| //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SystemZTargetLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZISelLowering.h" |
| #include "SystemZCallingConv.h" |
| #include "SystemZConstantPoolValue.h" |
| #include "SystemZMachineFunctionInfo.h" |
| #include "SystemZTargetMachine.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsS390.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/KnownBits.h" |
| #include <cctype> |
| #include <optional> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "systemz-lower" |
| |
| namespace { |
| // Represents information about a comparison. |
| struct Comparison { |
| Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) |
| : Op0(Op0In), Op1(Op1In), Chain(ChainIn), |
| Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} |
| |
| // The operands to the comparison. |
| SDValue Op0, Op1; |
| |
| // Chain if this is a strict floating-point comparison. |
| SDValue Chain; |
| |
| // The opcode that should be used to compare Op0 and Op1. |
| unsigned Opcode; |
| |
| // A SystemZICMP value. Only used for integer comparisons. |
| unsigned ICmpType; |
| |
| // The mask of CC values that Opcode can produce. |
| unsigned CCValid; |
| |
| // The mask of CC values for which the original condition is true. |
| unsigned CCMask; |
| }; |
| } // end anonymous namespace |
| |
| // Classify VT as either 32 or 64 bit. |
| static bool is32Bit(EVT VT) { |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::i32: |
| return true; |
| case MVT::i64: |
| return false; |
| default: |
| llvm_unreachable("Unsupported type"); |
| } |
| } |
| |
| // Return a version of MachineOperand that can be safely used before the |
| // final use. |
| static MachineOperand earlyUseOperand(MachineOperand Op) { |
| if (Op.isReg()) |
| Op.setIsKill(false); |
| return Op; |
| } |
| |
| SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, |
| const SystemZSubtarget &STI) |
| : TargetLowering(TM), Subtarget(STI) { |
| MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); |
| |
| auto *Regs = STI.getSpecialRegisters(); |
| |
| // Set up the register classes. |
| if (Subtarget.hasHighWord()) |
| addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); |
| else |
| addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); |
| addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); |
| if (!useSoftFloat()) { |
| if (Subtarget.hasVector()) { |
| addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); |
| addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); |
| } else { |
| addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); |
| addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); |
| } |
| if (Subtarget.hasVectorEnhancements1()) |
| addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); |
| else |
| addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); |
| |
| if (Subtarget.hasVector()) { |
| addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); |
| addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); |
| addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); |
| addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); |
| addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); |
| addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); |
| } |
| } |
| |
| // Compute derived properties from the register classes |
| computeRegisterProperties(Subtarget.getRegisterInfo()); |
| |
| // Set up special registers. |
| setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); |
| |
| // TODO: It may be better to default to latency-oriented scheduling, however |
| // LLVM's current latency-oriented scheduler can't handle physreg definitions |
| // such as SystemZ has with CC, so set this to the register-pressure |
| // scheduler, because it can. |
| setSchedulingPreference(Sched::RegPressure); |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // Instructions are strings of 2-byte aligned 2-byte values. |
| setMinFunctionAlignment(Align(2)); |
| // For performance reasons we prefer 16-byte alignment. |
| setPrefFunctionAlignment(Align(16)); |
| |
| // Handle operations that are handled in a similar way for all types. |
| for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; |
| I <= MVT::LAST_FP_VALUETYPE; |
| ++I) { |
| MVT VT = MVT::SimpleValueType(I); |
| if (isTypeLegal(VT)) { |
| // Lower SET_CC into an IPM-based sequence. |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::STRICT_FSETCC, VT, Custom); |
| setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); |
| |
| // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). |
| setOperationAction(ISD::SELECT, VT, Expand); |
| |
| // Lower SELECT_CC and BR_CC into separate comparisons and branches. |
| setOperationAction(ISD::SELECT_CC, VT, Custom); |
| setOperationAction(ISD::BR_CC, VT, Custom); |
| } |
| } |
| |
| // Expand jump table branches as address arithmetic followed by an |
| // indirect jump. |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| // Expand BRCOND into a BR_CC (see above). |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| // Handle integer types. |
| for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; |
| I <= MVT::LAST_INTEGER_VALUETYPE; |
| ++I) { |
| MVT VT = MVT::SimpleValueType(I); |
| if (isTypeLegal(VT)) { |
| setOperationAction(ISD::ABS, VT, Legal); |
| |
| // Expand individual DIV and REMs into DIVREMs. |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Custom); |
| setOperationAction(ISD::UDIVREM, VT, Custom); |
| |
| // Support addition/subtraction with overflow. |
| setOperationAction(ISD::SADDO, VT, Custom); |
| setOperationAction(ISD::SSUBO, VT, Custom); |
| |
| // Support addition/subtraction with carry. |
| setOperationAction(ISD::UADDO, VT, Custom); |
| setOperationAction(ISD::USUBO, VT, Custom); |
| |
| // Support carry in as value rather than glue. |
| setOperationAction(ISD::ADDCARRY, VT, Custom); |
| setOperationAction(ISD::SUBCARRY, VT, Custom); |
| |
| // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and |
| // stores, putting a serialization instruction after the stores. |
| setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, VT, Custom); |
| |
| // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are |
| // available, or if the operand is constant. |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); |
| |
| // Use POPCNT on z196 and above. |
| if (Subtarget.hasPopulationCount()) |
| setOperationAction(ISD::CTPOP, VT, Custom); |
| else |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| |
| // No special instructions for these. |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| |
| // Use *MUL_LOHI where possible instead of MULH*. |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Custom); |
| setOperationAction(ISD::UMUL_LOHI, VT, Custom); |
| |
| // Only z196 and above have native support for conversions to unsigned. |
| // On z10, promoting to i64 doesn't generate an inexact condition for |
| // values that are outside the i32 range but in the i64 range, so use |
| // the default expansion. |
| if (!Subtarget.hasFPExtension()) |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| |
| // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all |
| // default to Expand, so need to be modified to Legal where appropriate. |
| setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); |
| if (Subtarget.hasFPExtension()) |
| setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); |
| |
| // And similarly for STRICT_[SU]INT_TO_FP. |
| setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); |
| if (Subtarget.hasFPExtension()) |
| setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); |
| } |
| } |
| |
| // Type legalization will convert 8- and 16-bit atomic operations into |
| // forms that operate on i32s (but still keeping the original memory VT). |
| // Lower them into full i32 operations. |
| setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); |
| |
| // Even though i128 is not a legal type, we still need to custom lower |
| // the atomic operations in order to exploit SystemZ instructions. |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); |
| |
| // We can use the CC result of compare-and-swap to implement |
| // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); |
| |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); |
| |
| // Traps are legal, as we will convert them to "j .+2". |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // z10 has instructions for signed but not unsigned FP conversion. |
| // Handle unsigned 32-bit types as signed 64-bit types. |
| if (!Subtarget.hasFPExtension()) { |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); |
| } |
| |
| // We have native support for a 64-bit CTLZ, via FLOGR. |
| setOperationAction(ISD::CTLZ, MVT::i32, Promote); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); |
| setOperationAction(ISD::CTLZ, MVT::i64, Legal); |
| |
| // On z15 we have native support for a 64-bit CTPOP. |
| if (Subtarget.hasMiscellaneousExtensions3()) { |
| setOperationAction(ISD::CTPOP, MVT::i32, Promote); |
| setOperationAction(ISD::CTPOP, MVT::i64, Legal); |
| } |
| |
| // Give LowerOperation the chance to replace 64-bit ORs with subregs. |
| setOperationAction(ISD::OR, MVT::i64, Custom); |
| |
| // Expand 128 bit shifts without using a libcall. |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| |
| // Handle bitcast from fp128 to i128. |
| setOperationAction(ISD::BITCAST, MVT::i128, Custom); |
| |
| // We have native instructions for i8, i16 and i32 extensions, but not i1. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| } |
| |
| // Handle the various types of symbolic address. |
| setOperationAction(ISD::ConstantPool, PtrVT, Custom); |
| setOperationAction(ISD::GlobalAddress, PtrVT, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); |
| setOperationAction(ISD::BlockAddress, PtrVT, Custom); |
| setOperationAction(ISD::JumpTable, PtrVT, Custom); |
| |
| // We need to handle dynamic allocations specially because of the |
| // 160-byte area at the bottom of the stack. |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); |
| setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); |
| |
| // Handle prefetches with PFD or PFDRL. |
| setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) { |
| // Assume by default that all vector operations need to be expanded. |
| for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) |
| if (getOperationAction(Opcode, VT) == Legal) |
| setOperationAction(Opcode, VT, Expand); |
| |
| // Likewise all truncating stores and extending loads. |
| for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { |
| setTruncStoreAction(VT, InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); |
| } |
| |
| if (isTypeLegal(VT)) { |
| // These operations are legal for anything that can be stored in a |
| // vector register, even if there is no native support for the format |
| // as such. In particular, we can do these for v4f32 even though there |
| // are no specific instructions for that format. |
| setOperationAction(ISD::LOAD, VT, Legal); |
| setOperationAction(ISD::STORE, VT, Legal); |
| setOperationAction(ISD::VSELECT, VT, Legal); |
| setOperationAction(ISD::BITCAST, VT, Legal); |
| setOperationAction(ISD::UNDEF, VT, Legal); |
| |
| // Likewise, except that we need to replace the nodes with something |
| // more specific. |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| } |
| } |
| |
| // Handle integer vector types. |
| for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { |
| if (isTypeLegal(VT)) { |
| // These operations have direct equivalents. |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); |
| setOperationAction(ISD::ADD, VT, Legal); |
| setOperationAction(ISD::SUB, VT, Legal); |
| if (VT != MVT::v2i64) |
| setOperationAction(ISD::MUL, VT, Legal); |
| setOperationAction(ISD::ABS, VT, Legal); |
| setOperationAction(ISD::AND, VT, Legal); |
| setOperationAction(ISD::OR, VT, Legal); |
| setOperationAction(ISD::XOR, VT, Legal); |
| if (Subtarget.hasVectorEnhancements1()) |
| setOperationAction(ISD::CTPOP, VT, Legal); |
| else |
| setOperationAction(ISD::CTPOP, VT, Custom); |
| setOperationAction(ISD::CTTZ, VT, Legal); |
| setOperationAction(ISD::CTLZ, VT, Legal); |
| |
| // Convert a GPR scalar to a vector by inserting it into element 0. |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); |
| |
| // Use a series of unpacks for extensions. |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); |
| |
| // Detect shifts by a scalar amount and convert them into |
| // V*_BY_SCALAR. |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::SRL, VT, Custom); |
| |
| // At present ROTL isn't matched by DAGCombiner. ROTR should be |
| // converted into ROTL. |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| |
| // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands |
| // and inverting the result as necessary. |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::STRICT_FSETCC, VT, Custom); |
| if (Subtarget.hasVectorEnhancements1()) |
| setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); |
| } |
| } |
| |
| if (Subtarget.hasVector()) { |
| // There should be no need to check for float types other than v2f64 |
| // since <2 x f32> isn't a legal type. |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); |
| } |
| |
| if (Subtarget.hasVectorEnhancements2()) { |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); |
| } |
| |
| // Handle floating-point types. |
| for (unsigned I = MVT::FIRST_FP_VALUETYPE; |
| I <= MVT::LAST_FP_VALUETYPE; |
| ++I) { |
| MVT VT = MVT::SimpleValueType(I); |
| if (isTypeLegal(VT)) { |
| // We can use FI for FRINT. |
| setOperationAction(ISD::FRINT, VT, Legal); |
| |
| // We can use the extended form of FI for other rounding operations. |
| if (Subtarget.hasFPExtension()) { |
| setOperationAction(ISD::FNEARBYINT, VT, Legal); |
| setOperationAction(ISD::FFLOOR, VT, Legal); |
| setOperationAction(ISD::FCEIL, VT, Legal); |
| setOperationAction(ISD::FTRUNC, VT, Legal); |
| setOperationAction(ISD::FROUND, VT, Legal); |
| } |
| |
| // No special instructions for these. |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FSINCOS, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| |
| // Special treatment. |
| setOperationAction(ISD::IS_FPCLASS, VT, Custom); |
| |
| // Handle constrained floating-point operations. |
| setOperationAction(ISD::STRICT_FADD, VT, Legal); |
| setOperationAction(ISD::STRICT_FSUB, VT, Legal); |
| setOperationAction(ISD::STRICT_FMUL, VT, Legal); |
| setOperationAction(ISD::STRICT_FDIV, VT, Legal); |
| setOperationAction(ISD::STRICT_FMA, VT, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, VT, Legal); |
| setOperationAction(ISD::STRICT_FRINT, VT, Legal); |
| setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); |
| setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); |
| if (Subtarget.hasFPExtension()) { |
| setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); |
| setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, VT, Legal); |
| setOperationAction(ISD::STRICT_FROUND, VT, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); |
| } |
| } |
| } |
| |
| // Handle floating-point vector types. |
| if (Subtarget.hasVector()) { |
| // Scalar-to-vector conversion is just a subreg. |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); |
| |
| // Some insertions and extractions can be done directly but others |
| // need to go via integers. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| |
| // These operations have direct equivalents. |
| setOperationAction(ISD::FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMA, MVT::v2f64, Legal); |
| setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::FABS, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); |
| setOperationAction(ISD::FROUND, MVT::v2f64, Legal); |
| |
| // Handle constrained floating-point operations. |
| setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); |
| } |
| |
| // The vector enhancements facility 1 has instructions for these. |
| if (Subtarget.hasVectorEnhancements1()) { |
| setOperationAction(ISD::FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMA, MVT::v4f32, Legal); |
| setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::FABS, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); |
| setOperationAction(ISD::FROUND, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); |
| setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f64, Legal); |
| setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); |
| setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f128, Legal); |
| setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); |
| |
| // Handle constrained floating-point operations. |
| setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); |
| for (auto VT : { MVT::f32, MVT::f64, MVT::f128, |
| MVT::v4f32, MVT::v2f64 }) { |
| setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); |
| setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); |
| setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); |
| setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); |
| } |
| } |
| |
| // We only have fused f128 multiply-addition on vector registers. |
| if (!Subtarget.hasVectorEnhancements1()) { |
| setOperationAction(ISD::FMA, MVT::f128, Expand); |
| setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); |
| } |
| |
| // We don't have a copysign instruction on vector registers. |
| if (Subtarget.hasVectorEnhancements1()) |
| setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| |
| // Needed so that we don't try to implement f128 constant loads using |
| // a load-and-extend of a f80 constant (in cases where the constant |
| // would fit in an f80). |
| for (MVT VT : MVT::fp_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); |
| |
| // We don't have extending load instruction on vector registers. |
| if (Subtarget.hasVectorEnhancements1()) { |
| setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); |
| } |
| |
| // Floating-point truncation and stores need to be done separately. |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| |
| // We have 64-bit FPR<->GPR moves, but need special handling for |
| // 32-bit forms. |
| if (!Subtarget.hasVector()) { |
| setOperationAction(ISD::BITCAST, MVT::i32, Custom); |
| setOperationAction(ISD::BITCAST, MVT::f32, Custom); |
| } |
| |
| // VASTART and VACOPY need to deal with the SystemZ-specific varargs |
| // structure, but VAEND is a no-op. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Custom); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); |
| |
| // Codes for which we want to perform some z-specific combinations. |
| setTargetDAGCombine({ISD::ZERO_EXTEND, |
| ISD::SIGN_EXTEND, |
| ISD::SIGN_EXTEND_INREG, |
| ISD::LOAD, |
| ISD::STORE, |
| ISD::VECTOR_SHUFFLE, |
| ISD::EXTRACT_VECTOR_ELT, |
| ISD::FP_ROUND, |
| ISD::STRICT_FP_ROUND, |
| ISD::FP_EXTEND, |
| ISD::SINT_TO_FP, |
| ISD::UINT_TO_FP, |
| ISD::STRICT_FP_EXTEND, |
| ISD::BSWAP, |
| ISD::SDIV, |
| ISD::UDIV, |
| ISD::SREM, |
| ISD::UREM, |
| ISD::INTRINSIC_VOID, |
| ISD::INTRINSIC_W_CHAIN}); |
| |
| // Handle intrinsics. |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| // We want to use MVC in preference to even a single load/store pair. |
| MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; |
| MaxStoresPerMemcpyOptSize = 0; |
| |
| // The main memset sequence is a byte store followed by an MVC. |
| // Two STC or MV..I stores win over that, but the kind of fused stores |
| // generated by target-independent code don't when the byte value is |
| // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better |
| // than "STC;MVC". Handle the choice in target-specific code instead. |
| MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; |
| MaxStoresPerMemsetOptSize = 0; |
| |
| // Default to having -disable-strictnode-mutation on |
| IsStrictFPEnabled = true; |
| } |
| |
| bool SystemZTargetLowering::useSoftFloat() const { |
| return Subtarget.hasSoftFloat(); |
| } |
| |
| EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, |
| LLVMContext &, EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( |
| const MachineFunction &MF, EVT VT) const { |
| VT = VT.getScalarType(); |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f32: |
| case MVT::f64: |
| return true; |
| case MVT::f128: |
| return Subtarget.hasVectorEnhancements1(); |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| // Return true if the constant can be generated with a vector instruction, |
| // such as VGM, VGMB or VREPI. |
| bool SystemZVectorConstantInfo::isVectorConstantLegal( |
| const SystemZSubtarget &Subtarget) { |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| if (!Subtarget.hasVector() || |
| (isFP128 && !Subtarget.hasVectorEnhancements1())) |
| return false; |
| |
| // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- |
| // preferred way of creating all-zero and all-one vectors so give it |
| // priority over other methods below. |
| unsigned Mask = 0; |
| unsigned I = 0; |
| for (; I < SystemZ::VectorBytes; ++I) { |
| uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); |
| if (Byte == 0xff) |
| Mask |= 1ULL << I; |
| else if (Byte != 0) |
| break; |
| } |
| if (I == SystemZ::VectorBytes) { |
| Opcode = SystemZISD::BYTE_MASK; |
| OpVals.push_back(Mask); |
| VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); |
| return true; |
| } |
| |
| if (SplatBitSize > 64) |
| return false; |
| |
| auto tryValue = [&](uint64_t Value) -> bool { |
| // Try VECTOR REPLICATE IMMEDIATE |
| int64_t SignedValue = SignExtend64(Value, SplatBitSize); |
| if (isInt<16>(SignedValue)) { |
| OpVals.push_back(((unsigned) SignedValue)); |
| Opcode = SystemZISD::REPLICATE; |
| VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), |
| SystemZ::VectorBits / SplatBitSize); |
| return true; |
| } |
| // Try VECTOR GENERATE MASK |
| unsigned Start, End; |
| if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { |
| // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 |
| // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for |
| // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). |
| OpVals.push_back(Start - (64 - SplatBitSize)); |
| OpVals.push_back(End - (64 - SplatBitSize)); |
| Opcode = SystemZISD::ROTATE_MASK; |
| VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), |
| SystemZ::VectorBits / SplatBitSize); |
| return true; |
| } |
| return false; |
| }; |
| |
| // First try assuming that any undefined bits above the highest set bit |
| // and below the lowest set bit are 1s. This increases the likelihood of |
| // being able to use a sign-extended element value in VECTOR REPLICATE |
| // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. |
| uint64_t SplatBitsZ = SplatBits.getZExtValue(); |
| uint64_t SplatUndefZ = SplatUndef.getZExtValue(); |
| uint64_t Lower = |
| (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); |
| uint64_t Upper = |
| (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); |
| if (tryValue(SplatBitsZ | Upper | Lower)) |
| return true; |
| |
| // Now try assuming that any undefined bits between the first and |
| // last defined set bits are set. This increases the chances of |
| // using a non-wraparound mask. |
| uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; |
| return tryValue(SplatBitsZ | Middle); |
| } |
| |
| SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { |
| if (IntImm.isSingleWord()) { |
| IntBits = APInt(128, IntImm.getZExtValue()); |
| IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); |
| } else |
| IntBits = IntImm; |
| assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); |
| |
| // Find the smallest splat. |
| SplatBits = IntImm; |
| unsigned Width = SplatBits.getBitWidth(); |
| while (Width > 8) { |
| unsigned HalfSize = Width / 2; |
| APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); |
| APInt LowValue = SplatBits.trunc(HalfSize); |
| |
| // If the two halves do not match, stop here. |
| if (HighValue != LowValue || 8 > HalfSize) |
| break; |
| |
| SplatBits = HighValue; |
| Width = HalfSize; |
| } |
| SplatUndef = 0; |
| SplatBitSize = Width; |
| } |
| |
| SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { |
| assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); |
| bool HasAnyUndefs; |
| |
| // Get IntBits by finding the 128 bit splat. |
| BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, |
| true); |
| |
| // Get SplatBits by finding the 8 bit or greater splat. |
| BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, |
| true); |
| } |
| |
| bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const { |
| // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. |
| if (Imm.isZero() || Imm.isNegZero()) |
| return true; |
| |
| return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); |
| } |
| |
| /// Returns true if stack probing through inline assembly is requested. |
| bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { |
| // If the function specifically requests inline stack probes, emit them. |
| if (MF.getFunction().hasFnAttribute("probe-stack")) |
