| //===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the VE implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "VEInstrInfo.h" |
| #include "VE.h" |
| #include "VEMachineFunctionInfo.h" |
| #include "VESubtarget.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #define DEBUG_TYPE "ve-instr-info" |
| |
| using namespace llvm; |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "VEGenInstrInfo.inc" |
| |
| // Pin the vtable to this file. |
| void VEInstrInfo::anchor() {} |
| |
| VEInstrInfo::VEInstrInfo(VESubtarget &ST) |
| : VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {} |
| |
| static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); } |
| |
| static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) { |
| switch (CC) { |
| case VECC::CC_IG: |
| return VECC::CC_ILE; |
| case VECC::CC_IL: |
| return VECC::CC_IGE; |
| case VECC::CC_INE: |
| return VECC::CC_IEQ; |
| case VECC::CC_IEQ: |
| return VECC::CC_INE; |
| case VECC::CC_IGE: |
| return VECC::CC_IL; |
| case VECC::CC_ILE: |
| return VECC::CC_IG; |
| case VECC::CC_AF: |
| return VECC::CC_AT; |
| case VECC::CC_G: |
| return VECC::CC_LENAN; |
| case VECC::CC_L: |
| return VECC::CC_GENAN; |
| case VECC::CC_NE: |
| return VECC::CC_EQNAN; |
| case VECC::CC_EQ: |
| return VECC::CC_NENAN; |
| case VECC::CC_GE: |
| return VECC::CC_LNAN; |
| case VECC::CC_LE: |
| return VECC::CC_GNAN; |
| case VECC::CC_NUM: |
| return VECC::CC_NAN; |
| case VECC::CC_NAN: |
| return VECC::CC_NUM; |
| case VECC::CC_GNAN: |
| return VECC::CC_LE; |
| case VECC::CC_LNAN: |
| return VECC::CC_GE; |
| case VECC::CC_NENAN: |
| return VECC::CC_EQ; |
| case VECC::CC_EQNAN: |
| return VECC::CC_NE; |
| case VECC::CC_GENAN: |
| return VECC::CC_L; |
| case VECC::CC_LENAN: |
| return VECC::CC_G; |
| case VECC::CC_AT: |
| return VECC::CC_AF; |
| case VECC::UNKNOWN: |
| return VECC::UNKNOWN; |
| } |
| llvm_unreachable("Invalid cond code"); |
| } |
| |
| // Treat a branch relative long always instruction as unconditional branch. |
| // For example, br.l.t and br.l. |
| static bool isUncondBranchOpcode(int Opc) { |
| using namespace llvm::VE; |
| |
| #define BRKIND(NAME) (Opc == NAME##a || Opc == NAME##a_nt || Opc == NAME##a_t) |
| // VE has other branch relative always instructions for word/double/float, |
| // but we use only long branches in our lower. So, check it here. |
| assert(!BRKIND(BRCFW) && !BRKIND(BRCFD) && !BRKIND(BRCFS) && |
| "Branch relative word/double/float always instructions should not be " |
| "used!"); |
| return BRKIND(BRCFL); |
| #undef BRKIND |
| } |
| |
| // Treat branch relative conditional as conditional branch instructions. |
| // For example, brgt.l.t and brle.s.nt. |
| static bool isCondBranchOpcode(int Opc) { |
| using namespace llvm::VE; |
| |
| #define BRKIND(NAME) \ |
| (Opc == NAME##rr || Opc == NAME##rr_nt || Opc == NAME##rr_t || \ |
| Opc == NAME##ir || Opc == NAME##ir_nt || Opc == NAME##ir_t) |
| return BRKIND(BRCFL) || BRKIND(BRCFW) || BRKIND(BRCFD) || BRKIND(BRCFS); |
| #undef BRKIND |
| } |
| |
| // Treat branch long always instructions as indirect branch. |
| // For example, b.l.t and b.l. |
| static bool isIndirectBranchOpcode(int Opc) { |
| using namespace llvm::VE; |
| |
| #define BRKIND(NAME) \ |
| (Opc == NAME##ari || Opc == NAME##ari_nt || Opc == NAME##ari_t) |
| // VE has other branch always instructions for word/double/float, but |
| // we use only long branches in our lower. So, check it here. |
| assert(!BRKIND(BCFW) && !BRKIND(BCFD) && !BRKIND(BCFS) && |
| "Branch word/double/float always instructions should not be used!"); |
| return BRKIND(BCFL); |
| #undef BRKIND |
| } |
| |
| static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, |
| SmallVectorImpl<MachineOperand> &Cond) { |
| Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm())); |
| Cond.push_back(LastInst->getOperand(1)); |
| Cond.push_back(LastInst->getOperand(2)); |
| Target = LastInst->getOperand(3).getMBB(); |
| } |
| |
| bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return false; |
