| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // InstructionCombining - Combine instructions to form fewer, simple | 
 | // instructions.  This pass does not modify the CFG.  This pass is where | 
 | // algebraic simplification happens. | 
 | // | 
 | // This pass combines things like: | 
 | //    %Y = add i32 %X, 1 | 
 | //    %Z = add i32 %Y, 1 | 
 | // into: | 
 | //    %Z = add i32 %X, 2 | 
 | // | 
 | // This is a simple worklist driven algorithm. | 
 | // | 
 | // This pass guarantees that the following canonicalizations are performed on | 
 | // the program: | 
 | //    1. If a binary operator has a constant operand, it is moved to the RHS | 
 | //    2. Bitwise operators with constant operands are always grouped so that | 
 | //       shifts are performed first, then or's, then and's, then xor's. | 
 | //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible | 
 | //    4. All cmp instructions on boolean values are replaced with logical ops | 
 | //    5. add X, X is represented as (X*2) => (X << 1) | 
 | //    6. Multiplies with a power-of-two constant argument are transformed into | 
 | //       shifts. | 
 | //   ... etc. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "instcombine" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "InstCombine.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/MemoryBuiltins.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/PatternMatch.h" | 
 | #include "llvm/Support/ValueHandle.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/StringSwitch.h" | 
 | #include "llvm-c/Initialization.h" | 
 | #include <algorithm> | 
 | #include <climits> | 
 | using namespace llvm; | 
 | using namespace llvm::PatternMatch; | 
 |  | 
 | STATISTIC(NumCombined , "Number of insts combined"); | 
 | STATISTIC(NumConstProp, "Number of constant folds"); | 
 | STATISTIC(NumDeadInst , "Number of dead inst eliminated"); | 
 | STATISTIC(NumSunkInst , "Number of instructions sunk"); | 
 | STATISTIC(NumExpand,    "Number of expansions"); | 
 | STATISTIC(NumFactor   , "Number of factorizations"); | 
 | STATISTIC(NumReassoc  , "Number of reassociations"); | 
 |  | 
 | // Initialization Routines | 
 | void llvm::initializeInstCombine(PassRegistry &Registry) { | 
 |   initializeInstCombinerPass(Registry); | 
 | } | 
 |  | 
 | void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { | 
 |   initializeInstCombine(*unwrap(R)); | 
 | } | 
 |  | 
 | char InstCombiner::ID = 0; | 
 | INITIALIZE_PASS(InstCombiner, "instcombine", | 
 |                 "Combine redundant instructions", false, false) | 
 |  | 
 | void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesCFG(); | 
 | } | 
 |  | 
 |  | 
 | /// ShouldChangeType - Return true if it is desirable to convert a computation | 
 | /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal | 
 | /// type for example, or from a smaller to a larger illegal type. | 
 | bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { | 
 |   assert(From->isIntegerTy() && To->isIntegerTy()); | 
 |    | 
 |   // If we don't have TD, we don't know if the source/dest are legal. | 
 |   if (!TD) return false; | 
 |    | 
 |   unsigned FromWidth = From->getPrimitiveSizeInBits(); | 
 |   unsigned ToWidth = To->getPrimitiveSizeInBits(); | 
 |   bool FromLegal = TD->isLegalInteger(FromWidth); | 
 |   bool ToLegal = TD->isLegalInteger(ToWidth); | 
 |    | 
 |   // If this is a legal integer from type, and the result would be an illegal | 
 |   // type, don't do the transformation. | 
 |   if (FromLegal && !ToLegal) | 
 |     return false; | 
 |    | 
 |   // Otherwise, if both are illegal, do not increase the size of the result. We | 
 |   // do allow things like i160 -> i64, but not i64 -> i160. | 
 |   if (!FromLegal && !ToLegal && ToWidth > FromWidth) | 
 |     return false; | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | // Return true, if No Signed Wrap should be maintained for I. | 
 | // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", | 
 | // where both B and C should be ConstantInts, results in a constant that does | 
 | // not overflow. This function only handles the Add and Sub opcodes. For | 
 | // all other opcodes, the function conservatively returns false. | 
 | static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { | 
 |   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); | 
 |   if (!OBO || !OBO->hasNoSignedWrap()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We reason about Add and Sub Only. | 
 |   Instruction::BinaryOps Opcode = I.getOpcode(); | 
 |   if (Opcode != Instruction::Add &&  | 
 |       Opcode != Instruction::Sub) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   ConstantInt *CB = dyn_cast<ConstantInt>(B); | 
 |   ConstantInt *CC = dyn_cast<ConstantInt>(C); | 
 |  | 
 |   if (!CB || !CC) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   const APInt &BVal = CB->getValue(); | 
 |   const APInt &CVal = CC->getValue(); | 
 |   bool Overflow = false; | 
 |  | 
 |   if (Opcode == Instruction::Add) { | 
 |     BVal.sadd_ov(CVal, Overflow); | 
 |   } else { | 
 |     BVal.ssub_ov(CVal, Overflow); | 
 |   } | 
 |  | 
 |   return !Overflow; | 
 | } | 
 |  | 
 | /// SimplifyAssociativeOrCommutative - This performs a few simplifications for | 
 | /// operators which are associative or commutative: | 
 | // | 
 | //  Commutative operators: | 
 | // | 
 | //  1. Order operands such that they are listed from right (least complex) to | 
 | //     left (most complex).  This puts constants before unary operators before | 
 | //     binary operators. | 
 | // | 
 | //  Associative operators: | 
 | // | 
 | //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. | 
 | //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. | 
 | // | 
 | //  Associative and commutative operators: | 
 | // | 
 | //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. | 
 | //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. | 
 | //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" | 
 | //     if C1 and C2 are constants. | 
 | // | 
 | bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { | 
 |   Instruction::BinaryOps Opcode = I.getOpcode(); | 
 |   bool Changed = false; | 
 |  | 
 |   do { | 
 |     // Order operands such that they are listed from right (least complex) to | 
 |     // left (most complex).  This puts constants before unary operators before | 
 |     // binary operators. | 
 |     if (I.isCommutative() && getComplexity(I.getOperand(0)) < | 
 |         getComplexity(I.getOperand(1))) | 
 |       Changed = !I.swapOperands(); | 
 |  | 
 |     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); | 
 |     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); | 
 |  | 
 |     if (I.isAssociative()) { | 
 |       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. | 
 |       if (Op0 && Op0->getOpcode() == Opcode) { | 
 |         Value *A = Op0->getOperand(0); | 
 |         Value *B = Op0->getOperand(1); | 
 |         Value *C = I.getOperand(1); | 
 |  | 
 |         // Does "B op C" simplify? | 
 |         if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) { | 
 |           // It simplifies to V.  Form "A op V". | 
 |           I.setOperand(0, A); | 
 |           I.setOperand(1, V); | 
 |           // Conservatively clear the optional flags, since they may not be | 
 |           // preserved by the reassociation. | 
 |           if (MaintainNoSignedWrap(I, B, C) && | 
 | 	      (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { | 
 |             // Note: this is only valid because SimplifyBinOp doesn't look at | 
 |             // the operands to Op0. | 
 |             I.clearSubclassOptionalData(); | 
 |             I.setHasNoSignedWrap(true); | 
 |           } else { | 
 |             I.clearSubclassOptionalData(); | 
 |           } | 
 |              | 
 |           Changed = true; | 
 |           ++NumReassoc; | 
 |           continue; | 
 |         } | 
 |       } | 
 |  | 
 |       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. | 
 |       if (Op1 && Op1->getOpcode() == Opcode) { | 
 |         Value *A = I.getOperand(0); | 
 |         Value *B = Op1->getOperand(0); | 
 |         Value *C = Op1->getOperand(1); | 
 |  | 
 |         // Does "A op B" simplify? | 
 |         if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) { | 
 |           // It simplifies to V.  Form "V op C". | 
 |           I.setOperand(0, V); | 
 |           I.setOperand(1, C); | 
 |           // Conservatively clear the optional flags, since they may not be | 
 |           // preserved by the reassociation. | 
 |           I.clearSubclassOptionalData(); | 
 |           Changed = true; | 
 |           ++NumReassoc; | 
 |           continue; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (I.isAssociative() && I.isCommutative()) { | 
 |       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. | 
 |       if (Op0 && Op0->getOpcode() == Opcode) { | 
 |         Value *A = Op0->getOperand(0); | 
 |         Value *B = Op0->getOperand(1); | 
 |         Value *C = I.getOperand(1); | 
 |  | 
 |         // Does "C op A" simplify? | 
 |         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { | 
 |           // It simplifies to V.  Form "V op B". | 
 |           I.setOperand(0, V); | 
 |           I.setOperand(1, B); | 
 |           // Conservatively clear the optional flags, since they may not be | 
 |           // preserved by the reassociation. | 
 |           I.clearSubclassOptionalData(); | 
 |           Changed = true; | 
 |           ++NumReassoc; | 
 |           continue; | 
 |         } | 
 |       } | 
 |  | 
 |       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. | 
 |       if (Op1 && Op1->getOpcode() == Opcode) { | 
 |         Value *A = I.getOperand(0); | 
 |         Value *B = Op1->getOperand(0); | 
 |         Value *C = Op1->getOperand(1); | 
 |  | 
 |         // Does "C op A" simplify? | 
 |         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { | 
 |           // It simplifies to V.  Form "B op V". | 
 |           I.setOperand(0, B); | 
 |           I.setOperand(1, V); | 
 |           // Conservatively clear the optional flags, since they may not be | 
 |           // preserved by the reassociation. | 
 |           I.clearSubclassOptionalData(); | 
 |           Changed = true; | 
 |           ++NumReassoc; | 
 |           continue; | 
 |         } | 
 |       } | 
 |  | 
 |       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" | 
 |       // if C1 and C2 are constants. | 
 |       if (Op0 && Op1 && | 
 |           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && | 
 |           isa<Constant>(Op0->getOperand(1)) && | 
 |           isa<Constant>(Op1->getOperand(1)) && | 
 |           Op0->hasOneUse() && Op1->hasOneUse()) { | 
 |         Value *A = Op0->getOperand(0); | 
 |         Constant *C1 = cast<Constant>(Op0->getOperand(1)); | 
 |         Value *B = Op1->getOperand(0); | 
 |         Constant *C2 = cast<Constant>(Op1->getOperand(1)); | 
 |  | 
 |         Constant *Folded = ConstantExpr::get(Opcode, C1, C2); | 
 |         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); | 
 |         InsertNewInstWith(New, I); | 
 |         New->takeName(Op1); | 
 |         I.setOperand(0, New); | 
 |         I.setOperand(1, Folded); | 
 |         // Conservatively clear the optional flags, since they may not be | 
 |         // preserved by the reassociation. | 