| return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == |
| "inline-asm"; |
| return false; |
| } |
| |
| bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| // We can use CGFI or CLGFI. |
| return isInt<32>(Imm) || isUInt<32>(Imm); |
| } |
| |
| bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| // We can use ALGFI or SLGFI. |
| return isUInt<32>(Imm) || isUInt<32>(-Imm); |
| } |
| |
| bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( |
| EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { |
| // Unaligned accesses should never be slower than the expanded version. |
| // We check specifically for aligned accesses in the few cases where |
| // they are required. |
| if (Fast) |
| *Fast = 1; |
| return true; |
| } |
| |
| // Information about the addressing mode for a memory access. |
| struct AddressingMode { |
| // True if a long displacement is supported. |
| bool LongDisplacement; |
| |
| // True if use of index register is supported. |
| bool IndexReg; |
| |
| AddressingMode(bool LongDispl, bool IdxReg) : |
| LongDisplacement(LongDispl), IndexReg(IdxReg) {} |
| }; |
| |
| // Return the desired addressing mode for a Load which has only one use (in |
| // the same block) which is a Store. |
| static AddressingMode getLoadStoreAddrMode(bool HasVector, |
| Type *Ty) { |
| // With vector support a Load->Store combination may be combined to either |
| // an MVC or vector operations and it seems to work best to allow the |
| // vector addressing mode. |
| if (HasVector) |
| return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); |
| |
| // Otherwise only the MVC case is special. |
| bool MVC = Ty->isIntegerTy(8); |
| return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); |
| } |
| |
| // Return the addressing mode which seems most desirable given an LLVM |
| // Instruction pointer. |
| static AddressingMode |
| supportedAddressingMode(Instruction *I, bool HasVector) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::memset: |
| case Intrinsic::memmove: |
| case Intrinsic::memcpy: |
| return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); |
| } |
| } |
| |
| if (isa<LoadInst>(I) && I->hasOneUse()) { |
| auto *SingleUser = cast<Instruction>(*I->user_begin()); |
| if (SingleUser->getParent() == I->getParent()) { |
| if (isa<ICmpInst>(SingleUser)) { |
| if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) |
| if (C->getBitWidth() <= 64 && |
| (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) |
| // Comparison of memory with 16 bit signed / unsigned immediate |
| return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); |
| } else if (isa<StoreInst>(SingleUser)) |
| // Load->Store |
| return getLoadStoreAddrMode(HasVector, I->getType()); |
| } |
| } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { |
| if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) |
| if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) |
| // Load->Store |
| return getLoadStoreAddrMode(HasVector, LoadI->getType()); |
| } |
| |
| if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { |
| |
| // * Use LDE instead of LE/LEY for z13 to avoid partial register |
| // dependencies (LDE only supports small offsets). |
| // * Utilize the vector registers to hold floating point |
| // values (vector load / store instructions only support small |
| // offsets). |
| |
| Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : |
| I->getOperand(0)->getType()); |
| bool IsFPAccess = MemAccessTy->isFloatingPointTy(); |
| bool IsVectorAccess = MemAccessTy->isVectorTy(); |
| |
| // A store of an extracted vector element will be combined into a VSTE type |
| // instruction. |
| if (!IsVectorAccess && isa<StoreInst>(I)) { |
| Value *DataOp = I->getOperand(0); |
| if (isa<ExtractElementInst>(DataOp)) |
| IsVectorAccess = true; |
| } |
| |
| // A load which gets inserted into a vector element will be combined into a |
| // VLE type instruction. |
| if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { |
| User *LoadUser = *I->user_begin(); |
| if (isa<InsertElementInst>(LoadUser)) |
| IsVectorAccess = true; |
| } |
| |
| if (IsFPAccess || IsVectorAccess) |
| return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); |
| } |
| |
| return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); |
| } |
| |
| bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { |
| // Punt on globals for now, although they can be used in limited |
| // RELATIVE LONG cases. |
| if (AM.BaseGV) |
| return false; |
| |
| // Require a 20-bit signed offset. |
| if (!isInt<20>(AM.BaseOffs)) |
| return false; |
| |
| bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy(); |
| AddressingMode SupportedAM(!RequireD12, true); |
| if (I != nullptr) |
| SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); |
| |
| if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) |
| return false; |
| |
| if (!SupportedAM.IndexReg) |
| // No indexing allowed. |
| return AM.Scale == 0; |
| else |
| // Indexing is OK but no scale factor can be applied. |
| return AM.Scale == 0 || AM.Scale == 1; |
| } |
| |
| bool SystemZTargetLowering::findOptimalMemOpLowering( |
| std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, |
| unsigned SrcAS, const AttributeList &FuncAttributes) const { |
| const int MVCFastLen = 16; |
| |
| if (Limit != ~unsigned(0)) { |
| // Don't expand Op into scalar loads/stores in these cases: |
| if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) |
| return false; // Small memcpy: Use MVC |
| if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) |
| return false; // Small memset (first byte with STC/MVI): Use MVC |
| if (Op.isZeroMemset()) |
| return false; // Memset zero: Use XC |
| } |
| |
| return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, |
| SrcAS, FuncAttributes); |
| } |
| |
| EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, |
| const AttributeList &FuncAttributes) const { |
| return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; |
| } |
| |
| bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { |
| if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) |
| return false; |
| unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); |
| unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); |
| return FromBits > ToBits; |
| } |
| |
| bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { |
| if (!FromVT.isInteger() || !ToVT.isInteger()) |
| return false; |
| unsigned FromBits = FromVT.getFixedSizeInBits(); |
| unsigned ToBits = ToVT.getFixedSizeInBits(); |
| return FromBits > ToBits; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline asm support |
| //===----------------------------------------------------------------------===// |
| |
| TargetLowering::ConstraintType |
| SystemZTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'a': // Address register |
| case 'd': // Data register (equivalent to 'r') |
| case 'f': // Floating-point register |
| case 'h': // High-part register |
| case 'r': // General-purpose register |
| case 'v': // Vector register |
| return C_RegisterClass; |
| |
| case 'Q': // Memory with base and unsigned 12-bit displacement |
| case 'R': // Likewise, plus an index |
| case 'S': // Memory with base and signed 20-bit displacement |
| case 'T': // Likewise, plus an index |
| case 'm': // Equivalent to 'T'. |
| return C_Memory; |
| |
| case 'I': // Unsigned 8-bit constant |
| case 'J': // Unsigned 12-bit constant |
| case 'K': // Signed 16-bit constant |
| case 'L': // Signed 20-bit displacement (on all targets we support) |
| case 'M': // 0x7fffffff |
| return C_Immediate; |
| |
| default: |
| break; |
| } |
| } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { |
| switch (Constraint[1]) { |
| case 'Q': // Address with base and unsigned 12-bit displacement |
| case 'R': // Likewise, plus an index |
| case 'S': // Address with base and signed 20-bit displacement |
| case 'T': // Likewise, plus an index |
| return C_Address; |
| |
| default: |
| break; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| TargetLowering::ConstraintWeight SystemZTargetLowering:: |
| getSingleConstraintMatchWeight(AsmOperandInfo &info, |
| const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| |
| case 'a': // Address register |
| case 'd': // Data register (equivalent to 'r') |
| case 'h': // High-part register |
| case 'r': // General-purpose register |
| if (CallOperandVal->getType()->isIntegerTy()) |
| weight = CW_Register; |
| break; |
| |
| case 'f': // Floating-point register |
| if (type->isFloatingPointTy()) |
| weight = CW_Register; |
| break; |
| |
| case 'v': // Vector register |
| if ((type->isVectorTy() || type->isFloatingPointTy()) && |
| Subtarget.hasVector()) |
| weight = CW_Register; |
| break; |
| |
| case 'I': // Unsigned 8-bit constant |
| if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| if (isUInt<8>(C->getZExtValue())) |
| weight = CW_Constant; |
| break; |
| |
| case 'J': // Unsigned 12-bit constant |
| if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| if (isUInt<12>(C->getZExtValue())) |
| weight = CW_Constant; |
| break; |
| |
| case 'K': // Signed 16-bit constant |
| if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| if (isInt<16>(C->getSExtValue())) |
| weight = CW_Constant; |
| break; |
| |
| case 'L': // Signed 20-bit displacement (on all targets we support) |
| if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| if (isInt<20>(C->getSExtValue())) |
| weight = CW_Constant; |
| break; |
| |
| case 'M': // 0x7fffffff |
| if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) |
| if (C->getZExtValue() == 0x7fffffff) |
| weight = CW_Constant; |
| break; |
| } |
| return weight; |
| } |
| |
| // Parse a "{tNNN}" register constraint for which the register type "t" |
| // has already been verified. MC is the class associated with "t" and |
| // Map maps 0-based register numbers to LLVM register numbers. |
| static std::pair<unsigned, const TargetRegisterClass *> |
| parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, |
| const unsigned *Map, unsigned Size) { |
| assert(*(Constraint.end()-1) == '}' && "Missing '}'"); |
| if (isdigit(Constraint[2])) { |
| unsigned Index; |
| bool Failed = |
| Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); |
| if (!Failed && Index < Size && Map[Index]) |
| return std::make_pair(Map[Index], RC); |
| } |
| return std::make_pair(0U, nullptr); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| SystemZTargetLowering::getRegForInlineAsmConstraint( |
| const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| default: break; |
| case 'd': // Data register (equivalent to 'r') |
| case 'r': // General-purpose register |
| if (VT == MVT::i64) |
| return std::make_pair(0U, &SystemZ::GR64BitRegClass); |
| else if (VT == MVT::i128) |
| return std::make_pair(0U, &SystemZ::GR128BitRegClass); |
| return std::make_pair(0U, &SystemZ::GR32BitRegClass); |
| |
| case 'a': // Address register |
| if (VT == MVT::i64) |
| return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); |
| else if (VT == MVT::i128) |
| return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); |
| return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); |
| |
| case 'h': // High-part register (an LLVM extension) |
| return std::make_pair(0U, &SystemZ::GRH32BitRegClass); |
| |
| case 'f': // Floating-point register |
| if (!useSoftFloat()) { |
| if (VT == MVT::f64) |
| return std::make_pair(0U, &SystemZ::FP64BitRegClass); |
| else if (VT == MVT::f128) |
| return std::make_pair(0U, &SystemZ::FP128BitRegClass); |
| return std::make_pair(0U, &SystemZ::FP32BitRegClass); |
| } |
| break; |
| case 'v': // Vector register |
| if (Subtarget.hasVector()) { |
| if (VT == MVT::f32) |
| return std::make_pair(0U, &SystemZ::VR32BitRegClass); |
| if (VT == MVT::f64) |
| return std::make_pair(0U, &SystemZ::VR64BitRegClass); |
| return std::make_pair(0U, &SystemZ::VR128BitRegClass); |
| } |
| break; |
| } |
| } |
| if (Constraint.size() > 0 && Constraint[0] == '{') { |
| // We need to override the default register parsing for GPRs and FPRs |
| // because the interpretation depends on VT. The internal names of |
| // the registers are also different from the external names |
| // (F0D and F0S instead of F0, etc.). |
| if (Constraint[1] == 'r') { |
| if (VT == MVT::i32) |
| return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, |
| SystemZMC::GR32Regs, 16); |
| if (VT == MVT::i128) |
| return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, |
| SystemZMC::GR128Regs, 16); |
| return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, |
| SystemZMC::GR64Regs, 16); |
| } |
| if (Constraint[1] == 'f') { |
| if (useSoftFloat()) |
| return std::make_pair( |
| 0u, static_cast<const TargetRegisterClass *>(nullptr)); |
| if (VT == MVT::f32) |
| return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, |
| SystemZMC::FP32Regs, 16); |
| if (VT == MVT::f128) |
| return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, |
| SystemZMC::FP128Regs, 16); |
| return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, |
| SystemZMC::FP64Regs, 16); |
| } |
| if (Constraint[1] == 'v') { |
| if (!Subtarget.hasVector()) |
| return std::make_pair( |
| 0u, static_cast<const TargetRegisterClass *>(nullptr)); |
| if (VT == MVT::f32) |
| return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, |
| SystemZMC::VR32Regs, 32); |
| if (VT == MVT::f64) |
| return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, |
| SystemZMC::VR64Regs, 32); |
| return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, |
| SystemZMC::VR128Regs, 32); |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| Register |
| SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| const MachineFunction &MF) const { |
| const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); |
| |
| Register Reg = |
| StringSwitch<Register>(RegName) |
| .Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0) |
| .Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0) |
| .Default(0); |
| |
| if (Reg) |
| return Reg; |
| report_fatal_error("Invalid register name global variable"); |
| } |
| |
| void SystemZTargetLowering:: |
| LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| // Only support length 1 constraints for now. |
| if (Constraint.length() == 1) { |
| switch (Constraint[0]) { |
| case 'I': // Unsigned 8-bit constant |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (isUInt<8>(C->getZExtValue())) |
| Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType())); |
| return; |
| |
| case 'J': // Unsigned 12-bit constant |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (isUInt<12>(C->getZExtValue())) |
| Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType())); |
| return; |
| |
| case 'K': // Signed 16-bit constant |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (isInt<16>(C->getSExtValue())) |
| Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), |
| Op.getValueType())); |
| return; |
| |
| case 'L': // Signed 20-bit displacement (on all targets we support) |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (isInt<20>(C->getSExtValue())) |
| Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), |
| Op.getValueType())); |
| return; |
| |
| case 'M': // 0x7fffffff |
| if (auto *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->getZExtValue() == 0x7fffffff) |
| Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), |
| Op.getValueType())); |
| return; |
| } |
| } |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling conventions |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZGenCallingConv.inc" |
| |
| const MCPhysReg *SystemZTargetLowering::getScratchRegisters( |
| CallingConv::ID) const { |
| static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, |
| SystemZ::R14D, 0 }; |
| return ScratchRegs; |
| } |
| |
| bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, |
| Type *ToType) const { |
| return isTruncateFree(FromType, ToType); |
| } |
| |
| bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| return CI->isTailCall(); |
| } |
| |
| // We do not yet support 128-bit single-element vector types. If the user |
| // attempts to use such types as function argument or return type, prefer |
| // to error out instead of emitting code violating the ABI. |
| static void VerifyVectorType(MVT VT, EVT ArgVT) { |
| if (ArgVT.isVector() && !VT.isVector()) |
| report_fatal_error("Unsupported vector argument or return type"); |
| } |
| |
| static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { |
| for (unsigned i = 0; i < Ins.size(); ++i) |
| VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); |
| } |
| |
| static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { |
| for (unsigned i = 0; i < Outs.size(); ++i) |
| VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); |
| } |
| |
| // Value is a value that has been passed to us in the location described by VA |
| // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining |
| // any loads onto Chain. |
| static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, |
| CCValAssign &VA, SDValue Chain, |
| SDValue Value) { |
| // If the argument has been promoted from a smaller type, insert an |
| // assertion to capture this. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, |
| DAG.getValueType(VA.getValVT())); |
| |
| if (VA.isExtInLoc()) |
| Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); |
| else if (VA.getLocInfo() == CCValAssign::BCvt) { |
| // If this is a short vector argument loaded from the stack, |
| // extend from i64 to full vector size and then bitcast. |
| assert(VA.getLocVT() == MVT::i64); |
| assert(VA.getValVT().isVector()); |
| Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); |
| Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); |
| } else |
| assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); |
| return Value; |
| } |
| |
| // Value is a value of type VA.getValVT() that we need to copy into |
| // the location described by VA. Return a copy of Value converted to |
| // VA.getValVT(). The caller is responsible for handling indirect values. |
| static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, |
| CCValAssign &VA, SDValue Value) { |
| switch (VA.getLocInfo()) { |
| case CCValAssign::SExt: |
| return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); |
| case CCValAssign::ZExt: |
| return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); |
| case CCValAssign::AExt: |
| return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); |
| case CCValAssign::BCvt: { |
| assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); |
| assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || |
| VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); |
| // For an f32 vararg we need to first promote it to an f64 and then |
| // bitcast it to an i64. |
| if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) |
| Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); |
| MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 |
| ? MVT::v2i64 |
| : VA.getLocVT(); |
| Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); |
| // For ELF, this is a short vector argument to be stored to the stack, |
| // bitcast to v2i64 and then extract first element. |
| if (BitCastToType == MVT::v2i64) |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, |
| DAG.getConstant(0, DL, MVT::i32)); |
| return Value; |
| } |
| case CCValAssign::Full: |
| return Value; |
| default: |
| llvm_unreachable("Unhandled getLocInfo()"); |
| } |
| } |
| |
| static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { |
| SDLoc DL(In); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, |
| DAG.getIntPtrConstant(0, DL)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, |
| DAG.getIntPtrConstant(1, DL)); |
| SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, |
| MVT::Untyped, Hi, Lo); |
| return SDValue(Pair, 0); |
| } |
| |
| static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { |
| SDLoc DL(In); |
| SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, |
| DL, MVT::i64, In); |
| SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, |
| DL, MVT::i64, In); |
| return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); |
| } |
| |
| bool SystemZTargetLowering::splitValueIntoRegisterParts( |
| SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| EVT ValueVT = Val.getValueType(); |
| assert((ValueVT != MVT::i128 || |
| ((NumParts == 1 && PartVT == MVT::Untyped) || |
| (NumParts == 2 && PartVT == MVT::i64))) && |
| "Unknown handling of i128 value."); |
| if (ValueVT == MVT::i128 && NumParts == 1) { |
| // Inline assembly operand. |
| Parts[0] = lowerI128ToGR128(DAG, Val); |
| return true; |
| } |
| return false; |
| } |
| |
| SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( |
| SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, |
| MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { |
| assert((ValueVT != MVT::i128 || |
| ((NumParts == 1 && PartVT == MVT::Untyped) || |
| (NumParts == 2 && PartVT == MVT::i64))) && |
| "Unknown handling of i128 value."); |
| if (ValueVT == MVT::i128 && NumParts == 1) |
| // Inline assembly operand. |
| return lowerGR128ToI128(DAG, Parts[0]); |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SystemZMachineFunctionInfo *FuncInfo = |
| MF.getInfo<SystemZMachineFunctionInfo>(); |
| auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Detect unsupported vector argument types. |
| if (Subtarget.hasVector()) |
| VerifyVectorTypes(Ins); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); |
| |
| unsigned NumFixedGPRs = 0; |
| unsigned NumFixedFPRs = 0; |
| for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| SDValue ArgValue; |
| CCValAssign &VA = ArgLocs[I]; |
| EVT LocVT = VA.getLocVT(); |
| if (VA.isRegLoc()) { |
| // Arguments passed in registers |
| const TargetRegisterClass *RC; |
| switch (LocVT.getSimpleVT().SimpleTy) { |
| default: |
| // Integers smaller than i64 should be promoted to i64. |
| llvm_unreachable("Unexpected argument type"); |
| case MVT::i32: |
| NumFixedGPRs += 1; |
| RC = &SystemZ::GR32BitRegClass; |
| break; |
| case MVT::i64: |
| NumFixedGPRs += 1; |
| RC = &SystemZ::GR64BitRegClass; |
| break; |
| case MVT::f32: |
| NumFixedFPRs += 1; |
| RC = &SystemZ::FP32BitRegClass; |
| break; |
| case MVT::f64: |
| NumFixedFPRs += 1; |
| RC = &SystemZ::FP64BitRegClass; |
| break; |
| case MVT::f128: |
| NumFixedFPRs += 2; |
| RC = &SystemZ::FP128BitRegClass; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| RC = &SystemZ::VR128BitRegClass; |
| break; |
| } |
| |
| Register VReg = MRI.createVirtualRegister(RC); |
| MRI.addLiveIn(VA.getLocReg(), VReg); |
| ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); |
| } else { |
| assert(VA.isMemLoc() && "Argument not register or memory"); |
| |
| // Create the frame index object for this incoming parameter. |
| // FIXME: Pre-include call frame size in the offset, should not |
| // need to manually add it here. |
| int64_t ArgSPOffset = VA.getLocMemOffset(); |
| if (Subtarget.isTargetXPLINK64()) { |
| auto &XPRegs = |
| Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); |
| ArgSPOffset += XPRegs.getCallFrameSize(); |
| } |
| int FI = |
| MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); |
| |
| // Create the SelectionDAG nodes corresponding to a load |
| // from this parameter. Unpromoted ints and floats are |
| // passed as right-justified 8-byte values. |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) |
| FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, |
| DAG.getIntPtrConstant(4, DL)); |
| ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| } |
| |
| // Convert the value of the argument register into the value that's |
| // being passed. |
| if (VA.getLocInfo() == CCValAssign::Indirect) { |
| InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, |
| MachinePointerInfo())); |
| // If the original argument was split (e.g. i128), we need |
| // to load all parts of it here (using the same address). |
| unsigned ArgIndex = Ins[I].OrigArgIndex; |
| assert (Ins[I].PartOffset == 0); |
| while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { |
| CCValAssign &PartVA = ArgLocs[I + 1]; |
| unsigned PartOffset = Ins[I + 1].PartOffset; |
| SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, |
| DAG.getIntPtrConstant(PartOffset, DL)); |
| InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, |
| MachinePointerInfo())); |
| ++I; |
| } |
| } else |
| InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); |
| } |
| |
| // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. |
| if (IsVarArg && Subtarget.isTargetELF()) { |
| // Save the number of non-varargs registers for later use by va_start, etc. |
| FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); |
| FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); |
| |
| // Likewise the address (in the form of a frame index) of where the |
| // first stack vararg would be. The 1-byte size here is arbitrary. |
| int64_t StackSize = CCInfo.getNextStackOffset(); |
| FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); |
| |
