu_ps: | 
|  | case Intrinsic::x86_sse2_storeu_pd: | 
|  | case Intrinsic::x86_sse2_storeu_dq: | 
|  | case Intrinsic::x86_sse2_storel_dq: | 
|  | AccessTy = II->getArgOperand(0)->getType(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All pointers have the same requirements, so canonicalize them to an | 
|  | // arbitrary pointer type to minimize variation. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) | 
|  | AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), | 
|  | PTy->getAddressSpace()); | 
|  |  | 
|  | return AccessTy; | 
|  | } | 
|  |  | 
|  | /// DeleteTriviallyDeadInstructions - If any of the instructions is the | 
|  | /// specified set are trivially dead, delete them and see if this makes any of | 
|  | /// their operands subsequently dead. | 
|  | static bool | 
|  | DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { | 
|  | bool Changed = false; | 
|  |  | 
|  | while (!DeadInsts.empty()) { | 
|  | Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); | 
|  |  | 
|  | if (I == 0 || !isInstructionTriviallyDead(I)) | 
|  | continue; | 
|  |  | 
|  | for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) | 
|  | if (Instruction *U = dyn_cast<Instruction>(*OI)) { | 
|  | *OI = 0; | 
|  | if (U->use_empty()) | 
|  | DeadInsts.push_back(U); | 
|  | } | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Cost - This class is used to measure and compare candidate formulae. | 
|  | class Cost { | 
|  | /// TODO: Some of these could be merged. Also, a lexical ordering | 
|  | /// isn't always optimal. | 
|  | unsigned NumRegs; | 
|  | unsigned AddRecCost; | 
|  | unsigned NumIVMuls; | 
|  | unsigned NumBaseAdds; | 
|  | unsigned ImmCost; | 
|  | unsigned SetupCost; | 
|  |  | 
|  | public: | 
|  | Cost() | 
|  | : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), | 
|  | SetupCost(0) {} | 
|  |  | 
|  | bool operator<(const Cost &Other) const; | 
|  |  | 
|  | void Loose(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Once any of the metrics loses, they must all remain losers. | 
|  | bool isValid() { | 
|  | return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds | 
|  | | ImmCost | SetupCost) != ~0u) | 
|  | || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds | 
|  | & ImmCost & SetupCost) == ~0u); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool isLoser() { | 
|  | assert(isValid() && "invalid cost"); | 
|  | return NumRegs == ~0u; | 
|  | } | 
|  |  | 
|  | void RateFormula(const Formula &F, | 
|  | SmallPtrSet<const SCEV *, 16> &Regs, | 
|  | const DenseSet<const SCEV *> &VisitedRegs, | 
|  | const Loop *L, | 
|  | const SmallVectorImpl<int64_t> &Offsets, | 
|  | ScalarEvolution &SE, DominatorTree &DT); | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  |  | 
|  | private: | 
|  | void RateRegister(const SCEV *Reg, | 
|  | SmallPtrSet<const SCEV *, 16> &Regs, | 
|  | const Loop *L, | 
|  | ScalarEvolution &SE, DominatorTree &DT); | 
|  | void RatePrimaryRegister(const SCEV *Reg, | 
|  | SmallPtrSet<const SCEV *, 16> &Regs, | 
|  | const Loop *L, | 
|  | ScalarEvolution &SE, DominatorTree &DT); | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// RateRegister - Tally up interesting quantities from the given register. | 
|  | void Cost::RateRegister(const SCEV *Reg, | 
|  | SmallPtrSet<const SCEV *, 16> &Regs, | 
|  | const Loop *L, | 
|  | ScalarEvolution &SE, DominatorTree &DT) { | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { | 
|  | if (AR->getLoop() == L) | 
|  | AddRecCost += 1; /// TODO: This should be a function of the stride. | 
|  |  | 
|  | // If this is an addrec for another loop, don't second-guess its addrec phi | 
|  | // nodes. LSR isn't currently smart enough to reason about more than one | 
|  | // loop at a time. LSR has either already run on inner loops, will not run | 
|  | // on other loops, and cannot be expected to change sibling loops. If the | 
|  | // AddRec exists, consider it's register free and leave it alone. Otherwise, | 
|  | // do not consider this formula at all. | 
|  | // FIXME: why do we need to generate such fomulae? | 
|  | else if (!EnableNested || L->contains(AR->getLoop()) || | 
|  | (!AR->getLoop()->contains(L) && | 
|  | DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { | 
|  | for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
|  | if (SE.isSCEVable(PN->getType()) && | 
|  | (SE.getEffectiveSCEVType(PN->getType()) == | 
|  | SE.getEffectiveSCEVType(AR->getType())) && | 
|  | SE.getSCEV(PN) == AR) | 
|  | return; | 
|  | } | 
|  | if (!EnableNested) { | 
|  | Loose(); | 
|  | return; | 
|  | } | 
|  | // If this isn't one of the addrecs that the loop already has, it | 
|  | // would require a costly new phi and add. TODO: This isn't | 
|  | // precisely modeled right now. | 
|  | ++NumBaseAdds; | 
|  | if (!Regs.count(AR->getStart())) { | 
|  | RateRegister(AR->getStart(), Regs, L, SE, DT); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the step value register, if it needs one. | 
|  | // TODO: The non-affine case isn't precisely modeled here. | 
|  | if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { | 
|  | if (!Regs.count(AR->getOperand(1))) { | 
|  | RateRegister(AR->getOperand(1), Regs, L, SE, DT); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | ++NumRegs; | 
|  |  | 
|  | // Rough heuristic; favor registers which don't require extra setup | 
|  | // instructions in the preheader. | 
|  | if (!isa<SCEVUnknown>(Reg) && | 
|  | !isa<SCEVConstant>(Reg) && | 
|  | !(isa<SCEVAddRecExpr>(Reg) && | 
|  | (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || | 
|  | isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) | 
|  | ++SetupCost; | 
|  |  | 
|  | NumIVMuls += isa<SCEVMulExpr>(Reg) && | 
|  | SE.hasComputableLoopEvolution(Reg, L); | 
|  | } | 
|  |  | 
|  | /// RatePrimaryRegister - Record this register in the set. If we haven't seen it | 
|  | /// before, rate it. | 
|  | void Cost::RatePrimaryRegister(const SCEV *Reg, | 
|  | SmallPtrSet<const SCEV *, 16> &Regs, | 
|  | const Loop *L, | 
|  | ScalarEvolution &SE, DominatorTree &DT) { | 
|  | if (Regs.insert(Reg)) | 
|  | RateRegister(Reg, Regs, L, SE, DT); | 
|  | } | 
|  |  | 
|  | void Cost::RateFormula(const Formula &F, | 
|  | SmallPtrSet<const SCEV *, 16> &Regs, | 
|  | const DenseSet<const SCEV *> &VisitedRegs, | 
|  | const Loop *L, | 
|  | const SmallVectorImpl<int64_t> &Offsets, | 
|  | ScalarEvolution &SE, DominatorTree &DT) { | 
|  | // Tally up the registers. | 
|  | if (const SCEV *ScaledReg = F.ScaledReg) { | 
|  | if (VisitedRegs.count(ScaledReg)) { | 
|  | Loose(); | 
|  | return; | 
|  | } | 
|  | RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), | 
|  | E = F.BaseRegs.end(); I != E; ++I) { | 
|  | const SCEV *BaseReg = *I; | 
|  | if (VisitedRegs.count(BaseReg)) { | 
|  | Loose(); | 
|  | return; | 
|  | } | 
|  | RatePrimaryRegister(BaseReg, Regs, L, SE, DT); | 
|  | if (isLoser()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine how many (unfolded) adds we'll need inside the loop. | 
|  | size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); | 
|  | if (NumBaseParts > 1) | 
|  | NumBaseAdds += NumBaseParts - 1; | 
|  |  | 
|  | // Tally up the non-zero immediates. | 
|  | for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), | 
|  | E = Offsets.end(); I != E; ++I) { | 
|  | int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; | 
|  | if (F.AM.BaseGV) | 
|  | ImmCost += 64; // Handle symbolic values conservatively. | 
|  | // TODO: This should probably be the pointer size. | 
|  | else if (Offset != 0) | 
|  | ImmCost += APInt(64, Offset, true).getMinSignedBits(); | 
|  | } | 
|  | assert(isValid() && "invalid cost"); | 
|  | } | 
|  |  | 
|  | /// Loose - Set this cost to a losing value. | 
|  | void Cost::Loose() { | 
|  | NumRegs = ~0u; | 
|  | AddRecCost = ~0u; | 
|  | NumIVMuls = ~0u; | 
|  | NumBaseAdds = ~0u; | 
|  | ImmCost = ~0u; | 
|  | SetupCost = ~0u; | 
|  | } | 
|  |  | 
|  | /// operator< - Choose the lower cost. | 
|  | bool Cost::operator<(const Cost &Other) const { | 
|  | if (NumRegs != Other.NumRegs) | 
|  | return NumRegs < Other.NumRegs; | 
|  | if (AddRecCost != Other.AddRecCost) | 
|  | return AddRecCost < Other.AddRecCost; | 
|  | if (NumIVMuls != Other.NumIVMuls) | 
|  | return NumIVMuls < Other.NumIVMuls; | 
|  | if (NumBaseAdds != Other.NumBaseAdds) | 
|  | return NumBaseAdds < Other.NumBaseAdds; | 
|  | if (ImmCost != Other.ImmCost) | 
|  | return ImmCost < Other.ImmCost; | 
|  | if (SetupCost != Other.SetupCost) | 
|  | return SetupCost < Other.SetupCost; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Cost::print(raw_ostream &OS) const { | 
|  | OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); | 
|  | if (AddRecCost != 0) | 
|  | OS << ", with addrec cost " << AddRecCost; | 
|  | if (NumIVMuls != 0) | 
|  | OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); | 
|  | if (NumBaseAdds != 0) | 
|  | OS << ", plus " << NumBaseAdds << " base add" | 
|  | << (NumBaseAdds == 1 ? "" : "s"); | 
|  | if (ImmCost != 0) | 
|  | OS << ", plus " << ImmCost << " imm cost"; | 
|  | if (SetupCost != 0) | 
|  | OS << ", plus " << SetupCost << " setup cost"; | 
|  | } | 
|  |  | 
|  | void Cost::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// LSRFixup - An operand value in an instruction which is to be replaced | 
|  | /// with some equivalent, possibly strength-reduced, replacement. | 
|  | struct LSRFixup { | 
|  | /// UserInst - The instruction which will be updated. | 
|  | Instruction *UserInst; | 
|  |  | 
|  | /// OperandValToReplace - The operand of the instruction which will | 
|  | /// be replaced. The operand may be used more than once; every instance | 
|  | /// will be replaced. | 
|  | Value *OperandValToReplace; | 
|  |  | 
|  | /// PostIncLoops - If this user is to use the post-incremented value of an | 
|  | /// induction variable, this variable is non-null and holds the loop | 
|  | /// associated with the induction variable. | 
|  | PostIncLoopSet PostIncLoops; | 
|  |  | 
|  | /// LUIdx - The index of the LSRUse describing the expression which | 
|  | /// this fixup needs, minus an offset (below). | 
|  | size_t LUIdx; | 
|  |  | 
|  | /// Offset - A constant offset to be added to the LSRUse expression. | 
|  | /// This allows multiple fixups to share the same LSRUse with different | 
|  | /// offsets, for example in an unrolled loop. | 
|  | int64_t Offset; | 
|  |  | 
|  | bool isUseFullyOutsideLoop(const Loop *L) const; | 
|  |  | 
|  | LSRFixup(); | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | LSRFixup::LSRFixup() | 
|  | : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} | 
|  |  | 
|  | /// isUseFullyOutsideLoop - Test whether this fixup always uses its | 
|  | /// value outside of the given loop. | 
|  | bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { | 
|  | // PHI nodes use their value in their incoming blocks. | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == OperandValToReplace && | 
|  | L->contains(PN->getIncomingBlock(i))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return !L->contains(UserInst); | 
|  | } | 
|  |  | 
|  | void LSRFixup::print(raw_ostream &OS) const { | 
|  | OS << "UserInst="; | 
|  | // Store is common and interesting enough to be worth special-casing. | 
|  | if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { | 
|  | OS << "store "; | 
|  | WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); | 
|  | } else if (UserInst->getType()->isVoidTy()) | 
|  | OS << UserInst->getOpcodeName(); | 
|  | else | 
|  | WriteAsOperand(OS, UserInst, /*PrintType=*/false); | 
|  |  | 
|  | OS << ", OperandValToReplace="; | 
|  | WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); | 
|  |  | 
|  | for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), | 
|  | E = PostIncLoops.end(); I != E; ++I) { | 
|  | OS << ", PostIncLoop="; | 
|  | WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); | 
|  | } | 
|  |  | 
|  | if (LUIdx != ~size_t(0)) | 
|  | OS << ", LUIdx=" << LUIdx; | 
|  |  | 
|  | if (Offset != 0) | 
|  | OS << ", Offset=" << Offset; | 
|  | } | 
|  |  | 
|  | void LSRFixup::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding | 
|  | /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. | 
|  | struct UniquifierDenseMapInfo { | 
|  | static SmallVector<const SCEV *, 2> getEmptyKey() { | 
|  | SmallVector<const SCEV *, 2> V; | 
|  | V.push_back(reinterpret_cast<const SCEV *>(-1)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | static SmallVector<const SCEV *, 2> getTombstoneKey() { | 
|  | SmallVector<const SCEV *, 2> V; | 
|  | V.push_back(reinterpret_cast<const SCEV *>(-2)); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { | 
|  | unsigned Result = 0; | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), | 
|  | E = V.end(); I != E; ++I) | 
|  | Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, | 
|  | const SmallVector<const SCEV *, 2> &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// LSRUse - This class holds the state that LSR keeps for each use in | 
|  | /// IVUsers, as well as uses invented by LSR itself. It includes information | 
|  | /// about what kinds of things can be folded into the user, information about | 
|  | /// the user itself, and information about how the use may be satisfied. | 
|  | /// TODO: Represent multiple users of the same expression in common? | 
|  | class LSRUse { | 
|  | DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; | 
|  |  | 
|  | public: | 
|  | /// KindType - An enum for a kind of use, indicating what types of | 
|  | /// scaled and immediate operands it might support. | 
|  | enum KindType { | 
|  | Basic,   ///< A normal use, with no folding. | 
|  | Special, ///< A special case of basic, allowing -1 scales. | 
|  | Address, ///< An address use; folding according to TargetLowering | 
|  | ICmpZero ///< An equality icmp with both operands folded into one. | 
|  | // TODO: Add a generic icmp too? | 
|  | }; | 
|  |  | 
|  | KindType Kind; | 
|  | Type *AccessTy; | 
|  |  | 
|  | SmallVector<int64_t, 8> Offsets; | 
|  | int64_t MinOffset; | 
|  | int64_t MaxOffset; | 
|  |  | 
|  | /// AllFixupsOutsideLoop - This records whether all of the fixups using this | 
|  | /// LSRUse are outside of the loop, in which case some special-case heuristics | 
|  | /// may be used. | 
|  | bool AllFixupsOutsideLoop; | 
|  |  | 
|  | /// WidestFixupType - This records the widest use type for any fixup using | 
|  | /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different | 
|  | /// max fixup widths to be equivalent, because the narrower one may be relying | 
|  | /// on the implicit truncation to truncate away bogus bits. | 
|  | Type *WidestFixupType; | 
|  |  | 
|  | /// Formulae - A list of ways to build a value that can satisfy this user. | 
|  | /// After the list is populated, one of these is selected heuristically and | 
|  | /// used to formulate a replacement for OperandValToReplace in UserInst. | 
|  | SmallVector<Formula, 12> Formulae; | 
|  |  | 
|  | /// Regs - The set of register candidates used by all formulae in this LSRUse. | 
|  | SmallPtrSet<const SCEV *, 4> Regs; | 
|  |  | 
|  | LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), | 
|  | MinOffset(INT64_MAX), | 
|  | MaxOffset(INT64_MIN), | 
|  | AllFixupsOutsideLoop(true), | 
|  | WidestFixupType(0) {} | 
|  |  | 
|  | bool HasFormulaWithSameRegs(const Formula &F) const; | 
|  | bool InsertFormula(const Formula &F); | 
|  | void DeleteFormula(Formula &F); | 
|  | void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// HasFormula - Test whether this use as a formula which has the same | 