 |         I.clearSubclassOptionalData(); | 
 |  | 
 |         Changed = true; | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     // No further simplifications. | 
 |     return Changed; | 
 |   } while (1); | 
 | } | 
 |  | 
 | /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to | 
 | /// "(X LOp Y) ROp (X LOp Z)". | 
 | static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, | 
 |                                      Instruction::BinaryOps ROp) { | 
 |   switch (LOp) { | 
 |   default: | 
 |     return false; | 
 |  | 
 |   case Instruction::And: | 
 |     // And distributes over Or and Xor. | 
 |     switch (ROp) { | 
 |     default: | 
 |       return false; | 
 |     case Instruction::Or: | 
 |     case Instruction::Xor: | 
 |       return true; | 
 |     } | 
 |  | 
 |   case Instruction::Mul: | 
 |     // Multiplication distributes over addition and subtraction. | 
 |     switch (ROp) { | 
 |     default: | 
 |       return false; | 
 |     case Instruction::Add: | 
 |     case Instruction::Sub: | 
 |       return true; | 
 |     } | 
 |  | 
 |   case Instruction::Or: | 
 |     // Or distributes over And. | 
 |     switch (ROp) { | 
 |     default: | 
 |       return false; | 
 |     case Instruction::And: | 
 |       return true; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to | 
 | /// "(X ROp Z) LOp (Y ROp Z)". | 
 | static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, | 
 |                                      Instruction::BinaryOps ROp) { | 
 |   if (Instruction::isCommutative(ROp)) | 
 |     return LeftDistributesOverRight(ROp, LOp); | 
 |   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", | 
 |   // but this requires knowing that the addition does not overflow and other | 
 |   // such subtleties. | 
 |   return false; | 
 | } | 
 |  | 
 | /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations | 
 | /// which some other binary operation distributes over either by factorizing | 
 | /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this | 
 | /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is | 
 | /// a win).  Returns the simplified value, or null if it didn't simplify. | 
 | Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { | 
 |   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
 |   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); | 
 |   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); | 
 |   Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op | 
 |  | 
 |   // Factorization. | 
 |   if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { | 
 |     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize | 
 |     // a common term. | 
 |     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); | 
 |     Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); | 
 |     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' | 
 |  | 
 |     // Does "X op' Y" always equal "Y op' X"? | 
 |     bool InnerCommutative = Instruction::isCommutative(InnerOpcode); | 
 |  | 
 |     // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? | 
 |     if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) | 
 |       // Does the instruction have the form "(A op' B) op (A op' D)" or, in the | 
 |       // commutative case, "(A op' B) op (C op' A)"? | 
 |       if (A == C || (InnerCommutative && A == D)) { | 
 |         if (A != C) | 
 |           std::swap(C, D); | 
 |         // Consider forming "A op' (B op D)". | 
 |         // If "B op D" simplifies then it can be formed with no cost. | 
 |         Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD); | 
 |         // If "B op D" doesn't simplify then only go on if both of the existing | 
 |         // operations "A op' B" and "C op' D" will be zapped as no longer used. | 
 |         if (!V && Op0->hasOneUse() && Op1->hasOneUse()) | 
 |           V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); | 
 |         if (V) { | 
 |           ++NumFactor; | 
 |           V = Builder->CreateBinOp(InnerOpcode, A, V); | 
 |           V->takeName(&I); | 
 |           return V; | 
 |         } | 
 |       } | 
 |  | 
 |     // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? | 
 |     if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) | 
 |       // Does the instruction have the form "(A op' B) op (C op' B)" or, in the | 
 |       // commutative case, "(A op' B) op (B op' D)"? | 
 |       if (B == D || (InnerCommutative && B == C)) { | 
 |         if (B != D) | 
 |           std::swap(C, D); | 
 |         // Consider forming "(A op C) op' B". | 
 |         // If "A op C" simplifies then it can be formed with no cost. | 
 |         Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD); | 
 |         // If "A op C" doesn't simplify then only go on if both of the existing | 
 |         // operations "A op' B" and "C op' D" will be zapped as no longer used. | 
 |         if (!V && Op0->hasOneUse() && Op1->hasOneUse()) | 
 |           V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); | 
 |         if (V) { | 
 |           ++NumFactor; | 
 |           V = Builder->CreateBinOp(InnerOpcode, V, B); | 
 |           V->takeName(&I); | 
 |           return V; | 
 |         } | 
 |       } | 
 |   } | 
 |  | 
 |   // Expansion. | 
 |   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { | 
 |     // The instruction has the form "(A op' B) op C".  See if expanding it out | 
 |     // to "(A op C) op' (B op C)" results in simplifications. | 
 |     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; | 
 |     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' | 
 |  | 
 |     // Do "A op C" and "B op C" both simplify? | 
 |     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD)) | 
 |       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) { | 
 |         // They do! Return "L op' R". | 
 |         ++NumExpand; | 
 |         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. | 
 |         if ((L == A && R == B) || | 
 |             (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) | 
 |           return Op0; | 
 |         // Otherwise return "L op' R" if it simplifies. | 
 |         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) | 
 |           return V; | 
 |         // Otherwise, create a new instruction. | 
 |         C = Builder->CreateBinOp(InnerOpcode, L, R); | 
 |         C->takeName(&I); | 
 |         return C; | 
 |       } | 
 |   } | 
 |  | 
 |   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { | 
 |     // The instruction has the form "A op (B op' C)".  See if expanding it out | 
 |     // to "(A op B) op' (A op C)" results in simplifications. | 
 |     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); | 
 |     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' | 
 |  | 
 |     // Do "A op B" and "A op C" both simplify? | 
 |     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD)) | 
 |       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) { | 
 |         // They do! Return "L op' R". | 
 |         ++NumExpand; | 
 |         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. | 
 |         if ((L == B && R == C) || | 
 |             (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) | 
 |           return Op1; | 
 |         // Otherwise return "L op' R" if it simplifies. | 
 |         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) | 
 |           return V; | 
 |         // Otherwise, create a new instruction. | 
 |         A = Builder->CreateBinOp(InnerOpcode, L, R); | 
 |         A->takeName(&I); | 
 |         return A; | 
 |       } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction | 
 | // if the LHS is a constant zero (which is the 'negate' form). | 
 | // | 
 | Value *InstCombiner::dyn_castNegVal(Value *V) const { | 
 |   if (BinaryOperator::isNeg(V)) | 
 |     return BinaryOperator::getNegArgument(V); | 
 |  | 
 |   // Constants can be considered to be negated values if they can be folded. | 
 |   if (ConstantInt *C = dyn_cast<ConstantInt>(V)) | 
 |     return ConstantExpr::getNeg(C); | 
 |  | 
 |   if (ConstantVector *C = dyn_cast<ConstantVector>(V)) | 
 |     if (C->getType()->getElementType()->isIntegerTy()) | 
 |       return ConstantExpr::getNeg(C); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the | 
 | // instruction if the LHS is a constant negative zero (which is the 'negate' | 
 | // form). | 
 | // | 
 | Value *InstCombiner::dyn_castFNegVal(Value *V) const { | 
 |   if (BinaryOperator::isFNeg(V)) | 
 |     return BinaryOperator::getFNegArgument(V); | 
 |  | 
 |   // Constants can be considered to be negated values if they can be folded. | 
 |   if (ConstantFP *C = dyn_cast<ConstantFP>(V)) | 
 |     return ConstantExpr::getFNeg(C); | 
 |  | 
 |   if (ConstantVector *C = dyn_cast<ConstantVector>(V)) | 
 |     if (C->getType()->getElementType()->isFloatingPointTy()) | 
 |       return ConstantExpr::getFNeg(C); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, | 
 |                                              InstCombiner *IC) { | 
 |   if (CastInst *CI = dyn_cast<CastInst>(&I)) { | 
 |     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); | 
 |   } | 
 |  | 
 |   // Figure out if the constant is the left or the right argument. | 
 |   bool ConstIsRHS = isa<Constant>(I.getOperand(1)); | 
 |   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); | 
 |  | 
 |   if (Constant *SOC = dyn_cast<Constant>(SO)) { | 
 |     if (ConstIsRHS) | 
 |       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); | 
 |     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); | 
 |   } | 
 |  | 
 |   Value *Op0 = SO, *Op1 = ConstOperand; | 
 |   if (!ConstIsRHS) | 
 |     std::swap(Op0, Op1); | 
 |    | 
 |   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) | 
 |     return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, | 
 |                                     SO->getName()+".op"); | 
 |   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) | 
 |     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, | 
 |                                    SO->getName()+".cmp"); | 
 |   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) | 
 |     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, | 
 |                                    SO->getName()+".cmp"); | 
 |   llvm_unreachable("Unknown binary instruction type!"); | 
 | } | 
 |  | 
 | // FoldOpIntoSelect - Given an instruction with a select as one operand and a | 
 | // constant as the other operand, try to fold the binary operator into the | 
 | // select arguments.  This also works for Cast instructions, which obviously do | 
 | // not have a second operand. | 
 | Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { | 
 |   // Don't modify shared select instructions | 
 |   if (!SI->hasOneUse()) return 0; | 
 |   Value *TV = SI->getOperand(1); | 
 |   Value *FV = SI->getOperand(2); | 
 |  | 
 |   if (isa<Constant>(TV) || isa<Constant>(FV)) { | 
 |     // Bool selects with constant operands can be folded to logical ops. | 
 |     if (SI->getType()->isIntegerTy(1)) return 0; | 
 |  | 
 |     // If it's a bitcast involving vectors, make sure it has the same number of | 
 |     // elements on both sides. | 
 |     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { | 
 |       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); | 