| // ...and a similar frame index for the caller-allocated save area |
| // that will be used to store the incoming registers. |
| int64_t RegSaveOffset = |
| -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; |
| unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); |
| FuncInfo->setRegSaveFrameIndex(RegSaveIndex); |
| |
| // Store the FPR varargs in the reserved frame slots. (We store the |
| // GPRs as part of the prologue.) |
| if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { |
| SDValue MemOps[SystemZ::ELFNumArgFPRs]; |
| for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { |
| unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); |
| int FI = |
| MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], |
| &SystemZ::FP64BitRegClass); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); |
| MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, |
| MachinePointerInfo::getFixedStack(MF, FI)); |
| } |
| // Join the stores, which are independent of one another. |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| ArrayRef(&MemOps[NumFixedFPRs], |
| SystemZ::ELFNumArgFPRs - NumFixedFPRs)); |
| } |
| } |
| |
| // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special |
| // register (R5) |
| return Chain; |
| } |
| |
| static bool canUseSiblingCall(const CCState &ArgCCInfo, |
| SmallVectorImpl<CCValAssign> &ArgLocs, |
| SmallVectorImpl<ISD::OutputArg> &Outs) { |
| // Punt if there are any indirect or stack arguments, or if the call |
| // needs the callee-saved argument register R6, or if the call uses |
| // the callee-saved register arguments SwiftSelf and SwiftError. |
| for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| CCValAssign &VA = ArgLocs[I]; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (!VA.isRegLoc()) |
| return false; |
| Register Reg = VA.getLocReg(); |
| if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) |
| return false; |
| if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) |
| return false; |
| } |
| return true; |
| } |
| |
| SDValue |
| SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| LLVMContext &Ctx = *DAG.getContext(); |
| SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); |
| |
| // FIXME: z/OS support to be added in later. |
| if (Subtarget.isTargetXPLINK64()) |
| IsTailCall = false; |
| |
| // Detect unsupported vector argument and return types. |
| if (Subtarget.hasVector()) { |
| VerifyVectorTypes(Outs); |
| VerifyVectorTypes(Ins); |
| } |
| |
| // Analyze the operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); |
| ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); |
| |
| // We don't support GuaranteedTailCallOpt, only automatically-detected |
| // sibling calls. |
| if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) |
| IsTailCall = false; |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = ArgCCInfo.getNextStackOffset(); |
| |
| if (Subtarget.isTargetXPLINK64()) |
| // Although the XPLINK specifications for AMODE64 state that minimum size |
| // of the param area is minimum 32 bytes and no rounding is otherwise |
| // specified, we round this area in 64 bytes increments to be compatible |
| // with existing compilers. |
| NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); |
| |
| // Mark the start of the call. |
| if (!IsTailCall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); |
| |
| // Copy argument values to their designated locations. |
| SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| SDValue StackPtr; |
| for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| CCValAssign &VA = ArgLocs[I]; |
| SDValue ArgValue = OutVals[I]; |
| |
| if (VA.getLocInfo() == CCValAssign::Indirect) { |
| // Store the argument in a stack slot and pass its address. |
| unsigned ArgIndex = Outs[I].OrigArgIndex; |
| EVT SlotVT; |
| if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { |
| // Allocate the full stack space for a promoted (and split) argument. |
| Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; |
| EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); |
| MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); |
| unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); |
| SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); |
| } else { |
| SlotVT = Outs[I].ArgVT; |
| } |
| SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); |
| int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, ArgValue, SpillSlot, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| // If the original argument was split (e.g. i128), we need |
| // to store all parts of it here (and pass just one address). |
| assert (Outs[I].PartOffset == 0); |
| while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { |
| SDValue PartValue = OutVals[I + 1]; |
| unsigned PartOffset = Outs[I + 1].PartOffset; |
| SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, |
| DAG.getIntPtrConstant(PartOffset, DL)); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, PartValue, Address, |
| MachinePointerInfo::getFixedStack(MF, FI))); |
| assert((PartOffset + PartValue.getValueType().getStoreSize() <= |
| SlotVT.getStoreSize()) && "Not enough space for argument part!"); |
| ++I; |
| } |
| ArgValue = SpillSlot; |
| } else |
| ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); |
| |
| if (VA.isRegLoc()) { |
| // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a |
| // MVT::i128 type. We decompose the 128-bit type to a pair of its high |
| // and low values. |
| if (VA.getLocVT() == MVT::i128) |
| ArgValue = lowerI128ToGR128(DAG, ArgValue); |
| // Queue up the argument copies and emit them at the end. |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); |
| } else { |
| assert(VA.isMemLoc() && "Argument not register or memory"); |
| |
| // Work out the address of the stack slot. Unpromoted ints and |
| // floats are passed as right-justified 8-byte values. |
| if (!StackPtr.getNode()) |
| StackPtr = DAG.getCopyFromReg(Chain, DL, |
| Regs->getStackPointerRegister(), PtrVT); |
| unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + |
| VA.getLocMemOffset(); |
| if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) |
| Offset += 4; |
| SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| |
| // Emit the store. |
| MemOpChains.push_back( |
| DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); |
| |
| // Although long doubles or vectors are passed through the stack when |
| // they are vararg (non-fixed arguments), if a long double or vector |
| // occupies the third and fourth slot of the argument list GPR3 should |
| // still shadow the third slot of the argument list. |
| if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { |
| SDValue ShadowArgValue = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, |
| DAG.getIntPtrConstant(1, DL)); |
| RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); |
| } |
| } |
| } |
| |
| // Join the stores, which are independent of one another. |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| // Accept direct calls by converting symbolic call addresses to the |
| // associated Target* opcodes. Force %r1 to be used for indirect |
| // tail calls. |
| SDValue Glue; |
| // FIXME: Add support for XPLINK using the ADA register. |
| if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); |
| Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); |
| } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); |
| Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); |
| } else if (IsTailCall) { |
| Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); |
| Glue = Chain.getValue(1); |
| Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); |
| } |
| |
| // Build a sequence of copy-to-reg nodes, chained and glued together. |
| for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { |
| Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, |
| RegsToPass[I].second, Glue); |
| Glue = Chain.getValue(1); |
| } |
| |
| // The first call operand is the chain and the second is the target address. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) |
| Ops.push_back(DAG.getRegister(RegsToPass[I].first, |
| RegsToPass[I].second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| // Glue the call to the argument copies, if any. |
| if (Glue.getNode()) |
| Ops.push_back(Glue); |
| |
| // Emit the call. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| if (IsTailCall) |
| return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); |
| Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); |
| DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); |
| Glue = Chain.getValue(1); |
| |
| // Mark the end of the call, which is glued to the call itself. |
| Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); |
| Glue = Chain.getValue(1); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RetLocs; |
| CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); |
| RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { |
| CCValAssign &VA = RetLocs[I]; |
| |
| // Copy the value out, gluing the copy to the end of the call sequence. |
| SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), |
| VA.getLocVT(), Glue); |
| Chain = RetValue.getValue(1); |
| Glue = RetValue.getValue(2); |
| |
| // Convert the value of the return register into the value that's |
| // being returned. |
| InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); |
| } |
| |
| return Chain; |
| } |
| |
| // Generate a call taking the given operands as arguments and returning a |
| // result of type RetVT. |
| std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( |
| SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, |
| ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, |
| bool DoesNotReturn, bool IsReturnValueUsed) const { |
| TargetLowering::ArgListTy Args; |
| Args.reserve(Ops.size()); |
| |
| TargetLowering::ArgListEntry Entry; |
| for (SDValue Op : Ops) { |
| Entry.Node = Op; |
| Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); |
| Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); |
| Args.push_back(Entry); |
| } |
| |
| SDValue Callee = |
| DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); |
| CLI.setDebugLoc(DL) |
| .setChain(Chain) |
| .setCallee(CallConv, RetTy, Callee, std::move(Args)) |
| .setNoReturn(DoesNotReturn) |
| .setDiscardResult(!IsReturnValueUsed) |
| .setSExtResult(SignExtend) |
| .setZExtResult(!SignExtend); |
| return LowerCallTo(CLI); |
| } |
| |
| bool SystemZTargetLowering:: |
| CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| // Detect unsupported vector return types. |
| if (Subtarget.hasVector()) |
| VerifyVectorTypes(Outs); |
| |
| // Special case that we cannot easily detect in RetCC_SystemZ since |
| // i128 is not a legal type. |
| for (auto &Out : Outs) |
| if (Out.ArgVT == MVT::i128) |
| return false; |
| |
| SmallVector<CCValAssign, 16> RetLocs; |
| CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); |
| return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); |
| } |
| |
| SDValue |
| SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Detect unsupported vector return types. |
| if (Subtarget.hasVector()) |
| VerifyVectorTypes(Outs); |
| |
| // Assign locations to each returned value. |
| SmallVector<CCValAssign, 16> RetLocs; |
| CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); |
| RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); |
| |
| // Quick exit for void returns |
| if (RetLocs.empty()) |
| return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); |
| |
| if (CallConv == CallingConv::GHC) |
| report_fatal_error("GHC functions return void only"); |
| |
| // Copy the result values into the output registers. |
| SDValue Glue; |
| SmallVector<SDValue, 4> RetOps; |
| RetOps.push_back(Chain); |
| for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { |
| CCValAssign &VA = RetLocs[I]; |
| SDValue RetValue = OutVals[I]; |
| |
| // Make the return register live on exit. |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| // Promote the value as required. |
| RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); |
| |
| // Chain and glue the copies together. |
| Register Reg = VA.getLocReg(); |
| Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); |
| } |
| |
| // Update chain and glue. |
| RetOps[0] = Chain; |
| if (Glue.getNode()) |
| RetOps.push_back(Glue); |
| |
| return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); |
| } |
| |
| // Return true if Op is an intrinsic node with chain that returns the CC value |
| // as its only (other) argument. Provide the associated SystemZISD opcode and |
| // the mask of valid CC values if so. |
| static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, |
| unsigned &CCValid) { |
| unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| switch (Id) { |
| case Intrinsic::s390_tbegin: |
| Opcode = SystemZISD::TBEGIN; |
| CCValid = SystemZ::CCMASK_TBEGIN; |
| return true; |
| |
| case Intrinsic::s390_tbegin_nofloat: |
| Opcode = SystemZISD::TBEGIN_NOFLOAT; |
| CCValid = SystemZ::CCMASK_TBEGIN; |
| return true; |
| |
| case Intrinsic::s390_tend: |
| Opcode = SystemZISD::TEND; |
| CCValid = SystemZ::CCMASK_TEND; |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Return true if Op is an intrinsic node without chain that returns the |
| // CC value as its final argument. Provide the associated SystemZISD |
| // opcode and the mask of valid CC values if so. |
| static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { |
| unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (Id) { |
| case Intrinsic::s390_vpkshs: |
| case Intrinsic::s390_vpksfs: |
| case Intrinsic::s390_vpksgs: |
| Opcode = SystemZISD::PACKS_CC; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vpklshs: |
| case Intrinsic::s390_vpklsfs: |
| case Intrinsic::s390_vpklsgs: |
| Opcode = SystemZISD::PACKLS_CC; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vceqbs: |
| case Intrinsic::s390_vceqhs: |
| case Intrinsic::s390_vceqfs: |
| case Intrinsic::s390_vceqgs: |
| Opcode = SystemZISD::VICMPES; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vchbs: |
| case Intrinsic::s390_vchhs: |
| case Intrinsic::s390_vchfs: |
| case Intrinsic::s390_vchgs: |
| Opcode = SystemZISD::VICMPHS; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vchlbs: |
| case Intrinsic::s390_vchlhs: |
| case Intrinsic::s390_vchlfs: |
| case Intrinsic::s390_vchlgs: |
| Opcode = SystemZISD::VICMPHLS; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vtm: |
| Opcode = SystemZISD::VTM; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vfaebs: |
| case Intrinsic::s390_vfaehs: |
| case Intrinsic::s390_vfaefs: |
| Opcode = SystemZISD::VFAE_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vfaezbs: |
| case Intrinsic::s390_vfaezhs: |
| case Intrinsic::s390_vfaezfs: |
| Opcode = SystemZISD::VFAEZ_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vfeebs: |
| case Intrinsic::s390_vfeehs: |
| case Intrinsic::s390_vfeefs: |
| Opcode = SystemZISD::VFEE_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vfeezbs: |
| case Intrinsic::s390_vfeezhs: |
| case Intrinsic::s390_vfeezfs: |
| Opcode = SystemZISD::VFEEZ_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vfenebs: |
| case Intrinsic::s390_vfenehs: |
| case Intrinsic::s390_vfenefs: |
| Opcode = SystemZISD::VFENE_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vfenezbs: |
| case Intrinsic::s390_vfenezhs: |
| case Intrinsic::s390_vfenezfs: |
| Opcode = SystemZISD::VFENEZ_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vistrbs: |
| case Intrinsic::s390_vistrhs: |
| case Intrinsic::s390_vistrfs: |
| Opcode = SystemZISD::VISTR_CC; |
| CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; |
| return true; |
| |
| case Intrinsic::s390_vstrcbs: |
| case Intrinsic::s390_vstrchs: |
| case Intrinsic::s390_vstrcfs: |
| Opcode = SystemZISD::VSTRC_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vstrczbs: |
| case Intrinsic::s390_vstrczhs: |
| case Intrinsic::s390_vstrczfs: |
| Opcode = SystemZISD::VSTRCZ_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vstrsb: |
| case Intrinsic::s390_vstrsh: |
| case Intrinsic::s390_vstrsf: |
| Opcode = SystemZISD::VSTRS_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vstrszb: |
| case Intrinsic::s390_vstrszh: |
| case Intrinsic::s390_vstrszf: |
| Opcode = SystemZISD::VSTRSZ_CC; |
| CCValid = SystemZ::CCMASK_ANY; |
| return true; |
| |
| case Intrinsic::s390_vfcedbs: |
| case Intrinsic::s390_vfcesbs: |
| Opcode = SystemZISD::VFCMPES; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vfchdbs: |
| case Intrinsic::s390_vfchsbs: |
| Opcode = SystemZISD::VFCMPHS; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vfchedbs: |
| case Intrinsic::s390_vfchesbs: |
| Opcode = SystemZISD::VFCMPHES; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_vftcidb: |
| case Intrinsic::s390_vftcisb: |
| Opcode = SystemZISD::VFTCI; |
| CCValid = SystemZ::CCMASK_VCMP; |
| return true; |
| |
| case Intrinsic::s390_tdc: |
| Opcode = SystemZISD::TDC; |
| CCValid = SystemZ::CCMASK_TDC; |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Emit an intrinsic with chain and an explicit CC register result. |
| static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, |
| unsigned Opcode) { |
| // Copy all operands except the intrinsic ID. |
| unsigned NumOps = Op.getNumOperands(); |
| SmallVector<SDValue, 6> Ops; |
| Ops.reserve(NumOps - 1); |
| Ops.push_back(Op.getOperand(0)); |
| for (unsigned I = 2; I < NumOps; ++I) |
| Ops.push_back(Op.getOperand(I)); |
| |
| assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); |
| SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); |
| SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); |
| SDValue OldChain = SDValue(Op.getNode(), 1); |
| SDValue NewChain = SDValue(Intr.getNode(), 1); |
| DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); |
| return Intr.getNode(); |
| } |
| |
| // Emit an intrinsic with an explicit CC register result. |
| static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, |
| unsigned Opcode) { |
| // Copy all operands except the intrinsic ID. |
| unsigned NumOps = Op.getNumOperands(); |
| SmallVector<SDValue, 6> Ops; |
| Ops.reserve(NumOps - 1); |
| for (unsigned I = 1; I < NumOps; ++I) |
| Ops.push_back(Op.getOperand(I)); |
| |
| SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); |
| return Intr.getNode(); |
| } |
| |
| // CC is a comparison that will be implemented using an integer or |
| // floating-point comparison. Return the condition code mask for |
| // a branch on true. In the integer case, CCMASK_CMP_UO is set for |
| // unsigned comparisons and clear for signed ones. In the floating-point |
| // case, CCMASK_CMP_UO has its normal mask meaning (unordered). |
| static unsigned CCMaskForCondCode(ISD::CondCode CC) { |
| #define CONV(X) \ |
| case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ |
| case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ |
| case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X |
| |
| switch (CC) { |
| default: |
| llvm_unreachable("Invalid integer condition!"); |
| |
| CONV(EQ); |
| CONV(NE); |
| CONV(GT); |
| CONV(GE); |
| CONV(LT); |
| CONV(LE); |
| |
| case ISD::SETO: return SystemZ::CCMASK_CMP_O; |
| case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; |
| } |
| #undef CONV |
| } |
| |
| // If C can be converted to a comparison against zero, adjust the operands |
| // as necessary. |
| static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { |
| if (C.ICmpType == SystemZICMP::UnsignedOnly) |
| return; |
| |
| auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); |
| if (!ConstOp1) |
| return; |
| |
| int64_t Value = ConstOp1->getSExtValue(); |
| if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || |
| (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || |
| (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || |
| (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { |
| C.CCMask ^= SystemZ::CCMASK_CMP_EQ; |
| C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); |
| } |
| } |
| |
| // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, |
| // adjust the operands as necessary. |
| static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, |
| Comparison &C) { |
| // For us to make any changes, it must a comparison between a single-use |
| // load and a constant. |
| if (!C.Op0.hasOneUse() || |
| C.Op0.getOpcode() != ISD::LOAD || |
| C.Op1.getOpcode() != ISD::Constant) |
| return; |
| |
| // We must have an 8- or 16-bit load. |
| auto *Load = cast<LoadSDNode>(C.Op0); |
| unsigned NumBits = Load->getMemoryVT().getSizeInBits(); |
| if ((NumBits != 8 && NumBits != 16) || |
| NumBits != Load->getMemoryVT().getStoreSizeInBits()) |
| return; |
| |
| // The load must be an extending one and the constant must be within the |
| // range of the unextended value. |
| auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); |
| uint64_t Value = ConstOp1->getZExtValue(); |
| uint64_t Mask = (1 << NumBits) - 1; |
| if (Load->getExtensionType() == ISD::SEXTLOAD) { |
| // Make sure that ConstOp1 is in range of C.Op0. |
| int64_t SignedValue = ConstOp1->getSExtValue(); |
| if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) |
| return; |
| if (C.ICmpType != SystemZICMP::SignedOnly) { |
| // Unsigned comparison between two sign-extended values is equivalent |
| // to unsigned comparison between two zero-extended values. |
| Value &= Mask; |
| } else if (NumBits == 8) { |
| // Try to treat the comparison as unsigned, so that we can use CLI. |
| // Adjust CCMask and Value as necessary. |
| if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) |
| // Test whether the high bit of the byte is set. |
| Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; |
| else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) |
| // Test whether the high bit of the byte is clear. |
| Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; |
| else |
| // No instruction exists for this combination. |
| return; |
| C.ICmpType = SystemZICMP::UnsignedOnly; |
| } |
| } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { |
| if (Value > Mask) |
| return; |
| // If the constant is in range, we can use any comparison. |
| C.ICmpType = SystemZICMP::Any; |
| } else |
| return; |
| |
| // Make sure that the first operand is an i32 of the right extension type. |
| ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? |
| ISD::SEXTLOAD : |
| ISD::ZEXTLOAD); |
| if (C.Op0.getValueType() != MVT::i32 || |
| Load->getExtensionType() != ExtType) { |
| C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), |
| Load->getBasePtr(), Load->getPointerInfo(), |
| Load->getMemoryVT(), Load->getAlign(), |
| Load->getMemOperand()->getFlags()); |
| // Update the chain uses. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); |
| } |
| |
| // Make sure that the second operand is an i32 with the right value. |
| if (C.Op1.getValueType() != MVT::i32 || |
| Value != ConstOp1->getZExtValue()) |
| C.Op1 = DAG.getConstant(Value, DL, MVT::i32); |
| } |
| |
| // Return true if Op is either an unextended load, or a load suitable |
| // for integer register-memory comparisons of type ICmpType. |
| static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { |
| auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); |
| if (Load) { |
| // There are no instructions to compare a register with a memory byte. |
| if (Load->getMemoryVT() == MVT::i8) |
| return false; |
| // Otherwise decide on extension type. |
| switch (Load->getExtensionType()) { |
| case ISD::NON_EXTLOAD: |
| return true; |
| case ISD::SEXTLOAD: |
| return ICmpType != SystemZICMP::UnsignedOnly; |
| case ISD::ZEXTLOAD: |
| return ICmpType != SystemZICMP::SignedOnly; |
| default: |
| break; |
| } |
| } |
| return false; |
| } |
| |
| // Return true if it is better to swap the operands of C. |
| static bool shouldSwapCmpOperands(const Comparison &C) { |
| // Leave f128 comparisons alone, since they have no memory forms. |
| if (C.Op0.getValueType() == MVT::f128) |
| return false; |
| |
| // Always keep a floating-point constant second, since comparisons with |
| // zero can use LOAD TEST and comparisons with other constants make a |
| // natural memory operand. |
| if (isa<ConstantFPSDNode>(C.Op1)) |
| return false; |
| |
| // Never swap comparisons with zero since there are many ways to optimize |
| // those later. |
| auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); |
| if (ConstOp1 && ConstOp1->getZExtValue() == 0) |
| return false; |
| |
| // Also keep natural memory operands second if the loaded value is |
| // only used here. Several comparisons have memory forms. |
| if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) |
| return false; |
| |
| // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. |
| // In that case we generally prefer the memory to be second. |
| if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { |
| // The only exceptions are when the second operand is a constant and |
| // we can use things like CHHSI. |
| if (!ConstOp1) |
| return true; |
| // The unsigned memory-immediate instructions can handle 16-bit |
| // unsigned integers. |