|  | /// registers as the given formula. | 
|  | bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { | 
|  | SmallVector<const SCEV *, 2> Key = F.BaseRegs; | 
|  | if (F.ScaledReg) Key.push_back(F.ScaledReg); | 
|  | // Unstable sort by host order ok, because this is only used for uniquifying. | 
|  | std::sort(Key.begin(), Key.end()); | 
|  | return Uniquifier.count(Key); | 
|  | } | 
|  |  | 
|  | /// InsertFormula - If the given formula has not yet been inserted, add it to | 
|  | /// the list, and return true. Return false otherwise. | 
|  | bool LSRUse::InsertFormula(const Formula &F) { | 
|  | SmallVector<const SCEV *, 2> Key = F.BaseRegs; | 
|  | if (F.ScaledReg) Key.push_back(F.ScaledReg); | 
|  | // Unstable sort by host order ok, because this is only used for uniquifying. | 
|  | std::sort(Key.begin(), Key.end()); | 
|  |  | 
|  | if (!Uniquifier.insert(Key).second) | 
|  | return false; | 
|  |  | 
|  | // Using a register to hold the value of 0 is not profitable. | 
|  | assert((!F.ScaledReg || !F.ScaledReg->isZero()) && | 
|  | "Zero allocated in a scaled register!"); | 
|  | #ifndef NDEBUG | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = | 
|  | F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) | 
|  | assert(!(*I)->isZero() && "Zero allocated in a base register!"); | 
|  | #endif | 
|  |  | 
|  | // Add the formula to the list. | 
|  | Formulae.push_back(F); | 
|  |  | 
|  | // Record registers now being used by this use. | 
|  | if (F.ScaledReg) Regs.insert(F.ScaledReg); | 
|  | Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// DeleteFormula - Remove the given formula from this use's list. | 
|  | void LSRUse::DeleteFormula(Formula &F) { | 
|  | if (&F != &Formulae.back()) | 
|  | std::swap(F, Formulae.back()); | 
|  | Formulae.pop_back(); | 
|  | assert(!Formulae.empty() && "LSRUse has no formulae left!"); | 
|  | } | 
|  |  | 
|  | /// RecomputeRegs - Recompute the Regs field, and update RegUses. | 
|  | void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { | 
|  | // Now that we've filtered out some formulae, recompute the Regs set. | 
|  | SmallPtrSet<const SCEV *, 4> OldRegs = Regs; | 
|  | Regs.clear(); | 
|  | for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), | 
|  | E = Formulae.end(); I != E; ++I) { | 
|  | const Formula &F = *I; | 
|  | if (F.ScaledReg) Regs.insert(F.ScaledReg); | 
|  | Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); | 
|  | } | 
|  |  | 
|  | // Update the RegTracker. | 
|  | for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), | 
|  | E = OldRegs.end(); I != E; ++I) | 
|  | if (!Regs.count(*I)) | 
|  | RegUses.DropRegister(*I, LUIdx); | 
|  | } | 
|  |  | 
|  | void LSRUse::print(raw_ostream &OS) const { | 
|  | OS << "LSR Use: Kind="; | 
|  | switch (Kind) { | 
|  | case Basic:    OS << "Basic"; break; | 
|  | case Special:  OS << "Special"; break; | 
|  | case ICmpZero: OS << "ICmpZero"; break; | 
|  | case Address: | 
|  | OS << "Address of "; | 
|  | if (AccessTy->isPointerTy()) | 
|  | OS << "pointer"; // the full pointer type could be really verbose | 
|  | else | 
|  | OS << *AccessTy; | 
|  | } | 
|  |  | 
|  | OS << ", Offsets={"; | 
|  | for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), | 
|  | E = Offsets.end(); I != E; ++I) { | 
|  | OS << *I; | 
|  | if (llvm::next(I) != E) | 
|  | OS << ','; | 
|  | } | 
|  | OS << '}'; | 
|  |  | 
|  | if (AllFixupsOutsideLoop) | 
|  | OS << ", all-fixups-outside-loop"; | 
|  |  | 
|  | if (WidestFixupType) | 
|  | OS << ", widest fixup type: " << *WidestFixupType; | 
|  | } | 
|  |  | 
|  | void LSRUse::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | /// isLegalUse - Test whether the use described by AM is "legal", meaning it can | 
|  | /// be completely folded into the user instruction at isel time. This includes | 
|  | /// address-mode folding and special icmp tricks. | 
|  | static bool isLegalUse(const TargetLowering::AddrMode &AM, | 
|  | LSRUse::KindType Kind, Type *AccessTy, | 
|  | const TargetLowering *TLI) { | 
|  | switch (Kind) { | 
|  | case LSRUse::Address: | 
|  | // If we have low-level target information, ask the target if it can | 
|  | // completely fold this address. | 
|  | if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); | 
|  |  | 
|  | // Otherwise, just guess that reg+reg addressing is legal. | 
|  | return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; | 
|  |  | 
|  | case LSRUse::ICmpZero: | 
|  | // There's not even a target hook for querying whether it would be legal to | 
|  | // fold a GV into an ICmp. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // ICmp only has two operands; don't allow more than two non-trivial parts. | 
|  | if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) | 
|  | return false; | 
|  |  | 
|  | // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by | 
|  | // putting the scaled register in the other operand of the icmp. | 
|  | if (AM.Scale != 0 && AM.Scale != -1) | 
|  | return false; | 
|  |  | 
|  | // If we have low-level target information, ask the target if it can fold an | 
|  | // integer immediate on an icmp. | 
|  | if (AM.BaseOffs != 0) { | 
|  | if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | case LSRUse::Basic: | 
|  | // Only handle single-register values. | 
|  | return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; | 
|  |  | 
|  | case LSRUse::Special: | 
|  | // Only handle -1 scales, or no scale. | 
|  | return AM.Scale == 0 || AM.Scale == -1; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isLegalUse(TargetLowering::AddrMode AM, | 
|  | int64_t MinOffset, int64_t MaxOffset, | 
|  | LSRUse::KindType Kind, Type *AccessTy, | 
|  | const TargetLowering *TLI) { | 
|  | // Check for overflow. | 
|  | if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != | 
|  | (MinOffset > 0)) | 
|  | return false; | 
|  | AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; | 
|  | if (isLegalUse(AM, Kind, AccessTy, TLI)) { | 
|  | AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; | 
|  | // Check for overflow. | 
|  | if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != | 
|  | (MaxOffset > 0)) | 
|  | return false; | 
|  | AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; | 
|  | return isLegalUse(AM, Kind, AccessTy, TLI); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isAlwaysFoldable(int64_t BaseOffs, | 
|  | GlobalValue *BaseGV, | 
|  | bool HasBaseReg, | 
|  | LSRUse::KindType Kind, Type *AccessTy, | 
|  | const TargetLowering *TLI) { | 
|  | // Fast-path: zero is always foldable. | 
|  | if (BaseOffs == 0 && !BaseGV) return true; | 
|  |  | 
|  | // Conservatively, create an address with an immediate and a | 
|  | // base and a scale. | 
|  | TargetLowering::AddrMode AM; | 
|  | AM.BaseOffs = BaseOffs; | 
|  | AM.BaseGV = BaseGV; | 
|  | AM.HasBaseReg = HasBaseReg; | 
|  | AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; | 
|  |  | 
|  | // Canonicalize a scale of 1 to a base register if the formula doesn't | 
|  | // already have a base register. | 
|  | if (!AM.HasBaseReg && AM.Scale == 1) { | 
|  | AM.Scale = 0; | 
|  | AM.HasBaseReg = true; | 
|  | } | 
|  |  | 
|  | return isLegalUse(AM, Kind, AccessTy, TLI); | 
|  | } | 
|  |  | 
|  | static bool isAlwaysFoldable(const SCEV *S, | 
|  | int64_t MinOffset, int64_t MaxOffset, | 
|  | bool HasBaseReg, | 
|  | LSRUse::KindType Kind, Type *AccessTy, | 
|  | const TargetLowering *TLI, | 
|  | ScalarEvolution &SE) { | 
|  | // Fast-path: zero is always foldable. | 
|  | if (S->isZero()) return true; | 
|  |  | 
|  | // Conservatively, create an address with an immediate and a | 
|  | // base and a scale. | 
|  | int64_t BaseOffs = ExtractImmediate(S, SE); | 
|  | GlobalValue *BaseGV = ExtractSymbol(S, SE); | 
|  |  | 
|  | // If there's anything else involved, it's not foldable. | 
|  | if (!S->isZero()) return false; | 
|  |  | 
|  | // Fast-path: zero is always foldable. | 
|  | if (BaseOffs == 0 && !BaseGV) return true; | 
|  |  | 
|  | // Conservatively, create an address with an immediate and a | 
|  | // base and a scale. | 
|  | TargetLowering::AddrMode AM; | 
|  | AM.BaseOffs = BaseOffs; | 
|  | AM.BaseGV = BaseGV; | 
|  | AM.HasBaseReg = HasBaseReg; | 
|  | AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; | 
|  |  | 
|  | return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding | 
|  | /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. | 
|  | struct UseMapDenseMapInfo { | 
|  | static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { | 
|  | return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); | 
|  | } | 
|  |  | 
|  | static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { | 
|  | return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); | 
|  | } | 
|  |  | 
|  | static unsigned | 
|  | getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { | 
|  | unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); | 
|  | Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, | 
|  | const std::pair<const SCEV *, LSRUse::KindType> &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// LSRInstance - This class holds state for the main loop strength reduction | 
|  | /// logic. | 
|  | class LSRInstance { | 
|  | IVUsers &IU; | 
|  | ScalarEvolution &SE; | 
|  | DominatorTree &DT; | 
|  | LoopInfo &LI; | 
|  | const TargetLowering *const TLI; | 
|  | Loop *const L; | 
|  | bool Changed; | 
|  |  | 
|  | /// IVIncInsertPos - This is the insert position that the current loop's | 
|  | /// induction variable increment should be placed. In simple loops, this is | 
|  | /// the latch block's terminator. But in more complicated cases, this is a | 
|  | /// position which will dominate all the in-loop post-increment users. | 
|  | Instruction *IVIncInsertPos; | 
|  |  | 
|  | /// Factors - Interesting factors between use strides. | 
|  | SmallSetVector<int64_t, 8> Factors; | 
|  |  | 
|  | /// Types - Interesting use types, to facilitate truncation reuse. | 
|  | SmallSetVector<Type *, 4> Types; | 
|  |  | 
|  | /// Fixups - The list of operands which are to be replaced. | 
|  | SmallVector<LSRFixup, 16> Fixups; | 
|  |  | 
|  | /// Uses - The list of interesting uses. | 
|  | SmallVector<LSRUse, 16> Uses; | 
|  |  | 
|  | /// RegUses - Track which uses use which register candidates. | 
|  | RegUseTracker RegUses; | 
|  |  | 
|  | void OptimizeShadowIV(); | 
|  | bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); | 
|  | ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); | 
|  | void OptimizeLoopTermCond(); | 
|  |  | 
|  | void CollectInterestingTypesAndFactors(); | 
|  | void CollectFixupsAndInitialFormulae(); | 
|  |  | 
|  | LSRFixup &getNewFixup() { | 
|  | Fixups.push_back(LSRFixup()); | 
|  | return Fixups.back(); | 
|  | } | 
|  |  | 
|  | // Support for sharing of LSRUses between LSRFixups. | 
|  | typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, | 
|  | size_t, | 
|  | UseMapDenseMapInfo> UseMapTy; | 
|  | UseMapTy UseMap; | 
|  |  | 
|  | bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, | 
|  | LSRUse::KindType Kind, Type *AccessTy); | 
|  |  | 
|  | std::pair<size_t, int64_t> getUse(const SCEV *&Expr, | 
|  | LSRUse::KindType Kind, | 
|  | Type *AccessTy); | 
|  |  | 
|  | void DeleteUse(LSRUse &LU, size_t LUIdx); | 
|  |  | 
|  | LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); | 
|  |  | 
|  | public: | 
|  | void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); | 
|  | void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); | 
|  | void CountRegisters(const Formula &F, size_t LUIdx); | 
|  | bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); | 
|  |  | 
|  | void CollectLoopInvariantFixupsAndFormulae(); | 
|  |  | 
|  | void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, | 
|  | unsigned Depth = 0); | 
|  | void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); | 
|  | void GenerateCrossUseConstantOffsets(); | 
|  | void GenerateAllReuseFormulae(); | 
|  |  | 
|  | void FilterOutUndesirableDedicatedRegisters(); | 
|  |  | 
|  | size_t EstimateSearchSpaceComplexity() const; | 
|  | void NarrowSearchSpaceByDetectingSupersets(); | 
|  | void NarrowSearchSpaceByCollapsingUnrolledCode(); | 
|  | void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); | 
|  | void NarrowSearchSpaceByPickingWinnerRegs(); | 
|  | void NarrowSearchSpaceUsingHeuristics(); | 
|  |  | 
|  | void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, | 
|  | Cost &SolutionCost, | 
|  | SmallVectorImpl<const Formula *> &Workspace, | 
|  | const Cost &CurCost, | 
|  | const SmallPtrSet<const SCEV *, 16> &CurRegs, | 
|  | DenseSet<const SCEV *> &VisitedRegs) const; | 
|  | void Solve(SmallVectorImpl<const Formula *> &Solution) const; | 
|  |  | 
|  | BasicBlock::iterator | 
|  | HoistInsertPosition(BasicBlock::iterator IP, | 
|  | const SmallVectorImpl<Instruction *> &Inputs) const; | 
|  | BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, | 
|  | const LSRFixup &LF, | 
|  | const LSRUse &LU) const; | 
|  |  | 
|  | Value *Expand(const LSRFixup &LF, | 
|  | const Formula &F, | 
|  | BasicBlock::iterator IP, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakVH> &DeadInsts) const; | 
|  | void RewriteForPHI(PHINode *PN, const LSRFixup &LF, | 
|  | const Formula &F, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakVH> &DeadInsts, | 
|  | Pass *P) const; | 
|  | void Rewrite(const LSRFixup &LF, | 
|  | const Formula &F, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakVH> &DeadInsts, | 
|  | Pass *P) const; | 
|  | void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, | 
|  | Pass *P); | 
|  |  | 
|  | LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); | 
|  |  | 
|  | bool getChanged() const { return Changed; } | 
|  |  | 
|  | void print_factors_and_types(raw_ostream &OS) const; | 
|  | void print_fixups(raw_ostream &OS) const; | 
|  | void print_uses(raw_ostream &OS) const; | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /// OptimizeShadowIV - If IV is used in a int-to-float cast | 
|  | /// inside the loop then try to eliminate the cast operation. | 
|  | void LSRInstance::OptimizeShadowIV() { | 
|  | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) | 
|  | return; | 
|  |  | 
|  | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); | 
|  | UI != E; /* empty */) { | 
|  | IVUsers::const_iterator CandidateUI = UI; | 
|  | ++UI; | 
|  | Instruction *ShadowUse = CandidateUI->getUser(); | 
|  | Type *DestTy = NULL; | 
|  | bool IsSigned = false; | 
|  |  | 
|  | /* If shadow use is a int->float cast then insert a second IV | 
|  | to eliminate this cast. | 
|  |  | 
|  | for (unsigned i = 0; i < n; ++i) | 
|  | foo((double)i); | 
|  |  | 
|  | is transformed into | 
|  |  | 
|  | double d = 0.0; | 
|  | for (unsigned i = 0; i < n; ++i, ++d) | 
|  | foo(d); | 
|  | */ | 
|  | if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { | 
|  | IsSigned = false; | 
|  | DestTy = UCast->getDestTy(); | 
|  | } | 
|  | else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { | 
|  | IsSigned = true; | 
|  | DestTy = SCast->getDestTy(); | 
|  | } | 
|  | if (!DestTy) continue; | 
|  |  | 
|  | if (TLI) { | 
|  | // If target does not support DestTy natively then do not apply | 
|  | // this transformation. | 
|  | EVT DVT = TLI->getValueType(DestTy); | 
|  | if (!TLI->isTypeLegal(DVT)) continue; | 
|  | } | 
|  |  | 
|  | PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); | 
|  | if (!PH) continue; | 
|  | if (PH->getNumIncomingValues() != 2) continue; | 
|  |  | 
|  | Type *SrcTy = PH->getType(); | 
|  | int Mantissa = DestTy->getFPMantissaWidth(); | 