| |
| if (!isUnpredicatedTerminator(*I)) |
| return false; |
| |
| // Get the last instruction in the block. |
| MachineInstr *LastInst = &*I; |
| unsigned LastOpc = LastInst->getOpcode(); |
| |
| // If there is only one terminator instruction, process it. |
| if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { |
| if (isUncondBranchOpcode(LastOpc)) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| if (isCondBranchOpcode(LastOpc)) { |
| // Block ends with fall-through condbranch. |
| parseCondBranch(LastInst, TBB, Cond); |
| return false; |
| } |
| return true; // Can't handle indirect branch. |
| } |
| |
| // Get the instruction before it if it is a terminator. |
| MachineInstr *SecondLastInst = &*I; |
| unsigned SecondLastOpc = SecondLastInst->getOpcode(); |
| |
| // If AllowModify is true and the block ends with two or more unconditional |
| // branches, delete all but the first unconditional branch. |
| if (AllowModify && isUncondBranchOpcode(LastOpc)) { |
| while (isUncondBranchOpcode(SecondLastOpc)) { |
| LastInst->eraseFromParent(); |
| LastInst = SecondLastInst; |
| LastOpc = LastInst->getOpcode(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { |
| // Return now the only terminator is an unconditional branch. |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| SecondLastInst = &*I; |
| SecondLastOpc = SecondLastInst->getOpcode(); |
| } |
| } |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I)) |
| return true; |
| |
| // If the block ends with a B and a Bcc, handle it. |
| if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| parseCondBranch(SecondLastInst, TBB, Cond); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two unconditional branches, handle it. The second |
| // one is not executed. |
| if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // ...likewise if it ends with an indirect branch followed by an unconditional |
| // branch. |
| if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return true; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, int *BytesAdded) const { |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 3 || Cond.size() == 0) && |
| "VE branch conditions should have three component!"); |
| assert(!BytesAdded && "code size not handled"); |
| if (Cond.empty()) { |
| // Uncondition branch |
| assert(!FBB && "Unconditional branch with multiple successors!"); |
| BuildMI(&MBB, DL, get(VE::BRCFLa_t)) |
| .addMBB(TBB); |
| return 1; |
| } |
| |
| // Conditional branch |
| // (BRCFir CC sy sz addr) |
| assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented"); |
| |
| unsigned opc[2]; |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineFunction *MF = MBB.getParent(); |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| Register Reg = Cond[2].getReg(); |
| if (IsIntegerCC(Cond[0].getImm())) { |
| if (TRI->getRegSizeInBits(Reg, MRI) == 32) { |
| opc[0] = VE::BRCFWir; |
| opc[1] = VE::BRCFWrr; |
| } else { |
| opc[0] = VE::BRCFLir; |
| opc[1] = VE::BRCFLrr; |
| } |
| } else { |
| if (TRI->getRegSizeInBits(Reg, MRI) == 32) { |
| opc[0] = VE::BRCFSir; |
| opc[1] = VE::BRCFSrr; |
| } else { |
| opc[0] = VE::BRCFDir; |
| opc[1] = VE::BRCFDrr; |
| } |
| } |
| if (Cond[1].isImm()) { |
| BuildMI(&MBB, DL, get(opc[0])) |
| .add(Cond[0]) // condition code |
| .add(Cond[1]) // lhs |
| .add(Cond[2]) // rhs |
| .addMBB(TBB); |
| } else { |
| BuildMI(&MBB, DL, get(opc[1])) |
| .add(Cond[0]) |
| .add(Cond[1]) |
| .add(Cond[2]) |
| .addMBB(TBB); |
| } |
| |
| if (!FBB) |
| return 1; |
| |
| BuildMI(&MBB, DL, get(VE::BRCFLa_t)) |
| .addMBB(FBB); |
| return 2; |
| } |
| |
| unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| assert(!BytesRemoved && "code size not handled"); |
| |
| MachineBasicBlock::iterator I = MBB.end(); |
| unsigned Count = 0; |
| while (I != MBB.begin()) { |
| --I; |
| |
| if (I->isDebugValue()) |
| continue; |
| |
| if (!isUncondBranchOpcode(I->getOpcode()) && |
| !isCondBranchOpcode(I->getOpcode())) |
| break; // Not a branch |
| |