| if (C.ICmpType != SystemZICMP::SignedOnly && |
| isUInt<16>(ConstOp1->getZExtValue())) |
| return false; |
| // The signed memory-immediate instructions can handle 16-bit |
| // signed integers. |
| if (C.ICmpType != SystemZICMP::UnsignedOnly && |
| isInt<16>(ConstOp1->getSExtValue())) |
| return false; |
| return true; |
| } |
| |
| // Try to promote the use of CGFR and CLGFR. |
| unsigned Opcode0 = C.Op0.getOpcode(); |
| if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) |
| return true; |
| if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) |
| return true; |
| if (C.ICmpType != SystemZICMP::SignedOnly && |
| Opcode0 == ISD::AND && |
| C.Op0.getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) |
| return true; |
| |
| return false; |
| } |
| |
| // Check whether C tests for equality between X and Y and whether X - Y |
| // or Y - X is also computed. In that case it's better to compare the |
| // result of the subtraction against zero. |
| static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, |
| Comparison &C) { |
| if (C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| C.CCMask == SystemZ::CCMASK_CMP_NE) { |
| for (SDNode *N : C.Op0->uses()) { |
| if (N->getOpcode() == ISD::SUB && |
| ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || |
| (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { |
| C.Op0 = SDValue(N, 0); |
| C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); |
| return; |
| } |
| } |
| } |
| } |
| |
| // Check whether C compares a floating-point value with zero and if that |
| // floating-point value is also negated. In this case we can use the |
| // negation to set CC, so avoiding separate LOAD AND TEST and |
| // LOAD (NEGATIVE/COMPLEMENT) instructions. |
| static void adjustForFNeg(Comparison &C) { |
| // This optimization is invalid for strict comparisons, since FNEG |
| // does not raise any exceptions. |
| if (C.Chain) |
| return; |
| auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); |
| if (C1 && C1->isZero()) { |
| for (SDNode *N : C.Op0->uses()) { |
| if (N->getOpcode() == ISD::FNEG) { |
| C.Op0 = SDValue(N, 0); |
| C.CCMask = SystemZ::reverseCCMask(C.CCMask); |
| return; |
| } |
| } |
| } |
| } |
| |
| // Check whether C compares (shl X, 32) with 0 and whether X is |
| // also sign-extended. In that case it is better to test the result |
| // of the sign extension using LTGFR. |
| // |
| // This case is important because InstCombine transforms a comparison |
| // with (sext (trunc X)) into a comparison with (shl X, 32). |
| static void adjustForLTGFR(Comparison &C) { |
| // Check for a comparison between (shl X, 32) and 0. |
| if (C.Op0.getOpcode() == ISD::SHL && |
| C.Op0.getValueType() == MVT::i64 && |
| C.Op1.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { |
| auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); |
| if (C1 && C1->getZExtValue() == 32) { |
| SDValue ShlOp0 = C.Op0.getOperand(0); |
| // See whether X has any SIGN_EXTEND_INREG uses. |
| for (SDNode *N : ShlOp0->uses()) { |
| if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { |
| C.Op0 = SDValue(N, 0); |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| // If C compares the truncation of an extending load, try to compare |
| // the untruncated value instead. This exposes more opportunities to |
| // reuse CC. |
| static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, |
| Comparison &C) { |
| if (C.Op0.getOpcode() == ISD::TRUNCATE && |
| C.Op0.getOperand(0).getOpcode() == ISD::LOAD && |
| C.Op1.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { |
| auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); |
| if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= |
| C.Op0.getValueSizeInBits().getFixedValue()) { |
| unsigned Type = L->getExtensionType(); |
| if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || |
| (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { |
| C.Op0 = C.Op0.getOperand(0); |
| C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); |
| } |
| } |
| } |
| } |
| |
| // Return true if shift operation N has an in-range constant shift value. |
| // Store it in ShiftVal if so. |
| static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { |
| auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!Shift) |
| return false; |
| |
| uint64_t Amount = Shift->getZExtValue(); |
| if (Amount >= N.getValueSizeInBits()) |
| return false; |
| |
| ShiftVal = Amount; |
| return true; |
| } |
| |
| // Check whether an AND with Mask is suitable for a TEST UNDER MASK |
| // instruction and whether the CC value is descriptive enough to handle |
| // a comparison of type Opcode between the AND result and CmpVal. |
| // CCMask says which comparison result is being tested and BitSize is |
| // the number of bits in the operands. If TEST UNDER MASK can be used, |
| // return the corresponding CC mask, otherwise return 0. |
| static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, |
| uint64_t Mask, uint64_t CmpVal, |
| unsigned ICmpType) { |
| assert(Mask != 0 && "ANDs with zero should have been removed by now"); |
| |
| // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. |
| if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && |
| !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) |
| return 0; |
| |
| // Work out the masks for the lowest and highest bits. |
| unsigned HighShift = 63 - countLeadingZeros(Mask); |
| uint64_t High = uint64_t(1) << HighShift; |
| uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); |
| |
| // Signed ordered comparisons are effectively unsigned if the sign |
| // bit is dropped. |
| bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); |
| |
| // Check for equality comparisons with 0, or the equivalent. |
| if (CmpVal == 0) { |
| if (CCMask == SystemZ::CCMASK_CMP_EQ) |
| return SystemZ::CCMASK_TM_ALL_0; |
| if (CCMask == SystemZ::CCMASK_CMP_NE) |
| return SystemZ::CCMASK_TM_SOME_1; |
| } |
| if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { |
| if (CCMask == SystemZ::CCMASK_CMP_LT) |
| return SystemZ::CCMASK_TM_ALL_0; |
| if (CCMask == SystemZ::CCMASK_CMP_GE) |
| return SystemZ::CCMASK_TM_SOME_1; |
| } |
| if (EffectivelyUnsigned && CmpVal < Low) { |
| if (CCMask == SystemZ::CCMASK_CMP_LE) |
| return SystemZ::CCMASK_TM_ALL_0; |
| if (CCMask == SystemZ::CCMASK_CMP_GT) |
| return SystemZ::CCMASK_TM_SOME_1; |
| } |
| |
| // Check for equality comparisons with the mask, or the equivalent. |
| if (CmpVal == Mask) { |
| if (CCMask == SystemZ::CCMASK_CMP_EQ) |
| return SystemZ::CCMASK_TM_ALL_1; |
| if (CCMask == SystemZ::CCMASK_CMP_NE) |
| return SystemZ::CCMASK_TM_SOME_0; |
| } |
| if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { |
| if (CCMask == SystemZ::CCMASK_CMP_GT) |
| return SystemZ::CCMASK_TM_ALL_1; |
| if (CCMask == SystemZ::CCMASK_CMP_LE) |
| return SystemZ::CCMASK_TM_SOME_0; |
| } |
| if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { |
| if (CCMask == SystemZ::CCMASK_CMP_GE) |
| return SystemZ::CCMASK_TM_ALL_1; |
| if (CCMask == SystemZ::CCMASK_CMP_LT) |
| return SystemZ::CCMASK_TM_SOME_0; |
| } |
| |
| // Check for ordered comparisons with the top bit. |
| if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { |
| if (CCMask == SystemZ::CCMASK_CMP_LE) |
| return SystemZ::CCMASK_TM_MSB_0; |
| if (CCMask == SystemZ::CCMASK_CMP_GT) |
| return SystemZ::CCMASK_TM_MSB_1; |
| } |
| if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { |
| if (CCMask == SystemZ::CCMASK_CMP_LT) |
| return SystemZ::CCMASK_TM_MSB_0; |
| if (CCMask == SystemZ::CCMASK_CMP_GE) |
| return SystemZ::CCMASK_TM_MSB_1; |
| } |
| |
| // If there are just two bits, we can do equality checks for Low and High |
| // as well. |
| if (Mask == Low + High) { |
| if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) |
| return SystemZ::CCMASK_TM_MIXED_MSB_0; |
| if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) |
| return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; |
| if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) |
| return SystemZ::CCMASK_TM_MIXED_MSB_1; |
| if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) |
| return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; |
| } |
| |
| // Looks like we've exhausted our options. |
| return 0; |
| } |
| |
| // See whether C can be implemented as a TEST UNDER MASK instruction. |
| // Update the arguments with the TM version if so. |
| static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, |
| Comparison &C) { |
| // Check that we have a comparison with a constant. |
| auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); |
| if (!ConstOp1) |
| return; |
| uint64_t CmpVal = ConstOp1->getZExtValue(); |
| |
| // Check whether the nonconstant input is an AND with a constant mask. |
| Comparison NewC(C); |
| uint64_t MaskVal; |
| ConstantSDNode *Mask = nullptr; |
| if (C.Op0.getOpcode() == ISD::AND) { |
| NewC.Op0 = C.Op0.getOperand(0); |
| NewC.Op1 = C.Op0.getOperand(1); |
| Mask = dyn_cast<ConstantSDNode>(NewC.Op1); |
| if (!Mask) |
| return; |
| MaskVal = Mask->getZExtValue(); |
| } else { |
| // There is no instruction to compare with a 64-bit immediate |
| // so use TMHH instead if possible. We need an unsigned ordered |
| // comparison with an i64 immediate. |
| if (NewC.Op0.getValueType() != MVT::i64 || |
| NewC.CCMask == SystemZ::CCMASK_CMP_EQ || |
| NewC.CCMask == SystemZ::CCMASK_CMP_NE || |
| NewC.ICmpType == SystemZICMP::SignedOnly) |
| return; |
| // Convert LE and GT comparisons into LT and GE. |
| if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || |
| NewC.CCMask == SystemZ::CCMASK_CMP_GT) { |
| if (CmpVal == uint64_t(-1)) |
| return; |
| CmpVal += 1; |
| NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; |
| } |
| // If the low N bits of Op1 are zero than the low N bits of Op0 can |
| // be masked off without changing the result. |
| MaskVal = -(CmpVal & -CmpVal); |
| NewC.ICmpType = SystemZICMP::UnsignedOnly; |
| } |
| if (!MaskVal) |
| return; |
| |
| // Check whether the combination of mask, comparison value and comparison |
| // type are suitable. |
| unsigned BitSize = NewC.Op0.getValueSizeInBits(); |
| unsigned NewCCMask, ShiftVal; |
| if (NewC.ICmpType != SystemZICMP::SignedOnly && |
| NewC.Op0.getOpcode() == ISD::SHL && |
| isSimpleShift(NewC.Op0, ShiftVal) && |
| (MaskVal >> ShiftVal != 0) && |
| ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && |
| (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, |
| MaskVal >> ShiftVal, |
| CmpVal >> ShiftVal, |
| SystemZICMP::Any))) { |
| NewC.Op0 = NewC.Op0.getOperand(0); |
| MaskVal >>= ShiftVal; |
| } else if (NewC.ICmpType != SystemZICMP::SignedOnly && |
| NewC.Op0.getOpcode() == ISD::SRL && |
| isSimpleShift(NewC.Op0, ShiftVal) && |
| (MaskVal << ShiftVal != 0) && |
| ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && |
| (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, |
| MaskVal << ShiftVal, |
| CmpVal << ShiftVal, |
| SystemZICMP::UnsignedOnly))) { |
| NewC.Op0 = NewC.Op0.getOperand(0); |
| MaskVal <<= ShiftVal; |
| } else { |
| NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, |
| NewC.ICmpType); |
| if (!NewCCMask) |
| return; |
| } |
| |
| // Go ahead and make the change. |
| C.Opcode = SystemZISD::TM; |
| C.Op0 = NewC.Op0; |
| if (Mask && Mask->getZExtValue() == MaskVal) |
| C.Op1 = SDValue(Mask, 0); |
| else |
| C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); |
| C.CCValid = SystemZ::CCMASK_TM; |
| C.CCMask = NewCCMask; |
| } |
| |
| // See whether the comparison argument contains a redundant AND |
| // and remove it if so. This sometimes happens due to the generic |
| // BRCOND expansion. |
| static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, |
| Comparison &C) { |
| if (C.Op0.getOpcode() != ISD::AND) |
| return; |
| auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); |
| if (!Mask) |
| return; |
| KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); |
| if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) |
| return; |
| |
| C.Op0 = C.Op0.getOperand(0); |
| } |
| |
| // Return a Comparison that tests the condition-code result of intrinsic |
| // node Call against constant integer CC using comparison code Cond. |
| // Opcode is the opcode of the SystemZISD operation for the intrinsic |
| // and CCValid is the set of possible condition-code results. |
| static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, |
| SDValue Call, unsigned CCValid, uint64_t CC, |
| ISD::CondCode Cond) { |
| Comparison C(Call, SDValue(), SDValue()); |
| C.Opcode = Opcode; |
| C.CCValid = CCValid; |
| if (Cond == ISD::SETEQ) |
| // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. |
| C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; |
| else if (Cond == ISD::SETNE) |
| // ...and the inverse of that. |
| C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; |
| else if (Cond == ISD::SETLT || Cond == ISD::SETULT) |
| // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, |
| // always true for CC>3. |
| C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; |
| else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) |
| // ...and the inverse of that. |
| C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; |
| else if (Cond == ISD::SETLE || Cond == ISD::SETULE) |
| // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), |
| // always true for CC>3. |
| C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; |
| else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) |
| // ...and the inverse of that. |
| C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; |
| else |
| llvm_unreachable("Unexpected integer comparison type"); |
| C.CCMask &= CCValid; |
| return C; |
| } |
| |
| // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. |
| static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, |
| ISD::CondCode Cond, const SDLoc &DL, |
| SDValue Chain = SDValue(), |
| bool IsSignaling = false) { |
| if (CmpOp1.getOpcode() == ISD::Constant) { |
| assert(!Chain); |
| uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); |
| unsigned Opcode, CCValid; |
| if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && |
| CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && |
| isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) |
| return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); |
| if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && |
| isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) |
| return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); |
| } |
| Comparison C(CmpOp0, CmpOp1, Chain); |
| C.CCMask = CCMaskForCondCode(Cond); |
| if (C.Op0.getValueType().isFloatingPoint()) { |
| C.CCValid = SystemZ::CCMASK_FCMP; |
| if (!C.Chain) |
| C.Opcode = SystemZISD::FCMP; |
| else if (!IsSignaling) |
| C.Opcode = SystemZISD::STRICT_FCMP; |
| else |
| C.Opcode = SystemZISD::STRICT_FCMPS; |
| adjustForFNeg(C); |
| } else { |
| assert(!C.Chain); |
| C.CCValid = SystemZ::CCMASK_ICMP; |
| C.Opcode = SystemZISD::ICMP; |
| // Choose the type of comparison. Equality and inequality tests can |
| // use either signed or unsigned comparisons. The choice also doesn't |
| // matter if both sign bits are known to be clear. In those cases we |
| // want to give the main isel code the freedom to choose whichever |
| // form fits best. |
| if (C.CCMask == SystemZ::CCMASK_CMP_EQ || |
| C.CCMask == SystemZ::CCMASK_CMP_NE || |
| (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) |
| C.ICmpType = SystemZICMP::Any; |
| else if (C.CCMask & SystemZ::CCMASK_CMP_UO) |
| C.ICmpType = SystemZICMP::UnsignedOnly; |
| else |
| C.ICmpType = SystemZICMP::SignedOnly; |
| C.CCMask &= ~SystemZ::CCMASK_CMP_UO; |
| adjustForRedundantAnd(DAG, DL, C); |
| adjustZeroCmp(DAG, DL, C); |
| adjustSubwordCmp(DAG, DL, C); |
| adjustForSubtraction(DAG, DL, C); |
| adjustForLTGFR(C); |
| adjustICmpTruncate(DAG, DL, C); |
| } |
| |
| if (shouldSwapCmpOperands(C)) { |
| std::swap(C.Op0, C.Op1); |
| C.CCMask = SystemZ::reverseCCMask(C.CCMask); |
| } |
| |
| adjustForTestUnderMask(DAG, DL, C); |
| return C; |
| } |
| |
| // Emit the comparison instruction described by C. |
| static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { |
| if (!C.Op1.getNode()) { |
| SDNode *Node; |
| switch (C.Op0.getOpcode()) { |
| case ISD::INTRINSIC_W_CHAIN: |
| Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); |
| return SDValue(Node, 0); |
| case ISD::INTRINSIC_WO_CHAIN: |
| Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); |
| return SDValue(Node, Node->getNumValues() - 1); |
| default: |
| llvm_unreachable("Invalid comparison operands"); |
| } |
| } |
| if (C.Opcode == SystemZISD::ICMP) |
| return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, |
| DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); |
| if (C.Opcode == SystemZISD::TM) { |
| bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != |
| bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); |
| return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, |
| DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); |
| } |
| if (C.Chain) { |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); |
| return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); |
| } |
| return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); |
| } |
| |
| // Implement a 32-bit *MUL_LOHI operation by extending both operands to |
| // 64 bits. Extend is the extension type to use. Store the high part |
| // in Hi and the low part in Lo. |
| static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, |
| SDValue Op0, SDValue Op1, SDValue &Hi, |
| SDValue &Lo) { |
| Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); |
| Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); |
| Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, |
| DAG.getConstant(32, DL, MVT::i64)); |
| Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); |
| Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); |
| } |
| |
| // Lower a binary operation that produces two VT results, one in each |
| // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, |
| // and Opcode performs the GR128 operation. Store the even register result |
| // in Even and the odd register result in Odd. |
| static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| unsigned Opcode, SDValue Op0, SDValue Op1, |
| SDValue &Even, SDValue &Odd) { |
| SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); |
| bool Is32Bit = is32Bit(VT); |
| Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); |
| Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); |
| } |
| |
| // Return an i32 value that is 1 if the CC value produced by CCReg is |
| // in the mask CCMask and 0 otherwise. CC is known to have a value |
| // in CCValid, so other values can be ignored. |
| static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, |
| unsigned CCValid, unsigned CCMask) { |
| SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getTargetConstant(CCValid, DL, MVT::i32), |
| DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; |
| return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); |
| } |
| |
| // Return the SystemISD vector comparison operation for CC, or 0 if it cannot |
| // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP |
| // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) |
| // floating-point comparisons, and CmpMode::SignalingFP for strict signaling |
| // floating-point comparisons. |
| enum class CmpMode { Int, FP, StrictFP, SignalingFP }; |
| static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { |
| switch (CC) { |
| case ISD::SETOEQ: |
| case ISD::SETEQ: |
| switch (Mode) { |
| case CmpMode::Int: return SystemZISD::VICMPE; |
| case CmpMode::FP: return SystemZISD::VFCMPE; |
| case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; |
| case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; |
| } |
| llvm_unreachable("Bad mode"); |
| |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| switch (Mode) { |
| case CmpMode::Int: return 0; |
| case CmpMode::FP: return SystemZISD::VFCMPHE; |
| case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; |
| case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; |
| } |
| llvm_unreachable("Bad mode"); |
| |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| switch (Mode) { |
| case CmpMode::Int: return SystemZISD::VICMPH; |
| case CmpMode::FP: return SystemZISD::VFCMPH; |
| case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; |
| case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; |
| } |
| llvm_unreachable("Bad mode"); |
| |
| case ISD::SETUGT: |
| switch (Mode) { |
| case CmpMode::Int: return SystemZISD::VICMPHL; |
| case CmpMode::FP: return 0; |
| case CmpMode::StrictFP: return 0; |
| case CmpMode::SignalingFP: return 0; |
| } |
| llvm_unreachable("Bad mode"); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| // Return the SystemZISD vector comparison operation for CC or its inverse, |
| // or 0 if neither can be done directly. Indicate in Invert whether the |
| // result is for the inverse of CC. Mode is as above. |
| static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, |
| bool &Invert) { |
| if (unsigned Opcode = getVectorComparison(CC, Mode)) { |
| Invert = false; |
| return Opcode; |
| } |
| |
| CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); |
| if (unsigned Opcode = getVectorComparison(CC, Mode)) { |
| Invert = true; |
| return Opcode; |
| } |
| |
| return 0; |
| } |
| |
| // Return a v2f64 that contains the extended form of elements Start and Start+1 |
| // of v4f32 value Op. If Chain is nonnull, return the strict form. |
| static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, |
| SDValue Op, SDValue Chain) { |
| int Mask[] = { Start, -1, Start + 1, -1 }; |
| Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); |
| if (Chain) { |
| SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); |
| return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); |
| } |
| return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); |
| } |
| |
| // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, |
| // producing a result of type VT. If Chain is nonnull, return the strict form. |
| SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, |
| const SDLoc &DL, EVT VT, |
| SDValue CmpOp0, |
| SDValue CmpOp1, |
| SDValue Chain) const { |
| // There is no hardware support for v4f32 (unless we have the vector |
| // enhancements facility 1), so extend the vector into two v2f64s |
| // and compare those. |
| if (CmpOp0.getValueType() == MVT::v4f32 && |
| !Subtarget.hasVectorEnhancements1()) { |
| SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); |
| SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); |
| SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); |
| SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); |
| if (Chain) { |
| SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); |
| SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); |
| SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); |
| SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); |
| SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), |
| H1.getValue(1), L1.getValue(1), |
| HRes.getValue(1), LRes.getValue(1) }; |
| SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| SDValue Ops[2] = { Res, NewChain }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); |
| SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); |
| return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); |
| } |
| if (Chain) { |
| SDVTList VTs = DAG.getVTList(VT, MVT::Other); |
| return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); |
| } |
| return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); |
| } |
| |
| // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing |
| // an integer mask of type VT. If Chain is nonnull, we have a strict |
| // floating-point comparison. If in addition IsSignaling is true, we have |
| // a strict signaling floating-point comparison. |
| SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, |
| const SDLoc &DL, EVT VT, |
| ISD::CondCode CC, |
| SDValue CmpOp0, |
| SDValue CmpOp1, |
| SDValue Chain, |
| bool IsSignaling) const { |
| bool IsFP = CmpOp0.getValueType().isFloatingPoint(); |
| assert (!Chain || IsFP); |
| assert (!IsSignaling || Chain); |
| CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : |
| Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; |
| bool Invert = false; |
| SDValue Cmp; |
| switch (CC) { |
| // Handle tests for order using (or (ogt y x) (oge x y)). |
| case ISD::SETUO: |
| Invert = true; |
| [[fallthrough]]; |
| case ISD::SETO: { |
| assert(IsFP && "Unexpected integer comparison"); |
| SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), |
| DL, VT, CmpOp1, CmpOp0, Chain); |
| SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), |
| DL, VT, CmpOp0, CmpOp1, Chain); |
| Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); |
| if (Chain) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| LT.getValue(1), GE.getValue(1)); |
| break; |
| } |
| |
| // Handle <> tests using (or (ogt y x) (ogt x y)). |
