blob: 5dca792dc89a22c7d3939d7b59350c43eef9846e [file] [log] [blame]
//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZTargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "SystemZISelLowering.h"
#include "SystemZCallingConv.h"
#include "SystemZConstantPoolValue.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsS390.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include <cctype>
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "systemz-lower"
namespace {
// Represents information about a comparison.
struct Comparison {
Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
: Op0(Op0In), Op1(Op1In), Chain(ChainIn),
Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
// The operands to the comparison.
SDValue Op0, Op1;
// Chain if this is a strict floating-point comparison.
SDValue Chain;
// The opcode that should be used to compare Op0 and Op1.
unsigned Opcode;
// A SystemZICMP value. Only used for integer comparisons.
unsigned ICmpType;
// The mask of CC values that Opcode can produce.
unsigned CCValid;
// The mask of CC values for which the original condition is true.
unsigned CCMask;
};
} // end anonymous namespace
// Classify VT as either 32 or 64 bit.
static bool is32Bit(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
case MVT::i32:
return true;
case MVT::i64:
return false;
default:
llvm_unreachable("Unsupported type");
}
}
// Return a version of MachineOperand that can be safely used before the
// final use.
static MachineOperand earlyUseOperand(MachineOperand Op) {
if (Op.isReg())
Op.setIsKill(false);
return Op;
}
SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
const SystemZSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
auto *Regs = STI.getSpecialRegisters();
// Set up the register classes.
if (Subtarget.hasHighWord())
addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
else
addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
if (!useSoftFloat()) {
if (Subtarget.hasVector()) {
addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
} else {
addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
}
if (Subtarget.hasVectorEnhancements1())
addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
else
addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
if (Subtarget.hasVector()) {
addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
}
}
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget.getRegisterInfo());
// Set up special registers.
setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
// TODO: It may be better to default to latency-oriented scheduling, however
// LLVM's current latency-oriented scheduler can't handle physreg definitions
// such as SystemZ has with CC, so set this to the register-pressure
// scheduler, because it can.
setSchedulingPreference(Sched::RegPressure);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Instructions are strings of 2-byte aligned 2-byte values.
setMinFunctionAlignment(Align(2));
// For performance reasons we prefer 16-byte alignment.
setPrefFunctionAlignment(Align(16));
// Handle operations that are handled in a similar way for all types.
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
I <= MVT::LAST_FP_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// Lower SET_CC into an IPM-based sequence.
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
// Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
setOperationAction(ISD::SELECT, VT, Expand);
// Lower SELECT_CC and BR_CC into separate comparisons and branches.
setOperationAction(ISD::SELECT_CC, VT, Custom);
setOperationAction(ISD::BR_CC, VT, Custom);
}
}
// Expand jump table branches as address arithmetic followed by an
// indirect jump.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
// Expand BRCOND into a BR_CC (see above).
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
// Handle integer types.
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
I <= MVT::LAST_INTEGER_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
setOperationAction(ISD::ABS, VT, Legal);
// Expand individual DIV and REMs into DIVREMs.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
// Support addition/subtraction with overflow.
setOperationAction(ISD::SADDO, VT, Custom);
setOperationAction(ISD::SSUBO, VT, Custom);
// Support addition/subtraction with carry.
setOperationAction(ISD::UADDO, VT, Custom);
setOperationAction(ISD::USUBO, VT, Custom);
// Support carry in as value rather than glue.
setOperationAction(ISD::ADDCARRY, VT, Custom);
setOperationAction(ISD::SUBCARRY, VT, Custom);
// Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
// stores, putting a serialization instruction after the stores.
setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
// Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
// available, or if the operand is constant.
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
// Use POPCNT on z196 and above.
if (Subtarget.hasPopulationCount())
setOperationAction(ISD::CTPOP, VT, Custom);
else
setOperationAction(ISD::CTPOP, VT, Expand);
// No special instructions for these.
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Use *MUL_LOHI where possible instead of MULH*.
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Custom);
setOperationAction(ISD::UMUL_LOHI, VT, Custom);
// Only z196 and above have native support for conversions to unsigned.
// On z10, promoting to i64 doesn't generate an inexact condition for
// values that are outside the i32 range but in the i64 range, so use
// the default expansion.
if (!Subtarget.hasFPExtension())
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
// Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all
// default to Expand, so need to be modified to Legal where appropriate.
setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
if (Subtarget.hasFPExtension())
setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
// And similarly for STRICT_[SU]INT_TO_FP.
setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
if (Subtarget.hasFPExtension())
setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
}
}
// Type legalization will convert 8- and 16-bit atomic operations into
// forms that operate on i32s (but still keeping the original memory VT).
// Lower them into full i32 operations.
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
// Even though i128 is not a legal type, we still need to custom lower
// the atomic operations in order to exploit SystemZ instructions.
setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
// We can use the CC result of compare-and-swap to implement
// the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
// Traps are legal, as we will convert them to "j .+2".
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// z10 has instructions for signed but not unsigned FP conversion.
// Handle unsigned 32-bit types as signed 64-bit types.
if (!Subtarget.hasFPExtension()) {
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
}
// We have native support for a 64-bit CTLZ, via FLOGR.
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
// On z15 we have native support for a 64-bit CTPOP.
if (Subtarget.hasMiscellaneousExtensions3()) {
setOperationAction(ISD::CTPOP, MVT::i32, Promote);
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
}
// Give LowerOperation the chance to replace 64-bit ORs with subregs.
setOperationAction(ISD::OR, MVT::i64, Custom);
// Expand 128 bit shifts without using a libcall.
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
// Handle bitcast from fp128 to i128.
setOperationAction(ISD::BITCAST, MVT::i128, Custom);
// We have native instructions for i8, i16 and i32 extensions, but not i1.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
}
// Handle the various types of symbolic address.
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
// We need to handle dynamic allocations specially because of the
// 160-byte area at the bottom of the stack.
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
// Handle prefetches with PFD or PFDRL.
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
// Assume by default that all vector operations need to be expanded.
for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
if (getOperationAction(Opcode, VT) == Legal)
setOperationAction(Opcode, VT, Expand);
// Likewise all truncating stores and extending loads.
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
if (isTypeLegal(VT)) {
// These operations are legal for anything that can be stored in a
// vector register, even if there is no native support for the format
// as such. In particular, we can do these for v4f32 even though there
// are no specific instructions for that format.
setOperationAction(ISD::LOAD, VT, Legal);
setOperationAction(ISD::STORE, VT, Legal);
setOperationAction(ISD::VSELECT, VT, Legal);
setOperationAction(ISD::BITCAST, VT, Legal);
setOperationAction(ISD::UNDEF, VT, Legal);
// Likewise, except that we need to replace the nodes with something
// more specific.
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
}
}
// Handle integer vector types.
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
if (isTypeLegal(VT)) {
// These operations have direct equivalents.
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
setOperationAction(ISD::ADD, VT, Legal);
setOperationAction(ISD::SUB, VT, Legal);
if (VT != MVT::v2i64)
setOperationAction(ISD::MUL, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::AND, VT, Legal);
setOperationAction(ISD::OR, VT, Legal);
setOperationAction(ISD::XOR, VT, Legal);
if (Subtarget.hasVectorEnhancements1())
setOperationAction(ISD::CTPOP, VT, Legal);
else
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Legal);
setOperationAction(ISD::CTLZ, VT, Legal);
// Convert a GPR scalar to a vector by inserting it into element 0.
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
// Use a series of unpacks for extensions.
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
// Detect shifts by a scalar amount and convert them into
// V*_BY_SCALAR.
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
// At present ROTL isn't matched by DAGCombiner. ROTR should be
// converted into ROTL.
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
// and inverting the result as necessary.
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
if (Subtarget.hasVectorEnhancements1())
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
}
}
if (Subtarget.hasVector()) {
// There should be no need to check for float types other than v2f64
// since <2 x f32> isn't a legal type.
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
}
if (Subtarget.hasVectorEnhancements2()) {
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
}
// Handle floating-point types.
for (unsigned I = MVT::FIRST_FP_VALUETYPE;
I <= MVT::LAST_FP_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// We can use FI for FRINT.
setOperationAction(ISD::FRINT, VT, Legal);
// We can use the extended form of FI for other rounding operations.
if (Subtarget.hasFPExtension()) {
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FROUND, VT, Legal);
}
// No special instructions for these.
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
// Special treatment.
setOperationAction(ISD::IS_FPCLASS, VT, Custom);
// Handle constrained floating-point operations.
setOperationAction(ISD::STRICT_FADD, VT, Legal);
setOperationAction(ISD::STRICT_FSUB, VT, Legal);
setOperationAction(ISD::STRICT_FMUL, VT, Legal);
setOperationAction(ISD::STRICT_FDIV, VT, Legal);
setOperationAction(ISD::STRICT_FMA, VT, Legal);
setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
setOperationAction(ISD::STRICT_FRINT, VT, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
if (Subtarget.hasFPExtension()) {
setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
setOperationAction(ISD::STRICT_FROUND, VT, Legal);
setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
}
}
}
// Handle floating-point vector types.
if (Subtarget.hasVector()) {
// Scalar-to-vector conversion is just a subreg.
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
// Some insertions and extractions can be done directly but others
// need to go via integers.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
// These operations have direct equivalents.
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::FABS, MVT::v2f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
// Handle constrained floating-point operations.
setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
}
// The vector enhancements facility 1 has instructions for these.
if (Subtarget.hasVectorEnhancements1()) {
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FABS, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
// Handle constrained floating-point operations.
setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
MVT::v4f32, MVT::v2f64 }) {
setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
}
}
// We only have fused f128 multiply-addition on vector registers.
if (!Subtarget.hasVectorEnhancements1()) {
setOperationAction(ISD::FMA, MVT::f128, Expand);
setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
}
// We don't have a copysign instruction on vector registers.
if (Subtarget.hasVectorEnhancements1())
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
// Needed so that we don't try to implement f128 constant loads using
// a load-and-extend of a f80 constant (in cases where the constant
// would fit in an f80).
for (MVT VT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
// We don't have extending load instruction on vector registers.
if (Subtarget.hasVectorEnhancements1()) {
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
}
// Floating-point truncation and stores need to be done separately.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
// We have 64-bit FPR<->GPR moves, but need special handling for
// 32-bit forms.
if (!Subtarget.hasVector()) {
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
}
// VASTART and VACOPY need to deal with the SystemZ-specific varargs
// structure, but VAEND is a no-op.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
// Codes for which we want to perform some z-specific combinations.
setTargetDAGCombine({ISD::ZERO_EXTEND,
ISD::SIGN_EXTEND,
ISD::SIGN_EXTEND_INREG,
ISD::LOAD,
ISD::STORE,
ISD::VECTOR_SHUFFLE,
ISD::EXTRACT_VECTOR_ELT,
ISD::FP_ROUND,
ISD::STRICT_FP_ROUND,
ISD::FP_EXTEND,
ISD::SINT_TO_FP,
ISD::UINT_TO_FP,
ISD::STRICT_FP_EXTEND,
ISD::BSWAP,
ISD::SDIV,
ISD::UDIV,
ISD::SREM,
ISD::UREM,
ISD::INTRINSIC_VOID,
ISD::INTRINSIC_W_CHAIN});
// Handle intrinsics.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// We want to use MVC in preference to even a single load/store pair.
MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
MaxStoresPerMemcpyOptSize = 0;
// The main memset sequence is a byte store followed by an MVC.
// Two STC or MV..I stores win over that, but the kind of fused stores
// generated by target-independent code don't when the byte value is
// variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
// than "STC;MVC". Handle the choice in target-specific code instead.
MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
MaxStoresPerMemsetOptSize = 0;
// Default to having -disable-strictnode-mutation on
IsStrictFPEnabled = true;
}
bool SystemZTargetLowering::useSoftFloat() const {
return Subtarget.hasSoftFloat();
}
EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
const MachineFunction &MF, EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
case MVT::f128:
return Subtarget.hasVectorEnhancements1();
default:
break;
}
return false;
}
// Return true if the constant can be generated with a vector instruction,
// such as VGM, VGMB or VREPI.
bool SystemZVectorConstantInfo::isVectorConstantLegal(
const SystemZSubtarget &Subtarget) {
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
if (!Subtarget.hasVector() ||
(isFP128 && !Subtarget.hasVectorEnhancements1()))
return false;
// Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
// preferred way of creating all-zero and all-one vectors so give it
// priority over other methods below.
unsigned Mask = 0;
unsigned I = 0;
for (; I < SystemZ::VectorBytes; ++I) {
uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
if (Byte == 0xff)
Mask |= 1ULL << I;
else if (Byte != 0)
break;
}
if (I == SystemZ::VectorBytes) {
Opcode = SystemZISD::BYTE_MASK;
OpVals.push_back(Mask);
VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
return true;
}
if (SplatBitSize > 64)
return false;
auto tryValue = [&](uint64_t Value) -> bool {
// Try VECTOR REPLICATE IMMEDIATE
int64_t SignedValue = SignExtend64(Value, SplatBitSize);
if (isInt<16>(SignedValue)) {
OpVals.push_back(((unsigned) SignedValue));
Opcode = SystemZISD::REPLICATE;
VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
SystemZ::VectorBits / SplatBitSize);
return true;
}
// Try VECTOR GENERATE MASK
unsigned Start, End;
if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
// isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
// denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for
// an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
OpVals.push_back(Start - (64 - SplatBitSize));
OpVals.push_back(End - (64 - SplatBitSize));
Opcode = SystemZISD::ROTATE_MASK;
VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
SystemZ::VectorBits / SplatBitSize);
return true;
}
return false;
};
// First try assuming that any undefined bits above the highest set bit
// and below the lowest set bit are 1s. This increases the likelihood of
// being able to use a sign-extended element value in VECTOR REPLICATE
// IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
uint64_t SplatBitsZ = SplatBits.getZExtValue();
uint64_t SplatUndefZ = SplatUndef.getZExtValue();
uint64_t Lower =
(SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
uint64_t Upper =
(SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
if (tryValue(SplatBitsZ | Upper | Lower))
return true;
// Now try assuming that any undefined bits between the first and
// last defined set bits are set. This increases the chances of
// using a non-wraparound mask.
uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
return tryValue(SplatBitsZ | Middle);
}
SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
if (IntImm.isSingleWord()) {
IntBits = APInt(128, IntImm.getZExtValue());
IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
} else
IntBits = IntImm;
assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
// Find the smallest splat.
SplatBits = IntImm;
unsigned Width = SplatBits.getBitWidth();
while (Width > 8) {
unsigned HalfSize = Width / 2;
APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
APInt LowValue = SplatBits.trunc(HalfSize);
// If the two halves do not match, stop here.
if (HighValue != LowValue || 8 > HalfSize)
break;
SplatBits = HighValue;
Width = HalfSize;
}
SplatUndef = 0;
SplatBitSize = Width;
}
SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
bool HasAnyUndefs;
// Get IntBits by finding the 128 bit splat.
BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
true);
// Get SplatBits by finding the 8 bit or greater splat.
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
true);
}
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
// We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
if (Imm.isZero() || Imm.isNegZero())
return true;
return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
}
/// Returns true if stack probing through inline assembly is requested.
bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
// If the function specifically requests inline stack probes, emit them.
if (MF.getFunction().hasFnAttribute("probe-stack"))
return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
"inline-asm";
return false;
}
bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
// We can use CGFI or CLGFI.
return isInt<32>(Imm) || isUInt<32>(Imm);
}
bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
// We can use ALGFI or SLGFI.
return isUInt<32>(Imm) || isUInt<32>(-Imm);
}
bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
// Unaligned accesses should never be slower than the expanded version.
// We check specifically for aligned accesses in the few cases where
// they are required.
if (Fast)
*Fast = 1;
return true;
}
// Information about the addressing mode for a memory access.
struct AddressingMode {
// True if a long displacement is supported.
bool LongDisplacement;
// True if use of index register is supported.
bool IndexReg;
AddressingMode(bool LongDispl, bool IdxReg) :
LongDisplacement(LongDispl), IndexReg(IdxReg) {}
};
// Return the desired addressing mode for a Load which has only one use (in
// the same block) which is a Store.
static AddressingMode getLoadStoreAddrMode(bool HasVector,
Type *Ty) {
// With vector support a Load->Store combination may be combined to either
// an MVC or vector operations and it seems to work best to allow the
// vector addressing mode.
if (HasVector)
return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
// Otherwise only the MVC case is special.
bool MVC = Ty->isIntegerTy(8);
return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
}
// Return the addressing mode which seems most desirable given an LLVM
// Instruction pointer.
static AddressingMode
supportedAddressingMode(Instruction *I, bool HasVector) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
}
}
if (isa<LoadInst>(I) && I->hasOneUse()) {
auto *SingleUser = cast<Instruction>(*I->user_begin());
if (SingleUser->getParent() == I->getParent()) {
if (isa<ICmpInst>(SingleUser)) {
if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
if (C->getBitWidth() <= 64 &&
(isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
// Comparison of memory with 16 bit signed / unsigned immediate
return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
} else if (isa<StoreInst>(SingleUser))
// Load->Store
return getLoadStoreAddrMode(HasVector, I->getType());
}
} else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
// Load->Store
return getLoadStoreAddrMode(HasVector, LoadI->getType());
}
if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
// * Use LDE instead of LE/LEY for z13 to avoid partial register
// dependencies (LDE only supports small offsets).
// * Utilize the vector registers to hold floating point
// values (vector load / store instructions only support small
// offsets).
Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
I->getOperand(0)->getType());
bool IsFPAccess = MemAccessTy->isFloatingPointTy();
bool IsVectorAccess = MemAccessTy->isVectorTy();
// A store of an extracted vector element will be combined into a VSTE type
// instruction.
if (!IsVectorAccess && isa<StoreInst>(I)) {
Value *DataOp = I->getOperand(0);
if (isa<ExtractElementInst>(DataOp))
IsVectorAccess = true;
}
// A load which gets inserted into a vector element will be combined into a
// VLE type instruction.
if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
User *LoadUser = *I->user_begin();
if (isa<InsertElementInst>(LoadUser))
IsVectorAccess = true;
}
if (IsFPAccess || IsVectorAccess)
return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
}
return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
}
bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
// Punt on globals for now, although they can be used in limited
// RELATIVE LONG cases.
if (AM.BaseGV)
return false;
// Require a 20-bit signed offset.
if (!isInt<20>(AM.BaseOffs))
return false;
bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy();
AddressingMode SupportedAM(!RequireD12, true);
if (I != nullptr)
SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
return false;
if (!SupportedAM.IndexReg)
// No indexing allowed.
return AM.Scale == 0;
else
// Indexing is OK but no scale factor can be applied.
return AM.Scale == 0 || AM.Scale == 1;
}
bool SystemZTargetLowering::findOptimalMemOpLowering(
std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
unsigned SrcAS, const AttributeList &FuncAttributes) const {
const int MVCFastLen = 16;
if (Limit != ~unsigned(0)) {
// Don't expand Op into scalar loads/stores in these cases:
if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
return false; // Small memcpy: Use MVC
if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
return false; // Small memset (first byte with STC/MVI): Use MVC
if (Op.isZeroMemset())
return false; // Memset zero: Use XC
}
return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
SrcAS, FuncAttributes);
}
EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const {
return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
}
bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
return false;
unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
return FromBits > ToBits;
}
bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
if (!FromVT.isInteger() || !ToVT.isInteger())
return false;
unsigned FromBits = FromVT.getFixedSizeInBits();
unsigned ToBits = ToVT.getFixedSizeInBits();
return FromBits > ToBits;
}
//===----------------------------------------------------------------------===//
// Inline asm support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'f': // Floating-point register
case 'h': // High-part register
case 'r': // General-purpose register
case 'v': // Vector register
return C_RegisterClass;
case 'Q': // Memory with base and unsigned 12-bit displacement
case 'R': // Likewise, plus an index
case 'S': // Memory with base and signed 20-bit displacement
case 'T': // Likewise, plus an index
case 'm': // Equivalent to 'T'.
return C_Memory;
case 'I': // Unsigned 8-bit constant
case 'J': // Unsigned 12-bit constant
case 'K': // Signed 16-bit constant
case 'L': // Signed 20-bit displacement (on all targets we support)
case 'M': // 0x7fffffff
return C_Immediate;
default:
break;
}
} else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
switch (Constraint[1]) {
case 'Q': // Address with base and unsigned 12-bit displacement
case 'R': // Likewise, plus an index
case 'S': // Address with base and signed 20-bit displacement
case 'T': // Likewise, plus an index
return C_Address;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'h': // High-part register
case 'r': // General-purpose register
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_Register;
break;
case 'f': // Floating-point register
if (type->isFloatingPointTy())
weight = CW_Register;
break;
case 'v': // Vector register
if ((type->isVectorTy() || type->isFloatingPointTy()) &&
Subtarget.hasVector())
weight = CW_Register;
break;
case 'I': // Unsigned 8-bit constant
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isUInt<8>(C->getZExtValue()))
weight = CW_Constant;
break;
case 'J': // Unsigned 12-bit constant
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isUInt<12>(C->getZExtValue()))
weight = CW_Constant;
break;
case 'K': // Signed 16-bit constant
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isInt<16>(C->getSExtValue()))
weight = CW_Constant;
break;
case 'L': // Signed 20-bit displacement (on all targets we support)
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isInt<20>(C->getSExtValue()))
weight = CW_Constant;
break;
case 'M': // 0x7fffffff
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (C->getZExtValue() == 0x7fffffff)
weight = CW_Constant;
break;
}
return weight;
}
// Parse a "{tNNN}" register constraint for which the register type "t"
// has already been verified. MC is the class associated with "t" and
// Map maps 0-based register numbers to LLVM register numbers.
static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
const unsigned *Map, unsigned Size) {
assert(*(Constraint.end()-1) == '}' && "Missing '}'");
if (isdigit(Constraint[2])) {
unsigned Index;
bool Failed =
Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
if (!Failed && Index < Size && Map[Index])
return std::make_pair(Map[Index], RC);
}
return std::make_pair(0U, nullptr);
}
std::pair<unsigned, const TargetRegisterClass *>
SystemZTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'd': // Data register (equivalent to 'r')
case 'r': // General-purpose register
if (VT == MVT::i64)
return std::make_pair(0U, &SystemZ::GR64BitRegClass);
else if (VT == MVT::i128)
return std::make_pair(0U, &SystemZ::GR128BitRegClass);
return std::make_pair(0U, &SystemZ::GR32BitRegClass);
case 'a': // Address register
if (VT == MVT::i64)
return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
else if (VT == MVT::i128)
return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
case 'h': // High-part register (an LLVM extension)
return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
case 'f': // Floating-point register
if (!useSoftFloat()) {
if (VT == MVT::f64)
return std::make_pair(0U, &SystemZ::FP64BitRegClass);
else if (VT == MVT::f128)
return std::make_pair(0U, &SystemZ::FP128BitRegClass);
return std::make_pair(0U, &SystemZ::FP32BitRegClass);
}
break;
case 'v': // Vector register
if (Subtarget.hasVector()) {
if (VT == MVT::f32)
return std::make_pair(0U, &SystemZ::VR32BitRegClass);
if (VT == MVT::f64)
return std::make_pair(0U, &SystemZ::VR64BitRegClass);
return std::make_pair(0U, &SystemZ::VR128BitRegClass);
}
break;
}
}
if (Constraint.size() > 0 && Constraint[0] == '{') {
// We need to override the default register parsing for GPRs and FPRs
// because the interpretation depends on VT. The internal names of
// the registers are also different from the external names
// (F0D and F0S instead of F0, etc.).
if (Constraint[1] == 'r') {
if (VT == MVT::i32)
return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
SystemZMC::GR32Regs, 16);
if (VT == MVT::i128)
return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
SystemZMC::GR128Regs, 16);
return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
SystemZMC::GR64Regs, 16);
}
if (Constraint[1] == 'f') {
if (useSoftFloat())
return std::make_pair(
0u, static_cast<const TargetRegisterClass *>(nullptr));
if (VT == MVT::f32)
return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
SystemZMC::FP32Regs, 16);
if (VT == MVT::f128)
return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
SystemZMC::FP128Regs, 16);
return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
SystemZMC::FP64Regs, 16);
}
if (Constraint[1] == 'v') {
if (!Subtarget.hasVector())
return std::make_pair(
0u, static_cast<const TargetRegisterClass *>(nullptr));
if (VT == MVT::f32)
return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
SystemZMC::VR32Regs, 32);
if (VT == MVT::f64)
return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
SystemZMC::VR64Regs, 32);
return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
SystemZMC::VR128Regs, 32);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register
SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const {
const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
Register Reg =
StringSwitch<Register>(RegName)
.Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0)
.Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0)
.Default(0);
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
// Only support length 1 constraints for now.
if (Constraint.length() == 1) {
switch (Constraint[0]) {
case 'I': // Unsigned 8-bit constant
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isUInt<8>(C->getZExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'J': // Unsigned 12-bit constant
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isUInt<12>(C->getZExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'K': // Signed 16-bit constant
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isInt<16>(C->getSExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'L': // Signed 20-bit displacement (on all targets we support)
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isInt<20>(C->getSExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'M': // 0x7fffffff
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (C->getZExtValue() == 0x7fffffff)
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType()));
return;
}
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// Calling conventions
//===----------------------------------------------------------------------===//
#include "SystemZGenCallingConv.inc"
const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
CallingConv::ID) const {
static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
SystemZ::R14D, 0 };
return ScratchRegs;
}
bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
Type *ToType) const {
return isTruncateFree(FromType, ToType);
}
bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
return CI->isTailCall();
}
// We do not yet support 128-bit single-element vector types. If the user
// attempts to use such types as function argument or return type, prefer
// to error out instead of emitting code violating the ABI.
static void VerifyVectorType(MVT VT, EVT ArgVT) {
if (ArgVT.isVector() && !VT.isVector())
report_fatal_error("Unsupported vector argument or return type");
}
static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
for (unsigned i = 0; i < Ins.size(); ++i)
VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
}
static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
for (unsigned i = 0; i < Outs.size(); ++i)
VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
}
// Value is a value that has been passed to us in the location described by VA
// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
// any loads onto Chain.
static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
CCValAssign &VA, SDValue Chain,
SDValue Value) {
// If the argument has been promoted from a smaller type, insert an
// assertion to capture this.
if (VA.getLocInfo() == CCValAssign::SExt)
Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
DAG.getValueType(VA.getValVT()));
if (VA.isExtInLoc())
Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
else if (VA.getLocInfo() == CCValAssign::BCvt) {
// If this is a short vector argument loaded from the stack,
// extend from i64 to full vector size and then bitcast.