| I->eraseFromParent(); |
| I = MBB.end(); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| bool VEInstrInfo::reverseBranchCondition( |
| SmallVectorImpl<MachineOperand> &Cond) const { |
| VECC::CondCode CC = static_cast<VECC::CondCode>(Cond[0].getImm()); |
| Cond[0].setImm(GetOppositeBranchCondition(CC)); |
| return false; |
| } |
| |
| static bool IsAliasOfSX(Register Reg) { |
| return VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) || |
| VE::F32RegClass.contains(Reg); |
| } |
| |
| static void copyPhysSubRegs(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, const DebugLoc &DL, |
| MCRegister DestReg, MCRegister SrcReg, bool KillSrc, |
| const MCInstrDesc &MCID, unsigned int NumSubRegs, |
| const unsigned *SubRegIdx, |
| const TargetRegisterInfo *TRI) { |
| MachineInstr *MovMI = nullptr; |
| |
| for (unsigned Idx = 0; Idx != NumSubRegs; ++Idx) { |
| Register SubDest = TRI->getSubReg(DestReg, SubRegIdx[Idx]); |
| Register SubSrc = TRI->getSubReg(SrcReg, SubRegIdx[Idx]); |
| assert(SubDest && SubSrc && "Bad sub-register"); |
| |
| if (MCID.getOpcode() == VE::ORri) { |
| // generate "ORri, dest, src, 0" instruction. |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, I, DL, MCID, SubDest).addReg(SubSrc).addImm(0); |
| MovMI = MIB.getInstr(); |
| } else if (MCID.getOpcode() == VE::ANDMmm) { |
| // generate "ANDM, dest, vm0, src" instruction. |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, I, DL, MCID, SubDest).addReg(VE::VM0).addReg(SubSrc); |
| MovMI = MIB.getInstr(); |
| } else { |
| llvm_unreachable("Unexpected reg-to-reg copy instruction"); |
| } |
| } |
| // Add implicit super-register defs and kills to the last MovMI. |
| MovMI->addRegisterDefined(DestReg, TRI); |
| if (KillSrc) |
| MovMI->addRegisterKilled(SrcReg, TRI, true); |
| } |
| |
| void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, const DebugLoc &DL, |
| MCRegister DestReg, MCRegister SrcReg, |
| bool KillSrc) const { |
| |
| if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) { |
| BuildMI(MBB, I, DL, get(VE::ORri), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addImm(0); |
| } else if (VE::V64RegClass.contains(DestReg, SrcReg)) { |
| // Generate following instructions |
| // %sw16 = LEA32zii 256 |
| // VORmvl %dest, (0)1, %src, %sw16 |
| // TODO: reuse a register if vl is already assigned to a register |
| // FIXME: it would be better to scavenge a register here instead of |
| // reserving SX16 all of the time. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| Register TmpReg = VE::SX16; |
| Register SubTmp = TRI->getSubReg(TmpReg, VE::sub_i32); |
| BuildMI(MBB, I, DL, get(VE::LEAzii), TmpReg) |
| .addImm(0) |
| .addImm(0) |
| .addImm(256); |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(VE::VORmvl), DestReg) |
| .addImm(M1(0)) // Represent (0)1. |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .addReg(SubTmp, getKillRegState(true)); |
| MIB.getInstr()->addRegisterKilled(TmpReg, TRI, true); |
| } else if (VE::VMRegClass.contains(DestReg, SrcReg)) { |
| BuildMI(MBB, I, DL, get(VE::ANDMmm), DestReg) |
| .addReg(VE::VM0) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| } else if (VE::VM512RegClass.contains(DestReg, SrcReg)) { |
| // Use two instructions. |
| const unsigned SubRegIdx[] = {VE::sub_vm_even, VE::sub_vm_odd}; |
| unsigned int NumSubRegs = 2; |
| copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ANDMmm), |
| NumSubRegs, SubRegIdx, &getRegisterInfo()); |
| } else if (VE::F128RegClass.contains(DestReg, SrcReg)) { |
| // Use two instructions. |
| const unsigned SubRegIdx[] = {VE::sub_even, VE::sub_odd}; |
| unsigned int NumSubRegs = 2; |
| copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ORri), |
| NumSubRegs, SubRegIdx, &getRegisterInfo()); |
| } else { |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI) |
| << " to " << printReg(DestReg, TRI) << "\n"; |
| llvm_unreachable("Impossible reg-to-reg copy"); |
| } |
| } |
| |
| /// isLoadFromStackSlot - If the specified machine instruction is a direct |
