blob: ea5fc56eae1864a2f0cb69b1004f4731442af324 [file] [log] [blame]
// Copyright 2021 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Util.hpp"
#include "VulkanTester.hpp"
#include "benchmark/benchmark.h"
#include <cmath>
#include <cstring>
#include <sstream>
// C++ reference implementation for single-threaded 'compute' operations.
template<typename Init, typename Func>
void CppCompute(benchmark::State &state, Init init, Func op)
{
int64_t numElements = state.range(0);
float *bufferIn = (float *)malloc(numElements * sizeof(float));
float *bufferOut = (float *)malloc(numElements * sizeof(float));
for(int64_t i = 0; i < numElements; i++)
{
bufferIn[i] = init(i);
}
for(auto _ : state)
{
for(int64_t i = 0; i < numElements; i++)
{
bufferOut[i] = op(bufferIn[i]);
}
}
free(bufferIn);
free(bufferOut);
}
float zero(int64_t i)
{
return 0.0f;
}
float one(int64_t i)
{
return 1.0f;
}
BENCHMARK_CAPTURE(CppCompute, mov, zero, [](float x) { return x; })->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond);
BENCHMARK_CAPTURE(CppCompute, sqrt, one, sqrtf)->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond);
BENCHMARK_CAPTURE(CppCompute, sin, zero, sinf)->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond);
BENCHMARK_CAPTURE(CppCompute, cos, zero, cosf)->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond);
BENCHMARK_CAPTURE(CppCompute, exp, zero, expf)->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond);
BENCHMARK_CAPTURE(CppCompute, log, one, logf)->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond);
class ComputeBenchmark
{
protected:
ComputeBenchmark()
{
tester.initialize();
}
VulkanTester tester;
};
// Base class for compute benchmarks that read from an input buffer and write to an
// output buffer of the same length.
class BufferToBufferComputeBenchmark : public ComputeBenchmark
{
public:
BufferToBufferComputeBenchmark(const benchmark::State &state)
: state(state)
{
device = tester.getDevice();
}
virtual ~BufferToBufferComputeBenchmark()
{
device.destroyCommandPool(commandPool);
device.destroyDescriptorPool(descriptorPool);
device.destroyPipeline(pipeline);
device.destroyDescriptorSetLayout(descriptorSetLayout);
device.destroyBuffer(bufferIn);
device.destroyBuffer(bufferOut);
device.freeMemory(deviceMemory);
}
void run();
protected:
void initialize(const std::string &glslShader);
uint32_t localSizeX = 128;
uint32_t localSizeY = 1;
uint32_t localSizeZ = 1;
private:
const benchmark::State &state;
// Weak references
vk::Device device;
vk::Queue queue;
vk::CommandBuffer commandBuffer;
// Owned resources
vk::CommandPool commandPool;
vk::DescriptorPool descriptorPool;
vk::Pipeline pipeline;
vk::DescriptorSetLayout descriptorSetLayout;
vk::DeviceMemory deviceMemory;
vk::Buffer bufferIn;
vk::Buffer bufferOut;
};
void BufferToBufferComputeBenchmark::initialize(const std::string &glslShader)
{
auto code = Util::compileGLSLtoSPIRV(glslShader.c_str(), EShLanguage::EShLangCompute);
auto &device = tester.getDevice();
auto &physicalDevice = tester.getPhysicalDevice();
queue = device.getQueue(0, 0); // TODO: Don't assume this queue can do compute.