|  | if (Mantissa == -1) continue; | 
|  | if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) | 
|  | continue; | 
|  |  | 
|  | unsigned Entry, Latch; | 
|  | if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { | 
|  | Entry = 0; | 
|  | Latch = 1; | 
|  | } else { | 
|  | Entry = 1; | 
|  | Latch = 0; | 
|  | } | 
|  |  | 
|  | ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); | 
|  | if (!Init) continue; | 
|  | Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? | 
|  | (double)Init->getSExtValue() : | 
|  | (double)Init->getZExtValue()); | 
|  |  | 
|  | BinaryOperator *Incr = | 
|  | dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); | 
|  | if (!Incr) continue; | 
|  | if (Incr->getOpcode() != Instruction::Add | 
|  | && Incr->getOpcode() != Instruction::Sub) | 
|  | continue; | 
|  |  | 
|  | /* Initialize new IV, double d = 0.0 in above example. */ | 
|  | ConstantInt *C = NULL; | 
|  | if (Incr->getOperand(0) == PH) | 
|  | C = dyn_cast<ConstantInt>(Incr->getOperand(1)); | 
|  | else if (Incr->getOperand(1) == PH) | 
|  | C = dyn_cast<ConstantInt>(Incr->getOperand(0)); | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (!C) continue; | 
|  |  | 
|  | // Ignore negative constants, as the code below doesn't handle them | 
|  | // correctly. TODO: Remove this restriction. | 
|  | if (!C->getValue().isStrictlyPositive()) continue; | 
|  |  | 
|  | /* Add new PHINode. */ | 
|  | PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); | 
|  |  | 
|  | /* create new increment. '++d' in above example. */ | 
|  | Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); | 
|  | BinaryOperator *NewIncr = | 
|  | BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? | 
|  | Instruction::FAdd : Instruction::FSub, | 
|  | NewPH, CFP, "IV.S.next.", Incr); | 
|  |  | 
|  | NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); | 
|  | NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); | 
|  |  | 
|  | /* Remove cast operation */ | 
|  | ShadowUse->replaceAllUsesWith(NewPH); | 
|  | ShadowUse->eraseFromParent(); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, | 
|  | /// set the IV user and stride information and return true, otherwise return | 
|  | /// false. | 
|  | bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { | 
|  | for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) | 
|  | if (UI->getUser() == Cond) { | 
|  | // NOTE: we could handle setcc instructions with multiple uses here, but | 
|  | // InstCombine does it as well for simple uses, it's not clear that it | 
|  | // occurs enough in real life to handle. | 
|  | CondUse = UI; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// OptimizeMax - Rewrite the loop's terminating condition if it uses | 
|  | /// a max computation. | 
|  | /// | 
|  | /// This is a narrow solution to a specific, but acute, problem. For loops | 
|  | /// like this: | 
|  | /// | 
|  | ///   i = 0; | 
|  | ///   do { | 
|  | ///     p[i] = 0.0; | 
|  | ///   } while (++i < n); | 
|  | /// | 
|  | /// the trip count isn't just 'n', because 'n' might not be positive. And | 
|  | /// unfortunately this can come up even for loops where the user didn't use | 
|  | /// a C do-while loop. For example, seemingly well-behaved top-test loops | 
|  | /// will commonly be lowered like this: | 
|  | // | 
|  | ///   if (n > 0) { | 
|  | ///     i = 0; | 
|  | ///     do { | 
|  | ///       p[i] = 0.0; | 
|  | ///     } while (++i < n); | 
|  | ///   } | 
|  | /// | 
|  | /// and then it's possible for subsequent optimization to obscure the if | 
|  | /// test in such a way that indvars can't find it. | 
|  | /// | 
|  | /// When indvars can't find the if test in loops like this, it creates a | 
|  | /// max expression, which allows it to give the loop a canonical | 
|  | /// induction variable: | 
|  | /// | 
|  | ///   i = 0; | 
|  | ///   max = n < 1 ? 1 : n; | 
|  | ///   do { | 
|  | ///     p[i] = 0.0; | 
|  | ///   } while (++i != max); | 
|  | /// | 
|  | /// Canonical induction variables are necessary because the loop passes | 
|  | /// are designed around them. The most obvious example of this is the | 
|  | /// LoopInfo analysis, which doesn't remember trip count values. It | 
|  | /// expects to be able to rediscover the trip count each time it is | 
|  | /// needed, and it does this using a simple analysis that only succeeds if | 
|  | /// the loop has a canonical induction variable. | 
|  | /// | 
|  | /// However, when it comes time to generate code, the maximum operation | 
|  | /// can be quite costly, especially if it's inside of an outer loop. | 
|  | /// | 
|  | /// This function solves this problem by detecting this type of loop and | 
|  | /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting | 
|  | /// the instructions for the maximum computation. | 
|  | /// | 
|  | ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { | 
|  | // Check that the loop matches the pattern we're looking for. | 
|  | if (Cond->getPredicate() != CmpInst::ICMP_EQ && | 
|  | Cond->getPredicate() != CmpInst::ICMP_NE) | 
|  | return Cond; | 
|  |  | 
|  | SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); | 
|  | if (!Sel || !Sel->hasOneUse()) return Cond; | 
|  |  | 
|  | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); | 
|  | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) | 
|  | return Cond; | 
|  | const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); | 
|  |  | 
|  | // Add one to the backedge-taken count to get the trip count. | 
|  | const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); | 
|  | if (IterationCount != SE.getSCEV(Sel)) return Cond; | 
|  |  | 
|  | // Check for a max calculation that matches the pattern. There's no check | 
|  | // for ICMP_ULE here because the comparison would be with zero, which | 
|  | // isn't interesting. | 
|  | CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | const SCEVNAryExpr *Max = 0; | 
|  | if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { | 
|  | Pred = ICmpInst::ICMP_SLE; | 
|  | Max = S; | 
|  | } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | Max = S; | 
|  | } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { | 
|  | Pred = ICmpInst::ICMP_ULT; | 
|  | Max = U; | 
|  | } else { | 
|  | // No match; bail. | 
|  | return Cond; | 
|  | } | 
|  |  | 
|  | // To handle a max with more than two operands, this optimization would | 
|  | // require additional checking and setup. | 
|  | if (Max->getNumOperands() != 2) | 
|  | return Cond; | 
|  |  | 
|  | const SCEV *MaxLHS = Max->getOperand(0); | 
|  | const SCEV *MaxRHS = Max->getOperand(1); | 
|  |  | 
|  | // ScalarEvolution canonicalizes constants to the left. For < and >, look | 
|  | // for a comparison with 1. For <= and >=, a comparison with zero. | 
|  | if (!MaxLHS || | 
|  | (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) | 
|  | return Cond; | 
|  |  | 
|  | // Check the relevant induction variable for conformance to | 
|  | // the pattern. | 
|  | const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); | 
|  | if (!AR || !AR->isAffine() || | 
|  | AR->getStart() != One || | 
|  | AR->getStepRecurrence(SE) != One) | 
|  | return Cond; | 
|  |  | 
|  | assert(AR->getLoop() == L && | 
|  | "Loop condition operand is an addrec in a different loop!"); | 
|  |  | 
|  | // Check the right operand of the select, and remember it, as it will | 
|  | // be used in the new comparison instruction. | 
|  | Value *NewRHS = 0; | 
|  | if (ICmpInst::isTrueWhenEqual(Pred)) { | 
|  | // Look for n+1, and grab n. | 
|  | if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) | 
|  | if (isa<ConstantInt>(BO->getOperand(1)) && | 
|  | cast<ConstantInt>(BO->getOperand(1))->isOne() && | 
|  | SE.getSCEV(BO->getOperand(0)) == MaxRHS) | 
|  | NewRHS = BO->getOperand(0); | 
|  | if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) | 
|  | if (isa<ConstantInt>(BO->getOperand(1)) && | 
|  | cast<ConstantInt>(BO->getOperand(1))->isOne() && | 
|  | SE.getSCEV(BO->getOperand(0)) == MaxRHS) | 
|  | NewRHS = BO->getOperand(0); | 
|  | if (!NewRHS) | 
|  | return Cond; | 
|  | } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) | 
|  | NewRHS = Sel->getOperand(1); | 
|  | else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) | 
|  | NewRHS = Sel->getOperand(2); | 
|  | else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) | 
|  | NewRHS = SU->getValue(); | 
|  | else | 
|  | // Max doesn't match expected pattern. | 
|  | return Cond; | 
|  |  | 
|  | // Determine the new comparison opcode. It may be signed or unsigned, | 
|  | // and the original comparison may be either equality or inequality. | 
|  | if (Cond->getPredicate() == CmpInst::ICMP_EQ) | 
|  | Pred = CmpInst::getInversePredicate(Pred); | 
|  |  | 
|  | // Ok, everything looks ok to change the condition into an SLT or SGE and | 
|  | // delete the max calculation. | 
|  | ICmpInst *NewCond = | 
|  | new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); | 
|  |  | 
|  | // Delete the max calculation instructions. | 
|  | Cond->replaceAllUsesWith(NewCond); | 
|  | CondUse->setUser(NewCond); | 
|  | Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); | 
|  | Cond->eraseFromParent(); | 
|  | Sel->eraseFromParent(); | 
|  | if (Cmp->use_empty()) | 
|  | Cmp->eraseFromParent(); | 
|  | return NewCond; | 
|  | } | 
|  |  | 
|  | /// OptimizeLoopTermCond - Change loop terminating condition to use the | 
|  | /// postinc iv when possible. | 
|  | void | 
|  | LSRInstance::OptimizeLoopTermCond() { | 
|  | SmallPtrSet<Instruction *, 4> PostIncs; | 
|  |  | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | SmallVector<BasicBlock*, 8> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  |  | 
|  | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitingBlock = ExitingBlocks[i]; | 
|  |  | 
|  | // Get the terminating condition for the loop if possible.  If we | 
|  | // can, we want to change it to use a post-incremented version of its | 
|  | // induction variable, to allow coalescing the live ranges for the IV into | 
|  | // one register value. | 
|  |  | 
|  | BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); | 
|  | if (!TermBr) | 
|  | continue; | 
|  | // FIXME: Overly conservative, termination condition could be an 'or' etc.. | 
|  | if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) | 
|  | continue; | 
|  |  | 
|  | // Search IVUsesByStride to find Cond's IVUse if there is one. | 
|  | IVStrideUse *CondUse = 0; | 
|  | ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); | 
|  | if (!FindIVUserForCond(Cond, CondUse)) | 
|  | continue; | 
|  |  | 
|  | // If the trip count is computed in terms of a max (due to ScalarEvolution | 
|  | // being unable to find a sufficient guard, for example), change the loop | 
|  | // comparison to use SLT or ULT instead of NE. | 
|  | // One consequence of doing this now is that it disrupts the count-down | 
|  | // optimization. That's not always a bad thing though, because in such | 
|  | // cases it may still be worthwhile to avoid a max. | 
|  | Cond = OptimizeMax(Cond, CondUse); | 
|  |  | 
|  | // If this exiting block dominates the latch block, it may also use | 
|  | // the post-inc value if it won't be shared with other uses. | 
|  | // Check for dominance. | 
|  | if (!DT.dominates(ExitingBlock, LatchBlock)) | 
|  | continue; | 
|  |  | 
|  | // Conservatively avoid trying to use the post-inc value in non-latch | 
|  | // exits if there may be pre-inc users in intervening blocks. | 
|  | if (LatchBlock != ExitingBlock) | 
|  | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) | 
|  | // Test if the use is reachable from the exiting block. This dominator | 
|  | // query is a conservative approximation of reachability. | 
|  | if (&*UI != CondUse && | 
|  | !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { | 
|  | // Conservatively assume there may be reuse if the quotient of their | 
|  | // strides could be a legal scale. | 
|  | const SCEV *A = IU.getStride(*CondUse, L); | 
|  | const SCEV *B = IU.getStride(*UI, L); | 
|  | if (!A || !B) continue; | 
|  | if (SE.getTypeSizeInBits(A->getType()) != | 
|  | SE.getTypeSizeInBits(B->getType())) { | 
|  | if (SE.getTypeSizeInBits(A->getType()) > | 
|  | SE.getTypeSizeInBits(B->getType())) | 
|  | B = SE.getSignExtendExpr(B, A->getType()); | 
|  | else | 
|  | A = SE.getSignExtendExpr(A, B->getType()); | 
|  | } | 
|  | if (const SCEVConstant *D = | 
|  | dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { | 
|  | const ConstantInt *C = D->getValue(); | 
|  | // Stride of one or negative one can have reuse with non-addresses. | 
|  | if (C->isOne() || C->isAllOnesValue()) | 
|  | goto decline_post_inc; | 
|  | // Avoid weird situations. | 
|  | if (C->getValue().getMinSignedBits() >= 64 || | 
|  | C->getValue().isMinSignedValue()) | 
|  | goto decline_post_inc; | 
|  | // Without TLI, assume that any stride might be valid, and so any | 
|  | // use might be shared. | 
|  | if (!TLI) | 
|  | goto decline_post_inc; | 
|  | // Check for possible scaled-address reuse. | 
|  | Type *AccessTy = getAccessType(UI->getUser()); | 
|  | TargetLowering::AddrMode AM; | 
|  | AM.Scale = C->getSExtValue(); | 
|  | if (TLI->isLegalAddressingMode(AM, AccessTy)) | 
|  | goto decline_post_inc; | 
|  | AM.Scale = -AM.Scale; | 
|  | if (TLI->isLegalAddressingMode(AM, AccessTy)) | 
|  | goto decline_post_inc; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: " | 
|  | << *Cond << '\n'); | 
|  |  | 
|  | // It's possible for the setcc instruction to be anywhere in the loop, and | 
|  | // possible for it to have multiple users.  If it is not immediately before | 
|  | // the exiting block branch, move it. | 
|  | if (&*++BasicBlock::iterator(Cond) != TermBr) { | 
|  | if (Cond->hasOneUse()) { | 
|  | Cond->moveBefore(TermBr); | 
|  | } else { | 
|  | // Clone the terminating condition and insert into the loopend. | 
|  | ICmpInst *OldCond = Cond; | 
|  | Cond = cast<ICmpInst>(Cond->clone()); | 
|  | Cond->setName(L->getHeader()->getName() + ".termcond"); | 
|  | ExitingBlock->getInstList().insert(TermBr, Cond); | 
|  |  | 
|  | // Clone the IVUse, as the old use still exists! | 
|  | CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); | 
|  | TermBr->replaceUsesOfWith(OldCond, Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we get to here, we know that we can transform the setcc instruction to | 
|  | // use the post-incremented version of the IV, allowing us to coalesce the | 
|  | // live ranges for the IV correctly. | 
|  | CondUse->transformToPostInc(L); | 
|  | Changed = true; | 
|  |  | 
|  | PostIncs.insert(Cond); | 
|  | decline_post_inc:; | 
|  | } | 
|  |  | 
|  | // Determine an insertion point for the loop induction variable increment. It | 
|  | // must dominate all the post-inc comparisons we just set up, and it must | 
|  | // dominate the loop latch edge. | 
|  | IVIncInsertPos = L->getLoopLatch()->getTerminator(); | 
|  | for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), | 
|  | E = PostIncs.end(); I != E; ++I) { | 
|  | BasicBlock *BB = | 
|  | DT.findNearestCommonDominator(IVIncInsertPos->getParent(), | 
|  | (*I)->getParent()); | 
|  | if (BB == (*I)->getParent()) | 
|  | IVIncInsertPos = *I; | 
|  | else if (BB != IVIncInsertPos->getParent()) | 
|  | IVIncInsertPos = BB->getTerminator(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// reconcileNewOffset - Determine if the given use can accommodate a fixup | 
|  | /// at the given offset and other details. If so, update the use and | 
|  | /// return true. | 
|  | bool | 
|  | LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, | 