| /// load from a stack slot, return the virtual or physical register number of |
| /// the destination along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than loading from the stack slot. |
| unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| if (MI.getOpcode() == VE::LDrii || // I64 |
| MI.getOpcode() == VE::LDLSXrii || // I32 |
| MI.getOpcode() == VE::LDUrii || // F32 |
| MI.getOpcode() == VE::LDQrii || // F128 (pseudo) |
| MI.getOpcode() == VE::LDVMrii || // VM (pseudo) |
| MI.getOpcode() == VE::LDVM512rii // VM512 (pseudo) |
| ) { |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() && |
| MI.getOperand(3).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| } |
| return 0; |
| } |
| |
| /// isStoreToStackSlot - If the specified machine instruction is a direct |
| /// store to a stack slot, return the virtual or physical register number of |
| /// the source reg along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than storing to the stack slot. |
| unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| if (MI.getOpcode() == VE::STrii || // I64 |
| MI.getOpcode() == VE::STLrii || // I32 |
| MI.getOpcode() == VE::STUrii || // F32 |
| MI.getOpcode() == VE::STQrii || // F128 (pseudo) |
| MI.getOpcode() == VE::STVMrii || // VM (pseudo) |
| MI.getOpcode() == VE::STVM512rii // VM512 (pseudo) |
| ) { |
| if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && |
| MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(0).getIndex(); |
| return MI.getOperand(3).getReg(); |
| } |
| } |
| return 0; |
| } |
| |
| void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register SrcReg, bool isKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| DebugLoc DL; |
| if (I != MBB.end()) |
| DL = I->getDebugLoc(); |
| |
| MachineFunction *MF = MBB.getParent(); |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); |
| |
| // On the order of operands here: think "[FrameIdx + 0] = SrcReg". |
| if (RC == &VE::I64RegClass) { |
| BuildMI(MBB, I, DL, get(VE::STrii)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO); |
| } else if (RC == &VE::I32RegClass) { |
| BuildMI(MBB, I, DL, get(VE::STLrii)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO); |
| } else if (RC == &VE::F32RegClass) { |
| BuildMI(MBB, I, DL, get(VE::STUrii)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO); |
| } else if (VE::F128RegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(VE::STQrii)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO); |
| } else if (RC == &VE::VMRegClass) { |
| BuildMI(MBB, I, DL, get(VE::STVMrii)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO); |
| } else if (VE::VM512RegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(VE::STVM512rii)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO); |
| } else |
| report_fatal_error("Can't store this register to stack slot"); |
| } |
| |
| void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register DestReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| DebugLoc DL; |
| if (I != MBB.end()) |
| DL = I->getDebugLoc(); |
| |
| MachineFunction *MF = MBB.getParent(); |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); |
| |
| if (RC == &VE::I64RegClass) { |
| BuildMI(MBB, I, DL, get(VE::LDrii), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } else if (RC == &VE::I32RegClass) { |
| BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } else if (RC == &VE::F32RegClass) { |
| BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } else if (VE::F128RegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(VE::LDQrii), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } else if (RC == &VE::VMRegClass) { |
| BuildMI(MBB, I, DL, get(VE::LDVMrii), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } else if (VE::VM512RegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(VE::LDVM512rii), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addImm(0) |
| .addMemOperand(MMO); |
| } else |
| report_fatal_error("Can't load this register from stack slot"); |