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT().isVector());
Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
} else
assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
return Value;
}
// Value is a value of type VA.getValVT() that we need to copy into
// the location described by VA. Return a copy of Value converted to
// VA.getValVT(). The caller is responsible for handling indirect values.
static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
CCValAssign &VA, SDValue Value) {
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::ZExt:
return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::AExt:
return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::BCvt: {
assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
// For an f32 vararg we need to first promote it to an f64 and then
// bitcast it to an i64.
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
? MVT::v2i64
: VA.getLocVT();
Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
// For ELF, this is a short vector argument to be stored to the stack,
// bitcast to v2i64 and then extract first element.
if (BitCastToType == MVT::v2i64)
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
DAG.getConstant(0, DL, MVT::i32));
return Value;
}
case CCValAssign::Full:
return Value;
default:
llvm_unreachable("Unhandled getLocInfo()");
}
}
static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
SDLoc DL(In);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
DAG.getIntPtrConstant(0, DL));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
DAG.getIntPtrConstant(1, DL));
SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
MVT::Untyped, Hi, Lo);
return SDValue(Pair, 0);
}
static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
SDLoc DL(In);
SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
DL, MVT::i64, In);
SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
DL, MVT::i64, In);
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
}
bool SystemZTargetLowering::splitValueIntoRegisterParts(
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
EVT ValueVT = Val.getValueType();
assert((ValueVT != MVT::i128 ||
((NumParts == 1 && PartVT == MVT::Untyped) ||
(NumParts == 2 && PartVT == MVT::i64))) &&
"Unknown handling of i128 value.");
if (ValueVT == MVT::i128 && NumParts == 1) {
// Inline assembly operand.
Parts[0] = lowerI128ToGR128(DAG, Val);
return true;
}
return false;
}
SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
assert((ValueVT != MVT::i128 ||
((NumParts == 1 && PartVT == MVT::Untyped) ||
(NumParts == 2 && PartVT == MVT::i64))) &&
"Unknown handling of i128 value.");
if (ValueVT == MVT::i128 && NumParts == 1)
// Inline assembly operand.
return lowerGR128ToI128(DAG, Parts[0]);
return SDValue();
}
SDValue SystemZTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// Detect unsupported vector argument types.
if (Subtarget.hasVector())
VerifyVectorTypes(Ins);
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
unsigned NumFixedGPRs = 0;
unsigned NumFixedFPRs = 0;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
SDValue ArgValue;
CCValAssign &VA = ArgLocs[I];
EVT LocVT = VA.getLocVT();
if (VA.isRegLoc()) {
// Arguments passed in registers
const TargetRegisterClass *RC;
switch (LocVT.getSimpleVT().SimpleTy) {
default:
// Integers smaller than i64 should be promoted to i64.
llvm_unreachable("Unexpected argument type");
case MVT::i32:
NumFixedGPRs += 1;
RC = &SystemZ::GR32BitRegClass;
break;
case MVT::i64:
NumFixedGPRs += 1;
RC = &SystemZ::GR64BitRegClass;
break;
case MVT::f32:
NumFixedFPRs += 1;
RC = &SystemZ::FP32BitRegClass;
break;
case MVT::f64:
NumFixedFPRs += 1;
RC = &SystemZ::FP64BitRegClass;
break;
case MVT::f128:
NumFixedFPRs += 2;
RC = &SystemZ::FP128BitRegClass;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
RC = &SystemZ::VR128BitRegClass;
break;
}
Register VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(VA.getLocReg(), VReg);
ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Create the frame index object for this incoming parameter.
// FIXME: Pre-include call frame size in the offset, should not
// need to manually add it here.
int64_t ArgSPOffset = VA.getLocMemOffset();
if (Subtarget.isTargetXPLINK64()) {
auto &XPRegs =
Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
ArgSPOffset += XPRegs.getCallFrameSize();
}
int FI =
MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
// Create the SelectionDAG nodes corresponding to a load
// from this parameter. Unpromoted ints and floats are
// passed as right-justified 8-byte values.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
DAG.getIntPtrConstant(4, DL));
ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
// Convert the value of the argument register into the value that's
// being passed.
if (VA.getLocInfo() == CCValAssign::Indirect) {
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
MachinePointerInfo()));
// If the original argument was split (e.g. i128), we need
// to load all parts of it here (using the same address).
unsigned ArgIndex = Ins[I].OrigArgIndex;
assert (Ins[I].PartOffset == 0);
while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
CCValAssign &PartVA = ArgLocs[I + 1];
unsigned PartOffset = Ins[I + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
DAG.getIntPtrConstant(PartOffset, DL));
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
MachinePointerInfo()));
++I;
}
} else
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
}
// FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
if (IsVarArg && Subtarget.isTargetELF()) {
// Save the number of non-varargs registers for later use by va_start, etc.
FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
// Likewise the address (in the form of a frame index) of where the
// first stack vararg would be. The 1-byte size here is arbitrary.
int64_t StackSize = CCInfo.getNextStackOffset();
FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
// ...and a similar frame index for the caller-allocated save area
// that will be used to store the incoming registers.
int64_t RegSaveOffset =
-SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
// Store the FPR varargs in the reserved frame slots. (We store the
// GPRs as part of the prologue.)
if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
SDValue MemOps[SystemZ::ELFNumArgFPRs];
for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
int FI =
MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
&SystemZ::FP64BitRegClass);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
// Join the stores, which are independent of one another.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
ArrayRef(&MemOps[NumFixedFPRs],
SystemZ::ELFNumArgFPRs - NumFixedFPRs));
}
}
// FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
// register (R5)
return Chain;
}
static bool canUseSiblingCall(const CCState &ArgCCInfo,
SmallVectorImpl<CCValAssign> &ArgLocs,
SmallVectorImpl<ISD::OutputArg> &Outs) {
// Punt if there are any indirect or stack arguments, or if the call
// needs the callee-saved argument register R6, or if the call uses
// the callee-saved register arguments SwiftSelf and SwiftError.
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc())
return false;
Register Reg = VA.getLocReg();
if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
return false;
if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
return false;
}
return true;
}
SDValue
SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(MF.getDataLayout());
LLVMContext &Ctx = *DAG.getContext();
SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
// FIXME: z/OS support to be added in later.
if (Subtarget.isTargetXPLINK64())
IsTailCall = false;
// Detect unsupported vector argument and return types.
if (Subtarget.hasVector()) {
VerifyVectorTypes(Outs);
VerifyVectorTypes(Ins);
}
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
// We don't support GuaranteedTailCallOpt, only automatically-detected
// sibling calls.
if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
IsTailCall = false;
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
if (Subtarget.isTargetXPLINK64())
// Although the XPLINK specifications for AMODE64 state that minimum size
// of the param area is minimum 32 bytes and no rounding is otherwise
// specified, we round this area in 64 bytes increments to be compatible
// with existing compilers.
NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
// Mark the start of the call.
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
SDValue ArgValue = OutVals[I];
if (VA.getLocInfo() == CCValAssign::Indirect) {
// Store the argument in a stack slot and pass its address.
unsigned ArgIndex = Outs[I].OrigArgIndex;
EVT SlotVT;
if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
// Allocate the full stack space for a promoted (and split) argument.
Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
} else {
SlotVT = Outs[I].ArgVT;
}
SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(MF, FI)));
// If the original argument was split (e.g. i128), we need
// to store all parts of it here (and pass just one address).
assert (Outs[I].PartOffset == 0);
while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
SDValue PartValue = OutVals[I + 1];
unsigned PartOffset = Outs[I + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
DAG.getIntPtrConstant(PartOffset, DL));
MemOpChains.push_back(
DAG.getStore(Chain, DL, PartValue, Address,
MachinePointerInfo::getFixedStack(MF, FI)));
assert((PartOffset + PartValue.getValueType().getStoreSize() <=
SlotVT.getStoreSize()) && "Not enough space for argument part!");
++I;
}
ArgValue = SpillSlot;
} else
ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
if (VA.isRegLoc()) {
// In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
// MVT::i128 type. We decompose the 128-bit type to a pair of its high
// and low values.
if (VA.getLocVT() == MVT::i128)
ArgValue = lowerI128ToGR128(DAG, ArgValue);
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Work out the address of the stack slot. Unpromoted ints and
// floats are passed as right-justified 8-byte values.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL,
Regs->getStackPointerRegister(), PtrVT);
unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
VA.getLocMemOffset();
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
Offset += 4;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset, DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
// Although long doubles or vectors are passed through the stack when
// they are vararg (non-fixed arguments), if a long double or vector
// occupies the third and fourth slot of the argument list GPR3 should
// still shadow the third slot of the argument list.
if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
SDValue ShadowArgValue =
DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
DAG.getIntPtrConstant(1, DL));
RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
}
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Accept direct calls by converting symbolic call addresses to the
// associated Target* opcodes. Force %r1 to be used for indirect
// tail calls.
SDValue Glue;
// FIXME: Add support for XPLINK using the ADA register.
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
} else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
} else if (IsTailCall) {
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
Glue = Chain.getValue(1);
Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
}
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
RegsToPass[I].second, Glue);
Glue = Chain.getValue(1);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
Ops.push_back(DAG.getRegister(RegsToPass[I].first,
RegsToPass[I].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall)
return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
// Copy the value out, gluing the copy to the end of the call sequence.
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
VA.getLocVT(), Glue);
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
// Convert the value of the return register into the value that's
// being returned.
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
}
return Chain;
}
// Generate a call taking the given operands as arguments and returning a
// result of type RetVT.
std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
bool DoesNotReturn, bool IsReturnValueUsed) const {
TargetLowering::ArgListTy Args;
Args.reserve(Ops.size());
TargetLowering::ArgListEntry Entry;
for (SDValue Op : Ops) {
Entry.Node = Op;
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
Args.push_back(Entry);
}
SDValue Callee =
DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::CallLoweringInfo CLI(DAG);
bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
CLI.setDebugLoc(DL)
.setChain(Chain)
.setCallee(CallConv, RetTy, Callee, std::move(Args))
.setNoReturn(DoesNotReturn)
.setDiscardResult(!IsReturnValueUsed)
.setSExtResult(SignExtend)
.setZExtResult(!SignExtend);
return LowerCallTo(CLI);
}
bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
// Detect unsupported vector return types.
if (Subtarget.hasVector())
VerifyVectorTypes(Outs);
// Special case that we cannot easily detect in RetCC_SystemZ since
// i128 is not a legal type.
for (auto &Out : Outs)
if (Out.ArgVT == MVT::i128)
return false;
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
}
SDValue
SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// Detect unsupported vector return types.
if (Subtarget.hasVector())
VerifyVectorTypes(Outs);
// Assign locations to each returned value.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
// Quick exit for void returns
if (RetLocs.empty())
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
if (CallConv == CallingConv::GHC)
report_fatal_error("GHC functions return void only");
// Copy the result values into the output registers.
SDValue Glue;
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain);
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
SDValue RetValue = OutVals[I];
// Make the return register live on exit.
assert(VA.isRegLoc() && "Can only return in registers!");
// Promote the value as required.
RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
// Chain and glue the copies together.
Register Reg = VA.getLocReg();
Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Glue.getNode())
RetOps.push_back(Glue);
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
}
// Return true if Op is an intrinsic node with chain that returns the CC value
// as its only (other) argument. Provide the associated SystemZISD opcode and
// the mask of valid CC values if so.
static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
unsigned &CCValid) {
unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (Id) {
case Intrinsic::s390_tbegin:
Opcode = SystemZISD::TBEGIN;
CCValid = SystemZ::CCMASK_TBEGIN;
return true;
case Intrinsic::s390_tbegin_nofloat:
Opcode = SystemZISD::TBEGIN_NOFLOAT;
CCValid = SystemZ::CCMASK_TBEGIN;
return true;
case Intrinsic::s390_tend:
Opcode = SystemZISD::TEND;
CCValid = SystemZ::CCMASK_TEND;
return true;
default:
return false;
}
}
// Return true if Op is an intrinsic node without chain that returns the
// CC value as its final argument. Provide the associated SystemZISD
// opcode and the mask of valid CC values if so.
static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::s390_vpkshs:
case Intrinsic::s390_vpksfs:
case Intrinsic::s390_vpksgs:
Opcode = SystemZISD::PACKS_CC;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vpklshs:
case Intrinsic::s390_vpklsfs:
case Intrinsic::s390_vpklsgs:
Opcode = SystemZISD::PACKLS_CC;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vceqbs:
case Intrinsic::s390_vceqhs:
case Intrinsic::s390_vceqfs:
case Intrinsic::s390_vceqgs:
Opcode = SystemZISD::VICMPES;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vchbs:
case Intrinsic::s390_vchhs:
case Intrinsic::s390_vchfs:
case Intrinsic::s390_vchgs:
Opcode = SystemZISD::VICMPHS;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vchlbs:
case Intrinsic::s390_vchlhs:
case Intrinsic::s390_vchlfs:
case Intrinsic::s390_vchlgs:
Opcode = SystemZISD::VICMPHLS;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vtm:
Opcode = SystemZISD::VTM;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vfaebs:
case Intrinsic::s390_vfaehs:
case Intrinsic::s390_vfaefs:
Opcode = SystemZISD::VFAE_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfaezbs:
case Intrinsic::s390_vfaezhs:
case Intrinsic::s390_vfaezfs:
Opcode = SystemZISD::VFAEZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfeebs:
case Intrinsic::s390_vfeehs:
case Intrinsic::s390_vfeefs:
Opcode = SystemZISD::VFEE_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfeezbs:
case Intrinsic::s390_vfeezhs:
case Intrinsic::s390_vfeezfs:
Opcode = SystemZISD::VFEEZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfenebs:
case Intrinsic::s390_vfenehs:
case Intrinsic::s390_vfenefs:
Opcode = SystemZISD::VFENE_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfenezbs:
case Intrinsic::s390_vfenezhs:
case Intrinsic::s390_vfenezfs:
Opcode = SystemZISD::VFENEZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vistrbs:
case Intrinsic::s390_vistrhs:
case Intrinsic::s390_vistrfs:
Opcode = SystemZISD::VISTR_CC;
CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
return true;
case Intrinsic::s390_vstrcbs:
case Intrinsic::s390_vstrchs:
case Intrinsic::s390_vstrcfs:
Opcode = SystemZISD::VSTRC_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vstrczbs:
case Intrinsic::s390_vstrczhs:
case Intrinsic::s390_vstrczfs:
Opcode = SystemZISD::VSTRCZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vstrsb:
case Intrinsic::s390_vstrsh:
case Intrinsic::s390_vstrsf:
Opcode = SystemZISD::VSTRS_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vstrszb:
case Intrinsic::s390_vstrszh:
case Intrinsic::s390_vstrszf:
Opcode = SystemZISD::VSTRSZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfcedbs:
case Intrinsic::s390_vfcesbs:
Opcode = SystemZISD::VFCMPES;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vfchdbs:
case Intrinsic::s390_vfchsbs:
Opcode = SystemZISD::VFCMPHS;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vfchedbs:
case Intrinsic::s390_vfchesbs:
Opcode = SystemZISD::VFCMPHES;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vftcidb:
case Intrinsic::s390_vftcisb:
Opcode = SystemZISD::VFTCI;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_tdc:
Opcode = SystemZISD::TDC;
CCValid = SystemZ::CCMASK_TDC;
return true;
default:
return false;
}
}
// Emit an intrinsic with chain and an explicit CC register result.
static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
unsigned Opcode) {
// Copy all operands except the intrinsic ID.
unsigned NumOps = Op.getNumOperands();
SmallVector<SDValue, 6> Ops;
Ops.reserve(NumOps - 1);
Ops.push_back(Op.getOperand(0));
for (unsigned I = 2; I < NumOps; ++I)
Ops.push_back(Op.getOperand(I));
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
SDValue OldChain = SDValue(Op.getNode(), 1);
SDValue NewChain = SDValue(Intr.getNode(), 1);
DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
return Intr.getNode();
}
// Emit an intrinsic with an explicit CC register result.
static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
unsigned Opcode) {
// Copy all operands except the intrinsic ID.
unsigned NumOps = Op.getNumOperands();
SmallVector<SDValue, 6> Ops;
Ops.reserve(NumOps - 1);
for (unsigned I = 1; I < NumOps; ++I)
Ops.push_back(Op.getOperand(I));
SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
return Intr.getNode();
}
// CC is a comparison that will be implemented using an integer or
// floating-point comparison. Return the condition code mask for
// a branch on true. In the integer case, CCMASK_CMP_UO is set for
// unsigned comparisons and clear for signed ones. In the floating-point
// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
static unsigned CCMaskForCondCode(ISD::CondCode CC) {
#define CONV(X) \
case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
switch (CC) {
default:
llvm_unreachable("Invalid integer condition!");
CONV(EQ);
CONV(NE);
CONV(GT);
CONV(GE);
CONV(LT);
CONV(LE);
case ISD::SETO: return SystemZ::CCMASK_CMP_O;
case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
}
#undef CONV
}
// If C can be converted to a comparison against zero, adjust the operands
// as necessary.
static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
if (C.ICmpType == SystemZICMP::UnsignedOnly)
return;
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
if (!ConstOp1)
return;
int64_t Value = ConstOp1->getSExtValue();
if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
(Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
}
}
// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
// adjust the operands as necessary.
static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
Comparison &C) {
// For us to make any changes, it must a comparison between a single-use
// load and a constant.
if (!C.Op0.hasOneUse() ||
C.Op0.getOpcode() != ISD::LOAD ||
C.Op1.getOpcode() != ISD::Constant)
return;
// We must have an 8- or 16-bit load.
auto *Load = cast<LoadSDNode>(C.Op0);
unsigned NumBits = Load->getMemoryVT().getSizeInBits();
if ((NumBits != 8 && NumBits != 16) ||
NumBits != Load->getMemoryVT().getStoreSizeInBits())
return;
// The load must be an extending one and the constant must be within the
// range of the unextended value.
auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
uint64_t Value = ConstOp1->getZExtValue();
uint64_t Mask = (1 << NumBits) - 1;
if (Load->getExtensionType() == ISD::SEXTLOAD) {
// Make sure that ConstOp1 is in range of C.Op0.
int64_t SignedValue = ConstOp1->getSExtValue();
if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
return;
if (C.ICmpType != SystemZICMP::SignedOnly) {
// Unsigned comparison between two sign-extended values is equivalent
// to unsigned comparison between two zero-extended values.
Value &= Mask;
} else if (NumBits == 8) {
// Try to treat the comparison as unsigned, so that we can use CLI.
// Adjust CCMask and Value as necessary.
if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
// Test whether the high bit of the byte is set.
Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
// Test whether the high bit of the byte is clear.
Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
else
// No instruction exists for this combination.
return;
C.ICmpType = SystemZICMP::UnsignedOnly;
}
} else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
if (Value > Mask)
return;
// If the constant is in range, we can use any comparison.
C.ICmpType = SystemZICMP::Any;
} else
return;
// Make sure that the first operand is an i32 of the right extension type.
ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
ISD::SEXTLOAD :
ISD::ZEXTLOAD);
if (C.Op0.getValueType() != MVT::i32 ||
Load->getExtensionType() != ExtType) {
C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
Load->getBasePtr(), Load->getPointerInfo(),
Load->getMemoryVT(), Load->getAlign(),
Load->getMemOperand()->getFlags());
// Update the chain uses.
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
}
// Make sure that the second operand is an i32 with the right value.
if (C.Op1.getValueType() != MVT::i32 ||
Value != ConstOp1->getZExtValue())
C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
}
// Return true if Op is either an unextended load, or a load suitable
// for integer register-memory comparisons of type ICmpType.
static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
if (Load) {
// There are no instructions to compare a register with a memory byte.
if (Load->getMemoryVT() == MVT::i8)
return false;
// Otherwise decide on extension type.
switch (Load->getExtensionType()) {
case ISD::NON_EXTLOAD:
return true;
case ISD::SEXTLOAD:
return ICmpType != SystemZICMP::UnsignedOnly;
case ISD::ZEXTLOAD:
return ICmpType != SystemZICMP::SignedOnly;
default:
break;
}
}
return false;
}
// Return true if it is better to swap the operands of C.
static bool shouldSwapCmpOperands(const Comparison &C) {
// Leave f128 comparisons alone, since they have no memory forms.
if (C.Op0.getValueType() == MVT::f128)
return false;
// Always keep a floating-point constant second, since comparisons with
// zero can use LOAD TEST and comparisons with other constants make a
// natural memory operand.
if (isa<ConstantFPSDNode>(C.Op1))
return false;
// Never swap comparisons with zero since there are many ways to optimize
// those later.
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
if (ConstOp1 && ConstOp1->getZExtValue() == 0)
return false;
// Also keep natural memory operands second if the loaded value is
// only used here. Several comparisons have memory forms.
if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
return false;
// Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
// In that case we generally prefer the memory to be second.
if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
// The only exceptions are when the second operand is a constant and
// we can use things like CHHSI.
if (!ConstOp1)
return true;
// The unsigned memory-immediate instructions can handle 16-bit
// unsigned integers.
if (C.ICmpType != SystemZICMP::SignedOnly &&
isUInt<16>(ConstOp1->getZExtValue()))
return false;
// The signed memory-immediate instructions can handle 16-bit
// signed integers.
if (C.ICmpType != SystemZICMP::UnsignedOnly &&
isInt<16>(ConstOp1->getSExtValue()))
return false;
return true;
}
// Try to promote the use of CGFR and CLGFR.
unsigned Opcode0 = C.Op0.getOpcode();
if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
return true;
if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
return true;
if (C.ICmpType != SystemZICMP::SignedOnly &&
Opcode0 == ISD::AND &&
C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
return true;
return false;
}
// Check whether C tests for equality between X and Y and whether X - Y
// or Y - X is also computed. In that case it's better to compare the
// result of the subtraction against zero.
static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
Comparison &C) {
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
C.CCMask == SystemZ::CCMASK_CMP_NE) {
for (SDNode *N : C.Op0->uses()) {
if (N->getOpcode() == ISD::SUB &&
((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
(N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
C.Op0 = SDValue(N, 0);
C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
return;
}
}
}
}
// Check whether C compares a floating-point value with zero and if that
// floating-point value is also negated. In this case we can use the
// negation to set CC, so avoiding separate LOAD AND TEST and
// LOAD (NEGATIVE/COMPLEMENT) instructions.
static void adjustForFNeg(Comparison &C) {
// This optimization is invalid for strict comparisons, since FNEG
// does not raise any exceptions.
if (C.Chain)
return;
auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
if (C1 && C1->isZero()) {
for (SDNode *N : C.Op0->uses()) {
if (N->getOpcode() == ISD::FNEG) {
C.Op0 = SDValue(N, 0);
C.CCMask = SystemZ::reverseCCMask(C.CCMask);
return;
}
}
}
}
// Check whether C compares (shl X, 32) with 0 and whether X is
// also sign-extended. In that case it is better to test the result
// of the sign extension using LTGFR.
//
// This case is important because InstCombine transforms a comparison
// with (sext (trunc X)) into a comparison with (shl X, 32).
static void adjustForLTGFR(Comparison &C) {
// Check for a comparison between (shl X, 32) and 0.
if (C.Op0.getOpcode() == ISD::SHL &&
C.Op0.getValueType() == MVT::i64 &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
if (C1 && C1->getZExtValue() == 32) {
SDValue ShlOp0 = C.Op0.getOperand(0);
// See whether X has any SIGN_EXTEND_INREG uses.
for (SDNode *N : ShlOp0->uses()) {
if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
C.Op0 = SDValue(N, 0);
return;
}
}
}
}
}
// If C compares the truncation of an extending load, try to compare
// the untruncated value instead. This exposes more opportunities to
// reuse CC.
static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
Comparison &C) {
if (C.Op0.getOpcode() == ISD::TRUNCATE &&
C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
C.Op0.getValueSizeInBits().getFixedValue()) {
unsigned Type = L->getExtensionType();
if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
(Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
C.Op0 = C.Op0.getOperand(0);
C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
}
}
}
}
// Return true if shift operation N has an in-range constant shift value.