|  | LSRUse::KindType Kind, Type *AccessTy) { | 
|  | int64_t NewMinOffset = LU.MinOffset; | 
|  | int64_t NewMaxOffset = LU.MaxOffset; | 
|  | Type *NewAccessTy = AccessTy; | 
|  |  | 
|  | // Check for a mismatched kind. It's tempting to collapse mismatched kinds to | 
|  | // something conservative, however this can pessimize in the case that one of | 
|  | // the uses will have all its uses outside the loop, for example. | 
|  | if (LU.Kind != Kind) | 
|  | return false; | 
|  | // Conservatively assume HasBaseReg is true for now. | 
|  | if (NewOffset < LU.MinOffset) { | 
|  | if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, | 
|  | Kind, AccessTy, TLI)) | 
|  | return false; | 
|  | NewMinOffset = NewOffset; | 
|  | } else if (NewOffset > LU.MaxOffset) { | 
|  | if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, | 
|  | Kind, AccessTy, TLI)) | 
|  | return false; | 
|  | NewMaxOffset = NewOffset; | 
|  | } | 
|  | // Check for a mismatched access type, and fall back conservatively as needed. | 
|  | // TODO: Be less conservative when the type is similar and can use the same | 
|  | // addressing modes. | 
|  | if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) | 
|  | NewAccessTy = Type::getVoidTy(AccessTy->getContext()); | 
|  |  | 
|  | // Update the use. | 
|  | LU.MinOffset = NewMinOffset; | 
|  | LU.MaxOffset = NewMaxOffset; | 
|  | LU.AccessTy = NewAccessTy; | 
|  | if (NewOffset != LU.Offsets.back()) | 
|  | LU.Offsets.push_back(NewOffset); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getUse - Return an LSRUse index and an offset value for a fixup which | 
|  | /// needs the given expression, with the given kind and optional access type. | 
|  | /// Either reuse an existing use or create a new one, as needed. | 
|  | std::pair<size_t, int64_t> | 
|  | LSRInstance::getUse(const SCEV *&Expr, | 
|  | LSRUse::KindType Kind, Type *AccessTy) { | 
|  | const SCEV *Copy = Expr; | 
|  | int64_t Offset = ExtractImmediate(Expr, SE); | 
|  |  | 
|  | // Basic uses can't accept any offset, for example. | 
|  | if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { | 
|  | Expr = Copy; | 
|  | Offset = 0; | 
|  | } | 
|  |  | 
|  | std::pair<UseMapTy::iterator, bool> P = | 
|  | UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); | 
|  | if (!P.second) { | 
|  | // A use already existed with this base. | 
|  | size_t LUIdx = P.first->second; | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) | 
|  | // Reuse this use. | 
|  | return std::make_pair(LUIdx, Offset); | 
|  | } | 
|  |  | 
|  | // Create a new use. | 
|  | size_t LUIdx = Uses.size(); | 
|  | P.first->second = LUIdx; | 
|  | Uses.push_back(LSRUse(Kind, AccessTy)); | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  |  | 
|  | // We don't need to track redundant offsets, but we don't need to go out | 
|  | // of our way here to avoid them. | 
|  | if (LU.Offsets.empty() || Offset != LU.Offsets.back()) | 
|  | LU.Offsets.push_back(Offset); | 
|  |  | 
|  | LU.MinOffset = Offset; | 
|  | LU.MaxOffset = Offset; | 
|  | return std::make_pair(LUIdx, Offset); | 
|  | } | 
|  |  | 
|  | /// DeleteUse - Delete the given use from the Uses list. | 
|  | void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { | 
|  | if (&LU != &Uses.back()) | 
|  | std::swap(LU, Uses.back()); | 
|  | Uses.pop_back(); | 
|  |  | 
|  | // Update RegUses. | 
|  | RegUses.SwapAndDropUse(LUIdx, Uses.size()); | 
|  | } | 
|  |  | 
|  | /// FindUseWithFormula - Look for a use distinct from OrigLU which is has | 
|  | /// a formula that has the same registers as the given formula. | 
|  | LSRUse * | 
|  | LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, | 
|  | const LSRUse &OrigLU) { | 
|  | // Search all uses for the formula. This could be more clever. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | // Check whether this use is close enough to OrigLU, to see whether it's | 
|  | // worthwhile looking through its formulae. | 
|  | // Ignore ICmpZero uses because they may contain formulae generated by | 
|  | // GenerateICmpZeroScales, in which case adding fixup offsets may | 
|  | // be invalid. | 
|  | if (&LU != &OrigLU && | 
|  | LU.Kind != LSRUse::ICmpZero && | 
|  | LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && | 
|  | LU.WidestFixupType == OrigLU.WidestFixupType && | 
|  | LU.HasFormulaWithSameRegs(OrigF)) { | 
|  | // Scan through this use's formulae. | 
|  | for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), | 
|  | E = LU.Formulae.end(); I != E; ++I) { | 
|  | const Formula &F = *I; | 
|  | // Check to see if this formula has the same registers and symbols | 
|  | // as OrigF. | 
|  | if (F.BaseRegs == OrigF.BaseRegs && | 
|  | F.ScaledReg == OrigF.ScaledReg && | 
|  | F.AM.BaseGV == OrigF.AM.BaseGV && | 
|  | F.AM.Scale == OrigF.AM.Scale && | 
|  | F.UnfoldedOffset == OrigF.UnfoldedOffset) { | 
|  | if (F.AM.BaseOffs == 0) | 
|  | return &LU; | 
|  | // This is the formula where all the registers and symbols matched; | 
|  | // there aren't going to be any others. Since we declined it, we | 
|  | // can skip the rest of the formulae and procede to the next LSRUse. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nothing looked good. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void LSRInstance::CollectInterestingTypesAndFactors() { | 
|  | SmallSetVector<const SCEV *, 4> Strides; | 
|  |  | 
|  | // Collect interesting types and strides. | 
|  | SmallVector<const SCEV *, 4> Worklist; | 
|  | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { | 
|  | const SCEV *Expr = IU.getExpr(*UI); | 
|  |  | 
|  | // Collect interesting types. | 
|  | Types.insert(SE.getEffectiveSCEVType(Expr->getType())); | 
|  |  | 
|  | // Add strides for mentioned loops. | 
|  | Worklist.push_back(Expr); | 
|  | do { | 
|  | const SCEV *S = Worklist.pop_back_val(); | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | Strides.insert(AR->getStepRecurrence(SE)); | 
|  | Worklist.push_back(AR->getStart()); | 
|  | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | Worklist.append(Add->op_begin(), Add->op_end()); | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | // Compute interesting factors from the set of interesting strides. | 
|  | for (SmallSetVector<const SCEV *, 4>::const_iterator | 
|  | I = Strides.begin(), E = Strides.end(); I != E; ++I) | 
|  | for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = | 
|  | llvm::next(I); NewStrideIter != E; ++NewStrideIter) { | 
|  | const SCEV *OldStride = *I; | 
|  | const SCEV *NewStride = *NewStrideIter; | 
|  |  | 
|  | if (SE.getTypeSizeInBits(OldStride->getType()) != | 
|  | SE.getTypeSizeInBits(NewStride->getType())) { | 
|  | if (SE.getTypeSizeInBits(OldStride->getType()) > | 
|  | SE.getTypeSizeInBits(NewStride->getType())) | 
|  | NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); | 
|  | else | 
|  | OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); | 
|  | } | 
|  | if (const SCEVConstant *Factor = | 
|  | dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, | 
|  | SE, true))) { | 
|  | if (Factor->getValue()->getValue().getMinSignedBits() <= 64) | 
|  | Factors.insert(Factor->getValue()->getValue().getSExtValue()); | 
|  | } else if (const SCEVConstant *Factor = | 
|  | dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, | 
|  | NewStride, | 
|  | SE, true))) { | 
|  | if (Factor->getValue()->getValue().getMinSignedBits() <= 64) | 
|  | Factors.insert(Factor->getValue()->getValue().getSExtValue()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all uses use the same type, don't bother looking for truncation-based | 
|  | // reuse. | 
|  | if (Types.size() == 1) | 
|  | Types.clear(); | 
|  |  | 
|  | DEBUG(print_factors_and_types(dbgs())); | 
|  | } | 
|  |  | 
|  | void LSRInstance::CollectFixupsAndInitialFormulae() { | 
|  | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { | 
|  | // Record the uses. | 
|  | LSRFixup &LF = getNewFixup(); | 
|  | LF.UserInst = UI->getUser(); | 
|  | LF.OperandValToReplace = UI->getOperandValToReplace(); | 
|  | LF.PostIncLoops = UI->getPostIncLoops(); | 
|  |  | 
|  | LSRUse::KindType Kind = LSRUse::Basic; | 
|  | Type *AccessTy = 0; | 
|  | if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { | 
|  | Kind = LSRUse::Address; | 
|  | AccessTy = getAccessType(LF.UserInst); | 
|  | } | 
|  |  | 
|  | const SCEV *S = IU.getExpr(*UI); | 
|  |  | 
|  | // Equality (== and !=) ICmps are special. We can rewrite (i == N) as | 
|  | // (N - i == 0), and this allows (N - i) to be the expression that we work | 
|  | // with rather than just N or i, so we can consider the register | 
|  | // requirements for both N and i at the same time. Limiting this code to | 
|  | // equality icmps is not a problem because all interesting loops use | 
|  | // equality icmps, thanks to IndVarSimplify. | 
|  | if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) | 
|  | if (CI->isEquality()) { | 
|  | // Swap the operands if needed to put the OperandValToReplace on the | 
|  | // left, for consistency. | 
|  | Value *NV = CI->getOperand(1); | 
|  | if (NV == LF.OperandValToReplace) { | 
|  | CI->setOperand(1, CI->getOperand(0)); | 
|  | CI->setOperand(0, NV); | 
|  | NV = CI->getOperand(1); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // x == y  -->  x - y == 0 | 
|  | const SCEV *N = SE.getSCEV(NV); | 
|  | if (SE.isLoopInvariant(N, L)) { | 
|  | // S is normalized, so normalize N before folding it into S | 
|  | // to keep the result normalized. | 
|  | N = TransformForPostIncUse(Normalize, N, CI, 0, | 
|  | LF.PostIncLoops, SE, DT); | 
|  | Kind = LSRUse::ICmpZero; | 
|  | S = SE.getMinusSCEV(N, S); | 
|  | } | 
|  |  | 
|  | // -1 and the negations of all interesting strides (except the negation | 
|  | // of -1) are now also interesting. | 
|  | for (size_t i = 0, e = Factors.size(); i != e; ++i) | 
|  | if (Factors[i] != -1) | 
|  | Factors.insert(-(uint64_t)Factors[i]); | 
|  | Factors.insert(-1); | 
|  | } | 
|  |  | 
|  | // Set up the initial formula for this use. | 
|  | std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); | 
|  | LF.LUIdx = P.first; | 
|  | LF.Offset = P.second; | 
|  | LSRUse &LU = Uses[LF.LUIdx]; | 
|  | LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); | 
|  | if (!LU.WidestFixupType || | 
|  | SE.getTypeSizeInBits(LU.WidestFixupType) < | 
|  | SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) | 
|  | LU.WidestFixupType = LF.OperandValToReplace->getType(); | 
|  |  | 
|  | // If this is the first use of this LSRUse, give it a formula. | 
|  | if (LU.Formulae.empty()) { | 
|  | InsertInitialFormula(S, LU, LF.LUIdx); | 
|  | CountRegisters(LU.Formulae.back(), LF.LUIdx); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(print_fixups(dbgs())); | 
|  | } | 
|  |  | 
|  | /// InsertInitialFormula - Insert a formula for the given expression into | 
|  | /// the given use, separating out loop-variant portions from loop-invariant | 
|  | /// and loop-computable portions. | 
|  | void | 
|  | LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { | 
|  | Formula F; | 
|  | F.InitialMatch(S, L, SE); | 
|  | bool Inserted = InsertFormula(LU, LUIdx, F); | 
|  | assert(Inserted && "Initial formula already exists!"); (void)Inserted; | 
|  | } | 
|  |  | 
|  | /// InsertSupplementalFormula - Insert a simple single-register formula for | 
|  | /// the given expression into the given use. | 
|  | void | 
|  | LSRInstance::InsertSupplementalFormula(const SCEV *S, | 
|  | LSRUse &LU, size_t LUIdx) { | 
|  | Formula F; | 
|  | F.BaseRegs.push_back(S); | 
|  | F.AM.HasBaseReg = true; | 
|  | bool Inserted = InsertFormula(LU, LUIdx, F); | 
|  | assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; | 
|  | } | 
|  |  | 
|  | /// CountRegisters - Note which registers are used by the given formula, | 
|  | /// updating RegUses. | 
|  | void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { | 
|  | if (F.ScaledReg) | 
|  | RegUses.CountRegister(F.ScaledReg, LUIdx); | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), | 
|  | E = F.BaseRegs.end(); I != E; ++I) | 
|  | RegUses.CountRegister(*I, LUIdx); | 
|  | } | 
|  |  | 
|  | /// InsertFormula - If the given formula has not yet been inserted, add it to | 
|  | /// the list, and return true. Return false otherwise. | 
|  | bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { | 
|  | if (!LU.InsertFormula(F)) | 
|  | return false; | 
|  |  | 
|  | CountRegisters(F, LUIdx); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of | 
|  | /// loop-invariant values which we're tracking. These other uses will pin these | 
|  | /// values in registers, making them less profitable for elimination. | 
|  | /// TODO: This currently misses non-constant addrec step registers. | 
|  | /// TODO: Should this give more weight to users inside the loop? | 
|  | void | 
|  | LSRInstance::CollectLoopInvariantFixupsAndFormulae() { | 
|  | SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); | 
|  | SmallPtrSet<const SCEV *, 8> Inserted; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | const SCEV *S = Worklist.pop_back_val(); | 
|  |  | 
|  | if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) | 
|  | Worklist.append(N->op_begin(), N->op_end()); | 
|  | else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) | 
|  | Worklist.push_back(C->getOperand()); | 
|  | else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | Worklist.push_back(D->getLHS()); | 
|  | Worklist.push_back(D->getRHS()); | 
|  | } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | if (!Inserted.insert(U)) continue; | 
|  | const Value *V = U->getValue(); | 
|  | if (const Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | // Look for instructions defined outside the loop. | 
|  | if (L->contains(Inst)) continue; | 
|  | } else if (isa<UndefValue>(V)) | 
|  | // Undef doesn't have a live range, so it doesn't matter. | 
|  | continue; | 
|  | for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | const Instruction *UserInst = dyn_cast<Instruction>(*UI); | 
|  | // Ignore non-instructions. | 
|  | if (!UserInst) | 
|  | continue; | 
|  | // Ignore instructions in other functions (as can happen with | 
|  | // Constants). | 
|  | if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) | 
|  | continue; | 
|  | // Ignore instructions not dominated by the loop. | 
|  | const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? | 
|  | UserInst->getParent() : | 
|  | cast<PHINode>(UserInst)->getIncomingBlock( | 
|  | PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); | 
|  | if (!DT.dominates(L->getHeader(), UseBB)) | 
|  | continue; | 
|  | // Ignore uses which are part of other SCEV expressions, to avoid | 
|  | // analyzing them multiple times. | 
|  | if (SE.isSCEVable(UserInst->getType())) { | 
|  | const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); | 
|  | // If the user is a no-op, look through to its uses. | 
|  | if (!isa<SCEVUnknown>(UserS)) | 
|  | continue; | 
|  | if (UserS == U) { | 
|  | Worklist.push_back( | 
|  | SE.getUnknown(const_cast<Instruction *>(UserInst))); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // Ignore icmp instructions which are already being analyzed. | 
|  | if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { | 
|  | unsigned OtherIdx = !UI.getOperandNo(); | 
|  | Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); | 
|  | if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LSRFixup &LF = getNewFixup(); | 
|  | LF.UserInst = const_cast<Instruction *>(UserInst); | 
|  | LF.OperandValToReplace = UI.getUse(); | 
|  | std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); | 
|  | LF.LUIdx = P.first; | 