| case ISD::SETUEQ: |
| Invert = true; |
| [[fallthrough]]; |
| case ISD::SETONE: { |
| assert(IsFP && "Unexpected integer comparison"); |
| SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), |
| DL, VT, CmpOp1, CmpOp0, Chain); |
| SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), |
| DL, VT, CmpOp0, CmpOp1, Chain); |
| Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); |
| if (Chain) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| LT.getValue(1), GT.getValue(1)); |
| break; |
| } |
| |
| // Otherwise a single comparison is enough. It doesn't really |
| // matter whether we try the inversion or the swap first, since |
| // there are no cases where both work. |
| default: |
| if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) |
| Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); |
| else { |
| CC = ISD::getSetCCSwappedOperands(CC); |
| if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) |
| Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); |
| else |
| llvm_unreachable("Unhandled comparison"); |
| } |
| if (Chain) |
| Chain = Cmp.getValue(1); |
| break; |
| } |
| if (Invert) { |
| SDValue Mask = |
| DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); |
| Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); |
| } |
| if (Chain && Chain.getNode() != Cmp.getNode()) { |
| SDValue Ops[2] = { Cmp, Chain }; |
| Cmp = DAG.getMergeValues(Ops, DL); |
| } |
| return Cmp; |
| } |
| |
| SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue CmpOp0 = Op.getOperand(0); |
| SDValue CmpOp1 = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); |
| |
| Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); |
| SDValue CCReg = emitCmp(DAG, DL, C); |
| return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); |
| } |
| |
| SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, |
| SelectionDAG &DAG, |
| bool IsSignaling) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue CmpOp0 = Op.getOperand(1); |
| SDValue CmpOp1 = Op.getOperand(2); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); |
| SDLoc DL(Op); |
| EVT VT = Op.getNode()->getValueType(0); |
| if (VT.isVector()) { |
| SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, |
| Chain, IsSignaling); |
| return Res.getValue(Op.getResNo()); |
| } |
| |
| Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); |
| SDValue CCReg = emitCmp(DAG, DL, C); |
| CCReg->setFlags(Op->getFlags()); |
| SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); |
| SDValue Ops[2] = { Result, CCReg.getValue(1) }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue CmpOp0 = Op.getOperand(2); |
| SDValue CmpOp1 = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc DL(Op); |
| |
| Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); |
| SDValue CCReg = emitCmp(DAG, DL, C); |
| return DAG.getNode( |
| SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), |
| DAG.getTargetConstant(C.CCValid, DL, MVT::i32), |
| DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); |
| } |
| |
| // Return true if Pos is CmpOp and Neg is the negative of CmpOp, |
| // allowing Pos and Neg to be wider than CmpOp. |
| static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { |
| return (Neg.getOpcode() == ISD::SUB && |
| Neg.getOperand(0).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && |
| Neg.getOperand(1) == Pos && |
| (Pos == CmpOp || |
| (Pos.getOpcode() == ISD::SIGN_EXTEND && |
| Pos.getOperand(0) == CmpOp))); |
| } |
| |
| // Return the absolute or negative absolute of Op; IsNegative decides which. |
| static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, |
| bool IsNegative) { |
| Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); |
| if (IsNegative) |
| Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), |
| DAG.getConstant(0, DL, Op.getValueType()), Op); |
| return Op; |
| } |
| |
| SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue CmpOp0 = Op.getOperand(0); |
| SDValue CmpOp1 = Op.getOperand(1); |
| SDValue TrueOp = Op.getOperand(2); |
| SDValue FalseOp = Op.getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDLoc DL(Op); |
| |
| Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); |
| |
| // Check for absolute and negative-absolute selections, including those |
| // where the comparison value is sign-extended (for LPGFR and LNGFR). |
| // This check supplements the one in DAGCombiner. |
| if (C.Opcode == SystemZISD::ICMP && |
| C.CCMask != SystemZ::CCMASK_CMP_EQ && |
| C.CCMask != SystemZ::CCMASK_CMP_NE && |
| C.Op1.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { |
| if (isAbsolute(C.Op0, TrueOp, FalseOp)) |
| return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); |
| if (isAbsolute(C.Op0, FalseOp, TrueOp)) |
| return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); |
| } |
| |
| SDValue CCReg = emitCmp(DAG, DL, C); |
| SDValue Ops[] = {TrueOp, FalseOp, |
| DAG.getTargetConstant(C.CCValid, DL, MVT::i32), |
| DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; |
| |
| return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); |
| } |
| |
| SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Node); |
| const GlobalValue *GV = Node->getGlobal(); |
| int64_t Offset = Node->getOffset(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| CodeModel::Model CM = DAG.getTarget().getCodeModel(); |
| |
| SDValue Result; |
| if (Subtarget.isPC32DBLSymbol(GV, CM)) { |
| if (isInt<32>(Offset)) { |
| // Assign anchors at 1<<12 byte boundaries. |
| uint64_t Anchor = Offset & ~uint64_t(0xfff); |
| Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); |
| Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| |
| // The offset can be folded into the address if it is aligned to a |
| // halfword. |
| Offset -= Anchor; |
| if (Offset != 0 && (Offset & 1) == 0) { |
| SDValue Full = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); |
| Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); |
| Offset = 0; |
| } |
| } else { |
| // Conservatively load a constant offset greater than 32 bits into a |
| // register below. |
| Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); |
| Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| } |
| } else { |
| Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); |
| Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| } |
| |
| // If there was a non-zero offset that we didn't fold, create an explicit |
| // addition for it. |
| if (Offset != 0) |
| Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, |
| DAG.getConstant(Offset, DL, PtrVT)); |
| |
| return Result; |
| } |
| |
| SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, |
| SelectionDAG &DAG, |
| unsigned Opcode, |
| SDValue GOTOffset) const { |
| SDLoc DL(Node); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue Glue; |
| |
| if (DAG.getMachineFunction().getFunction().getCallingConv() == |
| CallingConv::GHC) |
| report_fatal_error("In GHC calling convention TLS is not supported"); |
| |
| // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. |
| SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); |
| Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); |
| Glue = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); |
| Glue = Chain.getValue(1); |
| |
| // The first call operand is the chain and the second is the TLS symbol. |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, |
| Node->getValueType(0), |
| 0, 0)); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); |
| Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = |
| TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| // Glue the call to the argument copies. |
| Ops.push_back(Glue); |
| |
| // Emit the call. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); |
| Glue = Chain.getValue(1); |
| |
| // Copy the return value from %r2. |
| return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); |
| } |
| |
| SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| SDValue Chain = DAG.getEntryNode(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // The high part of the thread pointer is in access register 0. |
| SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); |
| TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); |
| |
| // The low part of the thread pointer is in access register 1. |
| SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); |
| TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); |
| |
| // Merge them into a single 64-bit address. |
| SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, |
| DAG.getConstant(32, DL, PtrVT)); |
| return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); |
| } |
| |
| SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, |
| SelectionDAG &DAG) const { |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(Node, DAG); |
| SDLoc DL(Node); |
| const GlobalValue *GV = Node->getGlobal(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| TLSModel::Model model = DAG.getTarget().getTLSModel(GV); |
| |
| if (DAG.getMachineFunction().getFunction().getCallingConv() == |
| CallingConv::GHC) |
| report_fatal_error("In GHC calling convention TLS is not supported"); |
| |
| SDValue TP = lowerThreadPointer(DL, DAG); |
| |
| // Get the offset of GA from the thread pointer, based on the TLS model. |
| SDValue Offset; |
| switch (model) { |
| case TLSModel::GeneralDynamic: { |
| // Load the GOT offset of the tls_index (module ID / per-symbol offset). |
| SystemZConstantPoolValue *CPV = |
| SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); |
| |
| Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); |
| Offset = DAG.getLoad( |
| PtrVT, DL, DAG.getEntryNode(), Offset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| |
| // Call __tls_get_offset to retrieve the offset. |
| Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); |
| break; |
| } |
| |
| case TLSModel::LocalDynamic: { |
| // Load the GOT offset of the module ID. |
| SystemZConstantPoolValue *CPV = |
| SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); |
| |
| Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); |
| Offset = DAG.getLoad( |
| PtrVT, DL, DAG.getEntryNode(), Offset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| |
| // Call __tls_get_offset to retrieve the module base offset. |
| Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); |
| |
| // Note: The SystemZLDCleanupPass will remove redundant computations |
| // of the module base offset. Count total number of local-dynamic |
| // accesses to trigger execution of that pass. |
| SystemZMachineFunctionInfo* MFI = |
| DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); |
| MFI->incNumLocalDynamicTLSAccesses(); |
| |
| // Add the per-symbol offset. |
| CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); |
| |
| SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); |
| DTPOffset = DAG.getLoad( |
| PtrVT, DL, DAG.getEntryNode(), DTPOffset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| |
| Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); |
| break; |
| } |
| |
| case TLSModel::InitialExec: { |
| // Load the offset from the GOT. |
| Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, |
| SystemZII::MO_INDNTPOFF); |
| Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); |
| Offset = |
| DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| break; |
| } |
| |
| case TLSModel::LocalExec: { |
| // Force the offset into the constant pool and load it from there. |
| SystemZConstantPoolValue *CPV = |
| SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); |
| |
| Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); |
| Offset = DAG.getLoad( |
| PtrVT, DL, DAG.getEntryNode(), Offset, |
| MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); |
| break; |
| } |
| } |
| |
| // Add the base and offset together. |
| return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); |
| } |
| |
| SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Node); |
| const BlockAddress *BA = Node->getBlockAddress(); |
| int64_t Offset = Node->getOffset(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); |
| Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| return Result; |
| } |
| |
| SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, |
| SelectionDAG &DAG) const { |
| SDLoc DL(JT); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); |
| |
| // Use LARL to load the address of the table. |
| return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| } |
| |
| SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, |
| SelectionDAG &DAG) const { |
| SDLoc DL(CP); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue Result; |
| if (CP->isMachineConstantPoolEntry()) |
| Result = |
| DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); |
| else |
| Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), |
| CP->getOffset()); |
| |
| // Use LARL to load the address of the constant pool entry. |
| return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); |
| } |
| |
| SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // By definition, the frame address is the address of the back chain. (In |
| // the case of packed stack without backchain, return the address where the |
| // backchain would have been stored. This will either be an unused space or |
| // contain a saved register). |
| int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); |
| SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); |
| |
| // FIXME The frontend should detect this case. |
| if (Depth > 0) { |
| report_fatal_error("Unsupported stack frame traversal count"); |
| } |
| |
| return BackChain; |
| } |
| |
| SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // FIXME The frontend should detect this case. |
| if (Depth > 0) { |
| report_fatal_error("Unsupported stack frame traversal count"); |
| } |
| |
| // Return R14D, which has the return address. Mark it an implicit live-in. |
| Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); |
| } |
| |
| SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue In = Op.getOperand(0); |
| EVT InVT = In.getValueType(); |
| EVT ResVT = Op.getValueType(); |
| |
| // Convert loads directly. This is normally done by DAGCombiner, |
| // but we need this case for bitcasts that are created during lowering |
| // and which are then lowered themselves. |
| if (auto *LoadN = dyn_cast<LoadSDNode>(In)) |
| if (ISD::isNormalLoad(LoadN)) { |
| SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), |
| LoadN->getBasePtr(), LoadN->getMemOperand()); |
| // Update the chain uses. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); |
| return NewLoad; |
| } |
| |
| if (InVT == MVT::i32 && ResVT == MVT::f32) { |
| SDValue In64; |
| if (Subtarget.hasHighWord()) { |
| SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, |
| MVT::i64); |
| In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, |
| MVT::i64, SDValue(U64, 0), In); |
| } else { |
| In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); |
| In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, |
| DAG.getConstant(32, DL, MVT::i64)); |
| } |
| SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); |
| return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, |
| DL, MVT::f32, Out64); |
| } |
| if (InVT == MVT::f32 && ResVT == MVT::i32) { |
| SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); |
| SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, |
| MVT::f64, SDValue(U64, 0), In); |
| SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); |
| if (Subtarget.hasHighWord()) |
| return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, |
| MVT::i32, Out64); |
| SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, |
| DAG.getConstant(32, DL, MVT::i64)); |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); |
| } |
| llvm_unreachable("Unexpected bitcast combination"); |
| } |
| |
| SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| if (Subtarget.isTargetXPLINK64()) |
| return lowerVASTART_XPLINK(Op, DAG); |
| else |
| return lowerVASTART_ELF(Op, DAG); |
| } |
| |
| SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SystemZMachineFunctionInfo *FuncInfo = |
| MF.getInfo<SystemZMachineFunctionInfo>(); |
| |
| SDLoc DL(Op); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SystemZMachineFunctionInfo *FuncInfo = |
| MF.getInfo<SystemZMachineFunctionInfo>(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Addr = Op.getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| SDLoc DL(Op); |
| |
| // The initial values of each field. |
| const unsigned NumFields = 4; |
| SDValue Fields[NumFields] = { |
| DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), |
| DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), |
| DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), |
| DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) |
| }; |
| |
| // Store each field into its respective slot. |
| SDValue MemOps[NumFields]; |
| unsigned Offset = 0; |
| for (unsigned I = 0; I < NumFields; ++I) { |
| SDValue FieldAddr = Addr; |
| if (Offset != 0) |
| FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, |
| DAG.getIntPtrConstant(Offset, DL)); |
| MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, |
| MachinePointerInfo(SV, Offset)); |
| Offset += 8; |
| } |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); |
| } |
| |
| SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue DstPtr = Op.getOperand(1); |
| SDValue SrcPtr = Op.getOperand(2); |
| const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| SDLoc DL(Op); |
| |
| uint32_t Sz = |
| Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; |
| return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), |
| Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, |
| /*isTailCall*/ false, MachinePointerInfo(DstSV), |
| MachinePointerInfo(SrcSV)); |
| } |
| |
| SDValue |
| SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Subtarget.isTargetXPLINK64()) |
| return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); |
| else |
| return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); |
| } |
| |
| SDValue |
| SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, |
| SelectionDAG &DAG) const { |
| const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| SDValue Align = Op.getOperand(2); |
| SDLoc DL(Op); |
| |
| // If user has set the no alignment function attribute, ignore |
| // alloca alignments. |
| uint64_t AlignVal = |
| (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); |
| |
| uint64_t StackAlign = TFI->getStackAlignment(); |
| uint64_t RequiredAlign = std::max(AlignVal, StackAlign); |
| uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; |
| |
| SDValue NeededSpace = Size; |
| |
| // Add extra space for alignment if needed. |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| if (ExtraAlignSpace) |
| NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, |
| DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); |
| |
| bool IsSigned = false; |
| bool DoesNotReturn = false; |
| bool IsReturnValueUsed = false; |
| EVT VT = Op.getValueType(); |
| SDValue AllocaCall = |
| makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), |
| CallingConv::C, IsSigned, DL, DoesNotReturn, |
| IsReturnValueUsed) |
| .first; |
| |
| // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue |
| // to end of call in order to ensure it isn't broken up from the call |
| // sequence. |
| auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); |
| Register SPReg = Regs.getStackPointerRegister(); |
| Chain = AllocaCall.getValue(1); |
| SDValue Glue = AllocaCall.getValue(2); |
| SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); |
| Chain = NewSPRegNode.getValue(1); |
| |
| MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); |
| SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); |
| SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); |
| |
| // Dynamically realign if needed. |
| if (ExtraAlignSpace) { |
| Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, |
| DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); |
| Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, |
| DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); |
| } |
| |
| SDValue Ops[2] = {Result, Chain}; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue |
| SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, |
| SelectionDAG &DAG) const { |
| const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); |
| bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| SDValue Align = Op.getOperand(2); |
| SDLoc DL(Op); |
| |
| // If user has set the no alignment function attribute, ignore |
| // alloca alignments. |
| uint64_t AlignVal = |
| (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); |
| |
| uint64_t StackAlign = TFI->getStackAlignment(); |
| uint64_t RequiredAlign = std::max(AlignVal, StackAlign); |
| uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; |
| |
| Register SPReg = getStackPointerRegisterToSaveRestore(); |
| SDValue NeededSpace = Size; |
| |
| // Get a reference to the stack pointer. |
| SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); |
| |
| // If we need a backchain, save it now. |
| SDValue Backchain; |
| if (StoreBackchain) |
| Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), |
| MachinePointerInfo()); |
| |
| // Add extra space for alignment if needed. |
| if (ExtraAlignSpace) |
| NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, |
| DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); |
| |
| // Get the new stack pointer value. |
| SDValue NewSP; |
| if (hasInlineStackProbe(MF)) { |
| NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, |
| DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); |
| Chain = NewSP.getValue(1); |
| } |
| else { |
| NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); |
| // Copy the new stack pointer back. |
| Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); |
| } |
| |
| // The allocated data lives above the 160 bytes allocated for the standard |
| // frame, plus any outgoing stack arguments. We don't know how much that |
| // amounts to yet, so emit a special ADJDYNALLOC placeholder. |
| SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); |
| SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); |
| |
| // Dynamically realign if needed. |
| if (RequiredAlign > StackAlign) { |
| Result = |
| DAG.getNode(ISD::ADD, DL, MVT::i64, Result, |
| DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); |
| Result = |
| DAG.getNode(ISD::AND, DL, MVT::i64, Result, |
| DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); |
| } |
| |
| if (StoreBackchain) |
| Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), |
| MachinePointerInfo()); |
| |
| SDValue Ops[2] = { Result, Chain }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| |
| return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); |
| } |
| |
| SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue Ops[2]; |
| if (is32Bit(VT)) |
| // Just do a normal 64-bit multiplication and extract the results. |
| // We define this so that it can be used for constant division. |
| lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), |
| Op.getOperand(1), Ops[1], Ops[0]); |
| else if (Subtarget.hasMiscellaneousExtensions2()) |
| // SystemZISD::SMUL_LOHI returns the low result in the odd register and |
| // the high result in the even register. ISD::SMUL_LOHI is defined to |
| // return the low half first, so the results are in reverse order. |
| lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, |
| Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); |
| else { |
| // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: |
| // |
| // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) |
| // |
| // but using the fact that the upper halves are either all zeros |
| // or all ones: |
| // |
| // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) |
| // |
| // and grouping the right terms together since they are quicker than the |
| // multiplication: |
| // |
| // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) |
| SDValue C63 = DAG.getConstant(63, DL, MVT::i64); |
| SDValue LL = Op.getOperand(0); |
| SDValue RL = Op.getOperand(1); |
| SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); |
| SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); |
| // SystemZISD::UMUL_LOHI returns the low result in the odd register and |
| // the high result in the even register. ISD::SMUL_LOHI is defined to |
| // return the low half first, so the results are in reverse order. |
| lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, |
| LL, RL, Ops[1], Ops[0]); |
| SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); |
| SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); |
| SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); |
| Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); |
| } |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue Ops[2]; |
| if (is32Bit(VT)) |
| // Just do a normal 64-bit multiplication and extract the results. |
| // We define this so that it can be used for constant division. |
| lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), |