// Store it in ShiftVal if so.
static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!Shift)
return false;
uint64_t Amount = Shift->getZExtValue();
if (Amount >= N.getValueSizeInBits())
return false;
ShiftVal = Amount;
return true;
}
// Check whether an AND with Mask is suitable for a TEST UNDER MASK
// instruction and whether the CC value is descriptive enough to handle
// a comparison of type Opcode between the AND result and CmpVal.
// CCMask says which comparison result is being tested and BitSize is
// the number of bits in the operands. If TEST UNDER MASK can be used,
// return the corresponding CC mask, otherwise return 0.
static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
uint64_t Mask, uint64_t CmpVal,
unsigned ICmpType) {
assert(Mask != 0 && "ANDs with zero should have been removed by now");
// Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
!SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
return 0;
// Work out the masks for the lowest and highest bits.
unsigned HighShift = 63 - countLeadingZeros(Mask);
uint64_t High = uint64_t(1) << HighShift;
uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
// Signed ordered comparisons are effectively unsigned if the sign
// bit is dropped.
bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
// Check for equality comparisons with 0, or the equivalent.
if (CmpVal == 0) {
if (CCMask == SystemZ::CCMASK_CMP_EQ)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_NE)
return SystemZ::CCMASK_TM_SOME_1;
}
if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_SOME_1;
}
if (EffectivelyUnsigned && CmpVal < Low) {
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_SOME_1;
}
// Check for equality comparisons with the mask, or the equivalent.
if (CmpVal == Mask) {
if (CCMask == SystemZ::CCMASK_CMP_EQ)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_NE)
return SystemZ::CCMASK_TM_SOME_0;
}
if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_SOME_0;
}
if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_SOME_0;
}
// Check for ordered comparisons with the top bit.
if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_MSB_1;
}
if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_MSB_1;
}
// If there are just two bits, we can do equality checks for Low and High
// as well.
if (Mask == Low + High) {
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
return SystemZ::CCMASK_TM_MIXED_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
return SystemZ::CCMASK_TM_MIXED_MSB_1;
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
}
// Looks like we've exhausted our options.
return 0;
}
// See whether C can be implemented as a TEST UNDER MASK instruction.
// Update the arguments with the TM version if so.
static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
Comparison &C) {
// Check that we have a comparison with a constant.
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
if (!ConstOp1)
return;
uint64_t CmpVal = ConstOp1->getZExtValue();
// Check whether the nonconstant input is an AND with a constant mask.
Comparison NewC(C);
uint64_t MaskVal;
ConstantSDNode *Mask = nullptr;
if (C.Op0.getOpcode() == ISD::AND) {
NewC.Op0 = C.Op0.getOperand(0);
NewC.Op1 = C.Op0.getOperand(1);
Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
if (!Mask)
return;
MaskVal = Mask->getZExtValue();
} else {
// There is no instruction to compare with a 64-bit immediate
// so use TMHH instead if possible. We need an unsigned ordered
// comparison with an i64 immediate.
if (NewC.Op0.getValueType() != MVT::i64 ||
NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
NewC.ICmpType == SystemZICMP::SignedOnly)
return;
// Convert LE and GT comparisons into LT and GE.
if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
if (CmpVal == uint64_t(-1))
return;
CmpVal += 1;
NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
}
// If the low N bits of Op1 are zero than the low N bits of Op0 can
// be masked off without changing the result.
MaskVal = -(CmpVal & -CmpVal);
NewC.ICmpType = SystemZICMP::UnsignedOnly;
}
if (!MaskVal)
return;
// Check whether the combination of mask, comparison value and comparison
// type are suitable.
unsigned BitSize = NewC.Op0.getValueSizeInBits();
unsigned NewCCMask, ShiftVal;
if (NewC.ICmpType != SystemZICMP::SignedOnly &&
NewC.Op0.getOpcode() == ISD::SHL &&
isSimpleShift(NewC.Op0, ShiftVal) &&
(MaskVal >> ShiftVal != 0) &&
((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
MaskVal >> ShiftVal,
CmpVal >> ShiftVal,
SystemZICMP::Any))) {
NewC.Op0 = NewC.Op0.getOperand(0);
MaskVal >>= ShiftVal;
} else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
NewC.Op0.getOpcode() == ISD::SRL &&
isSimpleShift(NewC.Op0, ShiftVal) &&
(MaskVal << ShiftVal != 0) &&
((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
MaskVal << ShiftVal,
CmpVal << ShiftVal,
SystemZICMP::UnsignedOnly))) {
NewC.Op0 = NewC.Op0.getOperand(0);
MaskVal <<= ShiftVal;
} else {
NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
NewC.ICmpType);
if (!NewCCMask)
return;
}
// Go ahead and make the change.
C.Opcode = SystemZISD::TM;
C.Op0 = NewC.Op0;
if (Mask && Mask->getZExtValue() == MaskVal)
C.Op1 = SDValue(Mask, 0);
else
C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
C.CCValid = SystemZ::CCMASK_TM;
C.CCMask = NewCCMask;
}
// See whether the comparison argument contains a redundant AND
// and remove it if so. This sometimes happens due to the generic
// BRCOND expansion.
static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
Comparison &C) {
if (C.Op0.getOpcode() != ISD::AND)
return;
auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
if (!Mask)
return;
KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
return;
C.Op0 = C.Op0.getOperand(0);
}
// Return a Comparison that tests the condition-code result of intrinsic
// node Call against constant integer CC using comparison code Cond.
// Opcode is the opcode of the SystemZISD operation for the intrinsic
// and CCValid is the set of possible condition-code results.
static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
SDValue Call, unsigned CCValid, uint64_t CC,
ISD::CondCode Cond) {
Comparison C(Call, SDValue(), SDValue());
C.Opcode = Opcode;
C.CCValid = CCValid;
if (Cond == ISD::SETEQ)
// bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
else if (Cond == ISD::SETNE)
// ...and the inverse of that.
C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
// bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
// always true for CC>3.
C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
// ...and the inverse of that.
C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
// bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
// always true for CC>3.
C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
// ...and the inverse of that.
C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
else
llvm_unreachable("Unexpected integer comparison type");
C.CCMask &= CCValid;
return C;
}
// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
ISD::CondCode Cond, const SDLoc &DL,
SDValue Chain = SDValue(),
bool IsSignaling = false) {
if (CmpOp1.getOpcode() == ISD::Constant) {
assert(!Chain);
uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
unsigned Opcode, CCValid;
if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
}
Comparison C(CmpOp0, CmpOp1, Chain);
C.CCMask = CCMaskForCondCode(Cond);
if (C.Op0.getValueType().isFloatingPoint()) {
C.CCValid = SystemZ::CCMASK_FCMP;
if (!C.Chain)
C.Opcode = SystemZISD::FCMP;
else if (!IsSignaling)
C.Opcode = SystemZISD::STRICT_FCMP;
else
C.Opcode = SystemZISD::STRICT_FCMPS;
adjustForFNeg(C);
} else {
assert(!C.Chain);
C.CCValid = SystemZ::CCMASK_ICMP;
C.Opcode = SystemZISD::ICMP;
// Choose the type of comparison. Equality and inequality tests can
// use either signed or unsigned comparisons. The choice also doesn't
// matter if both sign bits are known to be clear. In those cases we
// want to give the main isel code the freedom to choose whichever
// form fits best.
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
C.CCMask == SystemZ::CCMASK_CMP_NE ||
(DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
C.ICmpType = SystemZICMP::Any;
else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
C.ICmpType = SystemZICMP::UnsignedOnly;
else
C.ICmpType = SystemZICMP::SignedOnly;
C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
adjustForRedundantAnd(DAG, DL, C);
adjustZeroCmp(DAG, DL, C);
adjustSubwordCmp(DAG, DL, C);
adjustForSubtraction(DAG, DL, C);
adjustForLTGFR(C);
adjustICmpTruncate(DAG, DL, C);
}
if (shouldSwapCmpOperands(C)) {
std::swap(C.Op0, C.Op1);
C.CCMask = SystemZ::reverseCCMask(C.CCMask);
}
adjustForTestUnderMask(DAG, DL, C);
return C;
}
// Emit the comparison instruction described by C.
static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
if (!C.Op1.getNode()) {
SDNode *Node;
switch (C.Op0.getOpcode()) {
case ISD::INTRINSIC_W_CHAIN:
Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
return SDValue(Node, 0);
case ISD::INTRINSIC_WO_CHAIN:
Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
return SDValue(Node, Node->getNumValues() - 1);
default:
llvm_unreachable("Invalid comparison operands");
}
}
if (C.Opcode == SystemZISD::ICMP)
return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
if (C.Opcode == SystemZISD::TM) {
bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
}
if (C.Chain) {
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
}
return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
}
// Implement a 32-bit *MUL_LOHI operation by extending both operands to
// 64 bits. Extend is the extension type to use. Store the high part
// in Hi and the low part in Lo.
static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
SDValue Op0, SDValue Op1, SDValue &Hi,
SDValue &Lo) {
Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
DAG.getConstant(32, DL, MVT::i64));
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
}
// Lower a binary operation that produces two VT results, one in each
// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
// and Opcode performs the GR128 operation. Store the even register result
// in Even and the odd register result in Odd.
static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
unsigned Opcode, SDValue Op0, SDValue Op1,
SDValue &Even, SDValue &Odd) {
SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
bool Is32Bit = is32Bit(VT);
Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
}
// Return an i32 value that is 1 if the CC value produced by CCReg is
// in the mask CCMask and 0 otherwise. CC is known to have a value
// in CCValid, so other values can be ignored.
static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
unsigned CCValid, unsigned CCMask) {
SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getTargetConstant(CCValid, DL, MVT::i32),
DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
}
// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
// be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP
// for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
// floating-point comparisons, and CmpMode::SignalingFP for strict signaling
// floating-point comparisons.
enum class CmpMode { Int, FP, StrictFP, SignalingFP };
static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
switch (CC) {
case ISD::SETOEQ:
case ISD::SETEQ:
switch (Mode) {
case CmpMode::Int: return SystemZISD::VICMPE;
case CmpMode::FP: return SystemZISD::VFCMPE;
case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE;
case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
}
llvm_unreachable("Bad mode");
case ISD::SETOGE:
case ISD::SETGE:
switch (Mode) {
case CmpMode::Int: return 0;
case CmpMode::FP: return SystemZISD::VFCMPHE;
case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE;
case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
}
llvm_unreachable("Bad mode");
case ISD::SETOGT:
case ISD::SETGT:
switch (Mode) {
case CmpMode::Int: return SystemZISD::VICMPH;
case CmpMode::FP: return SystemZISD::VFCMPH;
case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH;
case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
}
llvm_unreachable("Bad mode");
case ISD::SETUGT:
switch (Mode) {
case CmpMode::Int: return SystemZISD::VICMPHL;
case CmpMode::FP: return 0;
case CmpMode::StrictFP: return 0;
case CmpMode::SignalingFP: return 0;
}
llvm_unreachable("Bad mode");
default:
return 0;
}
}
// Return the SystemZISD vector comparison operation for CC or its inverse,
// or 0 if neither can be done directly. Indicate in Invert whether the
// result is for the inverse of CC. Mode is as above.
static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
bool &Invert) {
if (unsigned Opcode = getVectorComparison(CC, Mode)) {
Invert = false;
return Opcode;
}
CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
if (unsigned Opcode = getVectorComparison(CC, Mode)) {
Invert = true;
return Opcode;
}
return 0;
}
// Return a v2f64 that contains the extended form of elements Start and Start+1
// of v4f32 value Op. If Chain is nonnull, return the strict form.
static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
SDValue Op, SDValue Chain) {
int Mask[] = { Start, -1, Start + 1, -1 };
Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
if (Chain) {
SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
}
return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
}
// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
// producing a result of type VT. If Chain is nonnull, return the strict form.
SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
const SDLoc &DL, EVT VT,
SDValue CmpOp0,
SDValue CmpOp1,
SDValue Chain) const {
// There is no hardware support for v4f32 (unless we have the vector
// enhancements facility 1), so extend the vector into two v2f64s
// and compare those.
if (CmpOp0.getValueType() == MVT::v4f32 &&
!Subtarget.hasVectorEnhancements1()) {
SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
if (Chain) {
SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
H1.getValue(1), L1.getValue(1),
HRes.getValue(1), LRes.getValue(1) };
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
SDValue Ops[2] = { Res, NewChain };
return DAG.getMergeValues(Ops, DL);
}
SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
}
if (Chain) {
SDVTList VTs = DAG.getVTList(VT, MVT::Other);
return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
}
return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
}
// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
// an integer mask of type VT. If Chain is nonnull, we have a strict
// floating-point comparison. If in addition IsSignaling is true, we have
// a strict signaling floating-point comparison.
SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
const SDLoc &DL, EVT VT,
ISD::CondCode CC,
SDValue CmpOp0,
SDValue CmpOp1,
SDValue Chain,
bool IsSignaling) const {
bool IsFP = CmpOp0.getValueType().isFloatingPoint();
assert (!Chain || IsFP);
assert (!IsSignaling || Chain);
CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
bool Invert = false;
SDValue Cmp;
switch (CC) {
// Handle tests for order using (or (ogt y x) (oge x y)).
case ISD::SETUO:
Invert = true;
[[fallthrough]];
case ISD::SETO: {
assert(IsFP && "Unexpected integer comparison");
SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
DL, VT, CmpOp1, CmpOp0, Chain);
SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
DL, VT, CmpOp0, CmpOp1, Chain);
Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
if (Chain)
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
LT.getValue(1), GE.getValue(1));
break;
}
// Handle <> tests using (or (ogt y x) (ogt x y)).
case ISD::SETUEQ:
Invert = true;
[[fallthrough]];
case ISD::SETONE: {
assert(IsFP && "Unexpected integer comparison");
SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
DL, VT, CmpOp1, CmpOp0, Chain);
SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
DL, VT, CmpOp0, CmpOp1, Chain);
Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
if (Chain)
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
LT.getValue(1), GT.getValue(1));
break;
}
// Otherwise a single comparison is enough. It doesn't really
// matter whether we try the inversion or the swap first, since
// there are no cases where both work.
default:
if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
else {
CC = ISD::getSetCCSwappedOperands(CC);
if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
else
llvm_unreachable("Unhandled comparison");
}
if (Chain)
Chain = Cmp.getValue(1);
break;
}
if (Invert) {
SDValue Mask =
DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
}
if (Chain && Chain.getNode() != Cmp.getNode()) {
SDValue Ops[2] = { Cmp, Chain };
Cmp = DAG.getMergeValues(Ops, DL);
}
return Cmp;
}
SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
SelectionDAG &DAG) const {
SDValue CmpOp0 = Op.getOperand(0);
SDValue CmpOp1 = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (VT.isVector())
return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
SDValue CCReg = emitCmp(DAG, DL, C);
return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
}
SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
SelectionDAG &DAG,
bool IsSignaling) const {
SDValue Chain = Op.getOperand(0);
SDValue CmpOp0 = Op.getOperand(1);
SDValue CmpOp1 = Op.getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
SDLoc DL(Op);
EVT VT = Op.getNode()->getValueType(0);
if (VT.isVector()) {
SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
Chain, IsSignaling);
return Res.getValue(Op.getResNo());
}
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
SDValue CCReg = emitCmp(DAG, DL, C);
CCReg->setFlags(Op->getFlags());
SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
SDValue Ops[2] = { Result, CCReg.getValue(1) };
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue CmpOp0 = Op.getOperand(2);
SDValue CmpOp1 = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
SDValue CCReg = emitCmp(DAG, DL, C);
return DAG.getNode(
SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
}
// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
// allowing Pos and Neg to be wider than CmpOp.
static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
return (Neg.getOpcode() == ISD::SUB &&
Neg.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
Neg.getOperand(1) == Pos &&
(Pos == CmpOp ||
(Pos.getOpcode() == ISD::SIGN_EXTEND &&
Pos.getOperand(0) == CmpOp)));
}
// Return the absolute or negative absolute of Op; IsNegative decides which.
static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
bool IsNegative) {
Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
if (IsNegative)
Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
DAG.getConstant(0, DL, Op.getValueType()), Op);
return Op;
}
SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDValue CmpOp0 = Op.getOperand(0);
SDValue CmpOp1 = Op.getOperand(1);
SDValue TrueOp = Op.getOperand(2);
SDValue FalseOp = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
// Check for absolute and negative-absolute selections, including those
// where the comparison value is sign-extended (for LPGFR and LNGFR).
// This check supplements the one in DAGCombiner.
if (C.Opcode == SystemZISD::ICMP &&
C.CCMask != SystemZ::CCMASK_CMP_EQ &&
C.CCMask != SystemZ::CCMASK_CMP_NE &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
if (isAbsolute(C.Op0, TrueOp, FalseOp))
return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
if (isAbsolute(C.Op0, FalseOp, TrueOp))
return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
}
SDValue CCReg = emitCmp(DAG, DL, C);
SDValue Ops[] = {TrueOp, FalseOp,
DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
}
SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const GlobalValue *GV = Node->getGlobal();
int64_t Offset = Node->getOffset();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
CodeModel::Model CM = DAG.getTarget().getCodeModel();
SDValue Result;
if (Subtarget.isPC32DBLSymbol(GV, CM)) {
if (isInt<32>(Offset)) {
// Assign anchors at 1<<12 byte boundaries.
uint64_t Anchor = Offset & ~uint64_t(0xfff);
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
// The offset can be folded into the address if it is aligned to a
// halfword.
Offset -= Anchor;
if (Offset != 0 && (Offset & 1) == 0) {
SDValue Full =
DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Offset = 0;
}
} else {
// Conservatively load a constant offset greater than 32 bits into a
// register below.
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
} else {
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
DAG.getConstant(Offset, DL, PtrVT));
return Result;
}
SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
SelectionDAG &DAG,
unsigned Opcode,
SDValue GOTOffset) const {
SDLoc DL(Node);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Chain = DAG.getEntryNode();
SDValue Glue;
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
CallingConv::GHC)
report_fatal_error("In GHC calling convention TLS is not supported");
// __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
Glue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
Glue = Chain.getValue(1);
// The first call operand is the chain and the second is the TLS symbol.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
Node->getValueType(0),
0, 0));
// Add argument registers to the end of the list so that they are
// known live into the call.
Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Glue the call to the argument copies.
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Copy the return value from %r2.
return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
}
SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
SelectionDAG &DAG) const {
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// The high part of the thread pointer is in access register 0.
SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
// The low part of the thread pointer is in access register 1.
SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
// Merge them into a single 64-bit address.
SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
DAG.getConstant(32, DL, PtrVT));
return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
}
SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const {
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(Node, DAG);
SDLoc DL(Node);
const GlobalValue *GV = Node->getGlobal();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
CallingConv::GHC)
report_fatal_error("In GHC calling convention TLS is not supported");
SDValue TP = lowerThreadPointer(DL, DAG);
// Get the offset of GA from the thread pointer, based on the TLS model.
SDValue Offset;
switch (model) {
case TLSModel::GeneralDynamic: {
// Load the GOT offset of the tls_index (module ID / per-symbol offset).
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
Offset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
// Call __tls_get_offset to retrieve the offset.
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
break;
}
case TLSModel::LocalDynamic: {
// Load the GOT offset of the module ID.
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
Offset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
// Call __tls_get_offset to retrieve the module base offset.
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
// Note: The SystemZLDCleanupPass will remove redundant computations
// of the module base offset. Count total number of local-dynamic
// accesses to trigger execution of that pass.
SystemZMachineFunctionInfo* MFI =
DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
// Add the per-symbol offset.
CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
DTPOffset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), DTPOffset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
break;
}
case TLSModel::InitialExec: {
// Load the offset from the GOT.
Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
SystemZII::MO_INDNTPOFF);
Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
Offset =
DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
break;
}
case TLSModel::LocalExec: {
// Force the offset into the constant pool and load it from there.
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
Offset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
break;
}
}
// Add the base and offset together.
return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
}
SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const BlockAddress *BA = Node->getBlockAddress();
int64_t Offset = Node->getOffset();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
return Result;
}
SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
SelectionDAG &DAG) const {
SDLoc DL(JT);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
// Use LARL to load the address of the table.
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
SelectionDAG &DAG) const {
SDLoc DL(CP);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (CP->isMachineConstantPoolEntry())
Result =
DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
else
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
CP->getOffset());
// Use LARL to load the address of the constant pool entry.
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// By definition, the frame address is the address of the back chain. (In
// the case of packed stack without backchain, return the address where the
// backchain would have been stored. This will either be an unused space or
// contain a saved register).
int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
// FIXME The frontend should detect this case.
if (Depth > 0) {
report_fatal_error("Unsupported stack frame traversal count");
}
return BackChain;
}
SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// FIXME The frontend should detect this case.
if (Depth > 0) {
report_fatal_error("Unsupported stack frame traversal count");
}
// Return R14D, which has the return address. Mark it an implicit live-in.
Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
}
SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue In = Op.getOperand(0);
EVT InVT = In.getValueType();
EVT ResVT = Op.getValueType();
// Convert loads directly. This is normally done by DAGCombiner,
// but we need this case for bitcasts that are created during lowering
// and which are then lowered themselves.
if (auto *LoadN = dyn_cast<LoadSDNode>(In))
if (ISD::isNormalLoad(LoadN)) {
SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
LoadN->getBasePtr(), LoadN->getMemOperand());
// Update the chain uses.
DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
return NewLoad;
}
if (InVT == MVT::i32 && ResVT == MVT::f32) {
SDValue In64;
if (Subtarget.hasHighWord()) {
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
MVT::i64);
In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
MVT::i64, SDValue(U64, 0), In);
} else {
In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
DAG.getConstant(32, DL, MVT::i64));
}
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
DL, MVT::f32, Out64);
}
if (InVT == MVT::f32 && ResVT == MVT::i32) {
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
MVT::f64, SDValue(U64, 0), In);
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
if (Subtarget.hasHighWord())
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
MVT::i32, Out64);
SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
DAG.getConstant(32, DL, MVT::i64));
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
}
llvm_unreachable("Unexpected bitcast combination");
}
SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
if (Subtarget.isTargetXPLINK64())
return lowerVASTART_XPLINK(Op, DAG);
else
return lowerVASTART_ELF(Op, DAG);
}
SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
SDLoc DL(Op);
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDLoc DL(Op);
// The initial values of each field.
const unsigned NumFields = 4;
SDValue Fields[NumFields] = {
DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
};
// Store each field into its respective slot.
SDValue MemOps[NumFields];
unsigned Offset = 0;
for (unsigned I = 0; I < NumFields; ++I) {
SDValue FieldAddr = Addr;
if (Offset != 0)
FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
DAG.getIntPtrConstant(Offset, DL));
MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
MachinePointerInfo(SV, Offset));
Offset += 8;
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
uint32_t Sz =
Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
/*isTailCall*/ false, MachinePointerInfo(DstSV),
MachinePointerInfo(SrcSV));
}
SDValue
SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
if (Subtarget.isTargetXPLINK64())
return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
else
return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
}
SDValue
SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
SelectionDAG &DAG) const {
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
MachineFunction &MF = DAG.getMachineFunction();
bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDValue Align = Op.getOperand(2);
SDLoc DL(Op);
// If user has set the no alignment function attribute, ignore
// alloca alignments.
uint64_t AlignVal =
(RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
uint64_t StackAlign = TFI->getStackAlignment();
uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
SDValue NeededSpace = Size;
// Add extra space for alignment if needed.
EVT PtrVT = getPointerTy(MF.getDataLayout());
if (ExtraAlignSpace)
NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
bool IsSigned = false;
bool DoesNotReturn = false;
bool IsReturnValueUsed = false;
EVT VT = Op.getValueType();
SDValue AllocaCall =
makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
CallingConv::C, IsSigned, DL, DoesNotReturn,
IsReturnValueUsed)
.first;
// Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
// to end of call in order to ensure it isn't broken up from the call
// sequence.
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
Register SPReg = Regs.getStackPointerRegister();
Chain = AllocaCall.getValue(1);
SDValue Glue = AllocaCall.getValue(2);
SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
Chain = NewSPRegNode.getValue(1);
MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
// Dynamically realign if needed.
if (ExtraAlignSpace) {
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
}
SDValue Ops[2] = {Result, Chain};
return DAG.getMergeValues(Ops, DL);
}
SDValue
SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
SelectionDAG &DAG) const {
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
MachineFunction &MF = DAG.getMachineFunction();
bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDValue Align = Op.getOperand(2);
SDLoc DL(Op);
// If user has set the no alignment function attribute, ignore
// alloca alignments.
uint64_t AlignVal =
(RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
uint64_t StackAlign = TFI->getStackAlignment();
uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
Register SPReg = getStackPointerRegisterToSaveRestore();
SDValue NeededSpace = Size;
// Get a reference to the stack pointer.
SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
// If we need a backchain, save it now.
SDValue Backchain;
if (StoreBackchain)
Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
MachinePointerInfo());
// Add extra space for alignment if needed.
if (ExtraAlignSpace)
NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
// Get the new stack pointer value.