|  | LF.Offset = P.second; | 
|  | LSRUse &LU = Uses[LF.LUIdx]; | 
|  | LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); | 
|  | if (!LU.WidestFixupType || | 
|  | SE.getTypeSizeInBits(LU.WidestFixupType) < | 
|  | SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) | 
|  | LU.WidestFixupType = LF.OperandValToReplace->getType(); | 
|  | InsertSupplementalFormula(U, LU, LF.LUIdx); | 
|  | CountRegisters(LU.Formulae.back(), Uses.size() - 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CollectSubexprs - Split S into subexpressions which can be pulled out into | 
|  | /// separate registers. If C is non-null, multiply each subexpression by C. | 
|  | static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, | 
|  | SmallVectorImpl<const SCEV *> &Ops, | 
|  | const Loop *L, | 
|  | ScalarEvolution &SE) { | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { | 
|  | // Break out add operands. | 
|  | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); | 
|  | I != E; ++I) | 
|  | CollectSubexprs(*I, C, Ops, L, SE); | 
|  | return; | 
|  | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | // Split a non-zero base out of an addrec. | 
|  | if (!AR->getStart()->isZero()) { | 
|  | CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), | 
|  | AR->getStepRecurrence(SE), | 
|  | AR->getLoop(), | 
|  | //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) | 
|  | SCEV::FlagAnyWrap), | 
|  | C, Ops, L, SE); | 
|  | CollectSubexprs(AR->getStart(), C, Ops, L, SE); | 
|  | return; | 
|  | } | 
|  | } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { | 
|  | // Break (C * (a + b + c)) into C*a + C*b + C*c. | 
|  | if (Mul->getNumOperands() == 2) | 
|  | if (const SCEVConstant *Op0 = | 
|  | dyn_cast<SCEVConstant>(Mul->getOperand(0))) { | 
|  | CollectSubexprs(Mul->getOperand(1), | 
|  | C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, | 
|  | Ops, L, SE); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise use the value itself, optionally with a scale applied. | 
|  | Ops.push_back(C ? SE.getMulExpr(C, S) : S); | 
|  | } | 
|  |  | 
|  | /// GenerateReassociations - Split out subexpressions from adds and the bases of | 
|  | /// addrecs. | 
|  | void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base, | 
|  | unsigned Depth) { | 
|  | // Arbitrarily cap recursion to protect compile time. | 
|  | if (Depth >= 3) return; | 
|  |  | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { | 
|  | const SCEV *BaseReg = Base.BaseRegs[i]; | 
|  |  | 
|  | SmallVector<const SCEV *, 8> AddOps; | 
|  | CollectSubexprs(BaseReg, 0, AddOps, L, SE); | 
|  |  | 
|  | if (AddOps.size() == 1) continue; | 
|  |  | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), | 
|  | JE = AddOps.end(); J != JE; ++J) { | 
|  |  | 
|  | // Loop-variant "unknown" values are uninteresting; we won't be able to | 
|  | // do anything meaningful with them. | 
|  | if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) | 
|  | continue; | 
|  |  | 
|  | // Don't pull a constant into a register if the constant could be folded | 
|  | // into an immediate field. | 
|  | if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, | 
|  | Base.getNumRegs() > 1, | 
|  | LU.Kind, LU.AccessTy, TLI, SE)) | 
|  | continue; | 
|  |  | 
|  | // Collect all operands except *J. | 
|  | SmallVector<const SCEV *, 8> InnerAddOps | 
|  | (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); | 
|  | InnerAddOps.append | 
|  | (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); | 
|  |  | 
|  | // Don't leave just a constant behind in a register if the constant could | 
|  | // be folded into an immediate field. | 
|  | if (InnerAddOps.size() == 1 && | 
|  | isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, | 
|  | Base.getNumRegs() > 1, | 
|  | LU.Kind, LU.AccessTy, TLI, SE)) | 
|  | continue; | 
|  |  | 
|  | const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); | 
|  | if (InnerSum->isZero()) | 
|  | continue; | 
|  | Formula F = Base; | 
|  |  | 
|  | // Add the remaining pieces of the add back into the new formula. | 
|  | const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); | 
|  | if (TLI && InnerSumSC && | 
|  | SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && | 
|  | TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + | 
|  | InnerSumSC->getValue()->getZExtValue())) { | 
|  | F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + | 
|  | InnerSumSC->getValue()->getZExtValue(); | 
|  | F.BaseRegs.erase(F.BaseRegs.begin() + i); | 
|  | } else | 
|  | F.BaseRegs[i] = InnerSum; | 
|  |  | 
|  | // Add J as its own register, or an unfolded immediate. | 
|  | const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); | 
|  | if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && | 
|  | TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + | 
|  | SC->getValue()->getZExtValue())) | 
|  | F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + | 
|  | SC->getValue()->getZExtValue(); | 
|  | else | 
|  | F.BaseRegs.push_back(*J); | 
|  |  | 
|  | if (InsertFormula(LU, LUIdx, F)) | 
|  | // If that formula hadn't been seen before, recurse to find more like | 
|  | // it. | 
|  | GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateCombinations - Generate a formula consisting of all of the | 
|  | /// loop-dominating registers added into a single register. | 
|  | void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | // This method is only interesting on a plurality of registers. | 
|  | if (Base.BaseRegs.size() <= 1) return; | 
|  |  | 
|  | Formula F = Base; | 
|  | F.BaseRegs.clear(); | 
|  | SmallVector<const SCEV *, 4> Ops; | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator | 
|  | I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { | 
|  | const SCEV *BaseReg = *I; | 
|  | if (SE.properlyDominates(BaseReg, L->getHeader()) && | 
|  | !SE.hasComputableLoopEvolution(BaseReg, L)) | 
|  | Ops.push_back(BaseReg); | 
|  | else | 
|  | F.BaseRegs.push_back(BaseReg); | 
|  | } | 
|  | if (Ops.size() > 1) { | 
|  | const SCEV *Sum = SE.getAddExpr(Ops); | 
|  | // TODO: If Sum is zero, it probably means ScalarEvolution missed an | 
|  | // opportunity to fold something. For now, just ignore such cases | 
|  | // rather than proceed with zero in a register. | 
|  | if (!Sum->isZero()) { | 
|  | F.BaseRegs.push_back(Sum); | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. | 
|  | void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | // We can't add a symbolic offset if the address already contains one. | 
|  | if (Base.AM.BaseGV) return; | 
|  |  | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { | 
|  | const SCEV *G = Base.BaseRegs[i]; | 
|  | GlobalValue *GV = ExtractSymbol(G, SE); | 
|  | if (G->isZero() || !GV) | 
|  | continue; | 
|  | Formula F = Base; | 
|  | F.AM.BaseGV = GV; | 
|  | if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, TLI)) | 
|  | continue; | 
|  | F.BaseRegs[i] = G; | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. | 
|  | void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | // TODO: For now, just add the min and max offset, because it usually isn't | 
|  | // worthwhile looking at everything inbetween. | 
|  | SmallVector<int64_t, 2> Worklist; | 
|  | Worklist.push_back(LU.MinOffset); | 
|  | if (LU.MaxOffset != LU.MinOffset) | 
|  | Worklist.push_back(LU.MaxOffset); | 
|  |  | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { | 
|  | const SCEV *G = Base.BaseRegs[i]; | 
|  |  | 
|  | for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), | 
|  | E = Worklist.end(); I != E; ++I) { | 
|  | Formula F = Base; | 
|  | F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; | 
|  | if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, | 
|  | LU.Kind, LU.AccessTy, TLI)) { | 
|  | // Add the offset to the base register. | 
|  | const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); | 
|  | // If it cancelled out, drop the base register, otherwise update it. | 
|  | if (NewG->isZero()) { | 
|  | std::swap(F.BaseRegs[i], F.BaseRegs.back()); | 
|  | F.BaseRegs.pop_back(); | 
|  | } else | 
|  | F.BaseRegs[i] = NewG; | 
|  |  | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t Imm = ExtractImmediate(G, SE); | 
|  | if (G->isZero() || Imm == 0) | 
|  | continue; | 
|  | Formula F = Base; | 
|  | F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; | 
|  | if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, TLI)) | 
|  | continue; | 
|  | F.BaseRegs[i] = G; | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up | 
|  | /// the comparison. For example, x == y -> x*c == y*c. | 
|  | void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, | 
|  | Formula Base) { | 
|  | if (LU.Kind != LSRUse::ICmpZero) return; | 
|  |  | 
|  | // Determine the integer type for the base formula. | 
|  | Type *IntTy = Base.getType(); | 
|  | if (!IntTy) return; | 
|  | if (SE.getTypeSizeInBits(IntTy) > 64) return; | 
|  |  | 
|  | // Don't do this if there is more than one offset. | 
|  | if (LU.MinOffset != LU.MaxOffset) return; | 
|  |  | 
|  | assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); | 
|  |  | 
|  | // Check each interesting stride. | 
|  | for (SmallSetVector<int64_t, 8>::const_iterator | 
|  | I = Factors.begin(), E = Factors.end(); I != E; ++I) { | 
|  | int64_t Factor = *I; | 
|  |  | 
|  | // Check that the multiplication doesn't overflow. | 
|  | if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) | 
|  | continue; | 
|  | int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; | 
|  | if (NewBaseOffs / Factor != Base.AM.BaseOffs) | 
|  | continue; | 
|  |  | 
|  | // Check that multiplying with the use offset doesn't overflow. | 
|  | int64_t Offset = LU.MinOffset; | 
|  | if (Offset == INT64_MIN && Factor == -1) | 
|  | continue; | 
|  | Offset = (uint64_t)Offset * Factor; | 
|  | if (Offset / Factor != LU.MinOffset) | 
|  | continue; | 
|  |  | 
|  | Formula F = Base; | 
|  | F.AM.BaseOffs = NewBaseOffs; | 
|  |  | 
|  | // Check that this scale is legal. | 
|  | if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) | 
|  | continue; | 
|  |  | 
|  | // Compensate for the use having MinOffset built into it. | 
|  | F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; | 
|  |  | 
|  | const SCEV *FactorS = SE.getConstant(IntTy, Factor); | 
|  |  | 
|  | // Check that multiplying with each base register doesn't overflow. | 
|  | for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { | 
|  | F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); | 
|  | if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | // Check that multiplying with the scaled register doesn't overflow. | 
|  | if (F.ScaledReg) { | 
|  | F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); | 
|  | if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check that multiplying with the unfolded offset doesn't overflow. | 
|  | if (F.UnfoldedOffset != 0) { | 
|  | if (F.UnfoldedOffset == INT64_MIN && Factor == -1) | 
|  | continue; | 
|  | F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; | 
|  | if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we make it here and it's legal, add it. | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | next:; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateScales - Generate stride factor reuse formulae by making use of | 
|  | /// scaled-offset address modes, for example. | 
|  | void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { | 
|  | // Determine the integer type for the base formula. | 
|  | Type *IntTy = Base.getType(); | 
|  | if (!IntTy) return; | 
|  |  | 
|  | // If this Formula already has a scaled register, we can't add another one. | 
|  | if (Base.AM.Scale != 0) return; | 
|  |  | 
|  | // Check each interesting stride. | 
|  | for (SmallSetVector<int64_t, 8>::const_iterator | 
|  | I = Factors.begin(), E = Factors.end(); I != E; ++I) { | 
|  | int64_t Factor = *I; | 
|  |  | 
|  | Base.AM.Scale = Factor; | 
|  | Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; | 
|  | // Check whether this scale is going to be legal. | 
|  | if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, TLI)) { | 
|  | // As a special-case, handle special out-of-loop Basic users specially. | 
|  | // TODO: Reconsider this special case. | 
|  | if (LU.Kind == LSRUse::Basic && | 
|  | isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, | 
|  | LSRUse::Special, LU.AccessTy, TLI) && | 
|  | LU.AllFixupsOutsideLoop) | 
|  | LU.Kind = LSRUse::Special; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | // For an ICmpZero, negating a solitary base register won't lead to | 
|  | // new solutions. | 
|  | if (LU.Kind == LSRUse::ICmpZero && | 
|  | !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) | 
|  | continue; | 
|  | // For each addrec base reg, apply the scale, if possible. | 
|  | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) | 
|  | if (const SCEVAddRecExpr *AR = | 
|  | dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { | 
|  | const SCEV *FactorS = SE.getConstant(IntTy, Factor); | 
|  | if (FactorS->isZero()) | 
|  | continue; | 
|  | // Divide out the factor, ignoring high bits, since we'll be | 
|  | // scaling the value back up in the end. | 
|  | if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { | 
|  | // TODO: This could be optimized to avoid all the copying. | 
|  | Formula F = Base; | 
|  | F.ScaledReg = Quotient; | 
|  | F.DeleteBaseReg(F.BaseRegs[i]); | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateTruncates - Generate reuse formulae from different IV types. | 
|  | void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { | 
|  | // This requires TargetLowering to tell us which truncates are free. | 
|  | if (!TLI) return; | 
|  |  | 
|  | // Don't bother truncating symbolic values. | 
|  | if (Base.AM.BaseGV) return; | 
|  |  | 
|  | // Determine the integer type for the base formula. | 
|  | Type *DstTy = Base.getType(); | 
|  | if (!DstTy) return; | 
|  | DstTy = SE.getEffectiveSCEVType(DstTy); | 
|  |  | 
|  | for (SmallSetVector<Type *, 4>::const_iterator | 
|  | I = Types.begin(), E = Types.end(); I != E; ++I) { | 
|  | Type *SrcTy = *I; | 
|  | if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { | 
|  | Formula F = Base; | 
|  |  | 
|  | if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); | 
|  | for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), | 
|  | JE = F.BaseRegs.end(); J != JE; ++J) | 
|  | *J = SE.getAnyExtendExpr(*J, SrcTy); | 
|  |  | 
|  | // TODO: This assumes we've done basic processing on all uses and | 
|  | // have an idea what the register usage is. | 
|  | if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) | 
|  | continue; | 
|  |  | 
|  | (void)InsertFormula(LU, LUIdx, F); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to | 
|  | /// defer modifications so that the search phase doesn't have to worry about | 
|  | /// the data structures moving underneath it. | 
|  | struct WorkItem { | 
|  | size_t LUIdx; | 
|  | int64_t Imm; | 
|  | const SCEV *OrigReg; | 
|  |  | 
|  | WorkItem(size_t LI, int64_t I, const SCEV *R) | 
|  | : LUIdx(LI), Imm(I), OrigReg(R) {} | 
|  |  | 
|  | void print(raw_ostream &OS) const; | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | void WorkItem::print(raw_ostream &OS) const { | 
|  | OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx | 
|  | << " , add offset " << Imm; | 
|  | } | 
|  |  | 
|  | void WorkItem::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | /// GenerateCrossUseConstantOffsets - Look for registers which are a constant | 
|  | /// distance apart and try to form reuse opportunities between them. | 