 |       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); | 
 |  | 
 |       // Verify that either both or neither are vectors. | 
 |       if ((SrcTy == NULL) != (DestTy == NULL)) return 0; | 
 |       // If vectors, verify that they have the same number of elements. | 
 |       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) | 
 |         return 0; | 
 |     } | 
 |      | 
 |     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); | 
 |     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); | 
 |  | 
 |     return SelectInst::Create(SI->getCondition(), | 
 |                               SelectTrueVal, SelectFalseVal); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which | 
 | /// has a PHI node as operand #0, see if we can fold the instruction into the | 
 | /// PHI (which is only possible if all operands to the PHI are constants). | 
 | /// | 
 | Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { | 
 |   PHINode *PN = cast<PHINode>(I.getOperand(0)); | 
 |   unsigned NumPHIValues = PN->getNumIncomingValues(); | 
 |   if (NumPHIValues == 0) | 
 |     return 0; | 
 |    | 
 |   // We normally only transform phis with a single use.  However, if a PHI has | 
 |   // multiple uses and they are all the same operation, we can fold *all* of the | 
 |   // uses into the PHI. | 
 |   if (!PN->hasOneUse()) { | 
 |     // Walk the use list for the instruction, comparing them to I. | 
 |     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); | 
 |          UI != E; ++UI) { | 
 |       Instruction *User = cast<Instruction>(*UI); | 
 |       if (User != &I && !I.isIdenticalTo(User)) | 
 |         return 0; | 
 |     } | 
 |     // Otherwise, we can replace *all* users with the new PHI we form. | 
 |   } | 
 |    | 
 |   // Check to see if all of the operands of the PHI are simple constants | 
 |   // (constantint/constantfp/undef).  If there is one non-constant value, | 
 |   // remember the BB it is in.  If there is more than one or if *it* is a PHI, | 
 |   // bail out.  We don't do arbitrary constant expressions here because moving | 
 |   // their computation can be expensive without a cost model. | 
 |   BasicBlock *NonConstBB = 0; | 
 |   for (unsigned i = 0; i != NumPHIValues; ++i) { | 
 |     Value *InVal = PN->getIncomingValue(i); | 
 |     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) | 
 |       continue; | 
 |  | 
 |     if (isa<PHINode>(InVal)) return 0;  // Itself a phi. | 
 |     if (NonConstBB) return 0;  // More than one non-const value. | 
 |      | 
 |     NonConstBB = PN->getIncomingBlock(i); | 
 |  | 
 |     // If the InVal is an invoke at the end of the pred block, then we can't | 
 |     // insert a computation after it without breaking the edge. | 
 |     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) | 
 |       if (II->getParent() == NonConstBB) | 
 |         return 0; | 
 |      | 
 |     // If the incoming non-constant value is in I's block, we will remove one | 
 |     // instruction, but insert another equivalent one, leading to infinite | 
 |     // instcombine. | 
 |     if (NonConstBB == I.getParent()) | 
 |       return 0; | 
 |   } | 
 |    | 
 |   // If there is exactly one non-constant value, we can insert a copy of the | 
 |   // operation in that block.  However, if this is a critical edge, we would be | 
 |   // inserting the computation one some other paths (e.g. inside a loop).  Only | 
 |   // do this if the pred block is unconditionally branching into the phi block. | 
 |   if (NonConstBB != 0) { | 
 |     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); | 
 |     if (!BI || !BI->isUnconditional()) return 0; | 
 |   } | 
 |  | 
 |   // Okay, we can do the transformation: create the new PHI node. | 
 |   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); | 
 |   InsertNewInstBefore(NewPN, *PN); | 
 |   NewPN->takeName(PN); | 
 |    | 
 |   // If we are going to have to insert a new computation, do so right before the | 
 |   // predecessors terminator. | 
 |   if (NonConstBB) | 
 |     Builder->SetInsertPoint(NonConstBB->getTerminator()); | 
 |    | 
 |   // Next, add all of the operands to the PHI. | 
 |   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { | 
 |     // We only currently try to fold the condition of a select when it is a phi, | 
 |     // not the true/false values. | 
 |     Value *TrueV = SI->getTrueValue(); | 
 |     Value *FalseV = SI->getFalseValue(); | 
 |     BasicBlock *PhiTransBB = PN->getParent(); | 
 |     for (unsigned i = 0; i != NumPHIValues; ++i) { | 
 |       BasicBlock *ThisBB = PN->getIncomingBlock(i); | 
 |       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); | 
 |       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); | 
 |       Value *InV = 0; | 
 |       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) | 
 |         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; | 
 |       else | 
 |         InV = Builder->CreateSelect(PN->getIncomingValue(i), | 
 |                                     TrueVInPred, FalseVInPred, "phitmp"); | 
 |       NewPN->addIncoming(InV, ThisBB); | 
 |     } | 
 |   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { | 
 |     Constant *C = cast<Constant>(I.getOperand(1)); | 
 |     for (unsigned i = 0; i != NumPHIValues; ++i) { | 
 |       Value *InV = 0; | 
 |       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) | 
 |         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); | 
 |       else if (isa<ICmpInst>(CI)) | 
 |         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), | 
 |                                   C, "phitmp"); | 
 |       else | 
 |         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), | 
 |                                   C, "phitmp"); | 
 |       NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
 |     } | 
 |   } else if (I.getNumOperands() == 2) { | 
 |     Constant *C = cast<Constant>(I.getOperand(1)); | 
 |     for (unsigned i = 0; i != NumPHIValues; ++i) { | 
 |       Value *InV = 0; | 
 |       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) | 
 |         InV = ConstantExpr::get(I.getOpcode(), InC, C); | 
 |       else | 
 |         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), | 
 |                                    PN->getIncomingValue(i), C, "phitmp"); | 
 |       NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
 |     } | 
 |   } else {  | 
 |     CastInst *CI = cast<CastInst>(&I); | 
 |     Type *RetTy = CI->getType(); | 
 |     for (unsigned i = 0; i != NumPHIValues; ++i) { | 
 |       Value *InV; | 
 |       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) | 
 |         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); | 
 |       else  | 
 |         InV = Builder->CreateCast(CI->getOpcode(), | 
 |                                 PN->getIncomingValue(i), I.getType(), "phitmp"); | 
 |       NewPN->addIncoming(InV, PN->getIncomingBlock(i)); | 
 |     } | 
 |   } | 
 |    | 
 |   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); | 
 |        UI != E; ) { | 
 |     Instruction *User = cast<Instruction>(*UI++); | 
 |     if (User == &I) continue; | 
 |     ReplaceInstUsesWith(*User, NewPN); | 
 |     EraseInstFromFunction(*User); | 
 |   } | 
 |   return ReplaceInstUsesWith(I, NewPN); | 
 | } | 
 |  | 
 | /// FindElementAtOffset - Given a type and a constant offset, determine whether | 
 | /// or not there is a sequence of GEP indices into the type that will land us at | 
 | /// the specified offset.  If so, fill them into NewIndices and return the | 
 | /// resultant element type, otherwise return null. | 
 | Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,  | 
 |                                           SmallVectorImpl<Value*> &NewIndices) { | 
 |   if (!TD) return 0; | 
 |   if (!Ty->isSized()) return 0; | 
 |    | 
 |   // Start with the index over the outer type.  Note that the type size | 
 |   // might be zero (even if the offset isn't zero) if the indexed type | 
 |   // is something like [0 x {int, int}] | 
 |   Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); | 
 |   int64_t FirstIdx = 0; | 
 |   if (int64_t TySize = TD->getTypeAllocSize(Ty)) { | 
 |     FirstIdx = Offset/TySize; | 
 |     Offset -= FirstIdx*TySize; | 
 |      | 
 |     // Handle hosts where % returns negative instead of values [0..TySize). | 
 |     if (Offset < 0) { | 
 |       --FirstIdx; | 
 |       Offset += TySize; | 
 |       assert(Offset >= 0); | 
 |     } | 
 |     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); | 
 |   } | 
 |    | 
 |   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); | 
 |      | 
 |   // Index into the types.  If we fail, set OrigBase to null. | 
 |   while (Offset) { | 
 |     // Indexing into tail padding between struct/array elements. | 
 |     if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) | 
 |       return 0; | 
 |      | 
 |     if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |       const StructLayout *SL = TD->getStructLayout(STy); | 
 |       assert(Offset < (int64_t)SL->getSizeInBytes() && | 
 |              "Offset must stay within the indexed type"); | 
 |        | 
 |       unsigned Elt = SL->getElementContainingOffset(Offset); | 
 |       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), | 
 |                                             Elt)); | 
 |        | 
 |       Offset -= SL->getElementOffset(Elt); | 
 |       Ty = STy->getElementType(Elt); | 
 |     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { | 
 |       uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); | 
 |       assert(EltSize && "Cannot index into a zero-sized array"); | 
 |       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); | 
 |       Offset %= EltSize; | 
 |       Ty = AT->getElementType(); | 
 |     } else { | 
 |       // Otherwise, we can't index into the middle of this atomic type, bail. | 
 |       return 0; | 
 |     } | 
 |   } | 
 |    | 
 |   return Ty; | 
 | } | 
 |  | 
 | static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { | 
 |   // If this GEP has only 0 indices, it is the same pointer as | 
 |   // Src. If Src is not a trivial GEP too, don't combine | 
 |   // the indices. | 
 |   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && | 
 |       !Src.hasOneUse()) | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 | Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { | 
 |   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); | 
 |  | 
 |   if (Value *V = SimplifyGEPInst(Ops, TD)) | 
 |     return ReplaceInstUsesWith(GEP, V); | 
 |  | 
 |   Value *PtrOp = GEP.getOperand(0); | 
 |  | 
 |   // Eliminate unneeded casts for indices, and replace indices which displace | 
 |   // by multiples of a zero size type with zero. | 
 |   if (TD) { | 
 |     bool MadeChange = false; | 
 |     Type *IntPtrTy = TD->getIntPtrType(GEP.getContext()); | 
 |  | 
 |     gep_type_iterator GTI = gep_type_begin(GEP); | 
 |     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); | 
 |          I != E; ++I, ++GTI) { | 
 |       // Skip indices into struct types. | 
 |       SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); | 
 |       if (!SeqTy) continue; | 
 |  | 
 |       // If the element type has zero size then any index over it is equivalent | 
 |       // to an index of zero, so replace it with zero if it is not zero already. | 