SDValue NewSP;
if (hasInlineStackProbe(MF)) {
NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
Chain = NewSP.getValue(1);
}
else {
NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
// Copy the new stack pointer back.
Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
}
// The allocated data lives above the 160 bytes allocated for the standard
// frame, plus any outgoing stack arguments. We don't know how much that
// amounts to yet, so emit a special ADJDYNALLOC placeholder.
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
// Dynamically realign if needed.
if (RequiredAlign > StackAlign) {
Result =
DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
Result =
DAG.getNode(ISD::AND, DL, MVT::i64, Result,
DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
}
if (StoreBackchain)
Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
MachinePointerInfo());
SDValue Ops[2] = { Result, Chain };
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
}
SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else if (Subtarget.hasMiscellaneousExtensions2())
// SystemZISD::SMUL_LOHI returns the low result in the odd register and
// the high result in the even register. ISD::SMUL_LOHI is defined to
// return the low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
else {
// Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
//
// (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
//
// but using the fact that the upper halves are either all zeros
// or all ones:
//
// (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
//
// and grouping the right terms together since they are quicker than the
// multiplication:
//
// (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
SDValue LL = Op.getOperand(0);
SDValue RL = Op.getOperand(1);
SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
// SystemZISD::UMUL_LOHI returns the low result in the odd register and
// the high result in the even register. ISD::SMUL_LOHI is defined to
// return the low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
LL, RL, Ops[1], Ops[0]);
SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
}
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else
// SystemZISD::UMUL_LOHI returns the low result in the odd register and
// the high result in the even register. ISD::UMUL_LOHI is defined to
// return the low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
EVT VT = Op.getValueType();
SDLoc DL(Op);
// We use DSGF for 32-bit division. This means the first operand must
// always be 64-bit, and the second operand should be 32-bit whenever
// that is possible, to improve performance.
if (is32Bit(VT))
Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
else if (DAG.ComputeNumSignBits(Op1) > 32)
Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
// DSG(F) returns the remainder in the even register and the
// quotient in the odd register.
SDValue Ops[2];
lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
// DL(G) returns the remainder in the even register and the
// quotient in the odd register.
SDValue Ops[2];
lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
// Get the known-zero masks for each operand.
SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
DAG.computeKnownBits(Ops[1])};
// See if the upper 32 bits of one operand and the lower 32 bits of the
// other are known zero. They are the low and high operands respectively.
uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
Known[1].Zero.getZExtValue() };
unsigned High, Low;
if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
High = 1, Low = 0;
else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
High = 0, Low = 1;
else
return Op;
SDValue LowOp = Ops[Low];
SDValue HighOp = Ops[High];
// If the high part is a constant, we're better off using IILH.
if (HighOp.getOpcode() == ISD::Constant)
return Op;
// If the low part is a constant that is outside the range of LHI,
// then we're better off using IILF.
if (LowOp.getOpcode() == ISD::Constant) {
int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
if (!isInt<16>(Value))
return Op;
}
// Check whether the high part is an AND that doesn't change the
// high 32 bits and just masks out low bits. We can skip it if so.
if (HighOp.getOpcode() == ISD::AND &&
HighOp.getOperand(1).getOpcode() == ISD::Constant) {
SDValue HighOp0 = HighOp.getOperand(0);
uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
HighOp = HighOp0;
}
// Take advantage of the fact that all GR32 operations only change the
// low 32 bits by truncating Low to an i32 and inserting it directly
// using a subreg. The interesting cases are those where the truncation
// can be folded.
SDLoc DL(Op);
SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
MVT::i64, HighOp, Low32);
}
// Lower SADDO/SSUBO/UADDO/USUBO nodes.
SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
SelectionDAG &DAG) const {
SDNode *N = Op.getNode();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDLoc DL(N);
unsigned BaseOp = 0;
unsigned CCValid = 0;
unsigned CCMask = 0;
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown instruction!");
case ISD::SADDO:
BaseOp = SystemZISD::SADDO;
CCValid = SystemZ::CCMASK_ARITH;
CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
break;
case ISD::SSUBO:
BaseOp = SystemZISD::SSUBO;
CCValid = SystemZ::CCMASK_ARITH;
CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
break;
case ISD::UADDO:
BaseOp = SystemZISD::UADDO;
CCValid = SystemZ::CCMASK_LOGICAL;
CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
break;
case ISD::USUBO:
BaseOp = SystemZISD::USUBO;
CCValid = SystemZ::CCMASK_LOGICAL;
CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
break;
}
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
if (N->getValueType(1) == MVT::i1)
SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
}
static bool isAddCarryChain(SDValue Carry) {
while (Carry.getOpcode() == ISD::ADDCARRY)
Carry = Carry.getOperand(2);
return Carry.getOpcode() == ISD::UADDO;
}
static bool isSubBorrowChain(SDValue Carry) {
while (Carry.getOpcode() == ISD::SUBCARRY)
Carry = Carry.getOperand(2);
return Carry.getOpcode() == ISD::USUBO;
}
// Lower ADDCARRY/SUBCARRY nodes.
SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
SelectionDAG &DAG) const {
SDNode *N = Op.getNode();
MVT VT = N->getSimpleValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Carry = Op.getOperand(2);
SDLoc DL(N);
unsigned BaseOp = 0;
unsigned CCValid = 0;
unsigned CCMask = 0;
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown instruction!");
case ISD::ADDCARRY:
if (!isAddCarryChain(Carry))
return SDValue();
BaseOp = SystemZISD::ADDCARRY;
CCValid = SystemZ::CCMASK_LOGICAL;
CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
break;
case ISD::SUBCARRY:
if (!isSubBorrowChain(Carry))
return SDValue();
BaseOp = SystemZISD::SUBCARRY;
CCValid = SystemZ::CCMASK_LOGICAL;
CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
break;
}
// Set the condition code from the carry flag.
Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
DAG.getConstant(CCValid, DL, MVT::i32),
DAG.getConstant(CCMask, DL, MVT::i32));
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
if (N->getValueType(1) == MVT::i1)
SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
}
SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
Op = Op.getOperand(0);
// Handle vector types via VPOPCT.
if (VT.isVector()) {
Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
switch (VT.getScalarSizeInBits()) {
case 8:
break;
case 16: {
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
break;
}
case 32: {
SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
DAG.getConstant(0, DL, MVT::i32));
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
break;
}
case 64: {
SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
DAG.getConstant(0, DL, MVT::i32));
Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
break;
}
default:
llvm_unreachable("Unexpected type");
}
return Op;
}
// Get the known-zero mask for the operand.
KnownBits Known = DAG.computeKnownBits(Op);
unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
if (NumSignificantBits == 0)
return DAG.getConstant(0, DL, VT);
// Skip known-zero high parts of the operand.
int64_t OrigBitSize = VT.getSizeInBits();
int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
BitSize = std::min(BitSize, OrigBitSize);
// The POPCNT instruction counts the number of bits in each byte.
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
// Add up per-byte counts in a binary tree. All bits of Op at
// position larger than BitSize remain zero throughout.
for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
if (BitSize != OrigBitSize)
Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
}
// Extract overall result from high byte.
if (BitSize > 8)
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
DAG.getConstant(BitSize - 8, DL, VT));
return Op;
}
SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
// The only fence that needs an instruction is a sequentially-consistent
// cross-thread fence.
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
FenceSSID == SyncScope::System) {
return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
Op.getOperand(0)),
0);
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
}
// Op is an atomic load. Lower it into a normal volatile load.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
Node->getChain(), Node->getBasePtr(),
Node->getMemoryVT(), Node->getMemOperand());
}
// Op is an atomic store. Lower it into a normal volatile store.
SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
Node->getBasePtr(), Node->getMemoryVT(),
Node->getMemOperand());
// We have to enforce sequential consistency by performing a
// serialization operation after the store.
if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
MVT::Other, Chain), 0);
return Chain;
}
// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
SelectionDAG &DAG,
unsigned Opcode) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
// 32-bit operations need no code outside the main loop.
EVT NarrowVT = Node->getMemoryVT();
EVT WideVT = MVT::i32;
if (NarrowVT == WideVT)
return Op;
int64_t BitSize = NarrowVT.getSizeInBits();
SDValue ChainIn = Node->getChain();
SDValue Addr = Node->getBasePtr();
SDValue Src2 = Node->getVal();
MachineMemOperand *MMO = Node->getMemOperand();
SDLoc DL(Node);
EVT PtrVT = Addr.getValueType();
// Convert atomic subtracts of constants into additions.
if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
Opcode = SystemZISD::ATOMIC_LOADW_ADD;
Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
}
// Get the address of the containing word.
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
DAG.getConstant(-4, DL, PtrVT));
// Get the number of bits that the word must be rotated left in order
// to bring the field to the top bits of a GR32.
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
DAG.getConstant(3, DL, PtrVT));
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
// Get the complementing shift amount, for rotating a field in the top
// bits back to its proper position.
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
DAG.getConstant(0, DL, WideVT), BitShift);
// Extend the source operand to 32 bits and prepare it for the inner loop.
// ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
// operations require the source to be shifted in advance. (This shift
// can be folded if the source is constant.) For AND and NAND, the lower
// bits must be set, while for other opcodes they should be left clear.
if (Opcode != SystemZISD::ATOMIC_SWAPW)
Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
DAG.getConstant(32 - BitSize, DL, WideVT));
if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
Opcode == SystemZISD::ATOMIC_LOADW_NAND)
Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
// Construct the ATOMIC_LOADW_* node.
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
DAG.getConstant(BitSize, DL, WideVT) };
SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
NarrowVT, MMO);
// Rotate the result of the final CS so that the field is in the lower
// bits of a GR32, then truncate it.
SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
DAG.getConstant(BitSize, DL, WideVT));
SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
return DAG.getMergeValues(RetOps, DL);
}
// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
// operations into additions.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
EVT MemVT = Node->getMemoryVT();
if (MemVT == MVT::i32 || MemVT == MVT::i64) {
// A full-width operation.
assert(Op.getValueType() == MemVT && "Mismatched VTs");
SDValue Src2 = Node->getVal();
SDValue NegSrc2;
SDLoc DL(Src2);
if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
// Use an addition if the operand is constant and either LAA(G) is
// available or the negative value is in the range of A(G)FHI.
int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
NegSrc2 = DAG.getConstant(Value, DL, MemVT);
} else if (Subtarget.hasInterlockedAccess1())
// Use LAA(G) if available.
NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
Src2);
if (NegSrc2.getNode())
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
Node->getChain(), Node->getBasePtr(), NegSrc2,
Node->getMemOperand());
// Use the node as-is.
return Op;
}
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
}
// Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
SDValue ChainIn = Node->getOperand(0);
SDValue Addr = Node->getOperand(1);
SDValue CmpVal = Node->getOperand(2);
SDValue SwapVal = Node->getOperand(3);
MachineMemOperand *MMO = Node->getMemOperand();
SDLoc DL(Node);
// We have native support for 32-bit and 64-bit compare and swap, but we
// still need to expand extracting the "success" result from the CC.
EVT NarrowVT = Node->getMemoryVT();
EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
if (NarrowVT == WideVT) {
SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
DL, Tys, Ops, NarrowVT, MMO);
SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
return SDValue();
}
// Convert 8-bit and 16-bit compare and swap to a loop, implemented
// via a fullword ATOMIC_CMP_SWAPW operation.
int64_t BitSize = NarrowVT.getSizeInBits();
EVT PtrVT = Addr.getValueType();
// Get the address of the containing word.
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
DAG.getConstant(-4, DL, PtrVT));
// Get the number of bits that the word must be rotated left in order
// to bring the field to the top bits of a GR32.
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
DAG.getConstant(3, DL, PtrVT));
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
// Get the complementing shift amount, for rotating a field in the top
// bits back to its proper position.
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
DAG.getConstant(0, DL, WideVT), BitShift);
// Construct the ATOMIC_CMP_SWAPW node.
SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
VTList, Ops, NarrowVT, MMO);
SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
// emitAtomicCmpSwapW() will zero extend the result (original value).
SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
DAG.getValueType(NarrowVT));
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
return SDValue();
}
MachineMemOperand::Flags
SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
// Because of how we convert atomic_load and atomic_store to normal loads and
// stores in the DAG, we need to ensure that the MMOs are marked volatile
// since DAGCombine hasn't been updated to account for atomic, but non
// volatile loads. (See D57601)
if (auto *SI = dyn_cast<StoreInst>(&I))
if (SI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *LI = dyn_cast<LoadInst>(&I))
if (LI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
if (AI->isAtomic())
return MachineMemOperand::MOVolatile;
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
if (AI->isAtomic())
return MachineMemOperand::MOVolatile;
return MachineMemOperand::MONone;
}
SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
auto *Regs = Subtarget->getSpecialRegisters();
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
report_fatal_error("Variable-sized stack allocations are not supported "
"in GHC calling convention");
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Regs->getStackPointerRegister(), Op.getValueType());
}
SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
auto *Regs = Subtarget->getSpecialRegisters();
bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
report_fatal_error("Variable-sized stack allocations are not supported "
"in GHC calling convention");
SDValue Chain = Op.getOperand(0);
SDValue NewSP = Op.getOperand(1);
SDValue Backchain;
SDLoc DL(Op);
if (StoreBackchain) {
SDValue OldSP = DAG.getCopyFromReg(
Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
MachinePointerInfo());
}
Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
if (StoreBackchain)
Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
MachinePointerInfo());
return Chain;
}
SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
SelectionDAG &DAG) const {
bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (!IsData)
// Just preserve the chain.
return Op.getOperand(0);
SDLoc DL(Op);
bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
Op.getOperand(1)};
return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
Node->getVTList(), Ops,
Node->getMemoryVT(), Node->getMemOperand());
}
// Convert condition code in CCReg to an i32 value.
static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
SDLoc DL(CCReg);
SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
}
SDValue
SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opcode, CCValid;
if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
SDValue CC = getCCResult(DAG, SDValue(Node, 0));
DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
return SDValue();
}
return SDValue();
}
SDValue
SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opcode, CCValid;
if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
if (Op->getNumValues() == 1)
return getCCResult(DAG, SDValue(Node, 0));
assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
}
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::thread_pointer:
return lowerThreadPointer(SDLoc(Op), DAG);
case Intrinsic::s390_vpdi:
return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::s390_vperm:
return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::s390_vuphb:
case Intrinsic::s390_vuphh:
case Intrinsic::s390_vuphf:
return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vuplhb:
case Intrinsic::s390_vuplhh:
case Intrinsic::s390_vuplhf:
return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vuplb:
case Intrinsic::s390_vuplhw:
case Intrinsic::s390_vuplf:
return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vupllb:
case Intrinsic::s390_vupllh:
case Intrinsic::s390_vupllf:
return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vsumb:
case Intrinsic::s390_vsumh:
case Intrinsic::s390_vsumgh:
case Intrinsic::s390_vsumgf:
case Intrinsic::s390_vsumqf:
case Intrinsic::s390_vsumqg:
return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
return SDValue();
}
namespace {
// Says that SystemZISD operation Opcode can be used to perform the equivalent
// of a VPERM with permute vector Bytes. If Opcode takes three operands,
// Operand is the constant third operand, otherwise it is the number of
// bytes in each element of the result.
struct Permute {
unsigned Opcode;
unsigned Operand;
unsigned char Bytes[SystemZ::VectorBytes];
};
}
static const Permute PermuteForms[] = {
// VMRHG
{ SystemZISD::MERGE_HIGH, 8,
{ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
// VMRHF
{ SystemZISD::MERGE_HIGH, 4,
{ 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
// VMRHH
{ SystemZISD::MERGE_HIGH, 2,
{ 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
// VMRHB
{ SystemZISD::MERGE_HIGH, 1,
{ 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
// VMRLG
{ SystemZISD::MERGE_LOW, 8,
{ 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
// VMRLF
{ SystemZISD::MERGE_LOW, 4,
{ 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
// VMRLH
{ SystemZISD::MERGE_LOW, 2,
{ 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
// VMRLB
{ SystemZISD::MERGE_LOW, 1,
{ 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
// VPKG
{ SystemZISD::PACK, 4,
{ 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
// VPKF
{ SystemZISD::PACK, 2,
{ 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
// VPKH
{ SystemZISD::PACK, 1,
{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
// VPDI V1, V2, 4 (low half of V1, high half of V2)
{ SystemZISD::PERMUTE_DWORDS, 4,
{ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
// VPDI V1, V2, 1 (high half of V1, low half of V2)
{ SystemZISD::PERMUTE_DWORDS, 1,
{ 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
};
// Called after matching a vector shuffle against a particular pattern.
// Both the original shuffle and the pattern have two vector operands.
// OpNos[0] is the operand of the original shuffle that should be used for
// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
// for operands 0 and 1 of the pattern.
static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
if (OpNos[0] < 0) {
if (OpNos[1] < 0)
return false;
OpNo0 = OpNo1 = OpNos[1];
} else if (OpNos[1] < 0) {
OpNo0 = OpNo1 = OpNos[0];
} else {
OpNo0 = OpNos[0];
OpNo1 = OpNos[1];
}
return true;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. Return true if the VPERM can be implemented using P.
// When returning true set OpNo0 to the VPERM operand that should be
// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
//
// For example, if swapping the VPERM operands allows P to match, OpNo0
// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
// operand, but rewriting it to use two duplicated operands allows it to
// match P, then OpNo0 and OpNo1 will be the same.
static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
unsigned &OpNo0, unsigned &OpNo1) {
int OpNos[] = { -1, -1 };
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
int Elt = Bytes[I];
if (Elt >= 0) {
// Make sure that the two permute vectors use the same suboperand
// byte number. Only the operand numbers (the high bits) are
// allowed to differ.
if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
return false;
int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
// Make sure that the operand mappings are consistent with previous
// elements.
if (OpNos[ModelOpNo] == 1 - RealOpNo)
return false;
OpNos[ModelOpNo] = RealOpNo;
}
}
return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
}
// As above, but search for a matching permute.
static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
unsigned &OpNo0, unsigned &OpNo1) {
for (auto &P : PermuteForms)
if (matchPermute(Bytes, P, OpNo0, OpNo1))
return &P;
return nullptr;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. This permute is an operand of an outer permute.
// See whether redistributing the -1 bytes gives a shuffle that can be
// implemented using P. If so, set Transform to a VPERM-like permute vector
// that, when applied to the result of P, gives the original permute in Bytes.
static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
const Permute &P,
SmallVectorImpl<int> &Transform) {
unsigned To = 0;
for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
int Elt = Bytes[From];
if (Elt < 0)
// Byte number From of the result is undefined.
Transform[From] = -1;
else {
while (P.Bytes[To] != Elt) {
To += 1;
if (To == SystemZ::VectorBytes)
return false;
}
Transform[From] = To;
}
}
return true;
}
// As above, but search for a matching permute.
static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
SmallVectorImpl<int> &Transform) {
for (auto &P : PermuteForms)
if (matchDoublePermute(Bytes, P, Transform))
return &P;
return nullptr;
}
// Convert the mask of the given shuffle op into a byte-level mask,
// as if it had type vNi8.
static bool getVPermMask(SDValue ShuffleOp,
SmallVectorImpl<int> &Bytes) {
EVT VT = ShuffleOp.getValueType();
unsigned NumElements = VT.getVectorNumElements();
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
Bytes.resize(NumElements * BytesPerElement, -1);
for (unsigned I = 0; I < NumElements; ++I) {
int Index = VSN->getMaskElt(I);
if (Index >= 0)
for (unsigned J = 0; J < BytesPerElement; ++J)
Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
}
return true;
}
if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
unsigned Index = ShuffleOp.getConstantOperandVal(1);
Bytes.resize(NumElements * BytesPerElement, -1);
for (unsigned I = 0; I < NumElements; ++I)
for (unsigned J = 0; J < BytesPerElement; ++J)
Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
return true;
}
return false;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
// the result come from a contiguous sequence of bytes from one input.
// Set Base to the selector for the first byte if so.
static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
unsigned BytesPerElement, int &Base) {
Base = -1;
for (unsigned I = 0; I < BytesPerElement; ++I) {
if (Bytes[Start + I] >= 0) {
unsigned Elem = Bytes[Start + I];
if (Base < 0) {
Base = Elem - I;
// Make sure the bytes would come from one input operand.
if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
return false;
} else if (unsigned(Base) != Elem - I)
return false;
}
}
return true;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. Return true if it can be performed using VSLDB.
// When returning true, set StartIndex to the shift amount and OpNo0
// and OpNo1 to the VPERM operands that should be used as the first
// and second shift operand respectively.
static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
unsigned &StartIndex, unsigned &OpNo0,
unsigned &OpNo1) {
int OpNos[] = { -1, -1 };
int Shift = -1;
for (unsigned I = 0; I < 16; ++I) {
int Index = Bytes[I];
if (Index >= 0) {
int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
if (Shift < 0)
Shift = ExpectedShift;
else if (Shift != ExpectedShift)
return false;
// Make sure that the operand mappings are consistent with previous
// elements.
if (OpNos[ModelOpNo] == 1 - RealOpNo)
return false;
OpNos[ModelOpNo] = RealOpNo;
}
}
StartIndex = Shift;
return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
}
// Create a node that performs P on operands Op0 and Op1, casting the
// operands to the appropriate type. The type of the result is determined by P.
static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
const Permute &P, SDValue Op0, SDValue Op1) {
// VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
// elements of a PACK are twice as wide as the outputs.
unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
P.Operand);
// Cast both operands to the appropriate type.
MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
SystemZ::VectorBytes / InBytes);
Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
SDValue Op;
if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
} else if (P.Opcode == SystemZISD::PACK) {
MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
SystemZ::VectorBytes / P.Operand);
Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
} else {
Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
}
return Op;
}
static bool isZeroVector(SDValue N) {
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
if (N->getOpcode() == ISD::SPLAT_VECTOR)
if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
return Op->getZExtValue() == 0;
return ISD::isBuildVectorAllZeros(N.getNode());
}
// Return the index of the zero/undef vector, or UINT32_MAX if not found.
static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
for (unsigned I = 0; I < Num ; I++)
if (isZeroVector(Ops[I]))
return I;
return UINT32_MAX;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. Implement it on operands Ops[0] and Ops[1] using
// VSLDB or VPERM.
static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
SDValue *Ops,
const SmallVectorImpl<int> &Bytes) {
for (unsigned I = 0; I < 2; ++I)
Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
// First see whether VSLDB can be used.
unsigned StartIndex, OpNo0, OpNo1;
if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
Ops[OpNo1],
DAG.getTargetConstant(StartIndex, DL, MVT::i32));
// Fall back on VPERM. Construct an SDNode for the permute vector. Try to
// eliminate a zero vector by reusing any zero index in the permute vector.
unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
if (ZeroVecIdx != UINT32_MAX) {
bool MaskFirst = true;
int ZeroIdx = -1;
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
if (OpNo == ZeroVecIdx && I == 0) {
// If the first byte is zero, use mask as first operand.
ZeroIdx = 0;
break;
}
if (OpNo != ZeroVecIdx && Byte == 0) {
// If mask contains a zero, use it by placing that vector first.
ZeroIdx = I + SystemZ::VectorBytes;
MaskFirst = false;
break;
}
}
if (ZeroIdx != -1) {
SDValue IndexNodes[SystemZ::VectorBytes];
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
if (Bytes[I] >= 0) {
unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
if (OpNo == ZeroVecIdx)
IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
else {
unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
}
} else
IndexNodes[I] = DAG.getUNDEF(MVT::i32);
}
SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
if (MaskFirst)
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
Mask);
else
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
Mask);
}
}
SDValue IndexNodes[SystemZ::VectorBytes];
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
if (Bytes[I] >= 0)
IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
else
IndexNodes[I] = DAG.getUNDEF(MVT::i32);
SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
(!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
}
namespace {
// Describes a general N-operand vector shuffle.
struct GeneralShuffle {
GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
void addUndef();
bool add(SDValue, unsigned);
SDValue getNode(SelectionDAG &, const SDLoc &);
void tryPrepareForUnpack();
bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
// The operands of the shuffle.
SmallVector<SDValue, SystemZ::VectorBytes> Ops;
// Index I is -1 if byte I of the result is undefined. Otherwise the
// result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
// Bytes[I] / SystemZ::VectorBytes.
SmallVector<int, SystemZ::VectorBytes> Bytes;
// The type of the shuffle result.
EVT VT;
// Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
unsigned UnpackFromEltSize;
};
}
// Add an extra undefined element to the shuffle.
void GeneralShuffle::addUndef() {
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
for (unsigned I = 0; I < BytesPerElement; ++I)
Bytes.push_back(-1);
}
// Add an extra element to the shuffle, taking it from element Elem of Op.
// A null Op indicates a vector input whose value will be calculated later;
// there is at most one such input per shuffle and it always has the same
// type as the result. Aborts and returns false if the source vector elements
// of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
// LLVM they become implicitly extended, but this is rare and not optimized.
bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
// The source vector can have wider elements than the result,
// either through an explicit TRUNCATE or because of type legalization.
// We want the least significant part.
EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
// Return false if the source elements are smaller than their destination
// elements.
if (FromBytesPerElement < BytesPerElement)
return false;
unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
(FromBytesPerElement - BytesPerElement));
// Look through things like shuffles and bitcasts.
while (Op.getNode()) {
if (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
// See whether the bytes we need come from a contiguous part of one
// operand.