| } |
| |
| bool VEInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| Register Reg, MachineRegisterInfo *MRI) const { |
| LLVM_DEBUG(dbgs() << "FoldImmediate\n"); |
| |
| LLVM_DEBUG(dbgs() << "checking DefMI\n"); |
| int64_t ImmVal; |
| switch (DefMI.getOpcode()) { |
| default: |
| return false; |
| case VE::ORim: |
| // General move small immediate instruction on VE. |
| LLVM_DEBUG(dbgs() << "checking ORim\n"); |
| LLVM_DEBUG(DefMI.dump()); |
| // FIXME: We may need to support FPImm too. |
| assert(DefMI.getOperand(1).isImm()); |
| assert(DefMI.getOperand(2).isImm()); |
| ImmVal = |
| DefMI.getOperand(1).getImm() + mimm2Val(DefMI.getOperand(2).getImm()); |
| LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n"); |
| break; |
| case VE::LEAzii: |
| // General move immediate instruction on VE. |
| LLVM_DEBUG(dbgs() << "checking LEAzii\n"); |
| LLVM_DEBUG(DefMI.dump()); |
| // FIXME: We may need to support FPImm too. |
| assert(DefMI.getOperand(2).isImm()); |
| if (!DefMI.getOperand(3).isImm()) |
| // LEAzii may refer label |
| return false; |
| ImmVal = DefMI.getOperand(2).getImm() + DefMI.getOperand(3).getImm(); |
| LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n"); |
| break; |
| } |
| |
| // Try to fold like below: |
| // %1:i64 = ORim 0, 0(1) |
| // %2:i64 = CMPSLrr %0, %1 |
| // To |
| // %2:i64 = CMPSLrm %0, 0(1) |
| // |
| // Another example: |
| // %1:i64 = ORim 6, 0(1) |
| // %2:i64 = CMPSLrr %1, %0 |
| // To |
| // %2:i64 = CMPSLir 6, %0 |
| // |
| // Support commutable instructions like below: |
| // %1:i64 = ORim 6, 0(1) |
| // %2:i64 = ADDSLrr %1, %0 |
| // To |
| // %2:i64 = ADDSLri %0, 6 |
| // |
| // FIXME: Need to support i32. Current implementtation requires |
| // EXTRACT_SUBREG, so input has following COPY and it avoids folding: |
| // %1:i64 = ORim 6, 0(1) |
| // %2:i32 = COPY %1.sub_i32 |
| // %3:i32 = ADDSWSXrr %0, %2 |
| // FIXME: Need to support shift, cmov, and more instructions. |
| // FIXME: Need to support lvl too, but LVLGen runs after peephole-opt. |
| |
| LLVM_DEBUG(dbgs() << "checking UseMI\n"); |
| LLVM_DEBUG(UseMI.dump()); |
| unsigned NewUseOpcSImm7; |
| unsigned NewUseOpcMImm; |
| enum InstType { |
| rr2ri_rm, // rr -> ri or rm, commutable |
| rr2ir_rm, // rr -> ir or rm |
| } InstType; |
| |
| using namespace llvm::VE; |
| #define INSTRKIND(NAME) \ |
| case NAME##rr: \ |
| NewUseOpcSImm7 = NAME##ri; \ |
| NewUseOpcMImm = NAME##rm; \ |
| InstType = rr2ri_rm; \ |
| break |
| #define NCINSTRKIND(NAME) \ |
| case NAME##rr: \ |
| NewUseOpcSImm7 = NAME##ir; \ |
| NewUseOpcMImm = NAME##rm; \ |
| InstType = rr2ir_rm; \ |
| break |
| |
| switch (UseMI.getOpcode()) { |
| default: |
| return false; |
| |
| INSTRKIND(ADDUL); |
| INSTRKIND(ADDSWSX); |
| INSTRKIND(ADDSWZX); |
| INSTRKIND(ADDSL); |
| NCINSTRKIND(SUBUL); |
| NCINSTRKIND(SUBSWSX); |
| NCINSTRKIND(SUBSWZX); |
| NCINSTRKIND(SUBSL); |
| INSTRKIND(MULUL); |
| INSTRKIND(MULSWSX); |
| INSTRKIND(MULSWZX); |
| INSTRKIND(MULSL); |
| NCINSTRKIND(DIVUL); |
| NCINSTRKIND(DIVSWSX); |
| NCINSTRKIND(DIVSWZX); |
| NCINSTRKIND(DIVSL); |
| NCINSTRKIND(CMPUL); |
| NCINSTRKIND(CMPSWSX); |
| NCINSTRKIND(CMPSWZX); |
| NCINSTRKIND(CMPSL); |
| INSTRKIND(MAXSWSX); |
| INSTRKIND(MAXSWZX); |
| INSTRKIND(MAXSL); |
| INSTRKIND(MINSWSX); |
| INSTRKIND(MINSWZX); |
| INSTRKIND(MINSL); |
| INSTRKIND(AND); |
| INSTRKIND(OR); |
| INSTRKIND(XOR); |
| INSTRKIND(EQV); |
| NCINSTRKIND(NND); |
| NCINSTRKIND(MRG); |
| } |
| |
| #undef INSTRKIND |
| |
| unsigned NewUseOpc; |
| unsigned UseIdx; |
| bool Commute = false; |
| LLVM_DEBUG(dbgs() << "checking UseMI operands\n"); |
| switch (InstType) { |
| case rr2ri_rm: |
| UseIdx = 2; |
| if (UseMI.getOperand(1).getReg() == Reg) { |
| Commute = true; |
| } else { |
| assert(UseMI.getOperand(2).getReg() == Reg); |
| } |
| if (isInt<7>(ImmVal)) { |
| // This ImmVal matches to SImm7 slot, so change UseOpc to an instruction |
| // holds a simm7 slot. |
| NewUseOpc = NewUseOpcSImm7; |
| } else if (isMImmVal(ImmVal)) { |