| Op.getOperand(1), Ops[1], Ops[0]); |
| else |
| // SystemZISD::UMUL_LOHI returns the low result in the odd register and |
| // the high result in the even register. ISD::UMUL_LOHI is defined to |
| // return the low half first, so the results are in reverse order. |
| lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, |
| Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| |
| // We use DSGF for 32-bit division. This means the first operand must |
| // always be 64-bit, and the second operand should be 32-bit whenever |
| // that is possible, to improve performance. |
| if (is32Bit(VT)) |
| Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); |
| else if (DAG.ComputeNumSignBits(Op1) > 32) |
| Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); |
| |
| // DSG(F) returns the remainder in the even register and the |
| // quotient in the odd register. |
| SDValue Ops[2]; |
| lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| |
| // DL(G) returns the remainder in the even register and the |
| // quotient in the odd register. |
| SDValue Ops[2]; |
| lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, |
| Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); |
| |
| // Get the known-zero masks for each operand. |
| SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; |
| KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), |
| DAG.computeKnownBits(Ops[1])}; |
| |
| // See if the upper 32 bits of one operand and the lower 32 bits of the |
| // other are known zero. They are the low and high operands respectively. |
| uint64_t Masks[] = { Known[0].Zero.getZExtValue(), |
| Known[1].Zero.getZExtValue() }; |
| unsigned High, Low; |
| if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) |
| High = 1, Low = 0; |
| else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) |
| High = 0, Low = 1; |
| else |
| return Op; |
| |
| SDValue LowOp = Ops[Low]; |
| SDValue HighOp = Ops[High]; |
| |
| // If the high part is a constant, we're better off using IILH. |
| if (HighOp.getOpcode() == ISD::Constant) |
| return Op; |
| |
| // If the low part is a constant that is outside the range of LHI, |
| // then we're better off using IILF. |
| if (LowOp.getOpcode() == ISD::Constant) { |
| int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); |
| if (!isInt<16>(Value)) |
| return Op; |
| } |
| |
| // Check whether the high part is an AND that doesn't change the |
| // high 32 bits and just masks out low bits. We can skip it if so. |
| if (HighOp.getOpcode() == ISD::AND && |
| HighOp.getOperand(1).getOpcode() == ISD::Constant) { |
| SDValue HighOp0 = HighOp.getOperand(0); |
| uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); |
| if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) |
| HighOp = HighOp0; |
| } |
| |
| // Take advantage of the fact that all GR32 operations only change the |
| // low 32 bits by truncating Low to an i32 and inserting it directly |
| // using a subreg. The interesting cases are those where the truncation |
| // can be folded. |
| SDLoc DL(Op); |
| SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); |
| return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, |
| MVT::i64, HighOp, Low32); |
| } |
| |
| // Lower SADDO/SSUBO/UADDO/USUBO nodes. |
| SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDNode *N = Op.getNode(); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDLoc DL(N); |
| unsigned BaseOp = 0; |
| unsigned CCValid = 0; |
| unsigned CCMask = 0; |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unknown instruction!"); |
| case ISD::SADDO: |
| BaseOp = SystemZISD::SADDO; |
| CCValid = SystemZ::CCMASK_ARITH; |
| CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; |
| break; |
| case ISD::SSUBO: |
| BaseOp = SystemZISD::SSUBO; |
| CCValid = SystemZ::CCMASK_ARITH; |
| CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; |
| break; |
| case ISD::UADDO: |
| BaseOp = SystemZISD::UADDO; |
| CCValid = SystemZ::CCMASK_LOGICAL; |
| CCMask = SystemZ::CCMASK_LOGICAL_CARRY; |
| break; |
| case ISD::USUBO: |
| BaseOp = SystemZISD::USUBO; |
| CCValid = SystemZ::CCMASK_LOGICAL; |
| CCMask = SystemZ::CCMASK_LOGICAL_BORROW; |
| break; |
| } |
| |
| SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); |
| SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); |
| |
| SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); |
| if (N->getValueType(1) == MVT::i1) |
| SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); |
| } |
| |
| static bool isAddCarryChain(SDValue Carry) { |
| while (Carry.getOpcode() == ISD::ADDCARRY) |
| Carry = Carry.getOperand(2); |
| return Carry.getOpcode() == ISD::UADDO; |
| } |
| |
| static bool isSubBorrowChain(SDValue Carry) { |
| while (Carry.getOpcode() == ISD::SUBCARRY) |
| Carry = Carry.getOperand(2); |
| return Carry.getOpcode() == ISD::USUBO; |
| } |
| |
| // Lower ADDCARRY/SUBCARRY nodes. |
| SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| SDNode *N = Op.getNode(); |
| MVT VT = N->getSimpleValueType(0); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue Carry = Op.getOperand(2); |
| SDLoc DL(N); |
| unsigned BaseOp = 0; |
| unsigned CCValid = 0; |
| unsigned CCMask = 0; |
| |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Unknown instruction!"); |
| case ISD::ADDCARRY: |
| if (!isAddCarryChain(Carry)) |
| return SDValue(); |
| |
| BaseOp = SystemZISD::ADDCARRY; |
| CCValid = SystemZ::CCMASK_LOGICAL; |
| CCMask = SystemZ::CCMASK_LOGICAL_CARRY; |
| break; |
| case ISD::SUBCARRY: |
| if (!isSubBorrowChain(Carry)) |
| return SDValue(); |
| |
| BaseOp = SystemZISD::SUBCARRY; |
| CCValid = SystemZ::CCMASK_LOGICAL; |
| CCMask = SystemZ::CCMASK_LOGICAL_BORROW; |
| break; |
| } |
| |
| // Set the condition code from the carry flag. |
| Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, |
| DAG.getConstant(CCValid, DL, MVT::i32), |
| DAG.getConstant(CCMask, DL, MVT::i32)); |
| |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); |
| |
| SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); |
| if (N->getValueType(1) == MVT::i1) |
| SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); |
| } |
| |
| SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| Op = Op.getOperand(0); |
| |
| // Handle vector types via VPOPCT. |
| if (VT.isVector()) { |
| Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); |
| Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); |
| switch (VT.getScalarSizeInBits()) { |
| case 8: |
| break; |
| case 16: { |
| Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); |
| SDValue Shift = DAG.getConstant(8, DL, MVT::i32); |
| SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); |
| Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); |
| Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); |
| break; |
| } |
| case 32: { |
| SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, |
| DAG.getConstant(0, DL, MVT::i32)); |
| Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); |
| break; |
| } |
| case 64: { |
| SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, |
| DAG.getConstant(0, DL, MVT::i32)); |
| Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); |
| Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); |
| break; |
| } |
| default: |
| llvm_unreachable("Unexpected type"); |
| } |
| return Op; |
| } |
| |
| // Get the known-zero mask for the operand. |
| KnownBits Known = DAG.computeKnownBits(Op); |
| unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); |
| if (NumSignificantBits == 0) |
| return DAG.getConstant(0, DL, VT); |
| |
| // Skip known-zero high parts of the operand. |
| int64_t OrigBitSize = VT.getSizeInBits(); |
| int64_t BitSize = llvm::bit_ceil(NumSignificantBits); |
| BitSize = std::min(BitSize, OrigBitSize); |
| |
| // The POPCNT instruction counts the number of bits in each byte. |
| Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); |
| Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); |
| Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); |
| |
| // Add up per-byte counts in a binary tree. All bits of Op at |
| // position larger than BitSize remain zero throughout. |
| for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { |
| SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); |
| if (BitSize != OrigBitSize) |
| Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, |
| DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); |
| Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); |
| } |
| |
| // Extract overall result from high byte. |
| if (BitSize > 8) |
| Op = DAG.getNode(ISD::SRL, DL, VT, Op, |
| DAG.getConstant(BitSize - 8, DL, VT)); |
| |
| return Op; |
| } |
| |
| SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( |
| cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); |
| SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( |
| cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); |
| |
| // The only fence that needs an instruction is a sequentially-consistent |
| // cross-thread fence. |
| if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && |
| FenceSSID == SyncScope::System) { |
| return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, |
| Op.getOperand(0)), |
| 0); |
| } |
| |
| // MEMBARRIER is a compiler barrier; it codegens to a no-op. |
| return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); |
| } |
| |
| // Op is an atomic load. Lower it into a normal volatile load. |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *Node = cast<AtomicSDNode>(Op.getNode()); |
| return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), |
| Node->getChain(), Node->getBasePtr(), |
| Node->getMemoryVT(), Node->getMemOperand()); |
| } |
| |
| // Op is an atomic store. Lower it into a normal volatile store. |
| SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *Node = cast<AtomicSDNode>(Op.getNode()); |
| SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), |
| Node->getBasePtr(), Node->getMemoryVT(), |
| Node->getMemOperand()); |
| // We have to enforce sequential consistency by performing a |
| // serialization operation after the store. |
| if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) |
| Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), |
| MVT::Other, Chain), 0); |
| return Chain; |
| } |
| |
| // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first |
| // two into the fullword ATOMIC_LOADW_* operation given by Opcode. |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, |
| SelectionDAG &DAG, |
| unsigned Opcode) const { |
| auto *Node = cast<AtomicSDNode>(Op.getNode()); |
| |
| // 32-bit operations need no code outside the main loop. |
| EVT NarrowVT = Node->getMemoryVT(); |
| EVT WideVT = MVT::i32; |
| if (NarrowVT == WideVT) |
| return Op; |
| |
| int64_t BitSize = NarrowVT.getSizeInBits(); |
| SDValue ChainIn = Node->getChain(); |
| SDValue Addr = Node->getBasePtr(); |
| SDValue Src2 = Node->getVal(); |
| MachineMemOperand *MMO = Node->getMemOperand(); |
| SDLoc DL(Node); |
| EVT PtrVT = Addr.getValueType(); |
| |
| // Convert atomic subtracts of constants into additions. |
| if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) |
| if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { |
| Opcode = SystemZISD::ATOMIC_LOADW_ADD; |
| Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); |
| } |
| |
| // Get the address of the containing word. |
| SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, |
| DAG.getConstant(-4, DL, PtrVT)); |
| |
| // Get the number of bits that the word must be rotated left in order |
| // to bring the field to the top bits of a GR32. |
| SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, |
| DAG.getConstant(3, DL, PtrVT)); |
| BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); |
| |
| // Get the complementing shift amount, for rotating a field in the top |
| // bits back to its proper position. |
| SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, |
| DAG.getConstant(0, DL, WideVT), BitShift); |
| |
| // Extend the source operand to 32 bits and prepare it for the inner loop. |
| // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other |
| // operations require the source to be shifted in advance. (This shift |
| // can be folded if the source is constant.) For AND and NAND, the lower |
| // bits must be set, while for other opcodes they should be left clear. |
| if (Opcode != SystemZISD::ATOMIC_SWAPW) |
| Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, |
| DAG.getConstant(32 - BitSize, DL, WideVT)); |
| if (Opcode == SystemZISD::ATOMIC_LOADW_AND || |
| Opcode == SystemZISD::ATOMIC_LOADW_NAND) |
| Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, |
| DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); |
| |
| // Construct the ATOMIC_LOADW_* node. |
| SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); |
| SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, |
| DAG.getConstant(BitSize, DL, WideVT) }; |
| SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, |
| NarrowVT, MMO); |
| |
| // Rotate the result of the final CS so that the field is in the lower |
| // bits of a GR32, then truncate it. |
| SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, |
| DAG.getConstant(BitSize, DL, WideVT)); |
| SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); |
| |
| SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; |
| return DAG.getMergeValues(RetOps, DL); |
| } |
| |
| // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations |
| // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit |
| // operations into additions. |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *Node = cast<AtomicSDNode>(Op.getNode()); |
| EVT MemVT = Node->getMemoryVT(); |
| if (MemVT == MVT::i32 || MemVT == MVT::i64) { |
| // A full-width operation. |
| assert(Op.getValueType() == MemVT && "Mismatched VTs"); |
| SDValue Src2 = Node->getVal(); |
| SDValue NegSrc2; |
| SDLoc DL(Src2); |
| |
| if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { |
| // Use an addition if the operand is constant and either LAA(G) is |
| // available or the negative value is in the range of A(G)FHI. |
| int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); |
| if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) |
| NegSrc2 = DAG.getConstant(Value, DL, MemVT); |
| } else if (Subtarget.hasInterlockedAccess1()) |
| // Use LAA(G) if available. |
| NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), |
| Src2); |
| |
| if (NegSrc2.getNode()) |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, |
| Node->getChain(), Node->getBasePtr(), NegSrc2, |
| Node->getMemOperand()); |
| |
| // Use the node as-is. |
| return Op; |
| } |
| |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); |
| } |
| |
| // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. |
| SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *Node = cast<AtomicSDNode>(Op.getNode()); |
| SDValue ChainIn = Node->getOperand(0); |
| SDValue Addr = Node->getOperand(1); |
| SDValue CmpVal = Node->getOperand(2); |
| SDValue SwapVal = Node->getOperand(3); |
| MachineMemOperand *MMO = Node->getMemOperand(); |
| SDLoc DL(Node); |
| |
| // We have native support for 32-bit and 64-bit compare and swap, but we |
| // still need to expand extracting the "success" result from the CC. |
| EVT NarrowVT = Node->getMemoryVT(); |
| EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; |
| if (NarrowVT == WideVT) { |
| SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); |
| SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; |
| SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, |
| DL, Tys, Ops, NarrowVT, MMO); |
| SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), |
| SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); |
| |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); |
| return SDValue(); |
| } |
| |
| // Convert 8-bit and 16-bit compare and swap to a loop, implemented |
| // via a fullword ATOMIC_CMP_SWAPW operation. |
| int64_t BitSize = NarrowVT.getSizeInBits(); |
| EVT PtrVT = Addr.getValueType(); |
| |
| // Get the address of the containing word. |
| SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, |
| DAG.getConstant(-4, DL, PtrVT)); |
| |
| // Get the number of bits that the word must be rotated left in order |
| // to bring the field to the top bits of a GR32. |
| SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, |
| DAG.getConstant(3, DL, PtrVT)); |
| BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); |
| |
| // Get the complementing shift amount, for rotating a field in the top |
| // bits back to its proper position. |
| SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, |
| DAG.getConstant(0, DL, WideVT), BitShift); |
| |
| // Construct the ATOMIC_CMP_SWAPW node. |
| SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); |
| SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, |
| NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; |
| SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, |
| VTList, Ops, NarrowVT, MMO); |
| SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), |
| SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); |
| |
| // emitAtomicCmpSwapW() will zero extend the result (original value). |
| SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), |
| DAG.getValueType(NarrowVT)); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); |
| DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); |
| return SDValue(); |
| } |
| |
| MachineMemOperand::Flags |
| SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { |
| // Because of how we convert atomic_load and atomic_store to normal loads and |
| // stores in the DAG, we need to ensure that the MMOs are marked volatile |
| // since DAGCombine hasn't been updated to account for atomic, but non |
| // volatile loads. (See D57601) |
| if (auto *SI = dyn_cast<StoreInst>(&I)) |
| if (SI->isAtomic()) |
| return MachineMemOperand::MOVolatile; |
| if (auto *LI = dyn_cast<LoadInst>(&I)) |
| if (LI->isAtomic()) |
| return MachineMemOperand::MOVolatile; |
| if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) |
| if (AI->isAtomic()) |
| return MachineMemOperand::MOVolatile; |
| if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) |
| if (AI->isAtomic()) |
| return MachineMemOperand::MOVolatile; |
| return MachineMemOperand::MONone; |
| } |
| |
| SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); |
| auto *Regs = Subtarget->getSpecialRegisters(); |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| report_fatal_error("Variable-sized stack allocations are not supported " |
| "in GHC calling convention"); |
| return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), |
| Regs->getStackPointerRegister(), Op.getValueType()); |
| } |
| |
| SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); |
| auto *Regs = Subtarget->getSpecialRegisters(); |
| bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); |
| |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| report_fatal_error("Variable-sized stack allocations are not supported " |
| "in GHC calling convention"); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue NewSP = Op.getOperand(1); |
| SDValue Backchain; |
| SDLoc DL(Op); |
| |
| if (StoreBackchain) { |
| SDValue OldSP = DAG.getCopyFromReg( |
| Chain, DL, Regs->getStackPointerRegister(), MVT::i64); |
| Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), |
| MachinePointerInfo()); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); |
| |
| if (StoreBackchain) |
| Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), |
| MachinePointerInfo()); |
| |
| return Chain; |
| } |
| |
| SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, |
| SelectionDAG &DAG) const { |
| bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); |
| if (!IsData) |
| // Just preserve the chain. |
| return Op.getOperand(0); |
| |
| SDLoc DL(Op); |
| bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; |
| auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); |
| SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), |
| Op.getOperand(1)}; |
| return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, |
| Node->getVTList(), Ops, |
| Node->getMemoryVT(), Node->getMemOperand()); |
| } |
| |
| // Convert condition code in CCReg to an i32 value. |
| static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { |
| SDLoc DL(CCReg); |
| SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); |
| return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, |
| DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); |
| } |
| |
| SDValue |
| SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opcode, CCValid; |
| if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { |
| assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); |
| SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); |
| SDValue CC = getCCResult(DAG, SDValue(Node, 0)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); |
| return SDValue(); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opcode, CCValid; |
| if (isIntrinsicWithCC(Op, Opcode, CCValid)) { |
| SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); |
| if (Op->getNumValues() == 1) |
| return getCCResult(DAG, SDValue(Node, 0)); |
| assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); |
| return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), |
| SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); |
| } |
| |
| unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (Id) { |
| case Intrinsic::thread_pointer: |
| return lowerThreadPointer(SDLoc(Op), DAG); |
| |
| case Intrinsic::s390_vpdi: |
| return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::s390_vperm: |
| return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::s390_vuphb: |
| case Intrinsic::s390_vuphh: |
| case Intrinsic::s390_vuphf: |
| return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1)); |
| |
| case Intrinsic::s390_vuplhb: |
| case Intrinsic::s390_vuplhh: |
| case Intrinsic::s390_vuplhf: |
| return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1)); |
| |
| case Intrinsic::s390_vuplb: |
| case Intrinsic::s390_vuplhw: |
| case Intrinsic::s390_vuplf: |
| return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1)); |
| |
| case Intrinsic::s390_vupllb: |
| case Intrinsic::s390_vupllh: |
| case Intrinsic::s390_vupllf: |
| return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1)); |
| |
| case Intrinsic::s390_vsumb: |
| case Intrinsic::s390_vsumh: |
| case Intrinsic::s390_vsumgh: |
| case Intrinsic::s390_vsumgf: |
| case Intrinsic::s390_vsumqf: |
| case Intrinsic::s390_vsumqg: |
| return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| return SDValue(); |
| } |
| |
| namespace { |
| // Says that SystemZISD operation Opcode can be used to perform the equivalent |
| // of a VPERM with permute vector Bytes. If Opcode takes three operands, |
| // Operand is the constant third operand, otherwise it is the number of |
| // bytes in each element of the result. |
| struct Permute { |
| unsigned Opcode; |
| unsigned Operand; |
| unsigned char Bytes[SystemZ::VectorBytes]; |
| }; |
| } |
| |
| static const Permute PermuteForms[] = { |
| // VMRHG |
| { SystemZISD::MERGE_HIGH, 8, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, |
| // VMRHF |
| { SystemZISD::MERGE_HIGH, 4, |
| { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, |
| // VMRHH |
| { SystemZISD::MERGE_HIGH, 2, |
| { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, |
| // VMRHB |
| { SystemZISD::MERGE_HIGH, 1, |
| { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, |
| // VMRLG |
| { SystemZISD::MERGE_LOW, 8, |
| { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, |
| // VMRLF |
| { SystemZISD::MERGE_LOW, 4, |
| { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, |
| // VMRLH |
| { SystemZISD::MERGE_LOW, 2, |
| { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, |
| // VMRLB |
| { SystemZISD::MERGE_LOW, 1, |
| { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, |
| // VPKG |
| { SystemZISD::PACK, 4, |
| { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, |
| // VPKF |
| { SystemZISD::PACK, 2, |
| { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, |
| // VPKH |
| { SystemZISD::PACK, 1, |
| { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, |
| // VPDI V1, V2, 4 (low half of V1, high half of V2) |
| { SystemZISD::PERMUTE_DWORDS, 4, |
| { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, |
| // VPDI V1, V2, 1 (high half of V1, low half of V2) |
| { SystemZISD::PERMUTE_DWORDS, 1, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } |
| }; |
| |
| // Called after matching a vector shuffle against a particular pattern. |
| // Both the original shuffle and the pattern have two vector operands. |
| // OpNos[0] is the operand of the original shuffle that should be used for |
| // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. |
| // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and |
| // set OpNo0 and OpNo1 to the shuffle operands that should actually be used |
| // for operands 0 and 1 of the pattern. |