SmallVector<int, SystemZ::VectorBytes> OpBytes;
if (!getVPermMask(Op, OpBytes))
break;
int NewByte;
if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
break;
if (NewByte < 0) {
addUndef();
return true;
}
Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
Byte = unsigned(NewByte) % SystemZ::VectorBytes;
} else if (Op.isUndef()) {
addUndef();
return true;
} else
break;
}
// Make sure that the source of the extraction is in Ops.
unsigned OpNo = 0;
for (; OpNo < Ops.size(); ++OpNo)
if (Ops[OpNo] == Op)
break;
if (OpNo == Ops.size())
Ops.push_back(Op);
// Add the element to Bytes.
unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
for (unsigned I = 0; I < BytesPerElement; ++I)
Bytes.push_back(Base + I);
return true;
}
// Return SDNodes for the completed shuffle.
SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
if (Ops.size() == 0)
return DAG.getUNDEF(VT);
// Use a single unpack if possible as the last operation.
tryPrepareForUnpack();
// Make sure that there are at least two shuffle operands.
if (Ops.size() == 1)
Ops.push_back(DAG.getUNDEF(MVT::v16i8));
// Create a tree of shuffles, deferring root node until after the loop.
// Try to redistribute the undefined elements of non-root nodes so that
// the non-root shuffles match something like a pack or merge, then adjust
// the parent node's permute vector to compensate for the new order.
// Among other things, this copes with vectors like <2 x i16> that were
// padded with undefined elements during type legalization.
//
// In the best case this redistribution will lead to the whole tree
// using packs and merges. It should rarely be a loss in other cases.
unsigned Stride = 1;
for (; Stride * 2 < Ops.size(); Stride *= 2) {
for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
// Create a mask for just these two operands.
SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
if (OpNo == I)
NewBytes[J] = Byte;
else if (OpNo == I + Stride)
NewBytes[J] = SystemZ::VectorBytes + Byte;
else
NewBytes[J] = -1;
}
// See if it would be better to reorganize NewMask to avoid using VPERM.
SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
// Applying NewBytesMap to Ops[I] gets back to NewBytes.
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
if (NewBytes[J] >= 0) {
assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
"Invalid double permute");
Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
} else
assert(NewBytesMap[J] < 0 && "Invalid double permute");
}
} else {
// Just use NewBytes on the operands.
Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
if (NewBytes[J] >= 0)
Bytes[J] = I * SystemZ::VectorBytes + J;
}
}
}
// Now we just have 2 inputs. Put the second operand in Ops[1].
if (Stride > 1) {
Ops[1] = Ops[Stride];
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
if (Bytes[I] >= int(SystemZ::VectorBytes))
Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
}
// Look for an instruction that can do the permute without resorting
// to VPERM.
unsigned OpNo0, OpNo1;
SDValue Op;
if (unpackWasPrepared() && Ops[1].isUndef())
Op = Ops[0];
else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
else
Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
Op = insertUnpackIfPrepared(DAG, DL, Op);
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
#ifndef NDEBUG
static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
dbgs() << Msg.c_str() << " { ";
for (unsigned i = 0; i < Bytes.size(); i++)
dbgs() << Bytes[i] << " ";
dbgs() << "}\n";
}
#endif
// If the Bytes vector matches an unpack operation, prepare to do the unpack
// after all else by removing the zero vector and the effect of the unpack on
// Bytes.
void GeneralShuffle::tryPrepareForUnpack() {
uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
return;
// Only do this if removing the zero vector reduces the depth, otherwise
// the critical path will increase with the final unpack.
if (Ops.size() > 2 &&
Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
return;
// Find an unpack that would allow removing the zero vector from Ops.
UnpackFromEltSize = 1;
for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
bool MatchUnpack = true;
SmallVector<int, SystemZ::VectorBytes> SrcBytes;
for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
unsigned ToEltSize = UnpackFromEltSize * 2;
bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
if (!IsZextByte)
SrcBytes.push_back(Bytes[Elt]);
if (Bytes[Elt] != -1) {
unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
if (IsZextByte != (OpNo == ZeroVecOpNo)) {
MatchUnpack = false;
break;
}
}
}
if (MatchUnpack) {
if (Ops.size() == 2) {
// Don't use unpack if a single source operand needs rearrangement.
for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
UnpackFromEltSize = UINT_MAX;
return;
}
}
break;
}
}
if (UnpackFromEltSize > 4)
return;
LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
<< UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
<< ".\n";
dumpBytes(Bytes, "Original Bytes vector:"););
// Apply the unpack in reverse to the Bytes array.
unsigned B = 0;
for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
Elt += UnpackFromEltSize;
for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
Bytes[B] = Bytes[Elt];
}
while (B < SystemZ::VectorBytes)
Bytes[B++] = -1;
// Remove the zero vector from Ops
Ops.erase(&Ops[ZeroVecOpNo]);
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
if (Bytes[I] >= 0) {
unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
if (OpNo > ZeroVecOpNo)
Bytes[I] -= SystemZ::VectorBytes;
}
LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
dbgs() << "\n";);
}
SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
const SDLoc &DL,
SDValue Op) {
if (!unpackWasPrepared())
return Op;
unsigned InBits = UnpackFromEltSize * 8;
EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
SystemZ::VectorBits / InBits);
SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
unsigned OutBits = InBits * 2;
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
SystemZ::VectorBits / OutBits);
return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
}
// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
static bool isScalarToVector(SDValue Op) {
for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
if (!Op.getOperand(I).isUndef())
return false;
return true;
}
// Return a vector of type VT that contains Value in the first element.
// The other elements don't matter.
static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
SDValue Value) {
// If we have a constant, replicate it to all elements and let the
// BUILD_VECTOR lowering take care of it.
if (Value.getOpcode() == ISD::Constant ||
Value.getOpcode() == ISD::ConstantFP) {
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
return DAG.getBuildVector(VT, DL, Ops);
}
if (Value.isUndef())
return DAG.getUNDEF(VT);
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
}
// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
// element 1. Used for cases in which replication is cheap.
static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
SDValue Op0, SDValue Op1) {
if (Op0.isUndef()) {
if (Op1.isUndef())
return DAG.getUNDEF(VT);
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
}
if (Op1.isUndef())
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
buildScalarToVector(DAG, DL, VT, Op0),
buildScalarToVector(DAG, DL, VT, Op1));
}
// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
// vector for them.
static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
SDValue Op1) {
if (Op0.isUndef() && Op1.isUndef())
return DAG.getUNDEF(MVT::v2i64);
// If one of the two inputs is undefined then replicate the other one,
// in order to avoid using another register unnecessarily.
if (Op0.isUndef())
Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
else if (Op1.isUndef())
Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
else {
Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
}
return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
}
// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
// would benefit from this representation and return it if so.
static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
BuildVectorSDNode *BVN) {
EVT VT = BVN->getValueType(0);
unsigned NumElements = VT.getVectorNumElements();
// Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
// on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
// need a BUILD_VECTOR, add an additional placeholder operand for that
// BUILD_VECTOR and store its operands in ResidueOps.
GeneralShuffle GS(VT);
SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
bool FoundOne = false;
for (unsigned I = 0; I < NumElements; ++I) {
SDValue Op = BVN->getOperand(I);
if (Op.getOpcode() == ISD::TRUNCATE)
Op = Op.getOperand(0);
if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op.getOperand(1).getOpcode() == ISD::Constant) {
unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (!GS.add(Op.getOperand(0), Elem))
return SDValue();
FoundOne = true;
} else if (Op.isUndef()) {
GS.addUndef();
} else {
if (!GS.add(SDValue(), ResidueOps.size()))
return SDValue();
ResidueOps.push_back(BVN->getOperand(I));
}
}
// Nothing to do if there are no EXTRACT_VECTOR_ELTs.
if (!FoundOne)
return SDValue();
// Create the BUILD_VECTOR for the remaining elements, if any.
if (!ResidueOps.empty()) {
while (ResidueOps.size() < NumElements)
ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
for (auto &Op : GS.Ops) {
if (!Op.getNode()) {
Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
break;
}
}
}
return GS.getNode(DAG, SDLoc(BVN));
}
bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
return true;
if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
return true;
return false;
}
// Combine GPR scalar values Elems into a vector of type VT.
SDValue
SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
SmallVectorImpl<SDValue> &Elems) const {
// See whether there is a single replicated value.
SDValue Single;
unsigned int NumElements = Elems.size();
unsigned int Count = 0;
for (auto Elem : Elems) {
if (!Elem.isUndef()) {
if (!Single.getNode())
Single = Elem;
else if (Elem != Single) {
Single = SDValue();
break;
}
Count += 1;
}
}
// There are three cases here:
//
// - if the only defined element is a loaded one, the best sequence
// is a replicating load.
//
// - otherwise, if the only defined element is an i64 value, we will
// end up with the same VLVGP sequence regardless of whether we short-cut
// for replication or fall through to the later code.
//
// - otherwise, if the only defined element is an i32 or smaller value,
// we would need 2 instructions to replicate it: VLVGP followed by VREPx.
// This is only a win if the single defined element is used more than once.
// In other cases we're better off using a single VLVGx.
if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
// If all elements are loads, use VLREP/VLEs (below).
bool AllLoads = true;
for (auto Elem : Elems)
if (!isVectorElementLoad(Elem)) {
AllLoads = false;
break;
}
// The best way of building a v2i64 from two i64s is to use VLVGP.
if (VT == MVT::v2i64 && !AllLoads)
return joinDwords(DAG, DL, Elems[0], Elems[1]);
// Use a 64-bit merge high to combine two doubles.
if (VT == MVT::v2f64 && !AllLoads)
return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
// Build v4f32 values directly from the FPRs:
//
// <Axxx> <Bxxx> <Cxxxx> <Dxxx>
// V V VMRHF
// <ABxx> <CDxx>
// V VMRHG
// <ABCD>
if (VT == MVT::v4f32 && !AllLoads) {
SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
// Avoid unnecessary undefs by reusing the other operand.
if (Op01.isUndef())
Op01 = Op23;
else if (Op23.isUndef())
Op23 = Op01;
// Merging identical replications is a no-op.
if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
return Op01;
Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
DL, MVT::v2i64, Op01, Op23);
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
// Collect the constant terms.
SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
unsigned NumConstants = 0;
for (unsigned I = 0; I < NumElements; ++I) {
SDValue Elem = Elems[I];
if (Elem.getOpcode() == ISD::Constant ||
Elem.getOpcode() == ISD::ConstantFP) {
NumConstants += 1;
Constants[I] = Elem;
Done[I] = true;
}
}
// If there was at least one constant, fill in the other elements of
// Constants with undefs to get a full vector constant and use that
// as the starting point.
SDValue Result;
SDValue ReplicatedVal;
if (NumConstants > 0) {
for (unsigned I = 0; I < NumElements; ++I)
if (!Constants[I].getNode())
Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
Result = DAG.getBuildVector(VT, DL, Constants);
} else {
// Otherwise try to use VLREP or VLVGP to start the sequence in order to
// avoid a false dependency on any previous contents of the vector
// register.
// Use a VLREP if at least one element is a load. Make sure to replicate
// the load with the most elements having its value.
std::map<const SDNode*, unsigned> UseCounts;
SDNode *LoadMaxUses = nullptr;
for (unsigned I = 0; I < NumElements; ++I)
if (isVectorElementLoad(Elems[I])) {
SDNode *Ld = Elems[I].getNode();
UseCounts[Ld]++;
if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
LoadMaxUses = Ld;
}
if (LoadMaxUses != nullptr) {
ReplicatedVal = SDValue(LoadMaxUses, 0);
Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
} else {
// Try to use VLVGP.
unsigned I1 = NumElements / 2 - 1;
unsigned I2 = NumElements - 1;
bool Def1 = !Elems[I1].isUndef();
bool Def2 = !Elems[I2].isUndef();
if (Def1 || Def2) {
SDValue Elem1 = Elems[Def1 ? I1 : I2];
SDValue Elem2 = Elems[Def2 ? I2 : I1];
Result = DAG.getNode(ISD::BITCAST, DL, VT,
joinDwords(DAG, DL, Elem1, Elem2));
Done[I1] = true;
Done[I2] = true;
} else
Result = DAG.getUNDEF(VT);
}
}
// Use VLVGx to insert the other elements.
for (unsigned I = 0; I < NumElements; ++I)
if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
DAG.getConstant(I, DL, MVT::i32));
return Result;
}
SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (BVN->isConstant()) {
if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
return Op;
// Fall back to loading it from memory.
return SDValue();
}
// See if we should use shuffles to construct the vector from other vectors.
if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
return Res;
// Detect SCALAR_TO_VECTOR conversions.
if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
// Otherwise use buildVector to build the vector up from GPRs.
unsigned NumElements = Op.getNumOperands();
SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
for (unsigned I = 0; I < NumElements; ++I)
Ops[I] = Op.getOperand(I);
return buildVector(DAG, DL, VT, Ops);
}
SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
SDLoc DL(Op);
EVT VT = Op.getValueType();
unsigned NumElements = VT.getVectorNumElements();
if (VSN->isSplat()) {
SDValue Op0 = Op.getOperand(0);
unsigned Index = VSN->getSplatIndex();
assert(Index < VT.getVectorNumElements() &&
"Splat index should be defined and in first operand");
// See whether the value we're splatting is directly available as a scalar.
if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
Op0.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
// Otherwise keep it as a vector-to-vector operation.
return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
DAG.getTargetConstant(Index, DL, MVT::i32));
}
GeneralShuffle GS(VT);
for (unsigned I = 0; I < NumElements; ++I) {
int Elt = VSN->getMaskElt(I);
if (Elt < 0)
GS.addUndef();
else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
unsigned(Elt) % NumElements))
return SDValue();
}
return GS.getNode(DAG, SDLoc(VSN));
}
SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// Just insert the scalar into element 0 of an undefined vector.
return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
}
SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
// Handle insertions of floating-point values.
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
EVT VT = Op.getValueType();
// Insertions into constant indices of a v2f64 can be done using VPDI.
// However, if the inserted value is a bitcast or a constant then it's
// better to use GPRs, as below.
if (VT == MVT::v2f64 &&
Op1.getOpcode() != ISD::BITCAST &&
Op1.getOpcode() != ISD::ConstantFP &&
Op2.getOpcode() == ISD::Constant) {
uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
unsigned Mask = VT.getVectorNumElements() - 1;
if (Index <= Mask)
return Op;
}
// Otherwise bitcast to the equivalent integer form and insert via a GPR.
MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
}
SDValue
SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
// Handle extractions of floating-point values.
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
EVT VT = Op.getValueType();
EVT VecVT = Op0.getValueType();
// Extractions of constant indices can be done directly.
if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
uint64_t Index = CIndexN->getZExtValue();
unsigned Mask = VecVT.getVectorNumElements() - 1;
if (Index <= Mask)
return Op;
}
// Otherwise bitcast to the equivalent integer form and extract via a GPR.
MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
}
SDValue SystemZTargetLowering::
lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
SDValue PackedOp = Op.getOperand(0);
EVT OutVT = Op.getValueType();
EVT InVT = PackedOp.getValueType();
unsigned ToBits = OutVT.getScalarSizeInBits();
unsigned FromBits = InVT.getScalarSizeInBits();
do {
FromBits *= 2;
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
SystemZ::VectorBits / FromBits);
PackedOp =
DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
} while (FromBits != ToBits);
return PackedOp;
}
// Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
SDValue SystemZTargetLowering::
lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
SDValue PackedOp = Op.getOperand(0);
SDLoc DL(Op);
EVT OutVT = Op.getValueType();
EVT InVT = PackedOp.getValueType();
unsigned InNumElts = InVT.getVectorNumElements();
unsigned OutNumElts = OutVT.getVectorNumElements();
unsigned NumInPerOut = InNumElts / OutNumElts;
SDValue ZeroVec =
DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
SmallVector<int, 16> Mask(InNumElts);
unsigned ZeroVecElt = InNumElts;
for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
unsigned MaskElt = PackedElt * NumInPerOut;
unsigned End = MaskElt + NumInPerOut - 1;
for (; MaskElt < End; MaskElt++)
Mask[MaskElt] = ZeroVecElt++;
Mask[MaskElt] = PackedElt;
}
SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
}
SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
unsigned ByScalar) const {
// Look for cases where a vector shift can use the *_BY_SCALAR form.
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDLoc DL(Op);
EVT VT = Op.getValueType();
unsigned ElemBitSize = VT.getScalarSizeInBits();
// See whether the shift vector is a splat represented as BUILD_VECTOR.
if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
// Check for constant splats. Use ElemBitSize as the minimum element
// width and reject splats that need wider elements.
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
ElemBitSize, true) &&
SplatBitSize == ElemBitSize) {
SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
DL, MVT::i32);
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
}
// Check for variable splats.
BitVector UndefElements;
SDValue Splat = BVN->getSplatValue(&UndefElements);
if (Splat) {
// Since i32 is the smallest legal type, we either need a no-op
// or a truncation.
SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
}
}
// See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
// and the shift amount is directly available in a GPR.
if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
if (VSN->isSplat()) {
SDValue VSNOp0 = VSN->getOperand(0);
unsigned Index = VSN->getSplatIndex();
assert(Index < VT.getVectorNumElements() &&
"Splat index should be defined and in first operand");
if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
// Since i32 is the smallest legal type, we either need a no-op
// or a truncation.
SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
VSNOp0.getOperand(Index));
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
}
}
}
// Otherwise just treat the current form as legal.
return Op;
}
SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT ResultVT = Op.getSimpleValueType();
SDValue Arg = Op.getOperand(0);
auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
unsigned Check = CNode->getZExtValue();
unsigned TDCMask = 0;
if (Check & fcSNan)
TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
if (Check & fcQNan)
TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
if (Check & fcPosInf)
TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
if (Check & fcNegInf)
TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
if (Check & fcPosNormal)
TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
if (Check & fcNegNormal)
TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
if (Check & fcPosSubnormal)
TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
if (Check & fcNegSubnormal)
TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
if (Check & fcPosZero)
TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
if (Check & fcNegZero)
TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
return getCCResult(DAG, Intr);
}
SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::FRAMEADDR:
return lowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR:
return lowerRETURNADDR(Op, DAG);
case ISD::BR_CC:
return lowerBR_CC(Op, DAG);
case ISD::SELECT_CC:
return lowerSELECT_CC(Op, DAG);
case ISD::SETCC:
return lowerSETCC(Op, DAG);
case ISD::STRICT_FSETCC:
return lowerSTRICT_FSETCC(Op, DAG, false);
case ISD::STRICT_FSETCCS:
return lowerSTRICT_FSETCC(Op, DAG, true);
case ISD::GlobalAddress:
return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
case ISD::BlockAddress:
return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
case ISD::JumpTable:
return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
case ISD::ConstantPool:
return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
case ISD::BITCAST:
return lowerBITCAST(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::VACOPY:
return lowerVACOPY(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return lowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::GET_DYNAMIC_AREA_OFFSET:
return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
case ISD::SMUL_LOHI:
return lowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI:
return lowerUMUL_LOHI(Op, DAG);
case ISD::SDIVREM:
return lowerSDIVREM(Op, DAG);
case ISD::UDIVREM:
return lowerUDIVREM(Op, DAG);
case ISD::SADDO:
case ISD::SSUBO:
case ISD::UADDO:
case ISD::USUBO:
return lowerXALUO(Op, DAG);
case ISD::ADDCARRY:
case ISD::SUBCARRY:
return lowerADDSUBCARRY(Op, DAG);
case ISD::OR:
return lowerOR(Op, DAG);
case ISD::CTPOP:
return lowerCTPOP(Op, DAG);
case ISD::ATOMIC_FENCE:
return lowerATOMIC_FENCE(Op, DAG);
case ISD::ATOMIC_SWAP:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
case ISD::ATOMIC_STORE:
return lowerATOMIC_STORE(Op, DAG);
case ISD::ATOMIC_LOAD:
return lowerATOMIC_LOAD(Op, DAG);
case ISD::ATOMIC_LOAD_ADD:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
case ISD::ATOMIC_LOAD_SUB:
return lowerATOMIC_LOAD_SUB(Op, DAG);
case ISD::ATOMIC_LOAD_AND:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
case ISD::ATOMIC_LOAD_OR:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
case ISD::ATOMIC_LOAD_XOR:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
case ISD::ATOMIC_LOAD_NAND:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
case ISD::ATOMIC_LOAD_MIN:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
case ISD::ATOMIC_LOAD_MAX:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
case ISD::ATOMIC_LOAD_UMIN:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
case ISD::ATOMIC_LOAD_UMAX:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
return lowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STACKSAVE:
return lowerSTACKSAVE(Op, DAG);
case ISD::STACKRESTORE:
return lowerSTACKRESTORE(Op, DAG);
case ISD::PREFETCH:
return lowerPREFETCH(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return lowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN:
return lowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::BUILD_VECTOR:
return lowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return lowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SCALAR_TO_VECTOR:
return lowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return lowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::SIGN_EXTEND_VECTOR_INREG:
return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
case ISD::ZERO_EXTEND_VECTOR_INREG:
return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
case ISD::SHL:
return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
case ISD::SRL:
return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
case ISD::SRA:
return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
case ISD::IS_FPCLASS:
return lowerIS_FPCLASS(Op, DAG);
case ISD::GET_ROUNDING:
return lowerGET_ROUNDING(Op, DAG);
default:
llvm_unreachable("Unexpected node to lower");
}
}
// Lower operations with invalid operand or result types (currently used
// only for 128-bit integer types).
void
SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::ATOMIC_LOAD: {
SDLoc DL(N);
SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
DL, Tys, Ops, MVT::i128, MMO);
Results.push_back(lowerGR128ToI128(DAG, Res));
Results.push_back(Res.getValue(1));
break;
}
case ISD::ATOMIC_STORE: {
SDLoc DL(N);
SDVTList Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = { N->getOperand(0),
lowerI128ToGR128(DAG, N->getOperand(2)),
N->getOperand(1) };
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
DL, Tys, Ops, MVT::i128, MMO);
// We have to enforce sequential consistency by performing a
// serialization operation after the store.
if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
AtomicOrdering::SequentiallyConsistent)
Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
MVT::Other, Res), 0);
Results.push_back(Res);
break;
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
SDLoc DL(N);
SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
lowerI128ToGR128(DAG, N->getOperand(2)),
lowerI128ToGR128(DAG, N->getOperand(3)) };
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
DL, Tys, Ops, MVT::i128, MMO);
SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
Results.push_back(lowerGR128ToI128(DAG, Res));
Results.push_back(Success);
Results.push_back(Res.getValue(2));
break;
}
case ISD::BITCAST: {
SDValue Src = N->getOperand(0);
if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
!useSoftFloat()) {
SDLoc DL(N);
SDValue Lo, Hi;
if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
DAG.getConstant(1, DL, MVT::i32));
Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
DAG.getConstant(0, DL, MVT::i32));
} else {
assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
"Unrecognized register class for f128.");
SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
DL, MVT::f64, Src);
SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
DL, MVT::f64, Src);
Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
}
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
}
break;
}
default:
llvm_unreachable("Unexpected node to lower");
}
}
void
SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
return LowerOperationWrapper(N, Results, DAG);
}
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
switch ((SystemZISD::NodeType)Opcode) {
case SystemZISD::FIRST_NUMBER: break;
OPCODE(RET_FLAG);
OPCODE(CALL);
OPCODE(SIBCALL);
OPCODE(TLS_GDCALL);
OPCODE(TLS_LDCALL);
OPCODE(PCREL_WRAPPER);
OPCODE(PCREL_OFFSET);
OPCODE(ICMP);
OPCODE(FCMP);
OPCODE(STRICT_FCMP);
OPCODE(STRICT_FCMPS);
OPCODE(TM);
OPCODE(BR_CCMASK);
OPCODE(SELECT_CCMASK);
OPCODE(ADJDYNALLOC);
OPCODE(PROBED_ALLOCA);
OPCODE(POPCNT);
OPCODE(SMUL_LOHI);
OPCODE(UMUL_LOHI);
OPCODE(SDIVREM);
OPCODE(UDIVREM);
OPCODE(SADDO);
OPCODE(SSUBO);
OPCODE(UADDO);
OPCODE(USUBO);
OPCODE(ADDCARRY);
OPCODE(SUBCARRY);
OPCODE(GET_CCMASK);
OPCODE(MVC);
OPCODE(NC);
OPCODE(OC);
OPCODE(XC);
OPCODE(CLC);
OPCODE(MEMSET_MVC);
OPCODE(STPCPY);
OPCODE(STRCMP);
OPCODE(SEARCH_STRING);
OPCODE(IPM);
OPCODE(TBEGIN);
OPCODE(TBEGIN_NOFLOAT);
OPCODE(TEND);
OPCODE(BYTE_MASK);
OPCODE(ROTATE_MASK);
OPCODE(REPLICATE);
OPCODE(JOIN_DWORDS);
OPCODE(SPLAT);
OPCODE(MERGE_HIGH);
OPCODE(MERGE_LOW);
OPCODE(SHL_DOUBLE);
OPCODE(PERMUTE_DWORDS);
OPCODE(PERMUTE);
OPCODE(PACK);
OPCODE(PACKS_CC);
OPCODE(PACKLS_CC);
OPCODE(UNPACK_HIGH);
OPCODE(UNPACKL_HIGH);
OPCODE(UNPACK_LOW);
OPCODE(UNPACKL_LOW);
OPCODE(VSHL_BY_SCALAR);
OPCODE(VSRL_BY_SCALAR);
OPCODE(VSRA_BY_SCALAR);
OPCODE(VSUM);
OPCODE(VICMPE);
OPCODE(VICMPH);
OPCODE(VICMPHL);
OPCODE(VICMPES);
OPCODE(VICMPHS);
OPCODE(VICMPHLS);
OPCODE(VFCMPE);
OPCODE(STRICT_VFCMPE);
OPCODE(STRICT_VFCMPES);
OPCODE(VFCMPH);
OPCODE(STRICT_VFCMPH);
OPCODE(STRICT_VFCMPHS);
OPCODE(VFCMPHE);
OPCODE(STRICT_VFCMPHE);
OPCODE(STRICT_VFCMPHES);
OPCODE(VFCMPES);
OPCODE(VFCMPHS);
OPCODE(VFCMPHES);
OPCODE(VFTCI);
OPCODE(VEXTEND);
OPCODE(STRICT_VEXTEND);
OPCODE(VROUND);
OPCODE(STRICT_VROUND);
OPCODE(VTM);
OPCODE(VFAE_CC);
OPCODE(VFAEZ_CC);
OPCODE(VFEE_CC);
OPCODE(VFEEZ_CC);
OPCODE(VFENE_CC);
OPCODE(VFENEZ_CC);
OPCODE(VISTR_CC);
OPCODE(VSTRC_CC);
OPCODE(VSTRCZ_CC);
OPCODE(VSTRS_CC);
OPCODE(VSTRSZ_CC);
OPCODE(TDC);
OPCODE(ATOMIC_SWAPW);
OPCODE(ATOMIC_LOADW_ADD);
OPCODE(ATOMIC_LOADW_SUB);
OPCODE(ATOMIC_LOADW_AND);
OPCODE(ATOMIC_LOADW_OR);
OPCODE(ATOMIC_LOADW_XOR);
OPCODE(ATOMIC_LOADW_NAND);
OPCODE(ATOMIC_LOADW_MIN);
OPCODE(ATOMIC_LOADW_MAX);
OPCODE(ATOMIC_LOADW_UMIN);
OPCODE(ATOMIC_LOADW_UMAX);
OPCODE(ATOMIC_CMP_SWAPW);
OPCODE(ATOMIC_CMP_SWAP);
OPCODE(ATOMIC_LOAD_128);
OPCODE(ATOMIC_STORE_128);
OPCODE(ATOMIC_CMP_SWAP_128);
OPCODE(LRV);
OPCODE(STRV);
OPCODE(VLER);
OPCODE(VSTER);
OPCODE(PREFETCH);
}
return nullptr;
#undef OPCODE
}
// Return true if VT is a vector whose elements are a whole number of bytes
// in width. Also check for presence of vector support.
bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
if (!Subtarget.hasVector())
return false;
return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
}
// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
// producing a result of type ResVT. Op is a possibly bitcast version
// of the input vector and Index is the index (based on type VecVT) that
// should be extracted. Return the new extraction if a simplification
// was possible or if Force is true.
SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
EVT VecVT, SDValue Op,
unsigned Index,
DAGCombinerInfo &DCI,
bool Force) const {
SelectionDAG &DAG = DCI.DAG;
// The number of bytes being extracted.
unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
for (;;) {
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::BITCAST)
// Look through bitcasts.
Op = Op.getOperand(0);
else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
canTreatAsByteVector(Op.getValueType())) {
// Get a VPERM-like permute mask and see whether the bytes covered
// by the extracted element are a contiguous sequence from one
// source operand.
SmallVector<int, SystemZ::VectorBytes> Bytes;
if (!getVPermMask(Op, Bytes))
break;
int First;
if (!getShuffleInput(Bytes, Index * BytesPerElement,
BytesPerElement, First))
break;
if (First < 0)
return DAG.getUNDEF(ResVT);
// Make sure the contiguous sequence starts at a multiple of the
// original element size.
unsigned Byte = unsigned(First) % Bytes.size();
if (Byte % BytesPerElement != 0)
break;
// We can get the extracted value directly from an input.
Index = Byte / BytesPerElement;
Op = Op.getOperand(unsigned(First) / Bytes.size());
Force = true;
} else if (Opcode == ISD::BUILD_VECTOR &&
canTreatAsByteVector(Op.getValueType())) {
// We can only optimize this case if the BUILD_VECTOR elements are
// at least as wide as the extracted value.
EVT OpVT = Op.getValueType();
unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
if (OpBytesPerElement < BytesPerElement)
break;
// Make sure that the least-significant bit of the extracted value
// is the least significant bit of an input.
unsigned End = (Index + 1) * BytesPerElement;
if (End % OpBytesPerElement != 0)
break;
// We're extracting the low part of one operand of the BUILD_VECTOR.
Op = Op.getOperand(End / OpBytesPerElement - 1);
if (!Op.getValueType().isInteger()) {
EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
DCI.AddToWorklist(Op.getNode());
}
EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
if (VT != ResVT) {
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
}
return Op;
} else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
canTreatAsByteVector(Op.getValueType()) &&
canTreatAsByteVector(Op.getOperand(0).getValueType())) {
// Make sure that only the unextended bits are significant.
EVT ExtVT = Op.getValueType();
EVT OpVT = Op.getOperand(0).getValueType();
unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
unsigned Byte = Index * BytesPerElement;
unsigned SubByte = Byte % ExtBytesPerElement;
unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
if (SubByte < MinSubByte ||
SubByte + BytesPerElement > ExtBytesPerElement)
break;
// Get the byte offset of the unextended element
Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
// ...then add the byte offset relative to that element.
Byte += SubByte - MinSubByte;
if (Byte % BytesPerElement != 0)
break;
Op = Op.getOperand(0);
Index = Byte / BytesPerElement;
Force = true;
} else
break;
}
if (Force) {
if (Op.getValueType() != VecVT) {
Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
DCI.AddToWorklist(Op.getNode());
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
DAG.getConstant(Index, DL, MVT::i32));
}
return SDValue();
}
// Optimize vector operations in scalar value Op on the basis that Op
// is truncated to TruncVT.
SDValue SystemZTargetLowering::combineTruncateExtract(
const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
// If we have (trunc (extract_vector_elt X, Y)), try to turn it into
// (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
// of type TruncVT.
if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
TruncVT.getSizeInBits() % 8 == 0) {
SDValue Vec = Op.getOperand(0);
EVT VecVT = Vec.getValueType();
if (canTreatAsByteVector(VecVT)) {
if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
unsigned TruncBytes = TruncVT.getStoreSize();
if (BytesPerElement % TruncBytes == 0) {
// Calculate the value of Y' in the above description. We are
// splitting the original elements into Scale equal-sized pieces
// and for truncation purposes want the last (least-significant)
// of these pieces for IndexN. This is easiest to do by calculating
// the start index of the following element and then subtracting 1.
unsigned Scale = BytesPerElement / TruncBytes;
unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
// Defer the creation of the bitcast from X to combineExtract,
// which might be able to optimize the extraction.
VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
VecVT.getStoreSize() / TruncBytes);
EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
}
}
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineZERO_EXTEND(
SDNode *N, DAGCombinerInfo &DCI) const {
// Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (TrueOp && FalseOp) {
SDLoc DL(N0);
SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
// If N0 has multiple uses, change other uses as well.
if (!N0.hasOneUse()) {
SDValue TruncSelect =
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
DCI.CombineTo(N0.getNode(), TruncSelect);
}
return NewSelect;
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
SDNode *N, DAGCombinerInfo &DCI) const {
// Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
// and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
// into (select_cc LHS, RHS, -1, 0, COND)
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
N0 = N0.getOperand(0);
if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
SDLoc DL(N0);
SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
N0.getOperand(2) };
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
}
return SDValue();
}
SDValue SystemZTargetLowering::combineSIGN_EXTEND(
SDNode *N, DAGCombinerInfo &DCI) const {
// Convert (sext (ashr (shl X, C1), C2)) to
// (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
// cheap as narrower ones.
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
SDValue Inner = N0.getOperand(0);
if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
EVT ShiftVT = N0.getOperand(1).getValueType();
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
Inner.getOperand(0));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
DAG.getConstant(NewShlAmt, SDLoc(Inner),
ShiftVT));
return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
}
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineMERGE(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opcode = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() == ISD::BITCAST)
Op0 = Op0.getOperand(0);
if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
// (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
// for v4f32.
if (Op1 == N->getOperand(0))
return Op1;
// (z_merge_? 0, X) -> (z_unpackl_? 0, X).
EVT VT = Op1.getValueType();
unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
if (ElemBytes <= 4) {
Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
EVT InVT = VT.changeVectorElementTypeToInteger();
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
SystemZ::VectorBytes / ElemBytes / 2);
if (VT != InVT) {
Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
DCI.AddToWorklist(Op1.getNode());
}
SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
DCI.AddToWorklist(Op.getNode());
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineLOAD(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT LdVT = N->getValueType(0);
if (LdVT.isVector() || LdVT.isInteger())
return SDValue();
// Transform a scalar load that is REPLICATEd as well as having other
// use(s) to the form where the other use(s) use the first element of the
// REPLICATE instead of the load. Otherwise instruction selection will not
// produce a VLREP. Avoid extracting to a GPR, so only do this for floating
// point loads.
SDValue Replicate;
SmallVector<SDNode*, 8> OtherUses;
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() == SystemZISD::REPLICATE) {
if (Replicate)
return SDValue(); // Should never happen
Replicate = SDValue(*UI, 0);
}
else if (UI.getUse().getResNo() == 0)
OtherUses.push_back(*UI);
}
if (!Replicate || OtherUses.empty())
return SDValue();
SDLoc DL(N);
SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
Replicate, DAG.getConstant(0, DL, MVT::i32));
// Update uses of the loaded Value while preserving old chains.
for (SDNode *U : OtherUses) {
SmallVector<SDValue, 8> Ops;
for (SDValue Op : U->ops())
Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
DAG.UpdateNodeOperands(U, Ops);
}
return SDValue(N, 0);
}
bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
return true;
if (Subtarget.hasVectorEnhancements2())
if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
return true;
return false;
}
static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
if (!VT.isVector() || !VT.isSimple() ||
VT.getSizeInBits() != 128 ||
VT.getScalarSizeInBits() % 8 != 0)
return false;
unsigned NumElts = VT.getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
if (M[i] < 0) continue; // ignore UNDEF indices
if ((unsigned) M[i] != NumElts - 1 - i)
return false;
}
return true;
}
static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
for (auto *U : StoredVal->uses()) {
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
EVT CurrMemVT = ST->getMemoryVT().getScalarType();
if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
continue;
} else if (isa<BuildVectorSDNode>(U)) {
SDValue BuildVector = SDValue(U, 0);
if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
isOnlyUsedByStores(BuildVector, DAG))
continue;
}
return false;
}
return true;
}
SDValue SystemZTargetLowering::combineSTORE(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
auto *SN = cast<StoreSDNode>(N);
auto &Op1 = N->getOperand(1);
EVT MemVT = SN->getMemoryVT();
// If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
// for the extraction to be done on a vMiN value, so that we can use VSTE.
// If X has wider elements then convert it to:
// (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
if (MemVT.isInteger() && SN->isTruncatingStore()) {
if (SDValue Value =
combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
DCI.AddToWorklist(Value.getNode());
// Rewrite the store with the new form of stored value.
return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
SN->getBasePtr(), SN->getMemoryVT(),
SN->getMemOperand());
}
}
// Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
if (!SN->isTruncatingStore() &&
Op1.getOpcode() == ISD::BSWAP &&
Op1.getNode()->hasOneUse() &&
canLoadStoreByteSwapped(Op1.getValueType())) {
SDValue BSwapOp = Op1.getOperand(0);
if (BSwapOp.getValueType() == MVT::i16)
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
SDValue Ops[] = {
N->getOperand(0), BSwapOp, N->getOperand(2)
};
return
DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
Ops, MemVT, SN->getMemOperand());
}
// Combine STORE (element-swap) into VSTER
if (!SN->isTruncatingStore() &&
Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
Op1.getNode()->hasOneUse() &&
Subtarget.hasVectorEnhancements2()) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
ArrayRef<int> ShuffleMask = SVN->getMask();
if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
SDValue Ops[] = {
N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
};
return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
DAG.getVTList(MVT::Other),
Ops, MemVT, SN->getMemOperand());
}
}
// Replicate a reg or immediate with VREP instead of scalar multiply or
// immediate load. It seems best to do this during the first DAGCombine as
// it is straight-forward to handle the zero-extend node in the initial
// DAG, and also not worry about the keeping the new MemVT legal (e.g. when
// extracting an i16 element from a v16i8 vector).
if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
isOnlyUsedByStores(Op1, DAG)) {
SDValue Word = SDValue();
EVT WordVT;
// Find a replicated immediate and return it if found in Word and its
// type in WordVT.
auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
// Some constants are better handled with a scalar store.
if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
return;
SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
if (VCI.isVectorConstantLegal(Subtarget) &&
VCI.Opcode == SystemZISD::REPLICATE) {
Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
WordVT = VCI.VecVT.getScalarType();
}
};
// Find a replicated register and return it if found in Word and its type
// in WordVT.
auto FindReplicatedReg = [&](SDValue MulOp) {
EVT MulVT = MulOp.getValueType();
if (MulOp->getOpcode() == ISD::MUL &&
(MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
// Find a zero extended value and its type.
SDValue LHS = MulOp->getOperand(0);
if (LHS->getOpcode() == ISD::ZERO_EXTEND)
WordVT = LHS->getOperand(0).getValueType();
else if (LHS->getOpcode() == ISD::AssertZext)
WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
else
return;
// Find a replicating constant, e.g. 0x00010001.
if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
SystemZVectorConstantInfo VCI(
APInt(MulVT.getSizeInBits(), C->getZExtValue()));
if (VCI.isVectorConstantLegal(Subtarget) &&
VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
WordVT == VCI.VecVT.getScalarType())
Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
}
}
};
if (isa<BuildVectorSDNode>(Op1) &&
DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
SDValue SplatVal = Op1->getOperand(0);
if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
else
FindReplicatedReg(SplatVal);
} else {
if (auto *C = dyn_cast<ConstantSDNode>(Op1))
FindReplicatedImm(C, MemVT.getStoreSize());
else
FindReplicatedReg(Op1);
}
if (Word != SDValue()) {
assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
"Bad type handling");
unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
SN->getBasePtr(), SN->getMemOperand());
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// Combine element-swap (LOAD) into VLER
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
N->getOperand(0).hasOneUse() &&
Subtarget.hasVectorEnhancements2()) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
ArrayRef<int> ShuffleMask = SVN->getMask();
if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
SDValue Load = N->getOperand(0);
LoadSDNode *LD = cast<LoadSDNode>(Load);
// Create the element-swapping load.
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr() // Ptr
};
SDValue ESLoad =
DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
DAG.getVTList(LD->getValueType(0), MVT::Other),
Ops, LD->getMemoryVT(), LD->getMemOperand());
// First, combine the VECTOR_SHUFFLE away. This makes the value produced
// by the load dead.
DCI.CombineTo(N, ESLoad);
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the shuffle is dead.
DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
if (!Subtarget.hasVector())
return SDValue();
// Look through bitcasts that retain the number of vector elements.
SDValue Op = N->getOperand(0);
if (Op.getOpcode() == ISD::BITCAST &&
Op.getValueType().isVector() &&
Op.getOperand(0).getValueType().isVector() &&
Op.getValueType().getVectorNumElements() ==
Op.getOperand(0).getValueType().getVectorNumElements())
Op = Op.getOperand(0);
// Pull BSWAP out of a vector extraction.
if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
EVT VecVT = Op.getValueType();
EVT EltVT = VecVT.getVectorElementType();
Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
Op.getOperand(0), N->getOperand(1));
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
if (EltVT != N->getValueType(0)) {
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
}
return Op;
}
// Try to simplify a vector extraction.
if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
SDValue Op0 = N->getOperand(0);
EVT VecVT = Op0.getValueType();
return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
IndexN->getZExtValue(), DCI, false);
}
return SDValue();
}
SDValue SystemZTargetLowering::combineJOIN_DWORDS(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// (join_dwords X, X) == (replicate X)
if (N->getOperand(0) == N->getOperand(1))
return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
N->getOperand(0));
return SDValue();
}
static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
SDValue Chain1 = N1->getOperand(0);
SDValue Chain2 = N2->getOperand(0);
// Trivial case: both nodes take the same chain.
if (Chain1 == Chain2)
return Chain1;
// FIXME - we could handle more complex cases via TokenFactor,
// assuming we can verify that this would not create a cycle.
return SDValue();
}
SDValue SystemZTargetLowering::combineFP_ROUND(
SDNode *N, DAGCombinerInfo &DCI) const {
if (!Subtarget.hasVector())
return SDValue();
// (fpround (extract_vector_elt X 0))
// (fpround (extract_vector_elt X 1)) ->
// (extract_vector_elt (VROUND X) 0)
// (extract_vector_elt (VROUND X) 2)
//
// This is a special case since the target doesn't really support v2f32s.
unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
SelectionDAG &DAG = DCI.DAG;
SDValue Op0 = N->getOperand(OpNo);
if (N->getValueType(0) == MVT::f32 &&
Op0.hasOneUse() &&
Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0).getValueType() == MVT::v2f64 &&
Op0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
SDValue Vec = Op0.getOperand(0);
for (auto *U : Vec->uses()) {
if (U != Op0.getNode() &&
U->hasOneUse() &&
U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
U->getOperand(0) == Vec &&
U->getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
SDValue OtherRound = SDValue(*U->use_begin(), 0);
if (OtherRound.getOpcode() == N->getOpcode() &&
OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
OtherRound.getValueType() == MVT::f32) {
SDValue VRound, Chain;
if (N->isStrictFPOpcode()) {
Chain = MergeInputChains(N, OtherRound.getNode());
if (!Chain)
continue;
VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
{MVT::v4f32, MVT::Other}, {Chain, Vec});
Chain = VRound.getValue(1);
} else
VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
MVT::v4f32, Vec);
DCI.AddToWorklist(VRound.getNode());
SDValue Extract1 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
DCI.AddToWorklist(Extract1.getNode());
DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
if (Chain)
DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
SDValue Extract0 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
if (Chain)
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
N->getVTList(), Extract0, Chain);
return Extract0;
}
}
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineFP_EXTEND(
SDNode *N, DAGCombinerInfo &DCI) const {
if (!Subtarget.hasVector())
return SDValue();
// (fpextend (extract_vector_elt X 0))
// (fpextend (extract_vector_elt X 2)) ->
// (extract_vector_elt (VEXTEND X) 0)
// (extract_vector_elt (VEXTEND X) 1)
//
// This is a special case since the target doesn't really support v2f32s.
unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
SelectionDAG &DAG = DCI.DAG;
SDValue Op0 = N->getOperand(OpNo);
if (N->getValueType(0) == MVT::f64 &&
Op0.hasOneUse() &&
Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0).getValueType() == MVT::v4f32 &&
Op0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
SDValue Vec = Op0.getOperand(0);
for (auto *U : Vec->uses()) {
if (U != Op0.getNode() &&
U->hasOneUse() &&
U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
U->getOperand(0) == Vec &&
U->getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
SDValue OtherExtend = SDValue(*U->use_begin(), 0);
if (OtherExtend.getOpcode() == N->getOpcode() &&
OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
OtherExtend.getValueType() == MVT::f64) {
SDValue VExtend, Chain;
if (N->isStrictFPOpcode()) {
Chain = MergeInputChains(N, OtherExtend.getNode());
if (!Chain)
continue;
VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
{MVT::v2f64, MVT::Other}, {Chain, Vec});
Chain = VExtend.getValue(1);
} else
VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
MVT::v2f64, Vec);
DCI.AddToWorklist(VExtend.getNode());
SDValue Extract1 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
DCI.AddToWorklist(Extract1.getNode());
DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
if (Chain)
DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
SDValue Extract0 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
if (Chain)
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
N->getVTList(), Extract0, Chain);
return Extract0;
}
}
}
}
return SDValue();
}
SDValue SystemZTargetLowering::combineINT_TO_FP(
SDNode *N, DAGCombinerInfo &DCI) const {
if (DCI.Level != BeforeLegalizeTypes)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
LLVMContext &Ctx = *DAG.getContext();
unsigned Opcode = N->getOpcode();
EVT OutVT = N->getValueType(0);
Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
SDValue Op = N->getOperand(0);
unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
// Insert an extension before type-legalization to avoid scalarization, e.g.:
// v2f64 = uint_to_fp v2i16
// =>
// v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
OutScalarBits <= 64) {
unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
EVT ExtVT = EVT::getVectorVT(
Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
unsigned ExtOpcode =
(Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
}
return SDValue();
}
SDValue SystemZTargetLowering::combineBSWAP(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
N->getOperand(0).hasOneUse() &&
canLoadStoreByteSwapped(N->getValueType(0))) {
SDValue Load = N->getOperand(0);
LoadSDNode *LD = cast<LoadSDNode>(Load);
// Create the byte-swapping load.
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr() // Ptr
};
EVT LoadVT = N->getValueType(0);
if (LoadVT == MVT::i16)
LoadVT = MVT::i32;
SDValue BSLoad =
DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
DAG.getVTList(LoadVT, MVT::Other),
Ops, LD->getMemoryVT(), LD->getMemOperand());
// If this is an i16 load, insert the truncate.
SDValue ResVal = BSLoad;
if (N->getValueType(0) == MVT::i16)
ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
// First, combine the bswap away. This makes the value produced by the
// load dead.
DCI.CombineTo(N, ResVal);
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the bswap is dead.
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
// Return N so it doesn't get rechecked!
return SDValue(N, 0);
}
// Look through bitcasts that retain the number of vector elements.
SDValue Op = N->getOperand(0);
if (Op.getOpcode() == ISD::BITCAST &&
Op.getValueType().isVector() &&
Op.getOperand(0).getValueType().isVector() &&
Op.getValueType().getVectorNumElements() ==
Op.getOperand(0).getValueType().getVectorNumElements())
Op = Op.getOperand(0);
// Push BSWAP into a vector insertion if at least one side then simplifies.
if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
SDValue Vec = Op.getOperand(0);
SDValue Elt = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
(canLoadStoreByteSwapped(N->getValueType(0)) &&
ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
EVT VecVT = N->getValueType(0);
EVT EltVT = N->getValueType(0).getVectorElementType();
if (VecVT != Vec.getValueType()) {
Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
DCI.AddToWorklist(Vec.getNode());
}
if (EltVT != Elt.getValueType()) {
Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
DCI.AddToWorklist(Elt.getNode());
}
Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
DCI.AddToWorklist(Vec.getNode());
Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
DCI.AddToWorklist(Elt.getNode());
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
Vec, Elt, Idx);
}
}
// Push BSWAP into a vector shuffle if at least one side then simplifies.
ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
if (SV && Op.hasOneUse()) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
EVT VecVT = N->getValueType(0);
if (VecVT != Op0.getValueType()) {
Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
DCI.AddToWorklist(Op0.getNode());
}
if (VecVT != Op1.getValueType()) {
Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
DCI.AddToWorklist(Op1.getNode());
}
Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
DCI.AddToWorklist(Op0.getNode());
Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
DCI.AddToWorklist(Op1.getNode());
return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
}
}
return SDValue();
}
static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
// We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
// set by the CCReg instruction using the CCValid / CCMask masks,
// If the CCReg instruction is itself a ICMP testing the condition
// code set by some other instruction, see whether we can directly
// use that condition code.
// Verify that we have an ICMP against some constant.
if (CCValid != SystemZ::CCMASK_ICMP)
return false;
auto *ICmp = CCReg.getNode();
if (ICmp->getOpcode() != SystemZISD::ICMP)
return false;
auto *CompareLHS = ICmp->getOperand(0).getNode();
auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
if (!CompareRHS)
return false;
// Optimize the case where CompareLHS is a SELECT_CCMASK.
if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
// Verify that we have an appropriate mask for a EQ or NE comparison.
bool Invert = false;
if (CCMask == SystemZ::CCMASK_CMP_NE)
Invert = !Invert;
else if (CCMask != SystemZ::CCMASK_CMP_EQ)
return false;
// Verify that the ICMP compares against one of select values.
auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
if (!TrueVal)
return false;
auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
if (!FalseVal)
return false;
if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
Invert = !Invert;
else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
return false;
// Compute the effective CC mask for the new branch or select.
auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
if (!NewCCValid || !NewCCMask)
return false;
CCValid = NewCCValid->getZExtValue();
CCMask = NewCCMask->getZExtValue();
if (Invert)
CCMask ^= CCValid;
// Return the updated CCReg link.