| // Similarly, change UseOpc to an instruction holds a mimm slot. |
| NewUseOpc = NewUseOpcMImm; |
| ImmVal = val2MImm(ImmVal); |
| } else |
| return false; |
| break; |
| case rr2ir_rm: |
| if (UseMI.getOperand(1).getReg() == Reg) { |
| // Check immediate value whether it matchs to the UseMI instruction. |
| if (!isInt<7>(ImmVal)) |
| return false; |
| NewUseOpc = NewUseOpcSImm7; |
| UseIdx = 1; |
| } else { |
| assert(UseMI.getOperand(2).getReg() == Reg); |
| // Check immediate value whether it matchs to the UseMI instruction. |
| if (!isMImmVal(ImmVal)) |
| return false; |
| NewUseOpc = NewUseOpcMImm; |
| ImmVal = val2MImm(ImmVal); |
| UseIdx = 2; |
| } |
| break; |
| } |
| |
| LLVM_DEBUG(dbgs() << "modifying UseMI\n"); |
| bool DeleteDef = MRI->hasOneNonDBGUse(Reg); |
| UseMI.setDesc(get(NewUseOpc)); |
| if (Commute) { |
| UseMI.getOperand(1).setReg(UseMI.getOperand(UseIdx).getReg()); |
| } |
| UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); |
| if (DeleteDef) |
| DefMI.eraseFromParent(); |
| |
| return true; |
| } |
| |
| Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const { |
| VEMachineFunctionInfo *VEFI = MF->getInfo<VEMachineFunctionInfo>(); |
| Register GlobalBaseReg = VEFI->getGlobalBaseReg(); |
| if (GlobalBaseReg != 0) |
| return GlobalBaseReg; |
| |
| // We use %s15 (%got) as a global base register |
| GlobalBaseReg = VE::SX15; |
| |
| // Insert a pseudo instruction to set the GlobalBaseReg into the first |
| // MBB of the function |
| MachineBasicBlock &FirstMBB = MF->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| DebugLoc dl; |
| BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg); |
| VEFI->setGlobalBaseReg(GlobalBaseReg); |
| return GlobalBaseReg; |
| } |
| |
| static Register getVM512Upper(Register reg) { |
| return (reg - VE::VMP0) * 2 + VE::VM0; |
| } |
| |
| static Register getVM512Lower(Register reg) { return getVM512Upper(reg) + 1; } |
| |
| // Expand pseudo logical vector instructions for VM512 registers. |
| static void expandPseudoLogM(MachineInstr &MI, const MCInstrDesc &MCID) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| Register VMXu = getVM512Upper(MI.getOperand(0).getReg()); |
| Register VMXl = getVM512Lower(MI.getOperand(0).getReg()); |
| Register VMYu = getVM512Upper(MI.getOperand(1).getReg()); |
| Register VMYl = getVM512Lower(MI.getOperand(1).getReg()); |
| |
| switch (MI.getOpcode()) { |
| default: { |
| Register VMZu = getVM512Upper(MI.getOperand(2).getReg()); |
| Register VMZl = getVM512Lower(MI.getOperand(2).getReg()); |
| BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu).addUse(VMZu); |
| BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl).addUse(VMZl); |
| break; |
| } |
| case VE::NEGMy: |
| BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu); |
| BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl); |
| break; |
| } |
| MI.eraseFromParent(); |
| } |
| |
| static void addOperandsForVFMK(MachineInstrBuilder &MIB, MachineInstr &MI, |
| bool Upper) { |
| // VM512 |
| MIB.addReg(Upper ? getVM512Upper(MI.getOperand(0).getReg()) |
| : getVM512Lower(MI.getOperand(0).getReg())); |
| |
| switch (MI.getNumExplicitOperands()) { |
| default: |
| report_fatal_error("unexpected number of operands for pvfmk"); |
| case 2: // _Ml: VM512, VL |
| // VL |
| MIB.addReg(MI.getOperand(1).getReg()); |
| break; |
| case 4: // _Mvl: VM512, CC, VR, VL |
| // CC |
| MIB.addImm(MI.getOperand(1).getImm()); |
| // VR |
| MIB.addReg(MI.getOperand(2).getReg()); |
| // VL |
| MIB.addReg(MI.getOperand(3).getReg()); |
| break; |
| case 5: // _MvMl: VM512, CC, VR, VM512, VL |
| // CC |
| MIB.addImm(MI.getOperand(1).getImm()); |
| // VR |
| MIB.addReg(MI.getOperand(2).getReg()); |
| // VM512 |
| MIB.addReg(Upper ? getVM512Upper(MI.getOperand(3).getReg()) |
| : getVM512Lower(MI.getOperand(3).getReg())); |
| // VL |
| MIB.addReg(MI.getOperand(4).getReg()); |
| break; |
| } |
| } |
| |
| static void expandPseudoVFMK(const TargetInstrInfo &TI, MachineInstr &MI) { |