 |       if (SeqTy->getElementType()->isSized() && | 
 |           TD->getTypeAllocSize(SeqTy->getElementType()) == 0) | 
 |         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { | 
 |           *I = Constant::getNullValue(IntPtrTy); | 
 |           MadeChange = true; | 
 |         } | 
 |  | 
 |       if ((*I)->getType() != IntPtrTy) { | 
 |         // If we are using a wider index than needed for this platform, shrink | 
 |         // it to what we need.  If narrower, sign-extend it to what we need. | 
 |         // This explicit cast can make subsequent optimizations more obvious. | 
 |         *I = Builder->CreateIntCast(*I, IntPtrTy, true); | 
 |         MadeChange = true; | 
 |       } | 
 |     } | 
 |     if (MadeChange) return &GEP; | 
 |   } | 
 |  | 
 |   // Combine Indices - If the source pointer to this getelementptr instruction | 
 |   // is a getelementptr instruction, combine the indices of the two | 
 |   // getelementptr instructions into a single instruction. | 
 |   // | 
 |   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { | 
 |     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) | 
 |       return 0; | 
 |  | 
 |     // Note that if our source is a gep chain itself that we wait for that | 
 |     // chain to be resolved before we perform this transformation.  This | 
 |     // avoids us creating a TON of code in some cases. | 
 |     if (GEPOperator *SrcGEP = | 
 |           dyn_cast<GEPOperator>(Src->getOperand(0))) | 
 |       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) | 
 |         return 0;   // Wait until our source is folded to completion. | 
 |  | 
 |     SmallVector<Value*, 8> Indices; | 
 |  | 
 |     // Find out whether the last index in the source GEP is a sequential idx. | 
 |     bool EndsWithSequential = false; | 
 |     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); | 
 |          I != E; ++I) | 
 |       EndsWithSequential = !(*I)->isStructTy(); | 
 |  | 
 |     // Can we combine the two pointer arithmetics offsets? | 
 |     if (EndsWithSequential) { | 
 |       // Replace: gep (gep %P, long B), long A, ... | 
 |       // With:    T = long A+B; gep %P, T, ... | 
 |       // | 
 |       Value *Sum; | 
 |       Value *SO1 = Src->getOperand(Src->getNumOperands()-1); | 
 |       Value *GO1 = GEP.getOperand(1); | 
 |       if (SO1 == Constant::getNullValue(SO1->getType())) { | 
 |         Sum = GO1; | 
 |       } else if (GO1 == Constant::getNullValue(GO1->getType())) { | 
 |         Sum = SO1; | 
 |       } else { | 
 |         // If they aren't the same type, then the input hasn't been processed | 
 |         // by the loop above yet (which canonicalizes sequential index types to | 
 |         // intptr_t).  Just avoid transforming this until the input has been | 
 |         // normalized. | 
 |         if (SO1->getType() != GO1->getType()) | 
 |           return 0; | 
 |         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); | 
 |       } | 
 |  | 
 |       // Update the GEP in place if possible. | 
 |       if (Src->getNumOperands() == 2) { | 
 |         GEP.setOperand(0, Src->getOperand(0)); | 
 |         GEP.setOperand(1, Sum); | 
 |         return &GEP; | 
 |       } | 
 |       Indices.append(Src->op_begin()+1, Src->op_end()-1); | 
 |       Indices.push_back(Sum); | 
 |       Indices.append(GEP.op_begin()+2, GEP.op_end()); | 
 |     } else if (isa<Constant>(*GEP.idx_begin()) && | 
 |                cast<Constant>(*GEP.idx_begin())->isNullValue() && | 
 |                Src->getNumOperands() != 1) { | 
 |       // Otherwise we can do the fold if the first index of the GEP is a zero | 
 |       Indices.append(Src->op_begin()+1, Src->op_end()); | 
 |       Indices.append(GEP.idx_begin()+1, GEP.idx_end()); | 
 |     } | 
 |  | 
 |     if (!Indices.empty()) | 
 |       return (GEP.isInBounds() && Src->isInBounds()) ? | 
 |         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices, | 
 |                                           GEP.getName()) : | 
 |         GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName()); | 
 |   } | 
 |  | 
 |   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). | 
 |   Value *StrippedPtr = PtrOp->stripPointerCasts(); | 
 |   PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType()); | 
 |   if (StrippedPtr != PtrOp && | 
 |     StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { | 
 |  | 
 |     bool HasZeroPointerIndex = false; | 
 |     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) | 
 |       HasZeroPointerIndex = C->isZero(); | 
 |  | 
 |     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... | 
 |     // into     : GEP [10 x i8]* X, i32 0, ... | 
 |     // | 
 |     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... | 
 |     //           into     : GEP i8* X, ... | 
 |     // | 
 |     // This occurs when the program declares an array extern like "int X[];" | 
 |     if (HasZeroPointerIndex) { | 
 |       PointerType *CPTy = cast<PointerType>(PtrOp->getType()); | 
 |       if (ArrayType *CATy = | 
 |           dyn_cast<ArrayType>(CPTy->getElementType())) { | 
 |         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? | 
 |         if (CATy->getElementType() == StrippedPtrTy->getElementType()) { | 
 |           // -> GEP i8* X, ... | 
 |           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); | 
 |           GetElementPtrInst *Res = | 
 |             GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName()); | 
 |           Res->setIsInBounds(GEP.isInBounds()); | 
 |           return Res; | 
 |         } | 
 |          | 
 |         if (ArrayType *XATy = | 
 |               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ | 
 |           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? | 
 |           if (CATy->getElementType() == XATy->getElementType()) { | 
 |             // -> GEP [10 x i8]* X, i32 0, ... | 
 |             // At this point, we know that the cast source type is a pointer | 
 |             // to an array of the same type as the destination pointer | 
 |             // array.  Because the array type is never stepped over (there | 
 |             // is a leading zero) we can fold the cast into this GEP. | 
 |             GEP.setOperand(0, StrippedPtr); | 
 |             return &GEP; | 
 |           } | 
 |         } | 
 |       } | 
 |     } else if (GEP.getNumOperands() == 2) { | 
 |       // Transform things like: | 
 |       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V | 
 |       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast | 
 |       Type *SrcElTy = StrippedPtrTy->getElementType(); | 
 |       Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); | 
 |       if (TD && SrcElTy->isArrayTy() && | 
 |           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == | 
 |           TD->getTypeAllocSize(ResElTy)) { | 
 |         Value *Idx[2]; | 
 |         Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); | 
 |         Idx[1] = GEP.getOperand(1); | 
 |         Value *NewGEP = GEP.isInBounds() ? | 
 |           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : | 
 |           Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); | 
 |         // V and GEP are both pointer types --> BitCast | 
 |         return new BitCastInst(NewGEP, GEP.getType()); | 
 |       } | 
 |        | 
 |       // Transform things like: | 
 |       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp | 
 |       //   (where tmp = 8*tmp2) into: | 
 |       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast | 
 |        | 
 |       if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) { | 
 |         uint64_t ArrayEltSize = | 
 |             TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); | 
 |          | 
 |         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We | 
 |         // allow either a mul, shift, or constant here. | 
 |         Value *NewIdx = 0; | 
 |         ConstantInt *Scale = 0; | 
 |         if (ArrayEltSize == 1) { | 
 |           NewIdx = GEP.getOperand(1); | 
 |           Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); | 
 |         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { | 
 |           NewIdx = ConstantInt::get(CI->getType(), 1); | 
 |           Scale = CI; | 
 |         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ | 
 |           if (Inst->getOpcode() == Instruction::Shl && | 
 |               isa<ConstantInt>(Inst->getOperand(1))) { | 
 |             ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); | 
 |             uint32_t ShAmtVal = ShAmt->getLimitedValue(64); | 
 |             Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), | 
 |                                      1ULL << ShAmtVal); | 
 |             NewIdx = Inst->getOperand(0); | 
 |           } else if (Inst->getOpcode() == Instruction::Mul && | 
 |                      isa<ConstantInt>(Inst->getOperand(1))) { | 
 |             Scale = cast<ConstantInt>(Inst->getOperand(1)); | 
 |             NewIdx = Inst->getOperand(0); | 
 |           } | 
 |         } | 
 |          | 
 |         // If the index will be to exactly the right offset with the scale taken | 
 |         // out, perform the transformation. Note, we don't know whether Scale is | 
 |         // signed or not. We'll use unsigned version of division/modulo | 
 |         // operation after making sure Scale doesn't have the sign bit set. | 
 |         if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && | 
 |             Scale->getZExtValue() % ArrayEltSize == 0) { | 
 |           Scale = ConstantInt::get(Scale->getType(), | 
 |                                    Scale->getZExtValue() / ArrayEltSize); | 
 |           if (Scale->getZExtValue() != 1) { | 
 |             Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), | 
 |                                                        false /*ZExt*/); | 
 |             NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); | 
 |           } | 
 |  | 
 |           // Insert the new GEP instruction. | 
 |           Value *Idx[2]; | 
 |           Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); | 
 |           Idx[1] = NewIdx; | 
 |           Value *NewGEP = GEP.isInBounds() ? | 
 |             Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()): | 
 |             Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); | 
 |           // The NewGEP must be pointer typed, so must the old one -> BitCast | 
 |           return new BitCastInst(NewGEP, GEP.getType()); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /// See if we can simplify: | 
 |   ///   X = bitcast A* to B* | 
 |   ///   Y = gep X, <...constant indices...> | 
 |   /// into a gep of the original struct.  This is important for SROA and alias | 
 |   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged. | 
 |   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { | 
 |     if (TD && | 
 |         !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() && | 
 |         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { | 
 |  | 
 |       // Determine how much the GEP moves the pointer.  We are guaranteed to get | 
 |       // a constant back from EmitGEPOffset. | 
 |       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP)); | 
 |       int64_t Offset = OffsetV->getSExtValue(); | 
 |  | 
 |       // If this GEP instruction doesn't move the pointer, just replace the GEP | 