CCReg = CompareLHS->getOperand(4);
return true;
}
// Optimize the case where CompareRHS is (SRA (SHL (IPM))).
if (CompareLHS->getOpcode() == ISD::SRA) {
auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
if (!SRACount || SRACount->getZExtValue() != 30)
return false;
auto *SHL = CompareLHS->getOperand(0).getNode();
if (SHL->getOpcode() != ISD::SHL)
return false;
auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
return false;
auto *IPM = SHL->getOperand(0).getNode();
if (IPM->getOpcode() != SystemZISD::IPM)
return false;
// Avoid introducing CC spills (because SRA would clobber CC).
if (!CompareLHS->hasOneUse())
return false;
// Verify that the ICMP compares against zero.
if (CompareRHS->getZExtValue() != 0)
return false;
// Compute the effective CC mask for the new branch or select.
CCMask = SystemZ::reverseCCMask(CCMask);
// Return the updated CCReg link.
CCReg = IPM->getOperand(0);
return true;
}
return false;
}
SDValue SystemZTargetLowering::combineBR_CCMASK(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!CCValid || !CCMask)
return SDValue();
int CCValidVal = CCValid->getZExtValue();
int CCMaskVal = CCMask->getZExtValue();
SDValue Chain = N->getOperand(0);
SDValue CCReg = N->getOperand(4);
if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
Chain,
DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
N->getOperand(3), CCReg);
return SDValue();
}
SDValue SystemZTargetLowering::combineSELECT_CCMASK(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
if (!CCValid || !CCMask)
return SDValue();
int CCValidVal = CCValid->getZExtValue();
int CCMaskVal = CCMask->getZExtValue();
SDValue CCReg = N->getOperand(4);
if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1),
DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
CCReg);
return SDValue();
}
SDValue SystemZTargetLowering::combineGET_CCMASK(
SDNode *N, DAGCombinerInfo &DCI) const {
// Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!CCValid || !CCMask)
return SDValue();
int CCValidVal = CCValid->getZExtValue();
int CCMaskVal = CCMask->getZExtValue();
SDValue Select = N->getOperand(0);
if (Select->getOpcode() == ISD::TRUNCATE)
Select = Select->getOperand(0);
if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
return SDValue();
auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
if (!SelectCCValid || !SelectCCMask)
return SDValue();
int SelectCCValidVal = SelectCCValid->getZExtValue();
int SelectCCMaskVal = SelectCCMask->getZExtValue();
auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
if (!TrueVal || !FalseVal)
return SDValue();
if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
;
else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
SelectCCMaskVal ^= SelectCCValidVal;
else
return SDValue();
if (SelectCCValidVal & ~CCValidVal)
return SDValue();
if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
return SDValue();
return Select->getOperand(4);
}
SDValue SystemZTargetLowering::combineIntDIVREM(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// In the case where the divisor is a vector of constants a cheaper
// sequence of instructions can replace the divide. BuildSDIV is called to
// do this during DAG combining, but it only succeeds when it can build a
// multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
// since it is not Legal but Custom it can only happen before
// legalization. Therefore we must scalarize this early before Combine
// 1. For widened vectors, this is already the result of type legalization.
if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
return DAG.UnrollVectorOp(N);
return SDValue();
}
SDValue SystemZTargetLowering::combineINTRINSIC(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (Id) {
// VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
// or larger is simply a vector load.
case Intrinsic::s390_vll:
case Intrinsic::s390_vlrl:
if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
if (C->getZExtValue() >= 15)
return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
N->getOperand(3), MachinePointerInfo());
break;
// Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
case Intrinsic::s390_vstl:
case Intrinsic::s390_vstrl:
if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
if (C->getZExtValue() >= 15)
return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
N->getOperand(4), MachinePointerInfo());
break;
}
return SDValue();
}
SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
return N->getOperand(0);
return N;
}
SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch(N->getOpcode()) {
default: break;
case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
case SystemZISD::MERGE_HIGH:
case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
case ISD::LOAD: return combineLOAD(N, DCI);
case ISD::STORE: return combineSTORE(N, DCI);
case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI);
case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI);
case ISD::BSWAP: return combineBSWAP(N, DCI);
case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM: return combineIntDIVREM(N, DCI);
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI);
}
return SDValue();
}
// Return the demanded elements for the OpNo source operand of Op. DemandedElts
// are for Op.
static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
unsigned OpNo) {
EVT VT = Op.getValueType();
unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
APInt SrcDemE;
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::s390_vpksh: // PACKS
case Intrinsic::s390_vpksf:
case Intrinsic::s390_vpksg:
case Intrinsic::s390_vpkshs: // PACKS_CC
case Intrinsic::s390_vpksfs:
case Intrinsic::s390_vpksgs:
case Intrinsic::s390_vpklsh: // PACKLS
case Intrinsic::s390_vpklsf:
case Intrinsic::s390_vpklsg:
case Intrinsic::s390_vpklshs: // PACKLS_CC
case Intrinsic::s390_vpklsfs:
case Intrinsic::s390_vpklsgs:
// VECTOR PACK truncates the elements of two source vectors into one.
SrcDemE = DemandedElts;
if (OpNo == 2)
SrcDemE.lshrInPlace(NumElts / 2);
SrcDemE = SrcDemE.trunc(NumElts / 2);
break;
// VECTOR UNPACK extends half the elements of the source vector.
case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
case Intrinsic::s390_vuphh:
case Intrinsic::s390_vuphf:
case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
case Intrinsic::s390_vuplhh:
case Intrinsic::s390_vuplhf:
SrcDemE = APInt(NumElts * 2, 0);
SrcDemE.insertBits(DemandedElts, 0);
break;
case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
case Intrinsic::s390_vuplhw:
case Intrinsic::s390_vuplf:
case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
case Intrinsic::s390_vupllh:
case Intrinsic::s390_vupllf:
SrcDemE = APInt(NumElts * 2, 0);
SrcDemE.insertBits(DemandedElts, NumElts);
break;
case Intrinsic::s390_vpdi: {
// VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
SrcDemE = APInt(NumElts, 0);
if (!DemandedElts[OpNo - 1])
break;
unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
// Demand input element 0 or 1, given by the mask bit value.
SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
break;
}
case Intrinsic::s390_vsldb: {
// VECTOR SHIFT LEFT DOUBLE BY BYTE
assert(VT == MVT::v16i8 && "Unexpected type.");
unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
unsigned NumSrc0Els = 16 - FirstIdx;
SrcDemE = APInt(NumElts, 0);
if (OpNo == 1) {
APInt DemEls = DemandedElts.trunc(NumSrc0Els);
SrcDemE.insertBits(DemEls, FirstIdx);
} else {
APInt DemEls = DemandedElts.lshr(NumSrc0Els);
SrcDemE.insertBits(DemEls, 0);
}
break;
}
case Intrinsic::s390_vperm:
SrcDemE = APInt(NumElts, 1);
break;
default:
llvm_unreachable("Unhandled intrinsic.");
break;
}
} else {
switch (Opcode) {
case SystemZISD::JOIN_DWORDS:
// Scalar operand.
SrcDemE = APInt(1, 1);
break;
case SystemZISD::SELECT_CCMASK:
SrcDemE = DemandedElts;
break;
default:
llvm_unreachable("Unhandled opcode.");
break;
}
}
return SrcDemE;
}
static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG, unsigned Depth,
unsigned OpNo) {
APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
KnownBits LHSKnown =
DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
KnownBits RHSKnown =
DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
Known = KnownBits::commonBits(LHSKnown, RHSKnown);
}
void
SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
Known.resetAll();
// Intrinsic CC result is returned in the two low bits.
unsigned tmp0, tmp1; // not used
if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
Known.Zero.setBitsFrom(2);
return;
}
EVT VT = Op.getValueType();
if (Op.getResNo() != 0 || VT == MVT::Untyped)
return;
assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
"KnownBits does not match VT in bitwidth");
assert ((!VT.isVector() ||
(DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
"DemandedElts does not match VT number of elements");
unsigned BitWidth = Known.getBitWidth();
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
bool IsLogical = false;
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::s390_vpksh: // PACKS
case Intrinsic::s390_vpksf:
case Intrinsic::s390_vpksg:
case Intrinsic::s390_vpkshs: // PACKS_CC
case Intrinsic::s390_vpksfs:
case Intrinsic::s390_vpksgs:
case Intrinsic::s390_vpklsh: // PACKLS
case Intrinsic::s390_vpklsf:
case Intrinsic::s390_vpklsg:
case Intrinsic::s390_vpklshs: // PACKLS_CC
case Intrinsic::s390_vpklsfs:
case Intrinsic::s390_vpklsgs:
case Intrinsic::s390_vpdi:
case Intrinsic::s390_vsldb:
case Intrinsic::s390_vperm:
computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
break;
case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
case Intrinsic::s390_vuplhh:
case Intrinsic::s390_vuplhf:
case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
case Intrinsic::s390_vupllh:
case Intrinsic::s390_vupllf:
IsLogical = true;
[[fallthrough]];
case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
case Intrinsic::s390_vuphh:
case Intrinsic::s390_vuphf:
case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
case Intrinsic::s390_vuplhw:
case Intrinsic::s390_vuplf: {
SDValue SrcOp = Op.getOperand(1);
APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
if (IsLogical) {
Known = Known.zext(BitWidth);
} else
Known = Known.sext(BitWidth);
break;
}
default:
break;
}
} else {
switch (Opcode) {
case SystemZISD::JOIN_DWORDS:
case SystemZISD::SELECT_CCMASK:
computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
break;
case SystemZISD::REPLICATE: {
SDValue SrcOp = Op.getOperand(0);
Known = DAG.computeKnownBits(SrcOp, Depth + 1);
if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
break;
}
default:
break;
}
}
// Known has the width of the source operand(s). Adjust if needed to match
// the passed bitwidth.
if (Known.getBitWidth() != BitWidth)
Known = Known.anyextOrTrunc(BitWidth);
}
static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
const SelectionDAG &DAG, unsigned Depth,
unsigned OpNo) {
APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
if (LHS == 1) return 1; // Early out.
APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
if (RHS == 1) return 1; // Early out.
unsigned Common = std::min(LHS, RHS);
unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
EVT VT = Op.getValueType();
unsigned VTBits = VT.getScalarSizeInBits();
if (SrcBitWidth > VTBits) { // PACK
unsigned SrcExtraBits = SrcBitWidth - VTBits;
if (Common > SrcExtraBits)
return (Common - SrcExtraBits);
return 1;
}
assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
return Common;
}
unsigned
SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
if (Op.getResNo() != 0)
return 1;
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::s390_vpksh: // PACKS
case Intrinsic::s390_vpksf:
case Intrinsic::s390_vpksg:
case Intrinsic::s390_vpkshs: // PACKS_CC
case Intrinsic::s390_vpksfs:
case Intrinsic::s390_vpksgs:
case Intrinsic::s390_vpklsh: // PACKLS
case Intrinsic::s390_vpklsf:
case Intrinsic::s390_vpklsg:
case Intrinsic::s390_vpklshs: // PACKLS_CC
case Intrinsic::s390_vpklsfs:
case Intrinsic::s390_vpklsgs:
case Intrinsic::s390_vpdi:
case Intrinsic::s390_vsldb:
case Intrinsic::s390_vperm:
return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
case Intrinsic::s390_vuphh:
case Intrinsic::s390_vuphf:
case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
case Intrinsic::s390_vuplhw:
case Intrinsic::s390_vuplf: {
SDValue PackedOp = Op.getOperand(1);
APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
EVT VT = Op.getValueType();
unsigned VTBits = VT.getScalarSizeInBits();
Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
return Tmp;
}
default:
break;
}
} else {
switch (Opcode) {
case SystemZISD::SELECT_CCMASK:
return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
default:
break;
}
}
return 1;
}
unsigned
SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
unsigned StackAlign = TFI->getStackAlignment();
assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
"Unexpected stack alignment");
// The default stack probe size is 4096 if the function has no
// stack-probe-size attribute.
unsigned StackProbeSize =
MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
// Round down to the stack alignment.
StackProbeSize &= ~(StackAlign - 1);
return StackProbeSize ? StackProbeSize : StackAlign;
}
//===----------------------------------------------------------------------===//
// Custom insertion
//===----------------------------------------------------------------------===//
// Force base value Base into a register before MI. Return the register.
static Register forceReg(MachineInstr &MI, MachineOperand &Base,
const SystemZInstrInfo *TII) {
MachineBasicBlock *MBB = MI.getParent();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Base.isReg()) {
// Copy Base into a new virtual register to help register coalescing in
// cases with multiple uses.
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
.add(Base);
return Reg;
}
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
.add(Base)
.addImm(0)
.addReg(0);
return Reg;
}
// The CC operand of MI might be missing a kill marker because there
// were multiple uses of CC, and ISel didn't know which to mark.
// Figure out whether MI should have had a kill marker.
static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
// Scan forward through BB for a use/def of CC.
MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(SystemZ::CC))
return false;
if (mi.definesRegister(SystemZ::CC))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether CC is live into a
// successor.
if (miI == MBB->end()) {
for (const MachineBasicBlock *Succ : MBB->successors())
if (Succ->isLiveIn(SystemZ::CC))
return false;
}
return true;
}
// Return true if it is OK for this Select pseudo-opcode to be cascaded
// together with other Select pseudo-opcodes into a single basic-block with
// a conditional jump around it.
static bool isSelectPseudo(MachineInstr &MI) {
switch (MI.getOpcode()) {
case SystemZ::Select32:
case SystemZ::Select64:
case SystemZ::SelectF32:
case SystemZ::SelectF64:
case SystemZ::SelectF128:
case SystemZ::SelectVR32:
case SystemZ::SelectVR64:
case SystemZ::SelectVR128:
return true;
default:
return false;
}
}
// Helper function, which inserts PHI functions into SinkMBB:
// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
// where %FalseValue(i) and %TrueValue(i) are taken from Selects.
static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
MachineBasicBlock *TrueMBB,
MachineBasicBlock *FalseMBB,
MachineBasicBlock *SinkMBB) {
MachineFunction *MF = TrueMBB->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
MachineInstr *FirstMI = Selects.front();
unsigned CCValid = FirstMI->getOperand(3).getImm();
unsigned CCMask = FirstMI->getOperand(4).getImm();
MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
// As we are creating the PHIs, we have to be careful if there is more than
// one. Later Selects may reference the results of earlier Selects, but later
// PHIs have to reference the individual true/false inputs from earlier PHIs.
// That also means that PHI construction must work forward from earlier to
// later, and that the code must maintain a mapping from earlier PHI's
// destination registers, and the registers that went into the PHI.
DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
for (auto *MI : Selects) {
Register DestReg = MI->getOperand(0).getReg();
Register TrueReg = MI->getOperand(1).getReg();
Register FalseReg = MI->getOperand(2).getReg();
// If this Select we are generating is the opposite condition from
// the jump we generated, then we have to swap the operands for the
// PHI that is going to be generated.
if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
std::swap(TrueReg, FalseReg);
if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
TrueReg = RegRewriteTable[TrueReg].first;
if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
FalseReg = RegRewriteTable[FalseReg].second;
DebugLoc DL = MI->getDebugLoc();
BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
.addReg(TrueReg).addMBB(TrueMBB)
.addReg(FalseReg).addMBB(FalseMBB);
// Add this PHI to the rewrite table.
RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
}
MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
}
// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
MachineBasicBlock *
SystemZTargetLowering::emitSelect(MachineInstr &MI,
MachineBasicBlock *MBB) const {
assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
unsigned CCValid = MI.getOperand(3).getImm();
unsigned CCMask = MI.getOperand(4).getImm();
// If we have a sequence of Select* pseudo instructions using the
// same condition code value, we want to expand all of them into
// a single pair of basic blocks using the same condition.
SmallVector<MachineInstr*, 8> Selects;
SmallVector<MachineInstr*, 8> DbgValues;
Selects.push_back(&MI);
unsigned Count = 0;
for (MachineInstr &NextMI : llvm::make_range(
std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
if (isSelectPseudo(NextMI)) {
assert(NextMI.getOperand(3).getImm() == CCValid &&
"Bad CCValid operands since CC was not redefined.");
if (NextMI.getOperand(4).getImm() == CCMask ||
NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
Selects.push_back(&NextMI);
continue;
}
break;
}
if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook())
break;
bool User = false;
for (auto *SelMI : Selects)
if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
User = true;
break;
}
if (NextMI.isDebugInstr()) {
if (User) {
assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
DbgValues.push_back(&NextMI);
}
} else if (User || ++Count > 20)
break;
}
MachineInstr *LastMI = Selects.back();
bool CCKilled =
(LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB);
MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
// Unless CC was killed in the last Select instruction, mark it as
// live-in to both FalseMBB and JoinMBB.
if (!CCKilled) {
FalseMBB->addLiveIn(SystemZ::CC);
JoinMBB->addLiveIn(SystemZ::CC);
}
// StartMBB:
// BRC CCMask, JoinMBB
// # fallthrough to FalseMBB
MBB = StartMBB;
BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
MBB->addSuccessor(JoinMBB);
MBB->addSuccessor(FalseMBB);
// FalseMBB:
// # fallthrough to JoinMBB
MBB = FalseMBB;
MBB->addSuccessor(JoinMBB);
// JoinMBB:
// %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
// ...
MBB = JoinMBB;
createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
for (auto *SelMI : Selects)
SelMI->eraseFromParent();
MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
for (auto *DbgMI : DbgValues)
MBB->splice(InsertPos, StartMBB, DbgMI);
return JoinMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
// StoreOpcode is the store to use and Invert says whether the store should
// happen when the condition is false rather than true. If a STORE ON
// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
MachineBasicBlock *MBB,
unsigned StoreOpcode,
unsigned STOCOpcode,
bool Invert) const {
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
Register SrcReg = MI.getOperand(0).getReg();
MachineOperand Base = MI.getOperand(1);
int64_t Disp = MI.getOperand(2).getImm();
Register IndexReg = MI.getOperand(3).getReg();
unsigned CCValid = MI.getOperand(4).getImm();
unsigned CCMask = MI.getOperand(5).getImm();
DebugLoc DL = MI.getDebugLoc();
StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
// ISel pattern matching also adds a load memory operand of the same
// address, so take special care to find the storing memory operand.
MachineMemOperand *MMO = nullptr;
for (auto *I : MI.memoperands())
if (I->isStore()) {
MMO = I;
break;
}
// Use STOCOpcode if possible. We could use different store patterns in
// order to avoid matching the index register, but the performance trade-offs
// might be more complicated in that case.
if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
if (Invert)
CCMask ^= CCValid;
BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
.addReg(SrcReg)
.add(Base)
.addImm(Disp)
.addImm(CCValid)
.addImm(CCMask)
.addMemOperand(MMO);
MI.eraseFromParent();
return MBB;
}
// Get the condition needed to branch around the store.
if (!Invert)
CCMask ^= CCValid;
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB);
MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
// Unless CC was killed in the CondStore instruction, mark it as
// live-in to both FalseMBB and JoinMBB.
if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
FalseMBB->addLiveIn(SystemZ::CC);
JoinMBB->addLiveIn(SystemZ::CC);
}
// StartMBB:
// BRC CCMask, JoinMBB
// # fallthrough to FalseMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
MBB->addSuccessor(JoinMBB);
MBB->addSuccessor(FalseMBB);
// FalseMBB:
// store %SrcReg, %Disp(%Index,%Base)
// # fallthrough to JoinMBB
MBB = FalseMBB;
BuildMI(MBB, DL, TII->get(StoreOpcode))
.addReg(SrcReg)
.add(Base)
.addImm(Disp)
.addReg(IndexReg)
.addMemOperand(MMO);
MBB->addSuccessor(JoinMBB);
MI.eraseFromParent();
return JoinMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
// BitSize is the width of the field in bits, or 0 if this is a partword
// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
// is one of the operands. Invert says whether the field should be
// inverted after performing BinOpcode (e.g. for NAND).
MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
unsigned BitSize, bool Invert) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
// Extract the operands. Base can be a register or a frame index.
// Src2 can be a register or immediate.
Register Dest = MI.getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI.getOperand(1));
int64_t Disp = MI.getOperand(2).getImm();
MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
DebugLoc DL = MI.getDebugLoc();
if (IsSubWord)
BitSize = MI.getOperand(6).getImm();
// Subword operations use 32-bit registers.
const TargetRegisterClass *RC = (BitSize <= 32 ?
&SystemZ::GR32BitRegClass :
&SystemZ::GR64BitRegClass);
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
// Get the right opcodes for the displacement.
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
Register OrigVal = MRI.createVirtualRegister(RC);
Register OldVal = MRI.createVirtualRegister(RC);
Register NewVal = (BinOpcode || IsSubWord ?
MRI.createVirtualRegister(RC) : Src2.getReg());
Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
// Insert a basic block for the main loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
// StartMBB:
// ...
// %OrigVal = L Disp(%Base)
// # fall through to LoopMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
// %RotatedNewVal = OP %RotatedOldVal, %Src2
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
// JNE LoopMBB
// # fall through to DoneMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigVal).addMBB(StartMBB)
.addReg(Dest).addMBB(LoopMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
.addReg(OldVal).addReg(BitShift).addImm(0);
if (Invert) {
// Perform the operation normally and then invert every bit of the field.
Register Tmp = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
if (BitSize <= 32)
// XILF with the upper BitSize bits set.
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
.addReg(Tmp).addImm(-1U << (32 - BitSize));
else {
// Use LCGR and add -1 to the result, which is more compact than
// an XILF, XILH pair.
Register Tmp2 = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
.addReg(Tmp2).addImm(-1);
}
} else if (BinOpcode)
// A simply binary operation.
BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
.addReg(RotatedOldVal)
.add(Src2);
else if (IsSubWord)
// Use RISBG to rotate Src2 into position and use it to replace the
// field in RotatedOldVal.
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
.addReg(RotatedOldVal).addReg(Src2.getReg())
.addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
.addReg(OldVal)
.addReg(NewVal)
.add(Base)
.addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI.eraseFromParent();
return DoneMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo
// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
// instruction that should be used to compare the current field with the
// minimum or maximum value. KeepOldMask is the BRC condition-code mask
// for when the current field should be kept. BitSize is the width of
// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
unsigned KeepOldMask, unsigned BitSize) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
// Extract the operands. Base can be a register or a frame index.
Register Dest = MI.getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI.getOperand(1));
int64_t Disp = MI.getOperand(2).getImm();
Register Src2 = MI.getOperand(3).getReg();
Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
DebugLoc DL = MI.getDebugLoc();
if (IsSubWord)
BitSize = MI.getOperand(6).getImm();
// Subword operations use 32-bit registers.
const TargetRegisterClass *RC = (BitSize <= 32 ?
&SystemZ::GR32BitRegClass :
&SystemZ::GR64BitRegClass);
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
// Get the right opcodes for the displacement.
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
Register OrigVal = MRI.createVirtualRegister(RC);
Register OldVal = MRI.createVirtualRegister(RC);
Register NewVal = MRI.createVirtualRegister(RC);
Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
// Insert 3 basic blocks for the loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
// StartMBB:
// ...
// %OrigVal = L Disp(%Base)
// # fall through to LoopMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
// CompareOpcode %RotatedOldVal, %Src2
// BRC KeepOldMask, UpdateMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigVal).addMBB(StartMBB)
.addReg(Dest).addMBB(UpdateMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
.addReg(OldVal).addReg(BitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CompareOpcode))
.addReg(RotatedOldVal).addReg(Src2);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
MBB->addSuccessor(UpdateMBB);
MBB->addSuccessor(UseAltMBB);
// UseAltMBB:
// %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
// # fall through to UpdateMBB
MBB = UseAltMBB;
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
.addReg(RotatedOldVal).addReg(Src2)
.addImm(32).addImm(31 + BitSize).addImm(0);
MBB->addSuccessor(UpdateMBB);
// UpdateMBB:
// %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
// [ %RotatedAltVal, UseAltMBB ]
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
// JNE LoopMBB
// # fall through to DoneMBB
MBB = UpdateMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
.addReg(RotatedOldVal).addMBB(LoopMBB)
.addReg(RotatedAltVal).addMBB(UseAltMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
.addReg(OldVal)
.addReg(NewVal)
.add(Base)
.addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI.eraseFromParent();
return DoneMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
// instruction MI.
MachineBasicBlock *
SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
MachineBasicBlock *MBB) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Extract the operands. Base can be a register or a frame index.
Register Dest = MI.getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI.getOperand(1));
int64_t Disp = MI.getOperand(2).getImm();
Register CmpVal = MI.getOperand(3).getReg();
Register OrigSwapVal = MI.getOperand(4).getReg();
Register BitShift = MI.getOperand(5).getReg();
Register NegBitShift = MI.getOperand(6).getReg();
int64_t BitSize = MI.getOperand(7).getImm();
DebugLoc DL = MI.getDebugLoc();
const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
// Get the right opcodes for the displacement and zero-extension.
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
Register OrigOldVal = MRI.createVirtualRegister(RC);
Register OldVal = MRI.createVirtualRegister(RC);
Register SwapVal = MRI.createVirtualRegister(RC);
Register StoreVal = MRI.createVirtualRegister(RC);
Register OldValRot = MRI.createVirtualRegister(RC);
Register RetryOldVal = MRI.createVirtualRegister(RC);
Register RetrySwapVal = MRI.createVirtualRegister(RC);
// Insert 2 basic blocks for the loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB);
// StartMBB:
// ...