| // replace to pvfmk.w.up and pvfmk.w.lo |
| // replace to pvfmk.s.up and pvfmk.s.lo |
| |
| static const std::pair<unsigned, std::pair<unsigned, unsigned>> VFMKMap[] = { |
| {VE::VFMKyal, {VE::VFMKLal, VE::VFMKLal}}, |
| {VE::VFMKynal, {VE::VFMKLnal, VE::VFMKLnal}}, |
| {VE::VFMKWyvl, {VE::PVFMKWUPvl, VE::PVFMKWLOvl}}, |
| {VE::VFMKWyvyl, {VE::PVFMKWUPvml, VE::PVFMKWLOvml}}, |
| {VE::VFMKSyvl, {VE::PVFMKSUPvl, VE::PVFMKSLOvl}}, |
| {VE::VFMKSyvyl, {VE::PVFMKSUPvml, VE::PVFMKSLOvml}}, |
| }; |
| |
| unsigned Opcode = MI.getOpcode(); |
| |
| const auto *Found = |
| llvm::find_if(VFMKMap, [&](auto P) { return P.first == Opcode; }); |
| if (Found == std::end(VFMKMap)) |
| report_fatal_error("unexpected opcode for pseudo vfmk"); |
| |
| unsigned OpcodeUpper = (*Found).second.first; |
| unsigned OpcodeLower = (*Found).second.second; |
| |
| MachineBasicBlock *MBB = MI.getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| MachineInstrBuilder Bu = BuildMI(*MBB, MI, DL, TI.get(OpcodeUpper)); |
| addOperandsForVFMK(Bu, MI, /* Upper */ true); |
| MachineInstrBuilder Bl = BuildMI(*MBB, MI, DL, TI.get(OpcodeLower)); |
| addOperandsForVFMK(Bl, MI, /* Upper */ false); |
| |
| MI.eraseFromParent(); |
| } |
| |
| bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| switch (MI.getOpcode()) { |
| case VE::EXTEND_STACK: { |
| return expandExtendStackPseudo(MI); |
| } |
| case VE::EXTEND_STACK_GUARD: { |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return true; |
| } |
| case VE::GETSTACKTOP: { |
| return expandGetStackTopPseudo(MI); |
| } |
| |
| case VE::ANDMyy: |
| expandPseudoLogM(MI, get(VE::ANDMmm)); |
| return true; |
| case VE::ORMyy: |
| expandPseudoLogM(MI, get(VE::ORMmm)); |
| return true; |
| case VE::XORMyy: |
| expandPseudoLogM(MI, get(VE::XORMmm)); |
| return true; |
| case VE::EQVMyy: |
| expandPseudoLogM(MI, get(VE::EQVMmm)); |
| return true; |
| case VE::NNDMyy: |
| expandPseudoLogM(MI, get(VE::NNDMmm)); |
| return true; |
| case VE::NEGMy: |
| expandPseudoLogM(MI, get(VE::NEGMm)); |
| return true; |
| |
| case VE::LVMyir: |
| case VE::LVMyim: |
| case VE::LVMyir_y: |
| case VE::LVMyim_y: { |
| Register VMXu = getVM512Upper(MI.getOperand(0).getReg()); |
| Register VMXl = getVM512Lower(MI.getOperand(0).getReg()); |
| int64_t Imm = MI.getOperand(1).getImm(); |
| bool IsSrcReg = |
| MI.getOpcode() == VE::LVMyir || MI.getOpcode() == VE::LVMyir_y; |
| Register Src = IsSrcReg ? MI.getOperand(2).getReg() : VE::NoRegister; |
| int64_t MImm = IsSrcReg ? 0 : MI.getOperand(2).getImm(); |
| bool KillSrc = IsSrcReg ? MI.getOperand(2).isKill() : false; |
| Register VMX = VMXl; |
| if (Imm >= 4) { |
| VMX = VMXu; |
| Imm -= 4; |
| } |
| MachineBasicBlock *MBB = MI.getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| switch (MI.getOpcode()) { |
| case VE::LVMyir: |
| BuildMI(*MBB, MI, DL, get(VE::LVMir)) |
| .addDef(VMX) |
| .addImm(Imm) |
| .addReg(Src, getKillRegState(KillSrc)); |
| break; |
| case VE::LVMyim: |
| BuildMI(*MBB, MI, DL, get(VE::LVMim)) |
| .addDef(VMX) |
| .addImm(Imm) |
| .addImm(MImm); |
| break; |
| case VE::LVMyir_y: |
| assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() && |
| "LVMyir_y has different register in 3rd operand"); |
| BuildMI(*MBB, MI, DL, get(VE::LVMir_m)) |
| .addDef(VMX) |
| .addImm(Imm) |
| .addReg(Src, getKillRegState(KillSrc)) |
| .addReg(VMX); |
| break; |
| case VE::LVMyim_y: |
| assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() && |
| "LVMyim_y has different register in 3rd operand"); |
| BuildMI(*MBB, MI, DL, get(VE::LVMim_m)) |
| .addDef(VMX) |
| .addImm(Imm) |
| .addImm(MImm) |
| .addReg(VMX); |
| break; |
| } |
| MI.eraseFromParent(); |
| return true; |
| } |
| case VE::SVMyi: { |
| Register Dest = MI.getOperand(0).getReg(); |
| Register VMZu = getVM512Upper(MI.getOperand(1).getReg()); |
| Register VMZl = getVM512Lower(MI.getOperand(1).getReg()); |
| bool KillSrc = MI.getOperand(1).isKill(); |
| int64_t Imm = MI.getOperand(2).getImm(); |
| Register VMZ = VMZl; |
| if (Imm >= 4) { |
| VMZ = VMZu; |