 |       // with a bitcast of the real input to the dest type. | 
 |       if (Offset == 0) { | 
 |         // If the bitcast is of an allocation, and the allocation will be | 
 |         // converted to match the type of the cast, don't touch this. | 
 |         if (isa<AllocaInst>(BCI->getOperand(0)) || | 
 |             isMalloc(BCI->getOperand(0))) { | 
 |           // See if the bitcast simplifies, if so, don't nuke this GEP yet. | 
 |           if (Instruction *I = visitBitCast(*BCI)) { | 
 |             if (I != BCI) { | 
 |               I->takeName(BCI); | 
 |               BCI->getParent()->getInstList().insert(BCI, I); | 
 |               ReplaceInstUsesWith(*BCI, I); | 
 |             } | 
 |             return &GEP; | 
 |           } | 
 |         } | 
 |         return new BitCastInst(BCI->getOperand(0), GEP.getType()); | 
 |       } | 
 |        | 
 |       // Otherwise, if the offset is non-zero, we need to find out if there is a | 
 |       // field at Offset in 'A's type.  If so, we can pull the cast through the | 
 |       // GEP. | 
 |       SmallVector<Value*, 8> NewIndices; | 
 |       Type *InTy = | 
 |         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); | 
 |       if (FindElementAtOffset(InTy, Offset, NewIndices)) { | 
 |         Value *NGEP = GEP.isInBounds() ? | 
 |           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) : | 
 |           Builder->CreateGEP(BCI->getOperand(0), NewIndices); | 
 |          | 
 |         if (NGEP->getType() == GEP.getType()) | 
 |           return ReplaceInstUsesWith(GEP, NGEP); | 
 |         NGEP->takeName(&GEP); | 
 |         return new BitCastInst(NGEP, GEP.getType()); | 
 |       } | 
 |     } | 
 |   }     | 
 |      | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users, | 
 |                                        int Depth = 0) { | 
 |   if (Depth == 8) | 
 |     return false; | 
 |  | 
 |   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); | 
 |        UI != UE; ++UI) { | 
 |     User *U = *UI; | 
 |     if (isFreeCall(U)) { | 
 |       Users.push_back(U); | 
 |       continue; | 
 |     } | 
 |     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { | 
 |       if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) { | 
 |         Users.push_back(ICI); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { | 
 |       if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) { | 
 |         Users.push_back(BCI); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { | 
 |       if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) { | 
 |         Users.push_back(GEPI); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { | 
 |       if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
 |           II->getIntrinsicID() == Intrinsic::lifetime_end) { | 
 |         Users.push_back(II); | 
 |         continue; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | Instruction *InstCombiner::visitMalloc(Instruction &MI) { | 
 |   // If we have a malloc call which is only used in any amount of comparisons | 
 |   // to null and free calls, delete the calls and replace the comparisons with | 
 |   // true or false as appropriate. | 
 |   SmallVector<WeakVH, 64> Users; | 
 |   if (IsOnlyNullComparedAndFreed(&MI, Users)) { | 
 |     for (unsigned i = 0, e = Users.size(); i != e; ++i) { | 
 |       Instruction *I = cast_or_null<Instruction>(&*Users[i]); | 
 |       if (!I) continue; | 
 |  | 
 |       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { | 
 |         ReplaceInstUsesWith(*C, | 
 |                             ConstantInt::get(Type::getInt1Ty(C->getContext()), | 
 |                                              C->isFalseWhenEqual())); | 
 |       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { | 
 |         ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); | 
 |       } | 
 |       EraseInstFromFunction(*I); | 
 |     } | 
 |     return EraseInstFromFunction(MI); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | Instruction *InstCombiner::visitFree(CallInst &FI) { | 
 |   Value *Op = FI.getArgOperand(0); | 
 |  | 
 |   // free undef -> unreachable. | 
 |   if (isa<UndefValue>(Op)) { | 
 |     // Insert a new store to null because we cannot modify the CFG here. | 
 |     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), | 
 |                          UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); | 
 |     return EraseInstFromFunction(FI); | 
 |   } | 
 |    | 
 |   // If we have 'free null' delete the instruction.  This can happen in stl code | 
 |   // when lots of inlining happens. | 
 |   if (isa<ConstantPointerNull>(Op)) | 
 |     return EraseInstFromFunction(FI); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { | 
 |   // Change br (not X), label True, label False to: br X, label False, True | 
 |   Value *X = 0; | 
 |   BasicBlock *TrueDest; | 
 |   BasicBlock *FalseDest; | 
 |   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && | 
 |       !isa<Constant>(X)) { | 
 |     // Swap Destinations and condition... | 
 |     BI.setCondition(X); | 
 |     BI.swapSuccessors(); | 
 |     return &BI; | 
 |   } | 
 |  | 
 |   // Cannonicalize fcmp_one -> fcmp_oeq | 
 |   FCmpInst::Predicate FPred; Value *Y; | 
 |   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),  | 
 |                              TrueDest, FalseDest)) && | 
 |       BI.getCondition()->hasOneUse()) | 
 |     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || | 
 |         FPred == FCmpInst::FCMP_OGE) { | 
 |       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); | 
 |       Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); | 
 |        | 
 |       // Swap Destinations and condition. | 
 |       BI.swapSuccessors(); | 
 |       Worklist.Add(Cond); | 
 |       return &BI; | 
 |     } | 
 |  | 
 |   // Cannonicalize icmp_ne -> icmp_eq | 
 |   ICmpInst::Predicate IPred; | 
 |   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), | 
 |                       TrueDest, FalseDest)) && | 
 |       BI.getCondition()->hasOneUse()) | 
 |     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE || | 
 |         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || | 
 |         IPred == ICmpInst::ICMP_SGE) { | 
 |       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); | 
 |       Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); | 
 |       // Swap Destinations and condition. | 
 |       BI.swapSuccessors(); | 
 |       Worklist.Add(Cond); | 
 |       return &BI; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { | 
 |   Value *Cond = SI.getCondition(); | 
 |   if (Instruction *I = dyn_cast<Instruction>(Cond)) { | 
 |     if (I->getOpcode() == Instruction::Add) | 
 |       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
 |         // change 'switch (X+4) case 1:' into 'switch (X) case -3' | 
 |         unsigned NumCases = SI.getNumCases(); | 
 |         // Skip the first item since that's the default case. | 
 |         for (unsigned i = 1; i < NumCases; ++i) { | 
 |           ConstantInt* CaseVal = SI.getCaseValue(i); | 
 |           Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal), | 
 |                                                       AddRHS); | 
 |           assert(isa<ConstantInt>(NewCaseVal) && | 
 |                  "Result of expression should be constant"); | 
 |           SI.setSuccessorValue(i, cast<ConstantInt>(NewCaseVal)); | 
 |         } | 
 |         SI.setCondition(I->getOperand(0)); | 
 |         Worklist.Add(I); | 
 |         return &SI; | 
 |       } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { | 
 |   Value *Agg = EV.getAggregateOperand(); | 
 |  | 
 |   if (!EV.hasIndices()) | 
 |     return ReplaceInstUsesWith(EV, Agg); | 
 |  | 
 |   if (Constant *C = dyn_cast<Constant>(Agg)) { | 
 |     if (isa<UndefValue>(C)) | 
 |       return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); | 
 |        | 
 |     if (isa<ConstantAggregateZero>(C)) | 
 |       return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); | 
 |  | 
 |     if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { | 
 |       // Extract the element indexed by the first index out of the constant | 
 |       Value *V = C->getOperand(*EV.idx_begin()); | 
 |       if (EV.getNumIndices() > 1) | 
 |         // Extract the remaining indices out of the constant indexed by the | 
 |         // first index | 
 |         return ExtractValueInst::Create(V, EV.getIndices().slice(1)); | 
 |       else | 
 |         return ReplaceInstUsesWith(EV, V); | 
 |     } | 
 |     return 0; // Can't handle other constants | 
 |   }  | 
 |   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { | 
 |     // We're extracting from an insertvalue instruction, compare the indices | 
 |     const unsigned *exti, *exte, *insi, *inse; | 
 |     for (exti = EV.idx_begin(), insi = IV->idx_begin(), | 
 |          exte = EV.idx_end(), inse = IV->idx_end(); | 
 |          exti != exte && insi != inse; | 
 |          ++exti, ++insi) { | 
 |       if (*insi != *exti) | 
 |         // The insert and extract both reference distinctly different elements. | 
 |         // This means the extract is not influenced by the insert, and we can | 
 |         // replace the aggregate operand of the extract with the aggregate | 
 |         // operand of the insert. i.e., replace | 
 |         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 | 
 |         // %E = extractvalue { i32, { i32 } } %I, 0 | 
 |         // with | 
 |         // %E = extractvalue { i32, { i32 } } %A, 0 | 
 |         return ExtractValueInst::Create(IV->getAggregateOperand(), | 
 |                                         EV.getIndices()); | 
 |     } | 
 |     if (exti == exte && insi == inse) | 
 |       // Both iterators are at the end: Index lists are identical. Replace | 
 |       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 | 
 |       // %C = extractvalue { i32, { i32 } } %B, 1, 0 | 
 |       // with "i32 42" | 
 |       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); | 
 |     if (exti == exte) { | 
 |       // The extract list is a prefix of the insert list. i.e. replace | 
 |       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 | 
 |       // %E = extractvalue { i32, { i32 } } %I, 1 | 
 |       // with | 
 |       // %X = extractvalue { i32, { i32 } } %A, 1 | 
 |       // %E = insertvalue { i32 } %X, i32 42, 0 | 
 |       // by switching the order of the insert and extract (though the | 
 |       // insertvalue should be left in, since it may have other uses). | 
 |       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), | 
 |                                                  EV.getIndices()); | 
 |       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), | 
 |                                      makeArrayRef(insi, inse)); | 
 |     } | 
 |     if (insi == inse) | 
 |       // The insert list is a prefix of the extract list | 
 |       // We can simply remove the common indices from the extract and make it | 
 |       // operate on the inserted value instead of the insertvalue result. | 
 |       // i.e., replace | 
 |       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 | 
 |       // %E = extractvalue { i32, { i32 } } %I, 1, 0 | 
 |       // with | 
 |       // %E extractvalue { i32 } { i32 42 }, 0 | 