size_t numElements = state.range(0);
size_t inOffset = 0;
size_t outOffset = numElements;
size_t buffersTotalElements = 2 * numElements;
size_t buffersSize = sizeof(uint32_t) * buffersTotalElements;
// TODO: vk::MemoryRequirements memoryRequirements = device.getBufferMemoryRequirements(buffer);
vk::MemoryAllocateInfo allocateInfo;
allocateInfo.allocationSize = buffersSize; // TODO: memoryRequirements.size
allocateInfo.memoryTypeIndex = 0; // TODO: memoryRequirements.memoryTypeBits
deviceMemory = device.allocateMemory(allocateInfo);
uint32_t *buffers = (uint32_t *)device.mapMemory(deviceMemory, 0, buffersSize);
memset(buffers, 0, buffersSize);
for(size_t i = 0; i < numElements; i++)
{
buffers[inOffset + i] = (uint32_t)i;
}
device.unmapMemory(deviceMemory);
buffers = nullptr;
vk::BufferCreateInfo bufferCreateInfo({}, sizeof(uint32_t) * numElements, vk::BufferUsageFlagBits::eStorageBuffer);
bufferIn = device.createBuffer(bufferCreateInfo);
device.bindBufferMemory(bufferIn, deviceMemory, sizeof(uint32_t) * inOffset);
bufferOut = device.createBuffer(bufferCreateInfo);
device.bindBufferMemory(bufferOut, deviceMemory, sizeof(uint32_t) * outOffset);
vk::ShaderModuleCreateInfo moduleCreateInfo;
moduleCreateInfo.codeSize = code.size() * sizeof(uint32_t);
moduleCreateInfo.pCode = (uint32_t *)code.data();
vk::ShaderModule shaderModule = device.createShaderModule(moduleCreateInfo);
vk::DescriptorSetLayoutBinding in;
in.binding = 0;
in.descriptorCount = 1;
in.descriptorType = vk::DescriptorType::eStorageBuffer;
in.stageFlags = vk::ShaderStageFlagBits::eCompute;
vk::DescriptorSetLayoutBinding out;
out.binding = 1;
out.descriptorCount = 1;
out.descriptorType = vk::DescriptorType::eStorageBuffer;
out.stageFlags = vk::ShaderStageFlagBits::eCompute;
std::vector<vk::DescriptorSetLayoutBinding> setLayoutBindings = { in, out };
vk::DescriptorSetLayoutCreateInfo layoutInfo;
layoutInfo.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
layoutInfo.pBindings = setLayoutBindings.data();
descriptorSetLayout = device.createDescriptorSetLayout(layoutInfo);
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
pipelineLayoutCreateInfo.setLayoutCount = 1;
pipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout;
vk::PipelineLayout pipelineLayout = device.createPipelineLayout(pipelineLayoutCreateInfo);
vk::ComputePipelineCreateInfo computePipelineCreateInfo;
computePipelineCreateInfo.layout = pipelineLayout;
computePipelineCreateInfo.stage.stage = vk::ShaderStageFlagBits::eCompute;
computePipelineCreateInfo.stage.module = shaderModule;
computePipelineCreateInfo.stage.pName = "main";
pipeline = device.createComputePipeline({}, computePipelineCreateInfo).value;
// "A shader module can be destroyed while pipelines created using its shaders are still in use."
device.destroyShaderModule(shaderModule);
std::array<vk::DescriptorPoolSize, 1> poolSizes = {};
poolSizes[0].type = vk::DescriptorType::eStorageBuffer;
poolSizes[0].descriptorCount = 2;
vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo;
descriptorPoolCreateInfo.maxSets = 1;
descriptorPoolCreateInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
descriptorPoolCreateInfo.pPoolSizes = poolSizes.data();
descriptorPool = device.createDescriptorPool(descriptorPoolCreateInfo);
vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo;
descriptorSetAllocateInfo.descriptorPool = descriptorPool;
descriptorSetAllocateInfo.descriptorSetCount = 1;
descriptorSetAllocateInfo.pSetLayouts = &descriptorSetLayout;
auto descriptorSets = device.allocateDescriptorSets(descriptorSetAllocateInfo);
vk::DescriptorBufferInfo inBufferInfo;
inBufferInfo.buffer = bufferIn;
inBufferInfo.offset = 0;
inBufferInfo.range = VK_WHOLE_SIZE;
vk::DescriptorBufferInfo outBufferInfo;
outBufferInfo.buffer = bufferOut;
outBufferInfo.offset = 0;
outBufferInfo.range = VK_WHOLE_SIZE;
std::array<vk::WriteDescriptorSet, 2> descriptorWrites = {};
descriptorWrites[0].dstSet = descriptorSets[0];
descriptorWrites[0].dstBinding = 0;
descriptorWrites[0].dstArrayElement = 0;
descriptorWrites[0].descriptorType = vk::DescriptorType::eStorageBuffer;
descriptorWrites[0].descriptorCount = 1;
descriptorWrites[0].pBufferInfo = &inBufferInfo;
descriptorWrites[1].dstSet = descriptorSets[0];
descriptorWrites[1].dstBinding = 1;
descriptorWrites[1].dstArrayElement = 0;
descriptorWrites[1].descriptorType = vk::DescriptorType::eStorageBuffer;
descriptorWrites[1].descriptorCount = 1;
descriptorWrites[1].pBufferInfo = &outBufferInfo;
device.updateDescriptorSets(static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);
vk::CommandPoolCreateInfo commandPoolCreateInfo;
commandPoolCreateInfo.queueFamilyIndex = 0; // TODO: Don't assume queue family 0 can do compute.
commandPoolCreateInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
commandPool = device.createCommandPool(commandPoolCreateInfo);
vk::CommandBufferAllocateInfo commandBufferAllocateInfo;
commandBufferAllocateInfo.commandPool = commandPool;
commandBufferAllocateInfo.commandBufferCount = 1;
commandBufferAllocateInfo.level = vk::CommandBufferLevel::ePrimary;
auto commandBuffers = device.allocateCommandBuffers(commandBufferAllocateInfo);
// Record the command buffer
commandBuffer = commandBuffers[0];
vk::CommandBufferBeginInfo commandBufferBeginInfo;
commandBuffer.begin(commandBufferBeginInfo);
commandBuffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline);
commandBuffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute, pipelineLayout, 0, 1, &descriptorSets[0], 0, nullptr);
commandBuffer.dispatch((uint32_t)(numElements / localSizeX), 1, 1);
commandBuffer.end();
// Destroy objects we don't have to hold on to after command buffer recording.
// "A VkPipelineLayout object must not be destroyed while any command buffer that uses it is in the recording state."
device.destroyPipelineLayout(pipelineLayout);
}
void BufferToBufferComputeBenchmark::run()
{
vk::SubmitInfo submitInfo;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
queue.submit(submitInfo);
queue.waitIdle();
}
// Performs an operation `op` on each element.
class ComputeOp : public BufferToBufferComputeBenchmark
{
public:
ComputeOp(const benchmark::State &state, const char *op, const char *precision)
: BufferToBufferComputeBenchmark(state)
{
std::stringstream src;
src << R"(#version 450
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
layout(binding = 0, std430) buffer InBuffer
{
float Data[];
} In;
layout(binding = 1, std430) buffer OutBuffer
{
float Data[];
} Out;
void main()
{
)"
<< precision << R"( float x = In.Data[gl_GlobalInvocationID.x];
Out.Data[gl_GlobalInvocationID.x] = )"
<< op << R"( (x);
})";
initialize(src.str());
}
};
static void Compute(benchmark::State &state, const char *op, const char *precision = "highp")
{
ComputeOp benchmark(state, op, precision);
// Execute once to have the Reactor routine generated.
benchmark.run();
for(auto _ : state)
{
benchmark.run();
}
}
BENCHMARK_CAPTURE(Compute, mov, "")->RangeMultiplier(2)->Range(128, 4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, sqrt_highp, "sqrt", "highp")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, sin_highp, "sin", "highp")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, cos_highp, "cos", "highp")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, exp_highp, "exp", "highp")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, log_highp, "log", "highp")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, sqrt_mediump, "sqrt", "mediump")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, sin_mediump, "sin", "mediump")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, cos_mediump, "cos", "mediump")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, exp_mediump, "exp", "mediump")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();
BENCHMARK_CAPTURE(Compute, log_mediump, "log", "mediump")->Arg(4 * 1024 * 1024)->Unit(benchmark::kMillisecond)->MeasureProcessCPUTime();