// %OrigOldVal = L Disp(%Base)
// # fall through to LoopMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
.add(Base)
.addImm(Disp)
.addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
// %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
// %OldValRot = RLL %OldVal, BitSize(%BitShift)
// ^^ The low BitSize bits contain the field
// of interest.
// %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
// ^^ Replace the upper 32-BitSize bits of the
// swap value with those that we loaded and rotated.
// %Dest = LL[CH] %OldValRot
// CR %Dest, %CmpVal
// JNE DoneMBB
// # Fall through to SetMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigOldVal).addMBB(StartMBB)
.addReg(RetryOldVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
.addReg(OrigSwapVal).addMBB(StartMBB)
.addReg(RetrySwapVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
.addReg(OldVal).addReg(BitShift).addImm(BitSize);
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
.addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
.addReg(OldValRot);
BuildMI(MBB, DL, TII->get(SystemZ::CR))
.addReg(Dest).addReg(CmpVal);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP)
.addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
MBB->addSuccessor(DoneMBB);
MBB->addSuccessor(SetMBB);
// SetMBB:
// %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
// ^^ Rotate the new field to its proper position.
// %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base)
// JNE LoopMBB
// # fall through to ExitMBB
MBB = SetMBB;
BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
.addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
.addReg(OldVal)
.addReg(StoreVal)
.add(Base)
.addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
// If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
// to the block after the loop. At this point, CC may have been defined
// either by the CR in LoopMBB or by the CS in SetMBB.
if (!MI.registerDefIsDead(SystemZ::CC))
DoneMBB->addLiveIn(SystemZ::CC);
MI.eraseFromParent();
return DoneMBB;
}
// Emit a move from two GR64s to a GR128.
MachineBasicBlock *
SystemZTargetLowering::emitPair128(MachineInstr &MI,
MachineBasicBlock *MBB) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI.getDebugLoc();
Register Dest = MI.getOperand(0).getReg();
Register Hi = MI.getOperand(1).getReg();
Register Lo = MI.getOperand(2).getReg();
Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
.addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
.addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
MI.eraseFromParent();
return MBB;
}
// Emit an extension from a GR64 to a GR128. ClearEven is true
// if the high register of the GR128 value must be cleared or false if
// it's "don't care".
MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
MachineBasicBlock *MBB,
bool ClearEven) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI.getDebugLoc();
Register Dest = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
if (ClearEven) {
Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
.addImm(0);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
.addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
In128 = NewIn128;
}
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
.addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
MI.eraseFromParent();
return MBB;
}
MachineBasicBlock *
SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
MachineBasicBlock *MBB,
unsigned Opcode, bool IsMemset) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI.getDebugLoc();
MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
uint64_t DestDisp = MI.getOperand(1).getImm();
MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
uint64_t SrcDisp;
// Fold the displacement Disp if it is out of range.
auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
if (!isUInt<12>(Disp)) {
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
.add(Base).addImm(Disp).addReg(0);
Base = MachineOperand::CreateReg(Reg, false);
Disp = 0;
}
};
if (!IsMemset) {
SrcBase = earlyUseOperand(MI.getOperand(2));
SrcDisp = MI.getOperand(3).getImm();
} else {
SrcBase = DestBase;
SrcDisp = DestDisp++;
foldDisplIfNeeded(DestBase, DestDisp);
}
MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
bool IsImmForm = LengthMO.isImm();
bool IsRegForm = !IsImmForm;
// Build and insert one Opcode of Length, with special treatment for memset.
auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
MachineBasicBlock::iterator InsPos,
MachineOperand DBase, uint64_t DDisp,
MachineOperand SBase, uint64_t SDisp,
unsigned Length) -> void {
assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
if (IsMemset) {
MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
if (ByteMO.isImm())
BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
.add(SBase).addImm(SDisp).add(ByteMO);
else
BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
.add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
if (--Length == 0)
return;
}
BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
.add(DBase).addImm(DDisp).addImm(Length)
.add(SBase).addImm(SDisp)
.setMemRefs(MI.memoperands());
};
bool NeedsLoop = false;
uint64_t ImmLength = 0;
Register LenAdjReg = SystemZ::NoRegister;
if (IsImmForm) {
ImmLength = LengthMO.getImm();
ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
if (ImmLength == 0) {
MI.eraseFromParent();
return MBB;
}
if (Opcode == SystemZ::CLC) {
if (ImmLength > 3 * 256)
// A two-CLC sequence is a clear win over a loop, not least because
// it needs only one branch. A three-CLC sequence needs the same
// number of branches as a loop (i.e. 2), but is shorter. That
// brings us to lengths greater than 768 bytes. It seems relatively
// likely that a difference will be found within the first 768 bytes,
// so we just optimize for the smallest number of branch
// instructions, in order to avoid polluting the prediction buffer
// too much.
NeedsLoop = true;
} else if (ImmLength > 6 * 256)
// The heuristic we use is to prefer loops for anything that would
// require 7 or more MVCs. With these kinds of sizes there isn't much
// to choose between straight-line code and looping code, since the
// time will be dominated by the MVCs themselves.
NeedsLoop = true;
} else {
NeedsLoop = true;
LenAdjReg = LengthMO.getReg();
}
// When generating more than one CLC, all but the last will need to
// branch to the end when a difference is found.
MachineBasicBlock *EndMBB =
(Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
? SystemZ::splitBlockAfter(MI, MBB)
: nullptr);
if (NeedsLoop) {
Register StartCountReg =
MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
if (IsImmForm) {
TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
ImmLength &= 255;
} else {
BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
.addReg(LenAdjReg)
.addReg(0)
.addImm(8);
}
bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
auto loadZeroAddress = [&]() -> MachineOperand {
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
return MachineOperand::CreateReg(Reg, false);
};
if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
DestBase = loadZeroAddress();
if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
MachineBasicBlock *StartMBB = nullptr;
MachineBasicBlock *LoopMBB = nullptr;
MachineBasicBlock *NextMBB = nullptr;
MachineBasicBlock *DoneMBB = nullptr;
MachineBasicBlock *AllDoneMBB = nullptr;
Register StartSrcReg = forceReg(MI, SrcBase, TII);
Register StartDestReg =
(HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
Register ThisSrcReg = MRI.createVirtualRegister(RC);
Register ThisDestReg =
(HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
Register NextSrcReg = MRI.createVirtualRegister(RC);
Register NextDestReg =
(HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
RC = &SystemZ::GR64BitRegClass;
Register ThisCountReg = MRI.createVirtualRegister(RC);
Register NextCountReg = MRI.createVirtualRegister(RC);
if (IsRegForm) {
AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
StartMBB = SystemZ::emitBlockAfter(MBB);
LoopMBB = SystemZ::emitBlockAfter(StartMBB);
NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
DoneMBB = SystemZ::emitBlockAfter(NextMBB);
// MBB:
// # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
.addMBB(AllDoneMBB);
MBB->addSuccessor(AllDoneMBB);
if (!IsMemset)
MBB->addSuccessor(StartMBB);
else {
// MemsetOneCheckMBB:
// # Jump to MemsetOneMBB for a memset of length 1, or
// # fall thru to StartMBB.
MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
MBB->addSuccessor(MemsetOneCheckMBB);
MBB = MemsetOneCheckMBB;
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(LenAdjReg).addImm(-1);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
.addMBB(MemsetOneMBB);
MBB->addSuccessor(MemsetOneMBB, {10, 100});
MBB->addSuccessor(StartMBB, {90, 100});
// MemsetOneMBB:
// # Jump back to AllDoneMBB after a single MVI or STC.
MBB = MemsetOneMBB;
insertMemMemOp(MBB, MBB->end(),
MachineOperand::CreateReg(StartDestReg, false), DestDisp,
MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
1);
BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
MBB->addSuccessor(AllDoneMBB);
}
// StartMBB:
// # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(StartCountReg).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
.addMBB(DoneMBB);
MBB->addSuccessor(DoneMBB);
MBB->addSuccessor(LoopMBB);
}
else {
StartMBB = MBB;
DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
LoopMBB = SystemZ::emitBlockAfter(StartMBB);
NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
// StartMBB:
// # fall through to LoopMBB
MBB->addSuccessor(LoopMBB);
DestBase = MachineOperand::CreateReg(NextDestReg, false);
SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
if (EndMBB && !ImmLength)
// If the loop handled the whole CLC range, DoneMBB will be empty with
// CC live-through into EndMBB, so add it as live-in.
DoneMBB->addLiveIn(SystemZ::CC);
}
// LoopMBB:
// %ThisDestReg = phi [ %StartDestReg, StartMBB ],
// [ %NextDestReg, NextMBB ]
// %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
// [ %NextSrcReg, NextMBB ]
// %ThisCountReg = phi [ %StartCountReg, StartMBB ],
// [ %NextCountReg, NextMBB ]
// ( PFD 2, 768+DestDisp(%ThisDestReg) )
// Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
// ( JLH EndMBB )
//
// The prefetch is used only for MVC. The JLH is used only for CLC.
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
.addReg(StartDestReg).addMBB(StartMBB)
.addReg(NextDestReg).addMBB(NextMBB);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
.addReg(StartSrcReg).addMBB(StartMBB)
.addReg(NextSrcReg).addMBB(NextMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
.addReg(StartCountReg).addMBB(StartMBB)
.addReg(NextCountReg).addMBB(NextMBB);
if (Opcode == SystemZ::MVC)
BuildMI(MBB, DL, TII->get(SystemZ::PFD))
.addImm(SystemZ::PFD_WRITE)
.addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
insertMemMemOp(MBB, MBB->end(),
MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
if (EndMBB) {
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
MBB->addSuccessor(NextMBB);
}
// NextMBB:
// %NextDestReg = LA 256(%ThisDestReg)
// %NextSrcReg = LA 256(%ThisSrcReg)
// %NextCountReg = AGHI %ThisCountReg, -1
// CGHI %NextCountReg, 0
// JLH LoopMBB
// # fall through to DoneMBB
//
// The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
MBB = NextMBB;
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
.addReg(ThisDestReg).addImm(256).addReg(0);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
.addReg(ThisSrcReg).addImm(256).addReg(0);
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
.addReg(ThisCountReg).addImm(-1);
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(NextCountReg).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MBB = DoneMBB;
if (IsRegForm) {
// DoneMBB:
// # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
// # Use EXecute Relative Long for the remainder of the bytes. The target
// instruction of the EXRL will have a length field of 1 since 0 is an
// illegal value. The number of bytes processed becomes (%LenAdjReg &
// 0xff) + 1.
// # Fall through to AllDoneMBB.
Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
Register RemDestReg = HaveSingleBase ? RemSrcReg
: MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
.addReg(StartDestReg).addMBB(StartMBB)
.addReg(NextDestReg).addMBB(NextMBB);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
.addReg(StartSrcReg).addMBB(StartMBB)
.addReg(NextSrcReg).addMBB(NextMBB);
if (IsMemset)
insertMemMemOp(MBB, MBB->end(),
MachineOperand::CreateReg(RemDestReg, false), DestDisp,
MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
MachineInstrBuilder EXRL_MIB =
BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
.addImm(Opcode)
.addReg(LenAdjReg)
.addReg(RemDestReg).addImm(DestDisp)
.addReg(RemSrcReg).addImm(SrcDisp);
MBB->addSuccessor(AllDoneMBB);
MBB = AllDoneMBB;
if (EndMBB) {
EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
MBB->addLiveIn(SystemZ::CC);
}
}
}
// Handle any remaining bytes with straight-line code.
while (ImmLength > 0) {
uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
// The previous iteration might have created out-of-range displacements.
// Apply them using LA/LAY if so.
foldDisplIfNeeded(DestBase, DestDisp);
foldDisplIfNeeded(SrcBase, SrcDisp);
insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
DestDisp += ThisLength;
SrcDisp += ThisLength;
ImmLength -= ThisLength;
// If there's another CLC to go, branch to the end if a difference
// was found.
if (EndMBB && ImmLength > 0) {
MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
MBB->addSuccessor(NextMBB);
MBB = NextMBB;
}
}
if (EndMBB) {
MBB->addSuccessor(EndMBB);
MBB = EndMBB;
MBB->addLiveIn(SystemZ::CC);
}
MI.eraseFromParent();
return MBB;
}
// Decompose string pseudo-instruction MI into a loop that continually performs
// Opcode until CC != 3.
MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI.getDebugLoc();
uint64_t End1Reg = MI.getOperand(0).getReg();
uint64_t Start1Reg = MI.getOperand(1).getReg();
uint64_t Start2Reg = MI.getOperand(2).getReg();
uint64_t CharReg = MI.getOperand(3).getReg();
const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
uint64_t This1Reg = MRI.createVirtualRegister(RC);
uint64_t This2Reg = MRI.createVirtualRegister(RC);
uint64_t End2Reg = MRI.createVirtualRegister(RC);
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
// StartMBB:
// # fall through to LoopMBB
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
// %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
// R0L = %CharReg
// %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
// JO LoopMBB
// # fall through to DoneMBB
//
// The load of R0L can be hoisted by post-RA LICM.
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
.addReg(Start1Reg).addMBB(StartMBB)
.addReg(End1Reg).addMBB(LoopMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
.addReg(Start2Reg).addMBB(StartMBB)
.addReg(End2Reg).addMBB(LoopMBB);
BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
BuildMI(MBB, DL, TII->get(Opcode))
.addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
.addReg(This1Reg).addReg(This2Reg);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
DoneMBB->addLiveIn(SystemZ::CC);
MI.eraseFromParent();
return DoneMBB;
}
// Update TBEGIN instruction with final opcode and register clobbers.
MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
bool NoFloat) const {
MachineFunction &MF = *MBB->getParent();
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
// Update opcode.
MI.setDesc(TII->get(Opcode));
// We cannot handle a TBEGIN that clobbers the stack or frame pointer.
// Make sure to add the corresponding GRSM bits if they are missing.
uint64_t Control = MI.getOperand(2).getImm();
static const unsigned GPRControlBit[16] = {
0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
};
Control |= GPRControlBit[15];
if (TFI->hasFP(MF))
Control |= GPRControlBit[11];
MI.getOperand(2).setImm(Control);
// Add GPR clobbers.
for (int I = 0; I < 16; I++) {
if ((Control & GPRControlBit[I]) == 0) {
unsigned Reg = SystemZMC::GR64Regs[I];
MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
}
}
// Add FPR/VR clobbers.
if (!NoFloat && (Control & 4) != 0) {
if (Subtarget.hasVector()) {
for (unsigned Reg : SystemZMC::VR128Regs) {
MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
}
} else {
for (unsigned Reg : SystemZMC::FP64Regs) {
MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
}
}
}
return MBB;
}
MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo *MRI = &MF.getRegInfo();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register SrcReg = MI.getOperand(0).getReg();
// Create new virtual register of the same class as source.
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
Register DstReg = MRI->createVirtualRegister(RC);
// Replace pseudo with a normal load-and-test that models the def as
// well.
BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
.addReg(SrcReg)
.setMIFlags(MI.getFlags());
MI.eraseFromParent();
return MBB;
}
MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
MachineInstr &MI, MachineBasicBlock *MBB) const {
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo *MRI = &MF.getRegInfo();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
const unsigned ProbeSize = getStackProbeSize(MF);
Register DstReg = MI.getOperand(0).getReg();
Register SizeReg = MI.getOperand(2).getReg();
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB);
MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB);
MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
// LoopTestMBB
// BRC TailTestMBB
// # fallthrough to LoopBodyMBB
StartMBB->addSuccessor(LoopTestMBB);
MBB = LoopTestMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
.addReg(SizeReg)
.addMBB(StartMBB)
.addReg(IncReg)
.addMBB(LoopBodyMBB);
BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
.addReg(PHIReg)
.addImm(ProbeSize);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
.addMBB(TailTestMBB);
MBB->addSuccessor(LoopBodyMBB);
MBB->addSuccessor(TailTestMBB);
// LoopBodyMBB: Allocate and probe by means of a volatile compare.
// J LoopTestMBB
MBB = LoopBodyMBB;
BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
.addReg(PHIReg)
.addImm(ProbeSize);
BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
.addReg(SystemZ::R15D)
.addImm(ProbeSize);
BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
.addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
.setMemRefs(VolLdMMO);
BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
MBB->addSuccessor(LoopTestMBB);
// TailTestMBB
// BRC DoneMBB
// # fallthrough to TailMBB
MBB = TailTestMBB;
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(PHIReg)
.addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
.addMBB(DoneMBB);
MBB->addSuccessor(TailMBB);
MBB->addSuccessor(DoneMBB);
// TailMBB
// # fallthrough to DoneMBB
MBB = TailMBB;
BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
.addReg(SystemZ::R15D)
.addReg(PHIReg);
BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
.addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
.setMemRefs(VolLdMMO);
MBB->addSuccessor(DoneMBB);
// DoneMBB
MBB = DoneMBB;
BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
.addReg(SystemZ::R15D);
MI.eraseFromParent();
return DoneMBB;
}
SDValue SystemZTargetLowering::
getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
SDLoc DL(SP);
return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
}
MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *MBB) const {
switch (MI.getOpcode()) {
case SystemZ::Select32:
case SystemZ::Select64:
case SystemZ::SelectF32:
case SystemZ::SelectF64:
case SystemZ::SelectF128:
case SystemZ::SelectVR32:
case SystemZ::SelectVR64:
case SystemZ::SelectVR128:
return emitSelect(MI, MBB);
case SystemZ::CondStore8Mux:
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
case SystemZ::CondStore8MuxInv:
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
case SystemZ::CondStore16Mux:
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
case SystemZ::CondStore16MuxInv:
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
case SystemZ::CondStore32Mux:
return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
case SystemZ::CondStore32MuxInv:
return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
case SystemZ::CondStore8:
return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
case SystemZ::CondStore8Inv:
return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
case SystemZ::CondStore16:
return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
case SystemZ::CondStore16Inv:
return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
case SystemZ::CondStore32:
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
case SystemZ::CondStore32Inv:
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
case SystemZ::CondStore64:
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
case SystemZ::CondStore64Inv:
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
case SystemZ::CondStoreF32:
return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
case SystemZ::CondStoreF32Inv:
return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
case SystemZ::CondStoreF64:
return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
case SystemZ::CondStoreF64Inv:
return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
case SystemZ::PAIR128:
return emitPair128(MI, MBB);
case SystemZ::AEXT128:
return emitExt128(MI, MBB, false);
case SystemZ::ZEXT128:
return emitExt128(MI, MBB, true);
case SystemZ::ATOMIC_SWAPW:
return emitAtomicLoadBinary(MI, MBB, 0, 0);
case SystemZ::ATOMIC_SWAP_32:
return emitAtomicLoadBinary(MI, MBB, 0, 32);
case SystemZ::ATOMIC_SWAP_64:
return emitAtomicLoadBinary(MI, MBB, 0, 64);
case SystemZ::ATOMIC_LOADW_AR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
case SystemZ::ATOMIC_LOADW_AFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
case SystemZ::ATOMIC_LOAD_AR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
case SystemZ::ATOMIC_LOAD_AHI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
case SystemZ::ATOMIC_LOAD_AFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
case SystemZ::ATOMIC_LOAD_AGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
case SystemZ::ATOMIC_LOAD_AGHI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
case SystemZ::ATOMIC_LOAD_AGFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
case SystemZ::ATOMIC_LOADW_SR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
case SystemZ::ATOMIC_LOAD_SR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
case SystemZ::ATOMIC_LOAD_SGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
case SystemZ::ATOMIC_LOADW_NR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
case SystemZ::ATOMIC_LOADW_NILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
case SystemZ::ATOMIC_LOAD_NR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
case SystemZ::ATOMIC_LOAD_NILL:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
case SystemZ::ATOMIC_LOAD_NILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
case SystemZ::ATOMIC_LOAD_NILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
case SystemZ::ATOMIC_LOAD_NGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
case SystemZ::ATOMIC_LOAD_NILL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
case SystemZ::ATOMIC_LOAD_NILH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
case SystemZ::ATOMIC_LOAD_NIHL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
case SystemZ::ATOMIC_LOAD_NIHH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
case SystemZ::ATOMIC_LOAD_NILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
case SystemZ::ATOMIC_LOAD_NIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
case SystemZ::ATOMIC_LOADW_OR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
case SystemZ::ATOMIC_LOADW_OILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
case SystemZ::ATOMIC_LOAD_OR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
case SystemZ::ATOMIC_LOAD_OILL:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
case SystemZ::ATOMIC_LOAD_OILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
case SystemZ::ATOMIC_LOAD_OILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
case SystemZ::ATOMIC_LOAD_OGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
case SystemZ::ATOMIC_LOAD_OILL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
case SystemZ::ATOMIC_LOAD_OILH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
case SystemZ::ATOMIC_LOAD_OIHL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
case SystemZ::ATOMIC_LOAD_OIHH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
case SystemZ::ATOMIC_LOAD_OILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
case SystemZ::ATOMIC_LOAD_OIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
case SystemZ::ATOMIC_LOADW_XR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
case SystemZ::ATOMIC_LOADW_XILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
case SystemZ::ATOMIC_LOAD_XR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
case SystemZ::ATOMIC_LOAD_XILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
case SystemZ::ATOMIC_LOAD_XGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
case SystemZ::ATOMIC_LOAD_XILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
case SystemZ::ATOMIC_LOAD_XIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
case SystemZ::ATOMIC_LOADW_NRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
case SystemZ::ATOMIC_LOADW_NILHi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
case SystemZ::ATOMIC_LOAD_NRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
case SystemZ::ATOMIC_LOAD_NILLi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
case SystemZ::ATOMIC_LOAD_NILHi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
case SystemZ::ATOMIC_LOAD_NILFi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
case SystemZ::ATOMIC_LOAD_NGRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
case SystemZ::ATOMIC_LOAD_NILL64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
case SystemZ::ATOMIC_LOAD_NILH64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHL64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHH64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
case SystemZ::ATOMIC_LOAD_NILF64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHF64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
case SystemZ::ATOMIC_LOADW_MIN:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_LE, 0);
case SystemZ::ATOMIC_LOAD_MIN_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_LE, 32);
case SystemZ::ATOMIC_LOAD_MIN_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
SystemZ::CCMASK_CMP_LE, 64);
case SystemZ::ATOMIC_LOADW_MAX:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_GE, 0);
case SystemZ::ATOMIC_LOAD_MAX_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_GE, 32);
case SystemZ::ATOMIC_LOAD_MAX_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
SystemZ::CCMASK_CMP_GE, 64);
case SystemZ::ATOMIC_LOADW_UMIN:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_LE, 0);
case SystemZ::ATOMIC_LOAD_UMIN_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_LE, 32);
case SystemZ::ATOMIC_LOAD_UMIN_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
SystemZ::CCMASK_CMP_LE, 64);
case SystemZ::ATOMIC_LOADW_UMAX:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_GE, 0);
case SystemZ::ATOMIC_LOAD_UMAX_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_GE, 32);
case SystemZ::ATOMIC_LOAD_UMAX_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
SystemZ::CCMASK_CMP_GE, 64);
case SystemZ::ATOMIC_CMP_SWAPW:
return emitAtomicCmpSwapW(MI, MBB);
case SystemZ::MVCImm:
case SystemZ::MVCReg:
return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
case SystemZ::NCImm:
return emitMemMemWrapper(MI, MBB, SystemZ::NC);
case SystemZ::OCImm:
return emitMemMemWrapper(MI, MBB, SystemZ::OC);
case SystemZ::XCImm:
case SystemZ::XCReg:
return emitMemMemWrapper(MI, MBB, SystemZ::XC);
case SystemZ::CLCImm:
case SystemZ::CLCReg:
return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
case SystemZ::MemsetImmImm:
case SystemZ::MemsetImmReg:
case SystemZ::MemsetRegImm:
case SystemZ::MemsetRegReg:
return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
case SystemZ::CLSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::CLST);
case SystemZ::MVSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::MVST);
case SystemZ::SRSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::SRST);
case SystemZ::TBEGIN:
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
case SystemZ::TBEGIN_nofloat:
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
case SystemZ::TBEGINC:
return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
case SystemZ::LTEBRCompare_VecPseudo:
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
case SystemZ::LTDBRCompare_VecPseudo:
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
case SystemZ::LTXBRCompare_VecPseudo:
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
case SystemZ::PROBED_ALLOCA:
return emitProbedAlloca(MI, MBB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, MBB);
default:
llvm_unreachable("Unexpected instr type to insert");
}
}
// This is only used by the isel schedulers, and is needed only to prevent
// compiler from crashing when list-ilp is used.
const TargetRegisterClass *
SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
if (VT == MVT::Untyped)
return &SystemZ::ADDR128BitRegClass;
return TargetLowering::getRepRegClassFor(VT);
}
SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
/*
The rounding method is in FPC Byte 3 bits 6-7, and has the following
settings:
00 Round to nearest
01 Round to 0
10 Round to +inf
11 Round to -inf
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
*/
// Save FPC to register.
SDValue Chain = Op.getOperand(0);
SDValue EFPC(
DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
Chain = EFPC.getValue(1);
// Transform as necessary
SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
DAG.getConstant(3, dl, MVT::i32));
// RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
DAG.getConstant(1, dl, MVT::i32)));
SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
DAG.getConstant(1, dl, MVT::i32));
RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
return DAG.getMergeValues({RetVal, Chain}, dl);
}