|  | void LSRInstance::GenerateCrossUseConstantOffsets() { | 
|  | // Group the registers by their value without any added constant offset. | 
|  | typedef std::map<int64_t, const SCEV *> ImmMapTy; | 
|  | typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; | 
|  | RegMapTy Map; | 
|  | DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; | 
|  | SmallVector<const SCEV *, 8> Sequence; | 
|  | for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); | 
|  | I != E; ++I) { | 
|  | const SCEV *Reg = *I; | 
|  | int64_t Imm = ExtractImmediate(Reg, SE); | 
|  | std::pair<RegMapTy::iterator, bool> Pair = | 
|  | Map.insert(std::make_pair(Reg, ImmMapTy())); | 
|  | if (Pair.second) | 
|  | Sequence.push_back(Reg); | 
|  | Pair.first->second.insert(std::make_pair(Imm, *I)); | 
|  | UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); | 
|  | } | 
|  |  | 
|  | // Now examine each set of registers with the same base value. Build up | 
|  | // a list of work to do and do the work in a separate step so that we're | 
|  | // not adding formulae and register counts while we're searching. | 
|  | SmallVector<WorkItem, 32> WorkItems; | 
|  | SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), | 
|  | E = Sequence.end(); I != E; ++I) { | 
|  | const SCEV *Reg = *I; | 
|  | const ImmMapTy &Imms = Map.find(Reg)->second; | 
|  |  | 
|  | // It's not worthwhile looking for reuse if there's only one offset. | 
|  | if (Imms.size() == 1) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; | 
|  | for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); | 
|  | J != JE; ++J) | 
|  | dbgs() << ' ' << J->first; | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | // Examine each offset. | 
|  | for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); | 
|  | J != JE; ++J) { | 
|  | const SCEV *OrigReg = J->second; | 
|  |  | 
|  | int64_t JImm = J->first; | 
|  | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); | 
|  |  | 
|  | if (!isa<SCEVConstant>(OrigReg) && | 
|  | UsedByIndicesMap[Reg].count() == 1) { | 
|  | DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Conservatively examine offsets between this orig reg a few selected | 
|  | // other orig regs. | 
|  | ImmMapTy::const_iterator OtherImms[] = { | 
|  | Imms.begin(), prior(Imms.end()), | 
|  | Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) | 
|  | }; | 
|  | for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { | 
|  | ImmMapTy::const_iterator M = OtherImms[i]; | 
|  | if (M == J || M == JE) continue; | 
|  |  | 
|  | // Compute the difference between the two. | 
|  | int64_t Imm = (uint64_t)JImm - M->first; | 
|  | for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; | 
|  | LUIdx = UsedByIndices.find_next(LUIdx)) | 
|  | // Make a memo of this use, offset, and register tuple. | 
|  | if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) | 
|  | WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Map.clear(); | 
|  | Sequence.clear(); | 
|  | UsedByIndicesMap.clear(); | 
|  | UniqueItems.clear(); | 
|  |  | 
|  | // Now iterate through the worklist and add new formulae. | 
|  | for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), | 
|  | E = WorkItems.end(); I != E; ++I) { | 
|  | const WorkItem &WI = *I; | 
|  | size_t LUIdx = WI.LUIdx; | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | int64_t Imm = WI.Imm; | 
|  | const SCEV *OrigReg = WI.OrigReg; | 
|  |  | 
|  | Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); | 
|  | const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); | 
|  | unsigned BitWidth = SE.getTypeSizeInBits(IntTy); | 
|  |  | 
|  | // TODO: Use a more targeted data structure. | 
|  | for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { | 
|  | const Formula &F = LU.Formulae[L]; | 
|  | // Use the immediate in the scaled register. | 
|  | if (F.ScaledReg == OrigReg) { | 
|  | int64_t Offs = (uint64_t)F.AM.BaseOffs + | 
|  | Imm * (uint64_t)F.AM.Scale; | 
|  | // Don't create 50 + reg(-50). | 
|  | if (F.referencesReg(SE.getSCEV( | 
|  | ConstantInt::get(IntTy, -(uint64_t)Offs)))) | 
|  | continue; | 
|  | Formula NewF = F; | 
|  | NewF.AM.BaseOffs = Offs; | 
|  | if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, TLI)) | 
|  | continue; | 
|  | NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); | 
|  |  | 
|  | // If the new scale is a constant in a register, and adding the constant | 
|  | // value to the immediate would produce a value closer to zero than the | 
|  | // immediate itself, then the formula isn't worthwhile. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) | 
|  | if (C->getValue()->isNegative() != | 
|  | (NewF.AM.BaseOffs < 0) && | 
|  | (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) | 
|  | .ule(abs64(NewF.AM.BaseOffs))) | 
|  | continue; | 
|  |  | 
|  | // OK, looks good. | 
|  | (void)InsertFormula(LU, LUIdx, NewF); | 
|  | } else { | 
|  | // Use the immediate in a base register. | 
|  | for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { | 
|  | const SCEV *BaseReg = F.BaseRegs[N]; | 
|  | if (BaseReg != OrigReg) | 
|  | continue; | 
|  | Formula NewF = F; | 
|  | NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; | 
|  | if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, TLI)) { | 
|  | if (!TLI || | 
|  | !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) | 
|  | continue; | 
|  | NewF = F; | 
|  | NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; | 
|  | } | 
|  | NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); | 
|  |  | 
|  | // If the new formula has a constant in a register, and adding the | 
|  | // constant value to the immediate would produce a value closer to | 
|  | // zero than the immediate itself, then the formula isn't worthwhile. | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator | 
|  | J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); | 
|  | J != JE; ++J) | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) | 
|  | if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( | 
|  | abs64(NewF.AM.BaseOffs)) && | 
|  | (C->getValue()->getValue() + | 
|  | NewF.AM.BaseOffs).countTrailingZeros() >= | 
|  | CountTrailingZeros_64(NewF.AM.BaseOffs)) | 
|  | goto skip_formula; | 
|  |  | 
|  | // Ok, looks good. | 
|  | (void)InsertFormula(LU, LUIdx, NewF); | 
|  | break; | 
|  | skip_formula:; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GenerateAllReuseFormulae - Generate formulae for each use. | 
|  | void | 
|  | LSRInstance::GenerateAllReuseFormulae() { | 
|  | // This is split into multiple loops so that hasRegsUsedByUsesOtherThan | 
|  | // queries are more precise. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateReassociations(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateCombinations(LU, LUIdx, LU.Formulae[i]); | 
|  | } | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateScales(LU, LUIdx, LU.Formulae[i]); | 
|  | } | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) | 
|  | GenerateTruncates(LU, LUIdx, LU.Formulae[i]); | 
|  | } | 
|  |  | 
|  | GenerateCrossUseConstantOffsets(); | 
|  |  | 
|  | DEBUG(dbgs() << "\n" | 
|  | "After generating reuse formulae:\n"; | 
|  | print_uses(dbgs())); | 
|  | } | 
|  |  | 
|  | /// If there are multiple formulae with the same set of registers used | 
|  | /// by other uses, pick the best one and delete the others. | 
|  | void LSRInstance::FilterOutUndesirableDedicatedRegisters() { | 
|  | DenseSet<const SCEV *> VisitedRegs; | 
|  | SmallPtrSet<const SCEV *, 16> Regs; | 
|  | #ifndef NDEBUG | 
|  | bool ChangedFormulae = false; | 
|  | #endif | 
|  |  | 
|  | // Collect the best formula for each unique set of shared registers. This | 
|  | // is reset for each use. | 
|  | typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> | 
|  | BestFormulaeTy; | 
|  | BestFormulaeTy BestFormulae; | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); | 
|  |  | 
|  | bool Any = false; | 
|  | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); | 
|  | FIdx != NumForms; ++FIdx) { | 
|  | Formula &F = LU.Formulae[FIdx]; | 
|  |  | 
|  | SmallVector<const SCEV *, 2> Key; | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), | 
|  | JE = F.BaseRegs.end(); J != JE; ++J) { | 
|  | const SCEV *Reg = *J; | 
|  | if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) | 
|  | Key.push_back(Reg); | 
|  | } | 
|  | if (F.ScaledReg && | 
|  | RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) | 
|  | Key.push_back(F.ScaledReg); | 
|  | // Unstable sort by host order ok, because this is only used for | 
|  | // uniquifying. | 
|  | std::sort(Key.begin(), Key.end()); | 
|  |  | 
|  | std::pair<BestFormulaeTy::const_iterator, bool> P = | 
|  | BestFormulae.insert(std::make_pair(Key, FIdx)); | 
|  | if (!P.second) { | 
|  | Formula &Best = LU.Formulae[P.first->second]; | 
|  |  | 
|  | Cost CostF; | 
|  | CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); | 
|  | Regs.clear(); | 
|  | Cost CostBest; | 
|  | CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); | 
|  | Regs.clear(); | 
|  | if (CostF < CostBest) | 
|  | std::swap(F, Best); | 
|  | DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs()); | 
|  | dbgs() << "\n" | 
|  | "    in favor of formula "; Best.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  | #ifndef NDEBUG | 
|  | ChangedFormulae = true; | 
|  | #endif | 
|  | LU.DeleteFormula(F); | 
|  | --FIdx; | 
|  | --NumForms; | 
|  | Any = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we've filtered out some formulae, recompute the Regs set. | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  |  | 
|  | // Reset this to prepare for the next use. | 
|  | BestFormulae.clear(); | 
|  | } | 
|  |  | 
|  | DEBUG(if (ChangedFormulae) { | 
|  | dbgs() << "\n" | 
|  | "After filtering out undesirable candidates:\n"; | 
|  | print_uses(dbgs()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // This is a rough guess that seems to work fairly well. | 
|  | static const size_t ComplexityLimit = UINT16_MAX; | 
|  |  | 
|  | /// EstimateSearchSpaceComplexity - Estimate the worst-case number of | 
|  | /// solutions the solver might have to consider. It almost never considers | 
|  | /// this many solutions because it prune the search space, but the pruning | 
|  | /// isn't always sufficient. | 
|  | size_t LSRInstance::EstimateSearchSpaceComplexity() const { | 
|  | size_t Power = 1; | 
|  | for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), | 
|  | E = Uses.end(); I != E; ++I) { | 
|  | size_t FSize = I->Formulae.size(); | 
|  | if (FSize >= ComplexityLimit) { | 
|  | Power = ComplexityLimit; | 
|  | break; | 
|  | } | 
|  | Power *= FSize; | 
|  | if (Power >= ComplexityLimit) | 
|  | break; | 
|  | } | 
|  | return Power; | 
|  | } | 
|  |  | 
|  | /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset | 
|  | /// of the registers of another formula, it won't help reduce register | 
|  | /// pressure (though it may not necessarily hurt register pressure); remove | 
|  | /// it to simplify the system. | 
|  | void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { | 
|  | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " | 
|  | "which use a superset of registers used by other " | 
|  | "formulae.\n"); | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | bool Any = false; | 
|  | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LU.Formulae[i]; | 
|  | // Look for a formula with a constant or GV in a register. If the use | 
|  | // also has a formula with that same value in an immediate field, | 
|  | // delete the one that uses a register. | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator | 
|  | I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { | 
|  | Formula NewF = F; | 
|  | NewF.AM.BaseOffs += C->getValue()->getSExtValue(); | 
|  | NewF.BaseRegs.erase(NewF.BaseRegs.begin() + | 
|  | (I - F.BaseRegs.begin())); | 
|  | if (LU.HasFormulaWithSameRegs(NewF)) { | 
|  | DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n'); | 
|  | LU.DeleteFormula(F); | 
|  | --i; | 
|  | --e; | 
|  | Any = true; | 
|  | break; | 
|  | } | 
|  | } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) | 
|  | if (!F.AM.BaseGV) { | 
|  | Formula NewF = F; | 
|  | NewF.AM.BaseGV = GV; | 
|  | NewF.BaseRegs.erase(NewF.BaseRegs.begin() + | 
|  | (I - F.BaseRegs.begin())); | 
|  | if (LU.HasFormulaWithSameRegs(NewF)) { | 
|  | DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  | LU.DeleteFormula(F); | 
|  | --i; | 
|  | --e; | 
|  | Any = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "After pre-selection:\n"; | 
|  | print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers | 
|  | /// for expressions like A, A+1, A+2, etc., allocate a single register for | 
|  | /// them. | 
|  | void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { | 
|  | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | DEBUG(dbgs() << "Narrowing the search space by assuming that uses " | 
|  | "separated by a constant offset will use the same " | 
|  | "registers.\n"); | 
|  |  | 
|  | // This is especially useful for unrolled loops. | 
|  |  | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), | 
|  | E = LU.Formulae.end(); I != E; ++I) { | 
|  | const Formula &F = *I; | 
|  | if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { | 
|  | if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { | 
|  | if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, | 
|  | /*HasBaseReg=*/false, | 
|  | LU.Kind, LU.AccessTy)) { | 
|  | DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; | 
|  |  | 
|  | // Update the relocs to reference the new use. | 
|  | for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), | 
|  | E = Fixups.end(); I != E; ++I) { | 
|  | LSRFixup &Fixup = *I; | 
|  | if (Fixup.LUIdx == LUIdx) { | 
|  | Fixup.LUIdx = LUThatHas - &Uses.front(); | 
|  | Fixup.Offset += F.AM.BaseOffs; | 
|  | // Add the new offset to LUThatHas' offset list. | 
|  | if (LUThatHas->Offsets.back() != Fixup.Offset) { | 
|  | LUThatHas->Offsets.push_back(Fixup.Offset); | 
|  | if (Fixup.Offset > LUThatHas->MaxOffset) | 
|  | LUThatHas->MaxOffset = Fixup.Offset; | 
|  | if (Fixup.Offset < LUThatHas->MinOffset) | 
|  | LUThatHas->MinOffset = Fixup.Offset; | 
|  | } | 
|  | DEBUG(dbgs() << "New fixup has offset " | 
|  | << Fixup.Offset << '\n'); | 
|  | } | 
|  | if (Fixup.LUIdx == NumUses-1) | 
|  | Fixup.LUIdx = LUIdx; | 
|  | } | 
|  |  | 
|  | // Delete formulae from the new use which are no longer legal. | 
|  | bool Any = false; | 
|  | for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LUThatHas->Formulae[i]; | 
|  | if (!isLegalUse(F.AM, | 
|  | LUThatHas->MinOffset, LUThatHas->MaxOffset, | 
|  | LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { | 
|  | DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); | 
|  | dbgs() << '\n'); | 
|  | LUThatHas->DeleteFormula(F); | 
|  | --i; | 
|  | --e; | 
|  | Any = true; | 
|  | } | 
|  | } | 
|  | if (Any) | 
|  | LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); | 
|  |  | 
|  | // Delete the old use. | 
|  | DeleteUse(LU, LUIdx); | 
|  | --LUIdx; | 
|  | --NumUses; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "After pre-selection:\n"; | 
|  | print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call | 
|  | /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that | 
|  | /// we've done more filtering, as it may be able to find more formulae to | 
|  | /// eliminate. | 
|  | void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ | 
|  | if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | DEBUG(dbgs() << "Narrowing the search space by re-filtering out " | 