 |       return ExtractValueInst::Create(IV->getInsertedValueOperand(),  | 
 |                                       makeArrayRef(exti, exte)); | 
 |   } | 
 |   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { | 
 |     // We're extracting from an intrinsic, see if we're the only user, which | 
 |     // allows us to simplify multiple result intrinsics to simpler things that | 
 |     // just get one value. | 
 |     if (II->hasOneUse()) { | 
 |       // Check if we're grabbing the overflow bit or the result of a 'with | 
 |       // overflow' intrinsic.  If it's the latter we can remove the intrinsic | 
 |       // and replace it with a traditional binary instruction. | 
 |       switch (II->getIntrinsicID()) { | 
 |       case Intrinsic::uadd_with_overflow: | 
 |       case Intrinsic::sadd_with_overflow: | 
 |         if (*EV.idx_begin() == 0) {  // Normal result. | 
 |           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); | 
 |           ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); | 
 |           EraseInstFromFunction(*II); | 
 |           return BinaryOperator::CreateAdd(LHS, RHS); | 
 |         } | 
 |            | 
 |         // If the normal result of the add is dead, and the RHS is a constant, | 
 |         // we can transform this into a range comparison. | 
 |         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3 | 
 |         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) | 
 |           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) | 
 |             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), | 
 |                                 ConstantExpr::getNot(CI)); | 
 |         break; | 
 |       case Intrinsic::usub_with_overflow: | 
 |       case Intrinsic::ssub_with_overflow: | 
 |         if (*EV.idx_begin() == 0) {  // Normal result. | 
 |           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); | 
 |           ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); | 
 |           EraseInstFromFunction(*II); | 
 |           return BinaryOperator::CreateSub(LHS, RHS); | 
 |         } | 
 |         break; | 
 |       case Intrinsic::umul_with_overflow: | 
 |       case Intrinsic::smul_with_overflow: | 
 |         if (*EV.idx_begin() == 0) {  // Normal result. | 
 |           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); | 
 |           ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); | 
 |           EraseInstFromFunction(*II); | 
 |           return BinaryOperator::CreateMul(LHS, RHS); | 
 |         } | 
 |         break; | 
 |       default: | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (LoadInst *L = dyn_cast<LoadInst>(Agg)) | 
 |     // If the (non-volatile) load only has one use, we can rewrite this to a | 
 |     // load from a GEP. This reduces the size of the load. | 
 |     // FIXME: If a load is used only by extractvalue instructions then this | 
 |     //        could be done regardless of having multiple uses. | 
 |     if (L->isSimple() && L->hasOneUse()) { | 
 |       // extractvalue has integer indices, getelementptr has Value*s. Convert. | 
 |       SmallVector<Value*, 4> Indices; | 
 |       // Prefix an i32 0 since we need the first element. | 
 |       Indices.push_back(Builder->getInt32(0)); | 
 |       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); | 
 |             I != E; ++I) | 
 |         Indices.push_back(Builder->getInt32(*I)); | 
 |  | 
 |       // We need to insert these at the location of the old load, not at that of | 
 |       // the extractvalue. | 
 |       Builder->SetInsertPoint(L->getParent(), L); | 
 |       Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices); | 
 |       // Returning the load directly will cause the main loop to insert it in | 
 |       // the wrong spot, so use ReplaceInstUsesWith(). | 
 |       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); | 
 |     } | 
 |   // We could simplify extracts from other values. Note that nested extracts may | 
 |   // already be simplified implicitly by the above: extract (extract (insert) ) | 
 |   // will be translated into extract ( insert ( extract ) ) first and then just | 
 |   // the value inserted, if appropriate. Similarly for extracts from single-use | 
 |   // loads: extract (extract (load)) will be translated to extract (load (gep)) | 
 |   // and if again single-use then via load (gep (gep)) to load (gep). | 
 |   // However, double extracts from e.g. function arguments or return values | 
 |   // aren't handled yet. | 
 |   return 0; | 
 | } | 
 |  | 
 | enum Personality_Type { | 
 |   Unknown_Personality, | 
 |   GNU_Ada_Personality, | 
 |   GNU_CXX_Personality | 
 | }; | 
 |  | 
 | /// RecognizePersonality - See if the given exception handling personality | 
 | /// function is one that we understand.  If so, return a description of it; | 
 | /// otherwise return Unknown_Personality. | 
 | static Personality_Type RecognizePersonality(Value *Pers) { | 
 |   Function *F = dyn_cast<Function>(Pers->stripPointerCasts()); | 
 |   if (!F) | 
 |     return Unknown_Personality; | 
 |   return StringSwitch<Personality_Type>(F->getName()) | 
 |     .Case("__gnat_eh_personality", GNU_Ada_Personality) | 
 |     .Case("__gxx_personality_v0", GNU_CXX_Personality) | 
 |     .Default(Unknown_Personality); | 
 | } | 
 |  | 
 | /// isCatchAll - Return 'true' if the given typeinfo will match anything. | 
 | static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) { | 
 |   switch (Personality) { | 
 |   case Unknown_Personality: | 
 |     return false; | 
 |   case GNU_Ada_Personality: | 
 |     // While __gnat_all_others_value will match any Ada exception, it doesn't | 
 |     // match foreign exceptions (or didn't, before gcc-4.7). | 
 |     return false; | 
 |   case GNU_CXX_Personality: | 
 |     return TypeInfo->isNullValue(); | 
 |   } | 
 |   llvm_unreachable("Unknown personality!"); | 
 | } | 
 |  | 
 | static bool shorter_filter(const Value *LHS, const Value *RHS) { | 
 |   return | 
 |     cast<ArrayType>(LHS->getType())->getNumElements() | 
 |   < | 
 |     cast<ArrayType>(RHS->getType())->getNumElements(); | 
 | } | 
 |  | 
 | Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { | 
 |   // The logic here should be correct for any real-world personality function. | 
 |   // However if that turns out not to be true, the offending logic can always | 
 |   // be conditioned on the personality function, like the catch-all logic is. | 
 |   Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn()); | 
 |  | 
 |   // Simplify the list of clauses, eg by removing repeated catch clauses | 
 |   // (these are often created by inlining). | 
 |   bool MakeNewInstruction = false; // If true, recreate using the following: | 
 |   SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction; | 
 |   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup. | 
 |  | 
 |   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. | 
 |   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { | 
 |     bool isLastClause = i + 1 == e; | 
 |     if (LI.isCatch(i)) { | 
 |       // A catch clause. | 
 |       Value *CatchClause = LI.getClause(i); | 
 |       Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts()); | 
 |  | 
 |       // If we already saw this clause, there is no point in having a second | 
 |       // copy of it. | 
 |       if (AlreadyCaught.insert(TypeInfo)) { | 
 |         // This catch clause was not already seen. | 
 |         NewClauses.push_back(CatchClause); | 
 |       } else { | 
 |         // Repeated catch clause - drop the redundant copy. | 
 |         MakeNewInstruction = true; | 
 |       } | 
 |  | 
 |       // If this is a catch-all then there is no point in keeping any following | 
 |       // clauses or marking the landingpad as having a cleanup. | 
 |       if (isCatchAll(Personality, TypeInfo)) { | 
 |         if (!isLastClause) | 
 |           MakeNewInstruction = true; | 
 |         CleanupFlag = false; | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       // A filter clause.  If any of the filter elements were already caught | 
 |       // then they can be dropped from the filter.  It is tempting to try to | 
 |       // exploit the filter further by saying that any typeinfo that does not | 
 |       // occur in the filter can't be caught later (and thus can be dropped). | 
 |       // However this would be wrong, since typeinfos can match without being | 
 |       // equal (for example if one represents a C++ class, and the other some | 
 |       // class derived from it). | 
 |       assert(LI.isFilter(i) && "Unsupported landingpad clause!"); | 
 |       Value *FilterClause = LI.getClause(i); | 
 |       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); | 
 |       unsigned NumTypeInfos = FilterType->getNumElements(); | 
 |  | 
 |       // An empty filter catches everything, so there is no point in keeping any | 
 |       // following clauses or marking the landingpad as having a cleanup.  By | 
 |       // dealing with this case here the following code is made a bit simpler. | 
 |       if (!NumTypeInfos) { | 
 |         NewClauses.push_back(FilterClause); | 
 |         if (!isLastClause) | 
 |           MakeNewInstruction = true; | 
 |         CleanupFlag = false; | 
 |         break; | 
 |       } | 
 |  | 
 |       bool MakeNewFilter = false; // If true, make a new filter. | 
 |       SmallVector<Constant *, 16> NewFilterElts; // New elements. | 
 |       if (isa<ConstantAggregateZero>(FilterClause)) { | 
 |         // Not an empty filter - it contains at least one null typeinfo. | 
 |         assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); | 
 |         Constant *TypeInfo = | 
 |           Constant::getNullValue(FilterType->getElementType()); | 
 |         // If this typeinfo is a catch-all then the filter can never match. | 
 |         if (isCatchAll(Personality, TypeInfo)) { | 
 |           // Throw the filter away. | 
 |           MakeNewInstruction = true; | 
 |           continue; | 
 |         } | 
 |  | 
 |         // There is no point in having multiple copies of this typeinfo, so | 
 |         // discard all but the first copy if there is more than one. | 
 |         NewFilterElts.push_back(TypeInfo); | 
 |         if (NumTypeInfos > 1) | 
 |           MakeNewFilter = true; | 
 |       } else { | 
 |         ConstantArray *Filter = cast<ConstantArray>(FilterClause); | 
 |         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. | 
 |         NewFilterElts.reserve(NumTypeInfos); | 
 |  | 
 |         // Remove any filter elements that were already caught or that already | 
 |         // occurred in the filter.  While there, see if any of the elements are | 
 |         // catch-alls.  If so, the filter can be discarded. | 
 |         bool SawCatchAll = false; | 
 |         for (unsigned j = 0; j != NumTypeInfos; ++j) { | 
 |           Value *Elt = Filter->getOperand(j); | 
 |           Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts()); | 
 |           if (isCatchAll(Personality, TypeInfo)) { | 
 |             // This element is a catch-all.  Bail out, noting this fact. | 
 |             SawCatchAll = true; | 
 |             break; | 
 |           } | 
 |           if (AlreadyCaught.count(TypeInfo)) | 
 |             // Already caught by an earlier clause, so having it in the filter | 
 |             // is pointless. | 