| Imm -= 4; |
| } |
| MachineBasicBlock *MBB = MI.getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineInstrBuilder MIB = |
| BuildMI(*MBB, MI, DL, get(VE::SVMmi), Dest).addReg(VMZ).addImm(Imm); |
| MachineInstr *Inst = MIB.getInstr(); |
| if (KillSrc) { |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| Inst->addRegisterKilled(MI.getOperand(1).getReg(), TRI, true); |
| } |
| MI.eraseFromParent(); |
| return true; |
| } |
| case VE::VFMKyal: |
| case VE::VFMKynal: |
| case VE::VFMKWyvl: |
| case VE::VFMKWyvyl: |
| case VE::VFMKSyvl: |
| case VE::VFMKSyvyl: |
| expandPseudoVFMK(*this, MI); |
| return true; |
| } |
| return false; |
| } |
| |
| bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const { |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| const VESubtarget &STI = MF.getSubtarget<VESubtarget>(); |
| const VEInstrInfo &TII = *STI.getInstrInfo(); |
| DebugLoc dl = MBB.findDebugLoc(MI); |
| |
| // Create following instructions and multiple basic blocks. |
| // |
| // thisBB: |
| // brge.l.t %sp, %sl, sinkBB |
| // syscallBB: |
| // ld %s61, 0x18(, %tp) // load param area |
| // or %s62, 0, %s0 // spill the value of %s0 |
| // lea %s63, 0x13b // syscall # of grow |
| // shm.l %s63, 0x0(%s61) // store syscall # at addr:0 |
| // shm.l %sl, 0x8(%s61) // store old limit at addr:8 |
| // shm.l %sp, 0x10(%s61) // store new limit at addr:16 |
| // monc // call monitor |
| // or %s0, 0, %s62 // restore the value of %s0 |
| // sinkBB: |
| |
| // Create new MBB |
| MachineBasicBlock *BB = &MBB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB); |
| MachineFunction::iterator It = ++(BB->getIterator()); |
| MF.insert(It, syscallMBB); |
| MF.insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| std::next(std::next(MachineBasicBlock::iterator(MI))), |
| BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(syscallMBB); |
| BB->addSuccessor(sinkMBB); |
| BuildMI(BB, dl, TII.get(VE::BRCFLrr_t)) |
| .addImm(VECC::CC_IGE) |
| .addReg(VE::SX11) // %sp |
| .addReg(VE::SX8) // %sl |
| .addMBB(sinkMBB); |
| |
| BB = syscallMBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61) |
| .addReg(VE::SX14) |
| .addImm(0) |
| .addImm(0x18); |
| BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62) |
| .addReg(VE::SX0) |
| .addImm(0); |
| BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63) |
| .addImm(0) |
| .addImm(0) |
| .addImm(0x13b); |
| BuildMI(BB, dl, TII.get(VE::SHMLri)) |
| .addReg(VE::SX61) |
| .addImm(0) |
| .addReg(VE::SX63); |
| BuildMI(BB, dl, TII.get(VE::SHMLri)) |
| .addReg(VE::SX61) |
| .addImm(8) |
| .addReg(VE::SX8); |
| BuildMI(BB, dl, TII.get(VE::SHMLri)) |
| .addReg(VE::SX61) |
| .addImm(16) |
| .addReg(VE::SX11); |
| BuildMI(BB, dl, TII.get(VE::MONC)); |
| |
| BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0) |
| .addReg(VE::SX62) |
| .addImm(0); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return true; |
| } |
| |
| bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const { |
| MachineBasicBlock *MBB = MI.getParent(); |
| MachineFunction &MF = *MBB->getParent(); |
| const VESubtarget &STI = MF.getSubtarget<VESubtarget>(); |
| const VEInstrInfo &TII = *STI.getInstrInfo(); |
| DebugLoc DL = MBB->findDebugLoc(MI); |
| |
| // Create following instruction |
| // |
| // dst = %sp + target specific frame + the size of parameter area |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const VEFrameLowering &TFL = *STI.getFrameLowering(); |
| |
| // The VE ABI requires a reserved area at the top of stack as described |
| // in VEFrameLowering.cpp. So, we adjust it here. |
| unsigned NumBytes = STI.getAdjustedFrameSize(0); |
| |
| // Also adds the size of parameter area. |
| if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF)) |
| NumBytes += MFI.getMaxCallFrameSize(); |
| |
| BuildMI(*MBB, MI, DL, TII.get(VE::LEArii)) |
| .addDef(MI.getOperand(0).getReg()) |
| .addReg(VE::SX11) |
| .addImm(0) |
| .addImm(NumBytes); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return true; |
| } |