|  | "undesirable dedicated registers.\n"); | 
|  |  | 
|  | FilterOutUndesirableDedicatedRegisters(); | 
|  |  | 
|  | DEBUG(dbgs() << "After pre-selection:\n"; | 
|  | print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely | 
|  | /// to be profitable, and then in any use which has any reference to that | 
|  | /// register, delete all formulae which do not reference that register. | 
|  | void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { | 
|  | // With all other options exhausted, loop until the system is simple | 
|  | // enough to handle. | 
|  | SmallPtrSet<const SCEV *, 4> Taken; | 
|  | while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { | 
|  | // Ok, we have too many of formulae on our hands to conveniently handle. | 
|  | // Use a rough heuristic to thin out the list. | 
|  | DEBUG(dbgs() << "The search space is too complex.\n"); | 
|  |  | 
|  | // Pick the register which is used by the most LSRUses, which is likely | 
|  | // to be a good reuse register candidate. | 
|  | const SCEV *Best = 0; | 
|  | unsigned BestNum = 0; | 
|  | for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); | 
|  | I != E; ++I) { | 
|  | const SCEV *Reg = *I; | 
|  | if (Taken.count(Reg)) | 
|  | continue; | 
|  | if (!Best) | 
|  | Best = Reg; | 
|  | else { | 
|  | unsigned Count = RegUses.getUsedByIndices(Reg).count(); | 
|  | if (Count > BestNum) { | 
|  | Best = Reg; | 
|  | BestNum = Count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best | 
|  | << " will yield profitable reuse.\n"); | 
|  | Taken.insert(Best); | 
|  |  | 
|  | // In any use with formulae which references this register, delete formulae | 
|  | // which don't reference it. | 
|  | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { | 
|  | LSRUse &LU = Uses[LUIdx]; | 
|  | if (!LU.Regs.count(Best)) continue; | 
|  |  | 
|  | bool Any = false; | 
|  | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { | 
|  | Formula &F = LU.Formulae[i]; | 
|  | if (!F.referencesReg(Best)) { | 
|  | DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n'); | 
|  | LU.DeleteFormula(F); | 
|  | --e; | 
|  | --i; | 
|  | Any = true; | 
|  | assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Any) | 
|  | LU.RecomputeRegs(LUIdx, RegUses); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "After pre-selection:\n"; | 
|  | print_uses(dbgs())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of | 
|  | /// formulae to choose from, use some rough heuristics to prune down the number | 
|  | /// of formulae. This keeps the main solver from taking an extraordinary amount | 
|  | /// of time in some worst-case scenarios. | 
|  | void LSRInstance::NarrowSearchSpaceUsingHeuristics() { | 
|  | NarrowSearchSpaceByDetectingSupersets(); | 
|  | NarrowSearchSpaceByCollapsingUnrolledCode(); | 
|  | NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); | 
|  | NarrowSearchSpaceByPickingWinnerRegs(); | 
|  | } | 
|  |  | 
|  | /// SolveRecurse - This is the recursive solver. | 
|  | void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, | 
|  | Cost &SolutionCost, | 
|  | SmallVectorImpl<const Formula *> &Workspace, | 
|  | const Cost &CurCost, | 
|  | const SmallPtrSet<const SCEV *, 16> &CurRegs, | 
|  | DenseSet<const SCEV *> &VisitedRegs) const { | 
|  | // Some ideas: | 
|  | //  - prune more: | 
|  | //    - use more aggressive filtering | 
|  | //    - sort the formula so that the most profitable solutions are found first | 
|  | //    - sort the uses too | 
|  | //  - search faster: | 
|  | //    - don't compute a cost, and then compare. compare while computing a cost | 
|  | //      and bail early. | 
|  | //    - track register sets with SmallBitVector | 
|  |  | 
|  | const LSRUse &LU = Uses[Workspace.size()]; | 
|  |  | 
|  | // If this use references any register that's already a part of the | 
|  | // in-progress solution, consider it a requirement that a formula must | 
|  | // reference that register in order to be considered. This prunes out | 
|  | // unprofitable searching. | 
|  | SmallSetVector<const SCEV *, 4> ReqRegs; | 
|  | for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), | 
|  | E = CurRegs.end(); I != E; ++I) | 
|  | if (LU.Regs.count(*I)) | 
|  | ReqRegs.insert(*I); | 
|  |  | 
|  | bool AnySatisfiedReqRegs = false; | 
|  | SmallPtrSet<const SCEV *, 16> NewRegs; | 
|  | Cost NewCost; | 
|  | retry: | 
|  | for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), | 
|  | E = LU.Formulae.end(); I != E; ++I) { | 
|  | const Formula &F = *I; | 
|  |  | 
|  | // Ignore formulae which do not use any of the required registers. | 
|  | for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), | 
|  | JE = ReqRegs.end(); J != JE; ++J) { | 
|  | const SCEV *Reg = *J; | 
|  | if ((!F.ScaledReg || F.ScaledReg != Reg) && | 
|  | std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == | 
|  | F.BaseRegs.end()) | 
|  | goto skip; | 
|  | } | 
|  | AnySatisfiedReqRegs = true; | 
|  |  | 
|  | // Evaluate the cost of the current formula. If it's already worse than | 
|  | // the current best, prune the search at that point. | 
|  | NewCost = CurCost; | 
|  | NewRegs = CurRegs; | 
|  | NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); | 
|  | if (NewCost < SolutionCost) { | 
|  | Workspace.push_back(&F); | 
|  | if (Workspace.size() != Uses.size()) { | 
|  | SolveRecurse(Solution, SolutionCost, Workspace, NewCost, | 
|  | NewRegs, VisitedRegs); | 
|  | if (F.getNumRegs() == 1 && Workspace.size() == 1) | 
|  | VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); | 
|  | } else { | 
|  | DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); | 
|  | dbgs() << ". Regs:"; | 
|  | for (SmallPtrSet<const SCEV *, 16>::const_iterator | 
|  | I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) | 
|  | dbgs() << ' ' << **I; | 
|  | dbgs() << '\n'); | 
|  |  | 
|  | SolutionCost = NewCost; | 
|  | Solution = Workspace; | 
|  | } | 
|  | Workspace.pop_back(); | 
|  | } | 
|  | skip:; | 
|  | } | 
|  |  | 
|  | if (!EnableRetry && !AnySatisfiedReqRegs) | 
|  | return; | 
|  |  | 
|  | // If none of the formulae had all of the required registers, relax the | 
|  | // constraint so that we don't exclude all formulae. | 
|  | if (!AnySatisfiedReqRegs) { | 
|  | assert(!ReqRegs.empty() && "Solver failed even without required registers"); | 
|  | ReqRegs.clear(); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Solve - Choose one formula from each use. Return the results in the given | 
|  | /// Solution vector. | 
|  | void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { | 
|  | SmallVector<const Formula *, 8> Workspace; | 
|  | Cost SolutionCost; | 
|  | SolutionCost.Loose(); | 
|  | Cost CurCost; | 
|  | SmallPtrSet<const SCEV *, 16> CurRegs; | 
|  | DenseSet<const SCEV *> VisitedRegs; | 
|  | Workspace.reserve(Uses.size()); | 
|  |  | 
|  | // SolveRecurse does all the work. | 
|  | SolveRecurse(Solution, SolutionCost, Workspace, CurCost, | 
|  | CurRegs, VisitedRegs); | 
|  | if (Solution.empty()) { | 
|  | DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ok, we've now made all our decisions. | 
|  | DEBUG(dbgs() << "\n" | 
|  | "The chosen solution requires "; SolutionCost.print(dbgs()); | 
|  | dbgs() << ":\n"; | 
|  | for (size_t i = 0, e = Uses.size(); i != e; ++i) { | 
|  | dbgs() << "  "; | 
|  | Uses[i].print(dbgs()); | 
|  | dbgs() << "\n" | 
|  | "    "; | 
|  | Solution[i]->print(dbgs()); | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  |  | 
|  | assert(Solution.size() == Uses.size() && "Malformed solution!"); | 
|  | } | 
|  |  | 
|  | /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up | 
|  | /// the dominator tree far as we can go while still being dominated by the | 
|  | /// input positions. This helps canonicalize the insert position, which | 
|  | /// encourages sharing. | 
|  | BasicBlock::iterator | 
|  | LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, | 
|  | const SmallVectorImpl<Instruction *> &Inputs) | 
|  | const { | 
|  | for (;;) { | 
|  | const Loop *IPLoop = LI.getLoopFor(IP->getParent()); | 
|  | unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; | 
|  |  | 
|  | BasicBlock *IDom; | 
|  | for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { | 
|  | if (!Rung) return IP; | 
|  | Rung = Rung->getIDom(); | 
|  | if (!Rung) return IP; | 
|  | IDom = Rung->getBlock(); | 
|  |  | 
|  | // Don't climb into a loop though. | 
|  | const Loop *IDomLoop = LI.getLoopFor(IDom); | 
|  | unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; | 
|  | if (IDomDepth <= IPLoopDepth && | 
|  | (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool AllDominate = true; | 
|  | Instruction *BetterPos = 0; | 
|  | Instruction *Tentative = IDom->getTerminator(); | 
|  | for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), | 
|  | E = Inputs.end(); I != E; ++I) { | 
|  | Instruction *Inst = *I; | 
|  | if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { | 
|  | AllDominate = false; | 
|  | break; | 
|  | } | 
|  | // Attempt to find an insert position in the middle of the block, | 
|  | // instead of at the end, so that it can be used for other expansions. | 
|  | if (IDom == Inst->getParent() && | 
|  | (!BetterPos || DT.dominates(BetterPos, Inst))) | 
|  | BetterPos = llvm::next(BasicBlock::iterator(Inst)); | 
|  | } | 
|  | if (!AllDominate) | 
|  | break; | 
|  | if (BetterPos) | 
|  | IP = BetterPos; | 
|  | else | 
|  | IP = Tentative; | 
|  | } | 
|  |  | 
|  | return IP; | 
|  | } | 
|  |  | 
|  | /// AdjustInsertPositionForExpand - Determine an input position which will be | 
|  | /// dominated by the operands and which will dominate the result. | 
|  | BasicBlock::iterator | 
|  | LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, | 
|  | const LSRFixup &LF, | 
|  | const LSRUse &LU) const { | 
|  | // Collect some instructions which must be dominated by the | 
|  | // expanding replacement. These must be dominated by any operands that | 
|  | // will be required in the expansion. | 
|  | SmallVector<Instruction *, 4> Inputs; | 
|  | if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) | 
|  | Inputs.push_back(I); | 
|  | if (LU.Kind == LSRUse::ICmpZero) | 
|  | if (Instruction *I = | 
|  | dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) | 
|  | Inputs.push_back(I); | 
|  | if (LF.PostIncLoops.count(L)) { | 
|  | if (LF.isUseFullyOutsideLoop(L)) | 
|  | Inputs.push_back(L->getLoopLatch()->getTerminator()); | 
|  | else | 
|  | Inputs.push_back(IVIncInsertPos); | 
|  | } | 
|  | // The expansion must also be dominated by the increment positions of any | 
|  | // loops it for which it is using post-inc mode. | 
|  | for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), | 
|  | E = LF.PostIncLoops.end(); I != E; ++I) { | 
|  | const Loop *PIL = *I; | 
|  | if (PIL == L) continue; | 
|  |  | 
|  | // Be dominated by the loop exit. | 
|  | SmallVector<BasicBlock *, 4> ExitingBlocks; | 
|  | PIL->getExitingBlocks(ExitingBlocks); | 
|  | if (!ExitingBlocks.empty()) { | 
|  | BasicBlock *BB = ExitingBlocks[0]; | 
|  | for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) | 
|  | BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); | 
|  | Inputs.push_back(BB->getTerminator()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Then, climb up the immediate dominator tree as far as we can go while | 
|  | // still being dominated by the input positions. | 
|  | IP = HoistInsertPosition(IP, Inputs); | 
|  |  | 
|  | // Don't insert instructions before PHI nodes. | 
|  | while (isa<PHINode>(IP)) ++IP; | 
|  |  | 
|  | // Ignore landingpad instructions. | 
|  | while (isa<LandingPadInst>(IP)) ++IP; | 
|  |  | 
|  | // Ignore debug intrinsics. | 
|  | while (isa<DbgInfoIntrinsic>(IP)) ++IP; | 
|  |  | 
|  | return IP; | 
|  | } | 
|  |  | 
|  | /// Expand - Emit instructions for the leading candidate expression for this | 
|  | /// LSRUse (this is called "expanding"). | 
|  | Value *LSRInstance::Expand(const LSRFixup &LF, | 
|  | const Formula &F, | 
|  | BasicBlock::iterator IP, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakVH> &DeadInsts) const { | 
|  | const LSRUse &LU = Uses[LF.LUIdx]; | 
|  |  | 
|  | // Determine an input position which will be dominated by the operands and | 
|  | // which will dominate the result. | 
|  | IP = AdjustInsertPositionForExpand(IP, LF, LU); | 
|  |  | 
|  | // Inform the Rewriter if we have a post-increment use, so that it can | 
|  | // perform an advantageous expansion. | 
|  | Rewriter.setPostInc(LF.PostIncLoops); | 
|  |  | 
|  | // This is the type that the user actually needs. | 
|  | Type *OpTy = LF.OperandValToReplace->getType(); | 
|  | // This will be the type that we'll initially expand to. | 
|  | Type *Ty = F.getType(); | 
|  | if (!Ty) | 
|  | // No type known; just expand directly to the ultimate type. | 
|  | Ty = OpTy; | 
|  | else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) | 
|  | // Expand directly to the ultimate type if it's the right size. | 
|  | Ty = OpTy; | 
|  | // This is the type to do integer arithmetic in. | 
|  | Type *IntTy = SE.getEffectiveSCEVType(Ty); | 
|  |  | 
|  | // Build up a list of operands to add together to form the full base. | 
|  | SmallVector<const SCEV *, 8> Ops; | 
|  |  | 
|  | // Expand the BaseRegs portion. | 
|  | for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), | 
|  | E = F.BaseRegs.end(); I != E; ++I) { | 
|  | const SCEV *Reg = *I; | 
|  | assert(!Reg->isZero() && "Zero allocated in a base register!"); | 
|  |  | 
|  | // If we're expanding for a post-inc user, make the post-inc adjustment. | 
|  | PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); | 
|  | Reg = TransformForPostIncUse(Denormalize, Reg, | 
|  | LF.UserInst, LF.OperandValToReplace, | 
|  | Loops, SE, DT); | 
|  |  | 
|  | Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); | 
|  | } | 
|  |  | 
|  | // Flush the operand list to suppress SCEVExpander hoisting. | 
|  | if (!Ops.empty()) { | 
|  | Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SE.getUnknown(FullV)); | 
|  | } | 
|  |  | 
|  | // Expand the ScaledReg portion. | 
|  | Value *ICmpScaledV = 0; | 
|  | if (F.AM.Scale != 0) { | 
|  | const SCEV *ScaledS = F.ScaledReg; | 
|  |  | 
|  | // If we're expanding for a post-inc user, make the post-inc adjustment. | 
|  | PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); | 
|  | ScaledS = TransformForPostIncUse(Denormalize, ScaledS, | 
|  | LF.UserInst, LF.OperandValToReplace, | 
|  | Loops, SE, DT); | 
|  |  | 
|  | if (LU.Kind == LSRUse::ICmpZero) { | 
|  | // An interesting way of "folding" with an icmp is to use a negated | 
|  | // scale, which we'll implement by inserting it into the other operand | 
|  | // of the icmp. | 
|  | assert(F.AM.Scale == -1 && | 
|  | "The only scale supported by ICmpZero uses is -1!"); | 
|  | ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); | 
|  | } else { | 
|  | // Otherwise just expand the scaled register and an explicit scale, | 
|  | // which is expected to be matched as part of the address. | 
|  | ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); | 
|  | ScaledS = SE.getMulExpr(ScaledS, | 
|  | SE.getConstant(ScaledS->getType(), F.AM.Scale)); | 
|  | Ops.push_back(ScaledS); | 
|  |  | 
|  | // Flush the operand list to suppress SCEVExpander hoisting. | 
|  | Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SE.getUnknown(FullV)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the GV portion. | 
|  | if (F.AM.BaseGV) { | 
|  | Ops.push_back(SE.getUnknown(F.AM.BaseGV)); | 
|  |  | 
|  | // Flush the operand list to suppress SCEVExpander hoisting. | 