 |             continue; | 
 |           // There is no point in having multiple copies of the same typeinfo in | 
 |           // a filter, so only add it if we didn't already. | 
 |           if (SeenInFilter.insert(TypeInfo)) | 
 |             NewFilterElts.push_back(cast<Constant>(Elt)); | 
 |         } | 
 |         // A filter containing a catch-all cannot match anything by definition. | 
 |         if (SawCatchAll) { | 
 |           // Throw the filter away. | 
 |           MakeNewInstruction = true; | 
 |           continue; | 
 |         } | 
 |  | 
 |         // If we dropped something from the filter, make a new one. | 
 |         if (NewFilterElts.size() < NumTypeInfos) | 
 |           MakeNewFilter = true; | 
 |       } | 
 |       if (MakeNewFilter) { | 
 |         FilterType = ArrayType::get(FilterType->getElementType(), | 
 |                                     NewFilterElts.size()); | 
 |         FilterClause = ConstantArray::get(FilterType, NewFilterElts); | 
 |         MakeNewInstruction = true; | 
 |       } | 
 |  | 
 |       NewClauses.push_back(FilterClause); | 
 |  | 
 |       // If the new filter is empty then it will catch everything so there is | 
 |       // no point in keeping any following clauses or marking the landingpad | 
 |       // as having a cleanup.  The case of the original filter being empty was | 
 |       // already handled above. | 
 |       if (MakeNewFilter && !NewFilterElts.size()) { | 
 |         assert(MakeNewInstruction && "New filter but not a new instruction!"); | 
 |         CleanupFlag = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If several filters occur in a row then reorder them so that the shortest | 
 |   // filters come first (those with the smallest number of elements).  This is | 
 |   // advantageous because shorter filters are more likely to match, speeding up | 
 |   // unwinding, but mostly because it increases the effectiveness of the other | 
 |   // filter optimizations below. | 
 |   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { | 
 |     unsigned j; | 
 |     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. | 
 |     for (j = i; j != e; ++j) | 
 |       if (!isa<ArrayType>(NewClauses[j]->getType())) | 
 |         break; | 
 |  | 
 |     // Check whether the filters are already sorted by length.  We need to know | 
 |     // if sorting them is actually going to do anything so that we only make a | 
 |     // new landingpad instruction if it does. | 
 |     for (unsigned k = i; k + 1 < j; ++k) | 
 |       if (shorter_filter(NewClauses[k+1], NewClauses[k])) { | 
 |         // Not sorted, so sort the filters now.  Doing an unstable sort would be | 
 |         // correct too but reordering filters pointlessly might confuse users. | 
 |         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, | 
 |                          shorter_filter); | 
 |         MakeNewInstruction = true; | 
 |         break; | 
 |       } | 
 |  | 
 |     // Look for the next batch of filters. | 
 |     i = j + 1; | 
 |   } | 
 |  | 
 |   // If typeinfos matched if and only if equal, then the elements of a filter L | 
 |   // that occurs later than a filter F could be replaced by the intersection of | 
 |   // the elements of F and L.  In reality two typeinfos can match without being | 
 |   // equal (for example if one represents a C++ class, and the other some class | 
 |   // derived from it) so it would be wrong to perform this transform in general. | 
 |   // However the transform is correct and useful if F is a subset of L.  In that | 
 |   // case L can be replaced by F, and thus removed altogether since repeating a | 
 |   // filter is pointless.  So here we look at all pairs of filters F and L where | 
 |   // L follows F in the list of clauses, and remove L if every element of F is | 
 |   // an element of L.  This can occur when inlining C++ functions with exception | 
 |   // specifications. | 
 |   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { | 
 |     // Examine each filter in turn. | 
 |     Value *Filter = NewClauses[i]; | 
 |     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); | 
 |     if (!FTy) | 
 |       // Not a filter - skip it. | 
 |       continue; | 
 |     unsigned FElts = FTy->getNumElements(); | 
 |     // Examine each filter following this one.  Doing this backwards means that | 
 |     // we don't have to worry about filters disappearing under us when removed. | 
 |     for (unsigned j = NewClauses.size() - 1; j != i; --j) { | 
 |       Value *LFilter = NewClauses[j]; | 
 |       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); | 
 |       if (!LTy) | 
 |         // Not a filter - skip it. | 
 |         continue; | 
 |       // If Filter is a subset of LFilter, i.e. every element of Filter is also | 
 |       // an element of LFilter, then discard LFilter. | 
 |       SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j; | 
 |       // If Filter is empty then it is a subset of LFilter. | 
 |       if (!FElts) { | 
 |         // Discard LFilter. | 
 |         NewClauses.erase(J); | 
 |         MakeNewInstruction = true; | 
 |         // Move on to the next filter. | 
 |         continue; | 
 |       } | 
 |       unsigned LElts = LTy->getNumElements(); | 
 |       // If Filter is longer than LFilter then it cannot be a subset of it. | 
 |       if (FElts > LElts) | 
 |         // Move on to the next filter. | 
 |         continue; | 
 |       // At this point we know that LFilter has at least one element. | 
 |       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. | 
 |         // Filter is a subset of LFilter iff Filter contains only zeros (as we | 
 |         // already know that Filter is not longer than LFilter). | 
 |         if (isa<ConstantAggregateZero>(Filter)) { | 
 |           assert(FElts <= LElts && "Should have handled this case earlier!"); | 
 |           // Discard LFilter. | 
 |           NewClauses.erase(J); | 
 |           MakeNewInstruction = true; | 
 |         } | 
 |         // Move on to the next filter. | 
 |         continue; | 
 |       } | 
 |       ConstantArray *LArray = cast<ConstantArray>(LFilter); | 
 |       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. | 
 |         // Since Filter is non-empty and contains only zeros, it is a subset of | 
 |         // LFilter iff LFilter contains a zero. | 
 |         assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); | 
 |         for (unsigned l = 0; l != LElts; ++l) | 
 |           if (LArray->getOperand(l)->isNullValue()) { | 
 |             // LFilter contains a zero - discard it. | 
 |             NewClauses.erase(J); | 
 |             MakeNewInstruction = true; | 
 |             break; | 
 |           } | 
 |         // Move on to the next filter. | 
 |         continue; | 
 |       } | 
 |       // At this point we know that both filters are ConstantArrays.  Loop over | 
 |       // operands to see whether every element of Filter is also an element of | 
 |       // LFilter.  Since filters tend to be short this is probably faster than | 
 |       // using a method that scales nicely. | 
 |       ConstantArray *FArray = cast<ConstantArray>(Filter); | 
 |       bool AllFound = true; | 
 |       for (unsigned f = 0; f != FElts; ++f) { | 
 |         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); | 
 |         AllFound = false; | 
 |         for (unsigned l = 0; l != LElts; ++l) { | 
 |           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); | 
 |           if (LTypeInfo == FTypeInfo) { | 
 |             AllFound = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (!AllFound) | 
 |           break; | 
 |       } | 
 |       if (AllFound) { | 
 |         // Discard LFilter. | 
 |         NewClauses.erase(J); | 
 |         MakeNewInstruction = true; | 
 |       } | 
 |       // Move on to the next filter. | 
 |     } | 
 |   } | 
 |  | 
 |   // If we changed any of the clauses, replace the old landingpad instruction | 
 |   // with a new one. | 
 |   if (MakeNewInstruction) { | 
 |     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), | 
 |                                                  LI.getPersonalityFn(), | 
 |                                                  NewClauses.size()); | 
 |     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) | 
 |       NLI->addClause(NewClauses[i]); | 
 |     // A landing pad with no clauses must have the cleanup flag set.  It is | 
 |     // theoretically possible, though highly unlikely, that we eliminated all | 
 |     // clauses.  If so, force the cleanup flag to true. | 
 |     if (NewClauses.empty()) | 
 |       CleanupFlag = true; | 
 |     NLI->setCleanup(CleanupFlag); | 
 |     return NLI; | 
 |   } | 
 |  | 
 |   // Even if none of the clauses changed, we may nonetheless have understood | 
 |   // that the cleanup flag is pointless.  Clear it if so. | 
 |   if (LI.isCleanup() != CleanupFlag) { | 
 |     assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); | 
 |     LI.setCleanup(CleanupFlag); | 
 |     return &LI; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | /// TryToSinkInstruction - Try to move the specified instruction from its | 
 | /// current block into the beginning of DestBlock, which can only happen if it's | 
 | /// safe to move the instruction past all of the instructions between it and the | 
 | /// end of its block. | 
 | static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { | 
 |   assert(I->hasOneUse() && "Invariants didn't hold!"); | 
 |  | 
 |   // Cannot move control-flow-involving, volatile loads, vaarg, etc. | 
 |   if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() || | 
 |       isa<TerminatorInst>(I)) | 
 |     return false; | 
 |  | 
 |   // Do not sink alloca instructions out of the entry block. | 
 |   if (isa<AllocaInst>(I) && I->getParent() == | 
 |         &DestBlock->getParent()->getEntryBlock()) | 
 |     return false; | 
 |  | 
 |   // We can only sink load instructions if there is nothing between the load and | 
 |   // the end of block that could change the value. | 
 |   if (I->mayReadFromMemory()) { | 
 |     for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); | 
 |          Scan != E; ++Scan) | 
 |       if (Scan->mayWriteToMemory()) | 
 |         return false; | 
 |   } | 
 |  | 
 |   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); | 
 |   I->moveBefore(InsertPos); | 
 |   ++NumSunkInst; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding | 
 | /// all reachable code to the worklist. | 
 | /// | 
 | /// This has a couple of tricks to make the code faster and more powerful.  In | 
 | /// particular, we constant fold and DCE instructions as we go, to avoid adding | 
 | /// them to the worklist (this significantly speeds up instcombine on code where | 
 | /// many instructions are dead or constant).  Additionally, if we find a branch | 
 | /// whose condition is a known constant, we only visit the reachable successors. | 
 | /// | 
 | static bool AddReachableCodeToWorklist(BasicBlock *BB,  | 
 |                                        SmallPtrSet<BasicBlock*, 64> &Visited, | 
 |                                        InstCombiner &IC, | 
 |                                        const TargetData *TD) { | 
 |   bool MadeIRChange = false; | 
 |   SmallVector<BasicBlock*, 256> Worklist; | 
 |   Worklist.push_back(BB); | 
 |  | 