|  | Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); | 
|  | Ops.clear(); | 
|  | Ops.push_back(SE.getUnknown(FullV)); | 
|  | } | 
|  |  | 
|  | // Expand the immediate portion. | 
|  | int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; | 
|  | if (Offset != 0) { | 
|  | if (LU.Kind == LSRUse::ICmpZero) { | 
|  | // The other interesting way of "folding" with an ICmpZero is to use a | 
|  | // negated immediate. | 
|  | if (!ICmpScaledV) | 
|  | ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); | 
|  | else { | 
|  | Ops.push_back(SE.getUnknown(ICmpScaledV)); | 
|  | ICmpScaledV = ConstantInt::get(IntTy, Offset); | 
|  | } | 
|  | } else { | 
|  | // Just add the immediate values. These again are expected to be matched | 
|  | // as part of the address. | 
|  | Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the unfolded offset portion. | 
|  | int64_t UnfoldedOffset = F.UnfoldedOffset; | 
|  | if (UnfoldedOffset != 0) { | 
|  | // Just add the immediate values. | 
|  | Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, | 
|  | UnfoldedOffset))); | 
|  | } | 
|  |  | 
|  | // Emit instructions summing all the operands. | 
|  | const SCEV *FullS = Ops.empty() ? | 
|  | SE.getConstant(IntTy, 0) : | 
|  | SE.getAddExpr(Ops); | 
|  | Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); | 
|  |  | 
|  | // We're done expanding now, so reset the rewriter. | 
|  | Rewriter.clearPostInc(); | 
|  |  | 
|  | // An ICmpZero Formula represents an ICmp which we're handling as a | 
|  | // comparison against zero. Now that we've expanded an expression for that | 
|  | // form, update the ICmp's other operand. | 
|  | if (LU.Kind == LSRUse::ICmpZero) { | 
|  | ICmpInst *CI = cast<ICmpInst>(LF.UserInst); | 
|  | DeadInsts.push_back(CI->getOperand(1)); | 
|  | assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " | 
|  | "a scale at the same time!"); | 
|  | if (F.AM.Scale == -1) { | 
|  | if (ICmpScaledV->getType() != OpTy) { | 
|  | Instruction *Cast = | 
|  | CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, | 
|  | OpTy, false), | 
|  | ICmpScaledV, OpTy, "tmp", CI); | 
|  | ICmpScaledV = Cast; | 
|  | } | 
|  | CI->setOperand(1, ICmpScaledV); | 
|  | } else { | 
|  | assert(F.AM.Scale == 0 && | 
|  | "ICmp does not support folding a global value and " | 
|  | "a scale at the same time!"); | 
|  | Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), | 
|  | -(uint64_t)Offset); | 
|  | if (C->getType() != OpTy) | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | OpTy, false), | 
|  | C, OpTy); | 
|  |  | 
|  | CI->setOperand(1, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | return FullV; | 
|  | } | 
|  |  | 
|  | /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use | 
|  | /// of their operands effectively happens in their predecessor blocks, so the | 
|  | /// expression may need to be expanded in multiple places. | 
|  | void LSRInstance::RewriteForPHI(PHINode *PN, | 
|  | const LSRFixup &LF, | 
|  | const Formula &F, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakVH> &DeadInsts, | 
|  | Pass *P) const { | 
|  | DenseMap<BasicBlock *, Value *> Inserted; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == LF.OperandValToReplace) { | 
|  | BasicBlock *BB = PN->getIncomingBlock(i); | 
|  |  | 
|  | // If this is a critical edge, split the edge so that we do not insert | 
|  | // the code on all predecessor/successor paths.  We do this unless this | 
|  | // is the canonical backedge for this loop, which complicates post-inc | 
|  | // users. | 
|  | if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && | 
|  | !isa<IndirectBrInst>(BB->getTerminator())) { | 
|  | BasicBlock *Parent = PN->getParent(); | 
|  | Loop *PNLoop = LI.getLoopFor(Parent); | 
|  | if (!PNLoop || Parent != PNLoop->getHeader()) { | 
|  | // Split the critical edge. | 
|  | BasicBlock *NewBB = 0; | 
|  | if (!Parent->isLandingPad()) { | 
|  | NewBB = SplitCriticalEdge(BB, Parent, P, | 
|  | /*MergeIdenticalEdges=*/true, | 
|  | /*DontDeleteUselessPhis=*/true); | 
|  | } else { | 
|  | SmallVector<BasicBlock*, 2> NewBBs; | 
|  | SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); | 
|  | NewBB = NewBBs[0]; | 
|  | } | 
|  |  | 
|  | // If PN is outside of the loop and BB is in the loop, we want to | 
|  | // move the block to be immediately before the PHI block, not | 
|  | // immediately after BB. | 
|  | if (L->contains(BB) && !L->contains(PN)) | 
|  | NewBB->moveBefore(PN->getParent()); | 
|  |  | 
|  | // Splitting the edge can reduce the number of PHI entries we have. | 
|  | e = PN->getNumIncomingValues(); | 
|  | BB = NewBB; | 
|  | i = PN->getBasicBlockIndex(BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = | 
|  | Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); | 
|  | if (!Pair.second) | 
|  | PN->setIncomingValue(i, Pair.first->second); | 
|  | else { | 
|  | Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); | 
|  |  | 
|  | // If this is reuse-by-noop-cast, insert the noop cast. | 
|  | Type *OpTy = LF.OperandValToReplace->getType(); | 
|  | if (FullV->getType() != OpTy) | 
|  | FullV = | 
|  | CastInst::Create(CastInst::getCastOpcode(FullV, false, | 
|  | OpTy, false), | 
|  | FullV, LF.OperandValToReplace->getType(), | 
|  | "tmp", BB->getTerminator()); | 
|  |  | 
|  | PN->setIncomingValue(i, FullV); | 
|  | Pair.first->second = FullV; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Rewrite - Emit instructions for the leading candidate expression for this | 
|  | /// LSRUse (this is called "expanding"), and update the UserInst to reference | 
|  | /// the newly expanded value. | 
|  | void LSRInstance::Rewrite(const LSRFixup &LF, | 
|  | const Formula &F, | 
|  | SCEVExpander &Rewriter, | 
|  | SmallVectorImpl<WeakVH> &DeadInsts, | 
|  | Pass *P) const { | 
|  | // First, find an insertion point that dominates UserInst. For PHI nodes, | 
|  | // find the nearest block which dominates all the relevant uses. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { | 
|  | RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); | 
|  | } else { | 
|  | Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); | 
|  |  | 
|  | // If this is reuse-by-noop-cast, insert the noop cast. | 
|  | Type *OpTy = LF.OperandValToReplace->getType(); | 
|  | if (FullV->getType() != OpTy) { | 
|  | Instruction *Cast = | 
|  | CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), | 
|  | FullV, OpTy, "tmp", LF.UserInst); | 
|  | FullV = Cast; | 
|  | } | 
|  |  | 
|  | // Update the user. ICmpZero is handled specially here (for now) because | 
|  | // Expand may have updated one of the operands of the icmp already, and | 
|  | // its new value may happen to be equal to LF.OperandValToReplace, in | 
|  | // which case doing replaceUsesOfWith leads to replacing both operands | 
|  | // with the same value. TODO: Reorganize this. | 
|  | if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) | 
|  | LF.UserInst->setOperand(0, FullV); | 
|  | else | 
|  | LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); | 
|  | } | 
|  |  | 
|  | DeadInsts.push_back(LF.OperandValToReplace); | 
|  | } | 
|  |  | 
|  | /// ImplementSolution - Rewrite all the fixup locations with new values, | 
|  | /// following the chosen solution. | 
|  | void | 
|  | LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, | 
|  | Pass *P) { | 
|  | // Keep track of instructions we may have made dead, so that | 
|  | // we can remove them after we are done working. | 
|  | SmallVector<WeakVH, 16> DeadInsts; | 
|  |  | 
|  | SCEVExpander Rewriter(SE, "lsr"); | 
|  | Rewriter.disableCanonicalMode(); | 
|  | Rewriter.enableLSRMode(); | 
|  | Rewriter.setIVIncInsertPos(L, IVIncInsertPos); | 
|  |  | 
|  | // Expand the new value definitions and update the users. | 
|  | for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), | 
|  | E = Fixups.end(); I != E; ++I) { | 
|  | const LSRFixup &Fixup = *I; | 
|  |  | 
|  | Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | // Clean up after ourselves. This must be done before deleting any | 
|  | // instructions. | 
|  | Rewriter.clear(); | 
|  |  | 
|  | Changed |= DeleteTriviallyDeadInstructions(DeadInsts); | 
|  | } | 
|  |  | 
|  | LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) | 
|  | : IU(P->getAnalysis<IVUsers>()), | 
|  | SE(P->getAnalysis<ScalarEvolution>()), | 
|  | DT(P->getAnalysis<DominatorTree>()), | 
|  | LI(P->getAnalysis<LoopInfo>()), | 
|  | TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { | 
|  |  | 
|  | // If LoopSimplify form is not available, stay out of trouble. | 
|  | if (!L->isLoopSimplifyForm()) return; | 
|  |  | 
|  | // If there's no interesting work to be done, bail early. | 
|  | if (IU.empty()) return; | 
|  |  | 
|  | DEBUG(dbgs() << "\nLSR on loop "; | 
|  | WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); | 
|  | dbgs() << ":\n"); | 
|  |  | 
|  | // First, perform some low-level loop optimizations. | 
|  | OptimizeShadowIV(); | 
|  | OptimizeLoopTermCond(); | 
|  |  | 
|  | // If loop preparation eliminates all interesting IV users, bail. | 
|  | if (IU.empty()) return; | 
|  |  | 
|  | // Skip nested loops until we can model them better with formulae. | 
|  | if (!EnableNested && !L->empty()) { | 
|  |  | 
|  | if (EnablePhiElim) { | 
|  | // Remove any extra phis created by processing inner loops. | 
|  | SmallVector<WeakVH, 16> DeadInsts; | 
|  | SCEVExpander Rewriter(SE, "lsr"); | 
|  | Changed |= (Rewriter.replaceCongruentIVs(L, &DT, DeadInsts) != 0); | 
|  | Changed |= DeleteTriviallyDeadInstructions(DeadInsts); | 
|  | } | 
|  | DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Start collecting data and preparing for the solver. | 
|  | CollectInterestingTypesAndFactors(); | 
|  | CollectFixupsAndInitialFormulae(); | 
|  | CollectLoopInvariantFixupsAndFormulae(); | 
|  |  | 
|  | DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; | 
|  | print_uses(dbgs())); | 
|  |  | 
|  | // Now use the reuse data to generate a bunch of interesting ways | 
|  | // to formulate the values needed for the uses. | 
|  | GenerateAllReuseFormulae(); | 
|  |  | 
|  | FilterOutUndesirableDedicatedRegisters(); | 
|  | NarrowSearchSpaceUsingHeuristics(); | 
|  |  | 
|  | SmallVector<const Formula *, 8> Solution; | 
|  | Solve(Solution); | 
|  |  | 
|  | // Release memory that is no longer needed. | 
|  | Factors.clear(); | 
|  | Types.clear(); | 
|  | RegUses.clear(); | 
|  |  | 
|  | if (Solution.empty()) | 
|  | return; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Formulae should be legal. | 
|  | for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), | 
|  | E = Uses.end(); I != E; ++I) { | 
|  | const LSRUse &LU = *I; | 
|  | for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), | 
|  | JE = LU.Formulae.end(); J != JE; ++J) | 
|  | assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, | 
|  | LU.Kind, LU.AccessTy, TLI) && | 
|  | "Illegal formula generated!"); | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | // Now that we've decided what we want, make it so. | 
|  | ImplementSolution(Solution, P); | 
|  |  | 
|  | if (EnablePhiElim) { | 
|  | // Remove any extra phis created by processing inner loops. | 
|  | SmallVector<WeakVH, 16> DeadInsts; | 
|  | SCEVExpander Rewriter(SE, "lsr"); | 
|  | Changed |= (Rewriter.replaceCongruentIVs(L, &DT, DeadInsts) != 0); | 
|  | Changed |= DeleteTriviallyDeadInstructions(DeadInsts); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LSRInstance::print_factors_and_types(raw_ostream &OS) const { | 
|  | if (Factors.empty() && Types.empty()) return; | 
|  |  | 
|  | OS << "LSR has identified the following interesting factors and types: "; | 
|  | bool First = true; | 
|  |  | 
|  | for (SmallSetVector<int64_t, 8>::const_iterator | 
|  | I = Factors.begin(), E = Factors.end(); I != E; ++I) { | 
|  | if (!First) OS << ", "; | 
|  | First = false; | 
|  | OS << '*' << *I; | 
|  | } | 
|  |  | 
|  | for (SmallSetVector<Type *, 4>::const_iterator | 
|  | I = Types.begin(), E = Types.end(); I != E; ++I) { | 
|  | if (!First) OS << ", "; | 
|  | First = false; | 
|  | OS << '(' << **I << ')'; | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | void LSRInstance::print_fixups(raw_ostream &OS) const { | 
|  | OS << "LSR is examining the following fixup sites:\n"; | 
|  | for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), | 
|  | E = Fixups.end(); I != E; ++I) { | 
|  | dbgs() << "  "; | 
|  | I->print(OS); | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LSRInstance::print_uses(raw_ostream &OS) const { | 
|  | OS << "LSR is examining the following uses:\n"; | 
|  | for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), | 
|  | E = Uses.end(); I != E; ++I) { | 
|  | const LSRUse &LU = *I; | 
|  | dbgs() << "  "; | 
|  | LU.print(OS); | 
|  | OS << '\n'; | 
|  | for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), | 
|  | JE = LU.Formulae.end(); J != JE; ++J) { | 
|  | OS << "    "; | 
|  | J->print(OS); | 
|  | OS << '\n'; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void LSRInstance::print(raw_ostream &OS) const { | 
|  | print_factors_and_types(OS); | 
|  | print_fixups(OS); | 
|  | print_uses(OS); | 
|  | } | 
|  |  | 
|  | void LSRInstance::dump() const { | 
|  | print(errs()); errs() << '\n'; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class LoopStrengthReduce : public LoopPass { | 
|  | /// TLI - Keep a pointer of a TargetLowering to consult for determining | 
|  | /// transformation profitability. | 
|  | const TargetLowering *const TLI; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass ID, replacement for typeid | 
|  | explicit LoopStrengthReduce(const TargetLowering *tli = 0); | 
|  |  | 
|  | private: | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM); | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | char LoopStrengthReduce::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", | 
|  | "Loop Strength Reduction", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) | 
|  | INITIALIZE_PASS_DEPENDENCY(IVUsers) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) | 
|  | INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", | 
|  | "Loop Strength Reduction", false, false) | 
|  |  | 
|  |  | 
|  | Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { | 
|  | return new LoopStrengthReduce(TLI); | 
|  | } | 
|  |  | 
|  | LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) | 
|  | : LoopPass(ID), TLI(tli) { | 
|  | initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | // We split critical edges, so we change the CFG.  However, we do update | 
|  | // many analyses if they are around. | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  |  | 
|  | AU.addRequired<LoopInfo>(); | 
|  | AU.addPreserved<LoopInfo>(); | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addPreserved<DominatorTree>(); | 
|  | AU.addRequired<ScalarEvolution>(); | 
|  | AU.addPreserved<ScalarEvolution>(); | 
|  | // Requiring LoopSimplify a second time here prevents IVUsers from running | 
|  | // twice, since LoopSimplify was invalidated by running ScalarEvolution. | 
|  | AU.addRequiredID(LoopSimplifyID); | 
|  | AU.addRequired<IVUsers>(); | 
|  | AU.addPreserved<IVUsers>(); | 
|  | } | 
|  |  | 
|  | bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { | 
|  | bool Changed = false; | 
|  |  | 
|  | // Run the main LSR transformation. | 
|  | Changed |= LSRInstance(TLI, L, this).getChanged(); | 
|  |  | 
|  | // At this point, it is worth checking to see if any recurrence PHIs are also | 
|  | // dead, so that we can remove them as well. | 
|  | Changed |= DeleteDeadPHIs(L->getHeader()); | 
|  |  | 
|  | return Changed; | 
|  | } |