 |   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; | 
 |   DenseMap<ConstantExpr*, Constant*> FoldedConstants; | 
 |  | 
 |   do { | 
 |     BB = Worklist.pop_back_val(); | 
 |      | 
 |     // We have now visited this block!  If we've already been here, ignore it. | 
 |     if (!Visited.insert(BB)) continue; | 
 |  | 
 |     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { | 
 |       Instruction *Inst = BBI++; | 
 |        | 
 |       // DCE instruction if trivially dead. | 
 |       if (isInstructionTriviallyDead(Inst)) { | 
 |         ++NumDeadInst; | 
 |         DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); | 
 |         Inst->eraseFromParent(); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // ConstantProp instruction if trivially constant. | 
 |       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) | 
 |         if (Constant *C = ConstantFoldInstruction(Inst, TD)) { | 
 |           DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " | 
 |                        << *Inst << '\n'); | 
 |           Inst->replaceAllUsesWith(C); | 
 |           ++NumConstProp; | 
 |           Inst->eraseFromParent(); | 
 |           continue; | 
 |         } | 
 |        | 
 |       if (TD) { | 
 |         // See if we can constant fold its operands. | 
 |         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); | 
 |              i != e; ++i) { | 
 |           ConstantExpr *CE = dyn_cast<ConstantExpr>(i); | 
 |           if (CE == 0) continue; | 
 |  | 
 |           Constant*& FoldRes = FoldedConstants[CE]; | 
 |           if (!FoldRes) | 
 |             FoldRes = ConstantFoldConstantExpression(CE, TD); | 
 |           if (!FoldRes) | 
 |             FoldRes = CE; | 
 |  | 
 |           if (FoldRes != CE) { | 
 |             *i = FoldRes; | 
 |             MadeIRChange = true; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       InstrsForInstCombineWorklist.push_back(Inst); | 
 |     } | 
 |  | 
 |     // Recursively visit successors.  If this is a branch or switch on a | 
 |     // constant, only visit the reachable successor. | 
 |     TerminatorInst *TI = BB->getTerminator(); | 
 |     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
 |       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { | 
 |         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); | 
 |         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); | 
 |         Worklist.push_back(ReachableBB); | 
 |         continue; | 
 |       } | 
 |     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
 |       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { | 
 |         // See if this is an explicit destination. | 
 |         for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) | 
 |           if (SI->getCaseValue(i) == Cond) { | 
 |             BasicBlock *ReachableBB = SI->getSuccessor(i); | 
 |             Worklist.push_back(ReachableBB); | 
 |             continue; | 
 |           } | 
 |          | 
 |         // Otherwise it is the default destination. | 
 |         Worklist.push_back(SI->getSuccessor(0)); | 
 |         continue; | 
 |       } | 
 |     } | 
 |      | 
 |     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
 |       Worklist.push_back(TI->getSuccessor(i)); | 
 |   } while (!Worklist.empty()); | 
 |    | 
 |   // Once we've found all of the instructions to add to instcombine's worklist, | 
 |   // add them in reverse order.  This way instcombine will visit from the top | 
 |   // of the function down.  This jives well with the way that it adds all uses | 
 |   // of instructions to the worklist after doing a transformation, thus avoiding | 
 |   // some N^2 behavior in pathological cases. | 
 |   IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], | 
 |                               InstrsForInstCombineWorklist.size()); | 
 |    | 
 |   return MadeIRChange; | 
 | } | 
 |  | 
 | bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { | 
 |   MadeIRChange = false; | 
 |    | 
 |   DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " | 
 |         << F.getNameStr() << "\n"); | 
 |  | 
 |   { | 
 |     // Do a depth-first traversal of the function, populate the worklist with | 
 |     // the reachable instructions.  Ignore blocks that are not reachable.  Keep | 
 |     // track of which blocks we visit. | 
 |     SmallPtrSet<BasicBlock*, 64> Visited; | 
 |     MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); | 
 |  | 
 |     // Do a quick scan over the function.  If we find any blocks that are | 
 |     // unreachable, remove any instructions inside of them.  This prevents | 
 |     // the instcombine code from having to deal with some bad special cases. | 
 |     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
 |       if (Visited.count(BB)) continue; | 
 |  | 
 |       // Delete the instructions backwards, as it has a reduced likelihood of | 
 |       // having to update as many def-use and use-def chains. | 
 |       Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. | 
 |       while (EndInst != BB->begin()) { | 
 |         // Delete the next to last instruction. | 
 |         BasicBlock::iterator I = EndInst; | 
 |         Instruction *Inst = --I; | 
 |         if (!Inst->use_empty()) | 
 |           Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); | 
 |         if (isa<LandingPadInst>(Inst)) { | 
 |           EndInst = Inst; | 
 |           continue; | 
 |         } | 
 |         if (!isa<DbgInfoIntrinsic>(Inst)) { | 
 |           ++NumDeadInst; | 
 |           MadeIRChange = true; | 
 |         } | 
 |         Inst->eraseFromParent(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   while (!Worklist.isEmpty()) { | 
 |     Instruction *I = Worklist.RemoveOne(); | 
 |     if (I == 0) continue;  // skip null values. | 
 |  | 
 |     // Check to see if we can DCE the instruction. | 
 |     if (isInstructionTriviallyDead(I)) { | 
 |       DEBUG(errs() << "IC: DCE: " << *I << '\n'); | 
 |       EraseInstFromFunction(*I); | 
 |       ++NumDeadInst; | 
 |       MadeIRChange = true; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Instruction isn't dead, see if we can constant propagate it. | 
 |     if (!I->use_empty() && isa<Constant>(I->getOperand(0))) | 
 |       if (Constant *C = ConstantFoldInstruction(I, TD)) { | 
 |         DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); | 
 |  | 
 |         // Add operands to the worklist. | 
 |         ReplaceInstUsesWith(*I, C); | 
 |         ++NumConstProp; | 
 |         EraseInstFromFunction(*I); | 
 |         MadeIRChange = true; | 
 |         continue; | 
 |       } | 
 |  | 
 |     // See if we can trivially sink this instruction to a successor basic block. | 
 |     if (I->hasOneUse()) { | 
 |       BasicBlock *BB = I->getParent(); | 
 |       Instruction *UserInst = cast<Instruction>(I->use_back()); | 
 |       BasicBlock *UserParent; | 
 |        | 
 |       // Get the block the use occurs in. | 
 |       if (PHINode *PN = dyn_cast<PHINode>(UserInst)) | 
 |         UserParent = PN->getIncomingBlock(I->use_begin().getUse()); | 
 |       else | 
 |         UserParent = UserInst->getParent(); | 
 |        | 
 |       if (UserParent != BB) { | 
 |         bool UserIsSuccessor = false; | 
 |         // See if the user is one of our successors. | 
 |         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) | 
 |           if (*SI == UserParent) { | 
 |             UserIsSuccessor = true; | 
 |             break; | 
 |           } | 
 |  | 
 |         // If the user is one of our immediate successors, and if that successor | 
 |         // only has us as a predecessors (we'd have to split the critical edge | 
 |         // otherwise), we can keep going. | 
 |         if (UserIsSuccessor && UserParent->getSinglePredecessor()) | 
 |           // Okay, the CFG is simple enough, try to sink this instruction. | 
 |           MadeIRChange |= TryToSinkInstruction(I, UserParent); | 
 |       } | 
 |     } | 
 |  | 
 |     // Now that we have an instruction, try combining it to simplify it. | 
 |     Builder->SetInsertPoint(I->getParent(), I); | 
 |     Builder->SetCurrentDebugLocation(I->getDebugLoc()); | 
 |      | 
 | #ifndef NDEBUG | 
 |     std::string OrigI; | 
 | #endif | 
 |     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); | 
 |     DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); | 
 |  | 
 |     if (Instruction *Result = visit(*I)) { | 
 |       ++NumCombined; | 
 |       // Should we replace the old instruction with a new one? | 
 |       if (Result != I) { | 
 |         DEBUG(errs() << "IC: Old = " << *I << '\n' | 
 |                      << "    New = " << *Result << '\n'); | 
 |  | 
 |         if (!I->getDebugLoc().isUnknown()) | 
 |           Result->setDebugLoc(I->getDebugLoc()); | 
 |         // Everything uses the new instruction now. | 
 |         I->replaceAllUsesWith(Result); | 
 |  | 
 |         // Move the name to the new instruction first. | 
 |         Result->takeName(I); | 
 |  | 
 |         // Push the new instruction and any users onto the worklist. | 
 |         Worklist.Add(Result); | 
 |         Worklist.AddUsersToWorkList(*Result); | 
 |  | 
 |         // Insert the new instruction into the basic block... | 
 |         BasicBlock *InstParent = I->getParent(); | 
 |         BasicBlock::iterator InsertPos = I; | 
 |  | 
 |         // If we replace a PHI with something that isn't a PHI, fix up the | 
 |         // insertion point. | 
 |         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) | 
 |           InsertPos = InstParent->getFirstInsertionPt(); | 
 |  | 
 |         InstParent->getInstList().insert(InsertPos, Result); | 
 |  | 
 |         EraseInstFromFunction(*I); | 
 |       } else { | 
 | #ifndef NDEBUG | 
 |         DEBUG(errs() << "IC: Mod = " << OrigI << '\n' | 
 |                      << "    New = " << *I << '\n'); | 
 | #endif | 
 |  | 
 |         // If the instruction was modified, it's possible that it is now dead. | 
 |         // if so, remove it. | 
 |         if (isInstructionTriviallyDead(I)) { | 
 |           EraseInstFromFunction(*I); | 
 |         } else { | 
 |           Worklist.Add(I); | 
 |           Worklist.AddUsersToWorkList(*I); | 
 |         } | 
 |       } | 
 |       MadeIRChange = true; | 
 |     } | 
 |   } | 
 |  | 
 |   Worklist.Zap(); | 
 |   return MadeIRChange; | 
 | } | 
 |  | 
 |  | 
 | bool InstCombiner::runOnFunction(Function &F) { | 
 |   TD = getAnalysisIfAvailable<TargetData>(); | 
 |  | 
 |    | 
 |   /// Builder - This is an IRBuilder that automatically inserts new | 
 |   /// instructions into the worklist when they are created. | 
 |   IRBuilder<true, TargetFolder, InstCombineIRInserter>  | 
 |     TheBuilder(F.getContext(), TargetFolder(TD), | 
 |                InstCombineIRInserter(Worklist)); | 
 |   Builder = &TheBuilder; | 
 |    | 
 |   bool EverMadeChange = false; | 
 |  | 
 |   // Lower dbg.declare intrinsics otherwise their value may be clobbered | 
 |   // by instcombiner. | 
 |   EverMadeChange = LowerDbgDeclare(F); | 
 |  | 
 |   // Iterate while there is work to do. | 
 |   unsigned Iteration = 0; | 
 |   while (DoOneIteration(F, Iteration++)) | 
 |     EverMadeChange = true; | 
 |    | 
 |   Builder = 0; | 
 |   return EverMadeChange; | 
 | } | 
 |  | 
 | FunctionPass *llvm::createInstructionCombiningPass() { | 
 |   return new InstCombiner(); | 
 | } |