| static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { |
| if (OpNos[0] < 0) { |
| if (OpNos[1] < 0) |
| return false; |
| OpNo0 = OpNo1 = OpNos[1]; |
| } else if (OpNos[1] < 0) { |
| OpNo0 = OpNo1 = OpNos[0]; |
| } else { |
| OpNo0 = OpNos[0]; |
| OpNo1 = OpNos[1]; |
| } |
| return true; |
| } |
| |
| // Bytes is a VPERM-like permute vector, except that -1 is used for |
| // undefined bytes. Return true if the VPERM can be implemented using P. |
| // When returning true set OpNo0 to the VPERM operand that should be |
| // used for operand 0 of P and likewise OpNo1 for operand 1 of P. |
| // |
| // For example, if swapping the VPERM operands allows P to match, OpNo0 |
| // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one |
| // operand, but rewriting it to use two duplicated operands allows it to |
| // match P, then OpNo0 and OpNo1 will be the same. |
| static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, |
| unsigned &OpNo0, unsigned &OpNo1) { |
| int OpNos[] = { -1, -1 }; |
| for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { |
| int Elt = Bytes[I]; |
| if (Elt >= 0) { |
| // Make sure that the two permute vectors use the same suboperand |
| // byte number. Only the operand numbers (the high bits) are |
| // allowed to differ. |
| if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) |
| return false; |
| int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; |
| int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; |
| // Make sure that the operand mappings are consistent with previous |
| // elements. |
| if (OpNos[ModelOpNo] == 1 - RealOpNo) |
| return false; |
| OpNos[ModelOpNo] = RealOpNo; |
| } |
| } |
| return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); |
| } |
| |
| // As above, but search for a matching permute. |
| static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, |
| unsigned &OpNo0, unsigned &OpNo1) { |
| for (auto &P : PermuteForms) |
| if (matchPermute(Bytes, P, OpNo0, OpNo1)) |
| return &P; |
| return nullptr; |
| } |
| |
| // Bytes is a VPERM-like permute vector, except that -1 is used for |
| // undefined bytes. This permute is an operand of an outer permute. |
| // See whether redistributing the -1 bytes gives a shuffle that can be |
| // implemented using P. If so, set Transform to a VPERM-like permute vector |
| // that, when applied to the result of P, gives the original permute in Bytes. |
| static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, |
| const Permute &P, |
| SmallVectorImpl<int> &Transform) { |
| unsigned To = 0; |
| for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { |
| int Elt = Bytes[From]; |
| if (Elt < 0) |
| // Byte number From of the result is undefined. |
| Transform[From] = -1; |
| else { |
| while (P.Bytes[To] != Elt) { |
| To += 1; |
| if (To == SystemZ::VectorBytes) |
| return false; |
| } |
| Transform[From] = To; |
| } |
| } |
| return true; |
| } |
| |
| // As above, but search for a matching permute. |
| static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, |
| SmallVectorImpl<int> &Transform) { |
| for (auto &P : PermuteForms) |
| if (matchDoublePermute(Bytes, P, Transform)) |
| return &P; |
| return nullptr; |
| } |
| |
| // Convert the mask of the given shuffle op into a byte-level mask, |
| // as if it had type vNi8. |
| static bool getVPermMask(SDValue ShuffleOp, |
| SmallVectorImpl<int> &Bytes) { |
| EVT VT = ShuffleOp.getValueType(); |
| unsigned NumElements = VT.getVectorNumElements(); |
| unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); |
| |
| if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { |
| Bytes.resize(NumElements * BytesPerElement, -1); |
| for (unsigned I = 0; I < NumElements; ++I) { |
| int Index = VSN->getMaskElt(I); |
| if (Index >= 0) |
| for (unsigned J = 0; J < BytesPerElement; ++J) |
| Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; |
| } |
| return true; |
| } |
| if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && |
| isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { |
| unsigned Index = ShuffleOp.getConstantOperandVal(1); |
| Bytes.resize(NumElements * BytesPerElement, -1); |
| for (unsigned I = 0; I < NumElements; ++I) |
| for (unsigned J = 0; J < BytesPerElement; ++J) |
| Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; |
| return true; |
| } |
| return false; |
| } |
| |
| // Bytes is a VPERM-like permute vector, except that -1 is used for |
| // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of |
| // the result come from a contiguous sequence of bytes from one input. |
| // Set Base to the selector for the first byte if so. |
| static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, |
| unsigned BytesPerElement, int &Base) { |
| Base = -1; |
| for (unsigned I = 0; I < BytesPerElement; ++I) { |
| if (Bytes[Start + I] >= 0) { |
| unsigned Elem = Bytes[Start + I]; |
| if (Base < 0) { |
| Base = Elem - I; |
| // Make sure the bytes would come from one input operand. |
| if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) |
| return false; |
| } else if (unsigned(Base) != Elem - I) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Bytes is a VPERM-like permute vector, except that -1 is used for |
| // undefined bytes. Return true if it can be performed using VSLDB. |
| // When returning true, set StartIndex to the shift amount and OpNo0 |
| // and OpNo1 to the VPERM operands that should be used as the first |
| // and second shift operand respectively. |
| static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, |
| unsigned &StartIndex, unsigned &OpNo0, |
| unsigned &OpNo1) { |
| int OpNos[] = { -1, -1 }; |
| int Shift = -1; |
| for (unsigned I = 0; I < 16; ++I) { |
| int Index = Bytes[I]; |
| if (Index >= 0) { |
| int ExpectedShift = (Index - I) % SystemZ::VectorBytes; |
| int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; |
| int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; |
| if (Shift < 0) |
| Shift = ExpectedShift; |
| else if (Shift != ExpectedShift) |
| return false; |
| // Make sure that the operand mappings are consistent with previous |
| // elements. |
| if (OpNos[ModelOpNo] == 1 - RealOpNo) |
| return false; |
| OpNos[ModelOpNo] = RealOpNo; |
| } |
| } |
| StartIndex = Shift; |
| return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); |
| } |
| |
| // Create a node that performs P on operands Op0 and Op1, casting the |
| // operands to the appropriate type. The type of the result is determined by P. |
| static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, |
| const Permute &P, SDValue Op0, SDValue Op1) { |
| // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input |
| // elements of a PACK are twice as wide as the outputs. |
| unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : |
| P.Opcode == SystemZISD::PACK ? P.Operand * 2 : |
| P.Operand); |
| // Cast both operands to the appropriate type. |
| MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), |
| SystemZ::VectorBytes / InBytes); |
| Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); |
| Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); |
| SDValue Op; |
| if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { |
| SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); |
| Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); |
| } else if (P.Opcode == SystemZISD::PACK) { |
| MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), |
| SystemZ::VectorBytes / P.Operand); |
| Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); |
| } else { |
| Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); |
| } |
| return Op; |
| } |
| |
| static bool isZeroVector(SDValue N) { |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0); |
| if (N->getOpcode() == ISD::SPLAT_VECTOR) |
| if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) |
| return Op->getZExtValue() == 0; |
| return ISD::isBuildVectorAllZeros(N.getNode()); |
| } |
| |
| // Return the index of the zero/undef vector, or UINT32_MAX if not found. |
| static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { |
| for (unsigned I = 0; I < Num ; I++) |
| if (isZeroVector(Ops[I])) |
| return I; |
| return UINT32_MAX; |
| } |
| |
| // Bytes is a VPERM-like permute vector, except that -1 is used for |
| // undefined bytes. Implement it on operands Ops[0] and Ops[1] using |
| // VSLDB or VPERM. |
| static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, |
| SDValue *Ops, |
| const SmallVectorImpl<int> &Bytes) { |
| for (unsigned I = 0; I < 2; ++I) |
| Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); |
| |
| // First see whether VSLDB can be used. |
| unsigned StartIndex, OpNo0, OpNo1; |
| if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) |
| return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], |
| Ops[OpNo1], |
| DAG.getTargetConstant(StartIndex, DL, MVT::i32)); |
| |
| // Fall back on VPERM. Construct an SDNode for the permute vector. Try to |
| // eliminate a zero vector by reusing any zero index in the permute vector. |
| unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); |
| if (ZeroVecIdx != UINT32_MAX) { |
| bool MaskFirst = true; |
| int ZeroIdx = -1; |
| for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { |
| unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; |
| unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; |
| if (OpNo == ZeroVecIdx && I == 0) { |
| // If the first byte is zero, use mask as first operand. |
| ZeroIdx = 0; |
| break; |
| } |
| if (OpNo != ZeroVecIdx && Byte == 0) { |
| // If mask contains a zero, use it by placing that vector first. |
| ZeroIdx = I + SystemZ::VectorBytes; |
| MaskFirst = false; |
| break; |
| } |
| } |
| if (ZeroIdx != -1) { |
| SDValue IndexNodes[SystemZ::VectorBytes]; |
| for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { |
| if (Bytes[I] >= 0) { |
| unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; |
| unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; |
| if (OpNo == ZeroVecIdx) |
| IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); |
| else { |
| unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; |
| IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); |
| } |
| } else |
| IndexNodes[I] = DAG.getUNDEF(MVT::i32); |
| } |
| SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); |
| SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; |
| if (MaskFirst) |
| return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, |
| Mask); |
| else |
| return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, |
| Mask); |
| } |
| } |
| |
| SDValue IndexNodes[SystemZ::VectorBytes]; |
| for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) |
| if (Bytes[I] >= 0) |
| IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); |
| else |
| IndexNodes[I] = DAG.getUNDEF(MVT::i32); |
| SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); |
| return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], |
| (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); |
| } |
| |
| namespace { |
| // Describes a general N-operand vector shuffle. |
| struct GeneralShuffle { |
| GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} |
| void addUndef(); |
| bool add(SDValue, unsigned); |
| SDValue getNode(SelectionDAG &, const SDLoc &); |
| void tryPrepareForUnpack(); |
| bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } |
| SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); |
| |
| // The operands of the shuffle. |
| SmallVector<SDValue, SystemZ::VectorBytes> Ops; |
| |
| // Index I is -1 if byte I of the result is undefined. Otherwise the |
| // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand |
| // Bytes[I] / SystemZ::VectorBytes. |
| SmallVector<int, SystemZ::VectorBytes> Bytes; |
| |
| // The type of the shuffle result. |
| EVT VT; |
| |
| // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. |
| unsigned UnpackFromEltSize; |
| }; |
| } |
| |
| // Add an extra undefined element to the shuffle. |
| void GeneralShuffle::addUndef() { |
| unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); |
| for (unsigned I = 0; I < BytesPerElement; ++I) |
| Bytes.push_back(-1); |
| } |
| |
| // Add an extra element to the shuffle, taking it from element Elem of Op. |
| // A null Op indicates a vector input whose value will be calculated later; |
| // there is at most one such input per shuffle and it always has the same |
| // type as the result. Aborts and returns false if the source vector elements |
| // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per |
| // LLVM they become implicitly extended, but this is rare and not optimized. |
| bool GeneralShuffle::add(SDValue Op, unsigned Elem) { |
| unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); |
| |
| // The source vector can have wider elements than the result, |
| // either through an explicit TRUNCATE or because of type legalization. |
| // We want the least significant part. |
| EVT FromVT = Op.getNode() ? Op.getValueType() : VT; |
| unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); |
| |
| // Return false if the source elements are smaller than their destination |
| // elements. |
| if (FromBytesPerElement < BytesPerElement) |
| return false; |
| |
| unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + |
| (FromBytesPerElement - BytesPerElement)); |
| |
| // Look through things like shuffles and bitcasts. |
| while (Op.getNode()) { |
| if (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { |
| // See whether the bytes we need come from a contiguous part of one |
| // operand. |
| SmallVector<int, SystemZ::VectorBytes> OpBytes; |
| if (!getVPermMask(Op, OpBytes)) |
| break; |
| int NewByte; |
| if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) |
| break; |
| if (NewByte < 0) { |
| addUndef(); |
| return true; |
| } |
| Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); |
| Byte = unsigned(NewByte) % SystemZ::VectorBytes; |
| } else if (Op.isUndef()) { |
| addUndef(); |
| return true; |
| } else |
| break; |
| } |
| |
| // Make sure that the source of the extraction is in Ops. |
| unsigned OpNo = 0; |
| for (; OpNo < Ops.size(); ++OpNo) |
| if (Ops[OpNo] == Op) |
| break; |
| if (OpNo == Ops.size()) |
| Ops.push_back(Op); |
| |
| // Add the element to Bytes. |
| unsigned Base = OpNo * SystemZ::VectorBytes + Byte; |
| for (unsigned I = 0; I < BytesPerElement; ++I) |
| Bytes.push_back(Base + I); |
| |
| return true; |
| } |
| |
| // Return SDNodes for the completed shuffle. |
| SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { |
| assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); |
| |
| if (Ops.size() == 0) |
| return DAG.getUNDEF(VT); |
| |
| // Use a single unpack if possible as the last operation. |
| tryPrepareForUnpack(); |
| |
| // Make sure that there are at least two shuffle operands. |
| if (Ops.size() == 1) |
| Ops.push_back(DAG.getUNDEF(MVT::v16i8)); |
| |
| // Create a tree of shuffles, deferring root node until after the loop. |
| // Try to redistribute the undefined elements of non-root nodes so that |
| // the non-root shuffles match something like a pack or merge, then adjust |
| // the parent node's permute vector to compensate for the new order. |
| // Among other things, this copes with vectors like <2 x i16> that were |
| // padded with undefined elements during type legalization. |
| // |
| // In the best case this redistribution will lead to the whole tree |
| // using packs and merges. It should rarely be a loss in other cases. |
| unsigned Stride = 1; |
| for (; Stride * 2 < Ops.size(); Stride *= 2) { |
| for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { |
| SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; |
| |
| // Create a mask for just these two operands. |
| SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); |
| for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { |
| unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; |
| unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; |
| if (OpNo == I) |
| NewBytes[J] = Byte; |
| else if (OpNo == I + Stride) |
| NewBytes[J] = SystemZ::VectorBytes + Byte; |
| else |
| NewBytes[J] = -1; |
| } |
| // See if it would be better to reorganize NewMask to avoid using VPERM. |
| SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); |
| if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { |
| Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); |
| // Applying NewBytesMap to Ops[I] gets back to NewBytes. |
| for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { |
| if (NewBytes[J] >= 0) { |
| assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && |
| "Invalid double permute"); |
| Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; |
| } else |
| assert(NewBytesMap[J] < 0 && "Invalid double permute"); |
| } |
| } else { |
| // Just use NewBytes on the operands. |
| Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); |
| for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) |
| if (NewBytes[J] >= 0) |
| Bytes[J] = I * SystemZ::VectorBytes + J; |
| } |
| } |
| } |
| |
| // Now we just have 2 inputs. Put the second operand in Ops[1]. |
| if (Stride > 1) { |
| Ops[1] = Ops[Stride]; |
| for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) |
| if (Bytes[I] >= int(SystemZ::VectorBytes)) |
| Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; |
| } |
| |
| // Look for an instruction that can do the permute without resorting |
| // to VPERM. |
| unsigned OpNo0, OpNo1; |
| SDValue Op; |
| if (unpackWasPrepared() && Ops[1].isUndef()) |
| Op = Ops[0]; |
| else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) |
| Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); |
| else |
| Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); |
| |
| Op = insertUnpackIfPrepared(DAG, DL, Op); |
| |
| return DAG.getNode(ISD::BITCAST, DL, VT, Op); |
| } |
| |
| #ifndef NDEBUG |
| static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { |
| dbgs() << Msg.c_str() << " { "; |
| for (unsigned i = 0; i < Bytes.size(); i++) |
| dbgs() << Bytes[i] << " "; |
| dbgs() << "}\n"; |
| } |
| #endif |
| |
| // If the Bytes vector matches an unpack operation, prepare to do the unpack |
| // after all else by removing the zero vector and the effect of the unpack on |
| // Bytes. |
| void GeneralShuffle::tryPrepareForUnpack() { |
| uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); |
| if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) |
| return; |
| |
| // Only do this if removing the zero vector reduces the depth, otherwise |
| // the critical path will increase with the final unpack. |
| if (Ops.size() > 2 && |
| Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) |
| return; |
| |
| // Find an unpack that would allow removing the zero vector from Ops. |
| UnpackFromEltSize = 1; |
| for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { |
| bool MatchUnpack = true; |
| SmallVector<int, SystemZ::VectorBytes> SrcBytes; |
| for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { |
| unsigned ToEltSize = UnpackFromEltSize * 2; |
| bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; |
| if (!IsZextByte) |
| SrcBytes.push_back(Bytes[Elt]); |
| if (Bytes[Elt] != -1) { |
| unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; |
| if (IsZextByte != (OpNo == ZeroVecOpNo)) { |
| MatchUnpack = false; |
| break; |
| } |
| } |
| } |
| if (MatchUnpack) { |
| if (Ops.size() == 2) { |
| // Don't use unpack if a single source operand needs rearrangement. |
| for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) |
| if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { |
| UnpackFromEltSize = UINT_MAX; |
| return; |
| } |
| } |
| break; |
| } |
| } |
| if (UnpackFromEltSize > 4) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " |
| << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo |
| << ".\n"; |
| dumpBytes(Bytes, "Original Bytes vector:");); |
| |
| // Apply the unpack in reverse to the Bytes array. |
| unsigned B = 0; |
| for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { |
| Elt += UnpackFromEltSize; |
| for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) |
| Bytes[B] = Bytes[Elt]; |
| } |
| while (B < SystemZ::VectorBytes) |
| Bytes[B++] = -1; |
| |
| // Remove the zero vector from Ops |
| Ops.erase(&Ops[ZeroVecOpNo]); |
| for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) |
| if (Bytes[I] >= 0) { |
| unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; |
| if (OpNo > ZeroVecOpNo) |
| Bytes[I] -= SystemZ::VectorBytes; |
| } |
| |
| LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); |
| dbgs() << "\n";); |
| } |
| |
| SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, |
| const SDLoc &DL, |
| SDValue Op) { |
| if (!unpackWasPrepared()) |
| return Op; |
| unsigned InBits = UnpackFromEltSize * 8; |
| EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), |
| SystemZ::VectorBits / InBits); |
| SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); |
| unsigned OutBits = InBits * 2; |
| EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), |
| SystemZ::VectorBits / OutBits); |
| return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); |
| } |
| |
| // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. |
| static bool isScalarToVector(SDValue Op) { |
| for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) |
| if (!Op.getOperand(I).isUndef()) |
| return false; |
| return true; |
| } |
| |
| // Return a vector of type VT that contains Value in the first element. |
| // The other elements don't matter. |
| static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| SDValue Value) { |
| // If we have a constant, replicate it to all elements and let the |
| // BUILD_VECTOR lowering take care of it. |
| if (Value.getOpcode() == ISD::Constant || |
| Value.getOpcode() == ISD::ConstantFP) { |
| SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| if (Value.isUndef()) |
| return DAG.getUNDEF(VT); |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); |
| } |
| |
| // Return a vector of type VT in which Op0 is in element 0 and Op1 is in |
| // element 1. Used for cases in which replication is cheap. |
| static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| SDValue Op0, SDValue Op1) { |
| if (Op0.isUndef()) { |
| if (Op1.isUndef()) |
| return DAG.getUNDEF(VT); |
| return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); |
| } |
| if (Op1.isUndef()) |
| return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); |
| return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, |
| buildScalarToVector(DAG, DL, VT, Op0), |
| buildScalarToVector(DAG, DL, VT, Op1)); |
| } |
| |
| // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 |
| // vector for them. |
| static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, |
| SDValue Op1) { |
| if (Op0.isUndef() && Op1.isUndef()) |
| return DAG.getUNDEF(MVT::v2i64); |
| // If one of the two inputs is undefined then replicate the other one, |
| // in order to avoid using another register unnecessarily. |
| if (Op0.isUndef()) |
| Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); |
| else if (Op1.isUndef()) |
| Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); |
| else { |
| Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); |
| Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); |
| } |
| return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); |
| } |
| |
| // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually |
| // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for |
| // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR |
| // would benefit from this representation and return it if so. |
| static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, |
| BuildVectorSDNode *BVN) { |
| EVT VT = BVN->getValueType(0); |
| unsigned NumElements = VT.getVectorNumElements(); |
| |
| // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation |
| // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still |
| // need a BUILD_VECTOR, add an additional placeholder operand for that |
| // BUILD_VECTOR and store its operands in ResidueOps. |
| GeneralShuffle GS(VT); |
| SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; |
| bool FoundOne = false; |
| for (unsigned I = 0; I < NumElements; ++I) { |
| SDValue Op = BVN->getOperand(I); |
| if (Op.getOpcode() == ISD::TRUNCATE) |
| Op = Op.getOperand(0); |
| if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op.getOperand(1).getOpcode() == ISD::Constant) { |
| unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| if (!GS.add(Op.getOperand(0), Elem)) |
| return SDValue(); |
| FoundOne = true; |
| } else if (Op.isUndef()) { |
| GS.addUndef(); |
| } else { |
| if (!GS.add(SDValue(), ResidueOps.size())) |
| return SDValue(); |
| ResidueOps.push_back(BVN->getOperand(I)); |
| } |
| } |
| |
| // Nothing to do if there are no EXTRACT_VECTOR_ELTs. |
| if (!FoundOne) |
| return SDValue(); |
| |
| // Create the BUILD_VECTOR for the remaining elements, if any. |
| if (!ResidueOps.empty()) { |
| while (ResidueOps.size() < NumElements) |
| ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); |
| for (auto &Op : GS.Ops) { |
| if (!Op.getNode()) { |
| Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); |
| break; |
| } |
| } |
| } |
| return GS.getNode(DAG, SDLoc(BVN)); |
| } |
| |
| bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { |
| if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) |
| return true; |
| if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) |
| return true; |
| return false; |
| } |
| |
| // Combine GPR scalar values Elems into a vector of type VT. |
| SDValue |
| SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, |
| SmallVectorImpl<SDValue> &Elems) const { |
| // See whether there is a single replicated value. |
| SDValue Single; |
| unsigned int NumElements = Elems.size(); |
| unsigned int Count = 0; |
| for (auto Elem : Elems) { |
| if (!Elem.isUndef()) { |
| if (!Single.getNode()) |
| Single = Elem; |
| else if (Elem != Single) { |
| Single = SDValue(); |
| break; |
| } |
| Count += 1; |
| } |
| } |
| // There are three cases here: |
| // |
| // - if the only defined element is a loaded one, the best sequence |
| // is a replicating load. |
| // |
| // - otherwise, if the only defined element is an i64 value, we will |
| // end up with the same VLVGP sequence regardless of whether we short-cut |
| // for replication or fall through to the later code. |
| // |
| // - otherwise, if the only defined element is an i32 or smaller value, |
| // we would need 2 instructions to replicate it: VLVGP followed by VREPx. |
| // This is only a win if the single defined element is used more than once. |
| // In other cases we're better off using a single VLVGx. |
| if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) |
| return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); |
| |
| // If all elements are loads, use VLREP/VLEs (below). |
| bool AllLoads = true; |
| for (auto Elem : Elems) |
| if (!isVectorElementLoad(Elem)) { |
| AllLoads = false; |
| break; |
| } |
| |
| // The best way of building a v2i64 from two i64s is to use VLVGP. |
| if (VT == MVT::v2i64 && !AllLoads) |
| return joinDwords(DAG, DL, Elems[0], Elems[1]); |
| |
| // Use a 64-bit merge high to combine two doubles. |
| if (VT == MVT::v2f64 && !AllLoads) |
| return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); |
| |
| // Build v4f32 values directly from the FPRs: |
| // |
| // <Axxx> <Bxxx> <Cxxxx> <Dxxx> |
| // V V VMRHF |
| // <ABxx> <CDxx> |
| // V VMRHG |
| // <ABCD> |
| if (VT == MVT::v4f32 && !AllLoads) { |
| SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); |
| SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); |
| // Avoid unnecessary undefs by reusing the other operand. |
| if (Op01.isUndef()) |
| Op01 = Op23; |
| else if (Op23.isUndef()) |
| Op23 = Op01; |
| // Merging identical replications is a no-op. |
| if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) |
| return Op01; |
| Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); |
| Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); |
| SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, |
| DL, MVT::v2i64, Op01, Op23); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Op); |
| } |
| |
| // Collect the constant terms. |
| SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); |
| SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); |
| |
| unsigned NumConstants = 0; |
| for (unsigned I = 0; I < NumElements; ++I) { |
| SDValue Elem = Elems[I]; |
| if (Elem.getOpcode() == ISD::Constant || |
| Elem.getOpcode() == ISD::ConstantFP) { |
| NumConstants += 1; |
| Constants[I] = Elem; |
| Done[I] = true; |
| } |
| } |
| // If there was at least one constant, fill in the other elements of |
| // Constants with undefs to get a full vector constant and use that |
| // as the starting point. |
| SDValue Result; |
| SDValue ReplicatedVal; |
| if (NumConstants > 0) { |
| for (unsigned I = 0; I < NumElements; ++I) |
| if (!Constants[I].getNode()) |
| Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); |
| Result = DAG.getBuildVector(VT, DL, Constants); |
| } else { |
| // Otherwise try to use VLREP or VLVGP to start the sequence in order to |
| // avoid a false dependency on any previous contents of the vector |
| // register. |
| |
| // Use a VLREP if at least one element is a load. Make sure to replicate |
| // the load with the most elements having its value. |
| std::map<const SDNode*, unsigned> UseCounts; |
| SDNode *LoadMaxUses = nullptr; |
| for (unsigned I = 0; I < NumElements; ++I) |
| if (isVectorElementLoad(Elems[I])) { |
| SDNode *Ld = Elems[I].getNode(); |
| UseCounts[Ld]++; |
| if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) |
| LoadMaxUses = Ld; |
| } |
| if (LoadMaxUses != nullptr) { |
| ReplicatedVal = SDValue(LoadMaxUses, 0); |
| Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); |
| } else { |
| // Try to use VLVGP. |
| unsigned I1 = NumElements / 2 - 1; |
| unsigned I2 = NumElements - 1; |
| bool Def1 = !Elems[I1].isUndef(); |
| bool Def2 = !Elems[I2].isUndef(); |
| if (Def1 || Def2) { |
| SDValue Elem1 = Elems[Def1 ? I1 : I2]; |
| SDValue Elem2 = Elems[Def2 ? I2 : I1]; |
| Result = DAG.getNode(ISD::BITCAST, DL, VT, |
| joinDwords(DAG, DL, Elem1, Elem2)); |
| Done[I1] = true; |
| Done[I2] = true; |
| } else |
| Result = DAG.getUNDEF(VT); |
| } |
| } |
| |
| // Use VLVGx to insert the other elements. |
| for (unsigned I = 0; I < NumElements; ++I) |
| if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) |
| Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], |
| DAG.getConstant(I, DL, MVT::i32)); |
| return Result; |
| } |
| |
| SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| if (BVN->isConstant()) { |
| if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) |
| return Op; |
| |
| // Fall back to loading it from memory. |
| return SDValue(); |
| } |
| |
| // See if we should use shuffles to construct the vector from other vectors. |
| if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) |
| return Res; |
| |
| // Detect SCALAR_TO_VECTOR conversions. |
| if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) |
| return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); |
| |
| // Otherwise use buildVector to build the vector up from GPRs. |
| unsigned NumElements = Op.getNumOperands(); |
| SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); |
| for (unsigned I = 0; I < NumElements; ++I) |
| Ops[I] = Op.getOperand(I); |
| return buildVector(DAG, DL, VT, Ops); |
| } |
| |
| SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| unsigned NumElements = VT.getVectorNumElements(); |
| |
| if (VSN->isSplat()) { |
| SDValue Op0 = Op.getOperand(0); |
| unsigned Index = VSN->getSplatIndex(); |
| assert(Index < VT.getVectorNumElements() && |
| "Splat index should be defined and in first operand"); |
| // See whether the value we're splatting is directly available as a scalar. |
| if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || |
| Op0.getOpcode() == ISD::BUILD_VECTOR) |
| return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); |
| // Otherwise keep it as a vector-to-vector operation. |
| return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), |
| DAG.getTargetConstant(Index, DL, MVT::i32)); |
| } |
| |
| GeneralShuffle GS(VT); |
| for (unsigned I = 0; I < NumElements; ++I) { |
| int Elt = VSN->getMaskElt(I); |
| if (Elt < 0) |
| GS.addUndef(); |
| else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), |
| unsigned(Elt) % NumElements)) |
| return SDValue(); |
| } |
| return GS.getNode(DAG, SDLoc(VSN)); |
| } |
| |
| SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| // Just insert the scalar into element 0 of an undefined vector. |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, |
| Op.getValueType(), DAG.getUNDEF(Op.getValueType()), |
| Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); |
| } |
| |
| SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Handle insertions of floating-point values. |
| SDLoc DL(Op); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| EVT VT = Op.getValueType(); |
| |
| // Insertions into constant indices of a v2f64 can be done using VPDI. |
| // However, if the inserted value is a bitcast or a constant then it's |
| // better to use GPRs, as below. |
| if (VT == MVT::v2f64 && |
| Op1.getOpcode() != ISD::BITCAST && |
| Op1.getOpcode() != ISD::ConstantFP && |
| Op2.getOpcode() == ISD::Constant) { |
| uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); |
| unsigned Mask = VT.getVectorNumElements() - 1; |
| if (Index <= Mask) |
| return Op; |
| } |
| |
| // Otherwise bitcast to the equivalent integer form and insert via a GPR. |
| MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); |
| MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); |
| SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, |
| DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), |
| DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Res); |
| } |
| |
| SDValue |
| SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Handle extractions of floating-point values. |
| SDLoc DL(Op); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| EVT VecVT = Op0.getValueType(); |
| |
| // Extractions of constant indices can be done directly. |
| if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { |
| uint64_t Index = CIndexN->getZExtValue(); |
| unsigned Mask = VecVT.getVectorNumElements() - 1; |
| if (Index <= Mask) |
| return Op; |
| } |
| |
| // Otherwise bitcast to the equivalent integer form and extract via a GPR. |
| MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); |
| MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); |
| SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, |
| DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Res); |
| } |
| |
| SDValue SystemZTargetLowering:: |
| lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { |
| SDValue PackedOp = Op.getOperand(0); |
| EVT OutVT = Op.getValueType(); |
| EVT InVT = PackedOp.getValueType(); |
| unsigned ToBits = OutVT.getScalarSizeInBits(); |
| unsigned FromBits = InVT.getScalarSizeInBits(); |
| do { |
| FromBits *= 2; |
| EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), |
| SystemZ::VectorBits / FromBits); |
| PackedOp = |
| DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); |
| } while (FromBits != ToBits); |
| return PackedOp; |
| } |
| |
| // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. |
| SDValue SystemZTargetLowering:: |
| lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { |
| SDValue PackedOp = Op.getOperand(0); |
| SDLoc DL(Op); |
| EVT OutVT = Op.getValueType(); |
| EVT InVT = PackedOp.getValueType(); |
| unsigned InNumElts = InVT.getVectorNumElements(); |
| unsigned OutNumElts = OutVT.getVectorNumElements(); |
| unsigned NumInPerOut = InNumElts / OutNumElts; |
| |
| SDValue ZeroVec = |
| DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); |
| |
| SmallVector<int, 16> Mask(InNumElts); |
| unsigned ZeroVecElt = InNumElts; |
| for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { |
| unsigned MaskElt = PackedElt * NumInPerOut; |
| unsigned End = MaskElt + NumInPerOut - 1; |
| for (; MaskElt < End; MaskElt++) |
| Mask[MaskElt] = ZeroVecElt++; |
| Mask[MaskElt] = PackedElt; |
| } |
| SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); |
| return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); |
| } |
| |
| SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, |
| unsigned ByScalar) const { |
| // Look for cases where a vector shift can use the *_BY_SCALAR form. |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| unsigned ElemBitSize = VT.getScalarSizeInBits(); |
| |
| // See whether the shift vector is a splat represented as BUILD_VECTOR. |
| if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| // Check for constant splats. Use ElemBitSize as the minimum element |
| // width and reject splats that need wider elements. |
| if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, |
| ElemBitSize, true) && |
| SplatBitSize == ElemBitSize) { |
| SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, |
| DL, MVT::i32); |
| return DAG.getNode(ByScalar, DL, VT, Op0, Shift); |
| } |
| // Check for variable splats. |
| BitVector UndefElements; |
| SDValue Splat = BVN->getSplatValue(&UndefElements); |
| if (Splat) { |
| // Since i32 is the smallest legal type, we either need a no-op |
| // or a truncation. |
| SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); |
| return DAG.getNode(ByScalar, DL, VT, Op0, Shift); |
| } |
| } |
| |
| // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, |
| // and the shift amount is directly available in a GPR. |
| if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { |
| if (VSN->isSplat()) { |
| SDValue VSNOp0 = VSN->getOperand(0); |
| unsigned Index = VSN->getSplatIndex(); |
| assert(Index < VT.getVectorNumElements() && |
| "Splat index should be defined and in first operand"); |
| if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || |
| VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { |
| // Since i32 is the smallest legal type, we either need a no-op |
| // or a truncation. |
| SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, |
| VSNOp0.getOperand(Index)); |
| return DAG.getNode(ByScalar, DL, VT, Op0, Shift); |
| } |
| } |
| } |
| |
| // Otherwise just treat the current form as legal. |
| return Op; |
| } |
| |
| SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| MVT ResultVT = Op.getSimpleValueType(); |
| SDValue Arg = Op.getOperand(0); |
| auto CNode = cast<ConstantSDNode>(Op.getOperand(1)); |
| unsigned Check = CNode->getZExtValue(); |
| |
| unsigned TDCMask = 0; |
| if (Check & fcSNan) |
| TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; |
| if (Check & fcQNan) |
| TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; |
| if (Check & fcPosInf) |
| TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; |
| if (Check & fcNegInf) |
| TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; |
| if (Check & fcPosNormal) |
| TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; |
| if (Check & fcNegNormal) |
| TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; |
| if (Check & fcPosSubnormal) |
| TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; |
| if (Check & fcNegSubnormal) |
| TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; |
| if (Check & fcPosZero) |
| TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; |
| if (Check & fcNegZero) |
| TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; |
| SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); |
| |
| SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); |
| return getCCResult(DAG, Intr); |
| } |
| |
| SDValue SystemZTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| case ISD::FRAMEADDR: |
| return lowerFRAMEADDR(Op, DAG); |
| case ISD::RETURNADDR: |
| return lowerRETURNADDR(Op, DAG); |
| case ISD::BR_CC: |
| return lowerBR_CC(Op, DAG); |
| case ISD::SELECT_CC: |
| return lowerSELECT_CC(Op, DAG); |
| case ISD::SETCC: |
| return lowerSETCC(Op, DAG); |
| case ISD::STRICT_FSETCC: |
| return lowerSTRICT_FSETCC(Op, DAG, false); |
| case ISD::STRICT_FSETCCS: |
| return lowerSTRICT_FSETCC(Op, DAG, true); |
| case ISD::GlobalAddress: |
| return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); |
| case ISD::GlobalTLSAddress: |
| return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); |
| case ISD::BlockAddress: |
| return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); |
| case ISD::JumpTable: |
| return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); |
| case ISD::ConstantPool: |
| return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); |
| case ISD::BITCAST: |
| return lowerBITCAST(Op, DAG); |
| case ISD::VASTART: |
| return lowerVASTART(Op, DAG); |
| case ISD::VACOPY: |
| return lowerVACOPY(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return lowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::GET_DYNAMIC_AREA_OFFSET: |
| return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); |
| case ISD::SMUL_LOHI: |
| return lowerSMUL_LOHI(Op, DAG); |
| case ISD::UMUL_LOHI: |
| return lowerUMUL_LOHI(Op, DAG); |
| case ISD::SDIVREM: |
| return lowerSDIVREM(Op, DAG); |
| case ISD::UDIVREM: |
| return lowerUDIVREM(Op, DAG); |
| case ISD::SADDO: |
| case ISD::SSUBO: |
| case ISD::UADDO: |
| case ISD::USUBO: |
| return lowerXALUO(Op, DAG); |
| case ISD::ADDCARRY: |
| case ISD::SUBCARRY: |
| return lowerADDSUBCARRY(Op, DAG); |
| case ISD::OR: |
| return lowerOR(Op, DAG); |
| case ISD::CTPOP: |
| return lowerCTPOP(Op, DAG); |
| case ISD::ATOMIC_FENCE: |
| return lowerATOMIC_FENCE(Op, DAG); |
| case ISD::ATOMIC_SWAP: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); |
| case ISD::ATOMIC_STORE: |
| return lowerATOMIC_STORE(Op, DAG); |
| case ISD::ATOMIC_LOAD: |
| return lowerATOMIC_LOAD(Op, DAG); |
| case ISD::ATOMIC_LOAD_ADD: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); |
| case ISD::ATOMIC_LOAD_SUB: |
| return lowerATOMIC_LOAD_SUB(Op, DAG); |
| case ISD::ATOMIC_LOAD_AND: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); |
| case ISD::ATOMIC_LOAD_OR: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); |
| case ISD::ATOMIC_LOAD_XOR: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); |
| case ISD::ATOMIC_LOAD_NAND: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); |
| case ISD::ATOMIC_LOAD_MIN: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); |
| case ISD::ATOMIC_LOAD_MAX: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); |
| case ISD::ATOMIC_LOAD_UMIN: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); |
| case ISD::ATOMIC_LOAD_UMAX: |
| return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
| return lowerATOMIC_CMP_SWAP(Op, DAG); |
| case ISD::STACKSAVE: |
| return lowerSTACKSAVE(Op, DAG); |
| case ISD::STACKRESTORE: |
| return lowerSTACKRESTORE(Op, DAG); |
| case ISD::PREFETCH: |
| return lowerPREFETCH(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: |
| return lowerINTRINSIC_W_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: |
| return lowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return lowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return lowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: |
| return lowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return lowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::SIGN_EXTEND_VECTOR_INREG: |
| return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); |
| case ISD::ZERO_EXTEND_VECTOR_INREG: |
| return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); |
| case ISD::SHL: |
| return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); |
| case ISD::SRL: |
| return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); |
| case ISD::SRA: |
| return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); |
| case ISD::IS_FPCLASS: |
| return lowerIS_FPCLASS(Op, DAG); |
| case ISD::GET_ROUNDING: |
| return lowerGET_ROUNDING(Op, DAG); |
| default: |
| llvm_unreachable("Unexpected node to lower"); |
| } |
| } |
| |
| // Lower operations with invalid operand or result types (currently used |
| // only for 128-bit integer types). |
| void |
| SystemZTargetLowering::LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| case ISD::ATOMIC_LOAD: { |
| SDLoc DL(N); |
| SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; |
| MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); |
| SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, |
| DL, Tys, Ops, MVT::i128, MMO); |
| Results.push_back(lowerGR128ToI128(DAG, Res)); |
| Results.push_back(Res.getValue(1)); |
| break; |
| } |
| case ISD::ATOMIC_STORE: { |
| SDLoc DL(N); |
| SDVTList Tys = DAG.getVTList(MVT::Other); |
| SDValue Ops[] = { N->getOperand(0), |
| lowerI128ToGR128(DAG, N->getOperand(2)), |
| N->getOperand(1) }; |
| MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); |
| SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, |
| DL, Tys, Ops, MVT::i128, MMO); |
| // We have to enforce sequential consistency by performing a |
| // serialization operation after the store. |
| if (cast<AtomicSDNode>(N)->getSuccessOrdering() == |
| AtomicOrdering::SequentiallyConsistent) |
| Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, |
| MVT::Other, Res), 0); |
| Results.push_back(Res); |
| break; |
| } |
| case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { |
| SDLoc DL(N); |
| SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), |
| lowerI128ToGR128(DAG, N->getOperand(2)), |
| lowerI128ToGR128(DAG, N->getOperand(3)) }; |
| MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); |
| SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, |
| DL, Tys, Ops, MVT::i128, MMO); |
| SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), |
| SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); |
| Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); |
| Results.push_back(lowerGR128ToI128(DAG, Res)); |
| Results.push_back(Success); |
| Results.push_back(Res.getValue(2)); |
| break; |
| } |
| case ISD::BITCAST: { |
| SDValue Src = N->getOperand(0); |
| if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && |
| !useSoftFloat()) { |
| SDLoc DL(N); |
| SDValue Lo, Hi; |
| if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { |
| SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); |
| Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, |
| DAG.getConstant(1, DL, MVT::i32)); |
| Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, |
| DAG.getConstant(0, DL, MVT::i32)); |
| } else { |
| assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && |
| "Unrecognized register class for f128."); |
| SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, |
| DL, MVT::f64, Src); |
| SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, |
| DL, MVT::f64, Src); |
| Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); |
| Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); |
| } |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); |
| } |
| break; |
| } |
| default: |
| llvm_unreachable("Unexpected node to lower"); |
| } |
| } |
| |
| void |
| SystemZTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| return LowerOperationWrapper(N, Results, DAG); |
| } |
| |
| const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME |
| switch ((SystemZISD::NodeType)Opcode) { |
| case SystemZISD::FIRST_NUMBER: break; |
| OPCODE(RET_FLAG); |
| OPCODE(CALL); |
| OPCODE(SIBCALL); |
| OPCODE(TLS_GDCALL); |
| OPCODE(TLS_LDCALL); |
| OPCODE(PCREL_WRAPPER); |
| OPCODE(PCREL_OFFSET); |
| OPCODE(ICMP); |
| OPCODE(FCMP); |
| OPCODE(STRICT_FCMP); |
| OPCODE(STRICT_FCMPS); |
| OPCODE(TM); |
| OPCODE(BR_CCMASK); |
| OPCODE(SELECT_CCMASK); |
| OPCODE(ADJDYNALLOC); |
| OPCODE(PROBED_ALLOCA); |
| OPCODE(POPCNT); |
| OPCODE(SMUL_LOHI); |
| OPCODE(UMUL_LOHI); |
| OPCODE(SDIVREM); |
| OPCODE(UDIVREM); |
| OPCODE(SADDO); |
| OPCODE(SSUBO); |
| OPCODE(UADDO); |
| OPCODE(USUBO); |
| OPCODE(ADDCARRY); |
| OPCODE(SUBCARRY); |
| OPCODE(GET_CCMASK); |
| OPCODE(MVC); |
| OPCODE(NC); |
| OPCODE(OC); |
| OPCODE(XC); |
| OPCODE(CLC); |
| OPCODE(MEMSET_MVC); |
| OPCODE(STPCPY); |
| OPCODE(STRCMP); |
| OPCODE(SEARCH_STRING); |
| OPCODE(IPM); |
| OPCODE(TBEGIN); |
| OPCODE(TBEGIN_NOFLOAT); |
| OPCODE(TEND); |
| OPCODE(BYTE_MASK); |
| OPCODE(ROTATE_MASK); |
| OPCODE(REPLICATE); |
| OPCODE(JOIN_DWORDS); |
| OPCODE(SPLAT); |
| OPCODE(MERGE_HIGH); |
| OPCODE(MERGE_LOW); |
| OPCODE(SHL_DOUBLE); |
| OPCODE(PERMUTE_DWORDS); |
| OPCODE(PERMUTE); |
| OPCODE(PACK); |
| OPCODE(PACKS_CC); |
| OPCODE(PACKLS_CC); |
| OPCODE(UNPACK_HIGH); |
| OPCODE(UNPACKL_HIGH); |
| OPCODE(UNPACK_LOW); |
| OPCODE(UNPACKL_LOW); |
| OPCODE(VSHL_BY_SCALAR); |
| OPCODE(VSRL_BY_SCALAR); |
| OPCODE(VSRA_BY_SCALAR); |
| OPCODE(VSUM); |
| OPCODE(VICMPE); |
| OPCODE(VICMPH); |
| OPCODE(VICMPHL); |
| OPCODE(VICMPES); |
| OPCODE(VICMPHS); |
| OPCODE(VICMPHLS); |
| OPCODE(VFCMPE); |
| OPCODE(STRICT_VFCMPE); |
| OPCODE(STRICT_VFCMPES); |
| OPCODE(VFCMPH); |
| OPCODE(STRICT_VFCMPH); |
| OPCODE(STRICT_VFCMPHS); |
| OPCODE(VFCMPHE); |
| OPCODE(STRICT_VFCMPHE); |
| OPCODE(STRICT_VFCMPHES); |
| OPCODE(VFCMPES); |
| OPCODE(VFCMPHS); |
| OPCODE(VFCMPHES); |
| OPCODE(VFTCI); |
| OPCODE(VEXTEND); |
| OPCODE(STRICT_VEXTEND); |
| OPCODE(VROUND); |
| OPCODE(STRICT_VROUND); |
| OPCODE(VTM); |
| OPCODE(VFAE_CC); |
| OPCODE(VFAEZ_CC); |
| OPCODE(VFEE_CC); |
| OPCODE(VFEEZ_CC); |
| OPCODE(VFENE_CC); |
| OPCODE(VFENEZ_CC); |
| OPCODE(VISTR_CC); |
| OPCODE(VSTRC_CC); |
| OPCODE(VSTRCZ_CC); |
| OPCODE(VSTRS_CC); |
| OPCODE(VSTRSZ_CC); |
| OPCODE(TDC); |
| OPCODE(ATOMIC_SWAPW); |
| OPCODE(ATOMIC_LOADW_ADD); |
| OPCODE(ATOMIC_LOADW_SUB); |
| OPCODE(ATOMIC_LOADW_AND); |
| OPCODE(ATOMIC_LOADW_OR); |
| OPCODE(ATOMIC_LOADW_XOR); |
| OPCODE(ATOMIC_LOADW_NAND); |
| OPCODE(ATOMIC_LOADW_MIN); |
| OPCODE(ATOMIC_LOADW_MAX); |
| OPCODE(ATOMIC_LOADW_UMIN); |
| OPCODE(ATOMIC_LOADW_UMAX); |
| OPCODE(ATOMIC_CMP_SWAPW); |
| OPCODE(ATOMIC_CMP_SWAP); |
| OPCODE(ATOMIC_LOAD_128); |
| OPCODE(ATOMIC_STORE_128); |
| OPCODE(ATOMIC_CMP_SWAP_128); |
| OPCODE(LRV); |
| OPCODE(STRV); |
| OPCODE(VLER); |
| OPCODE(VSTER); |
| OPCODE(PREFETCH); |
| } |
| return nullptr; |
| #undef OPCODE |
| } |
| |
| // Return true if VT is a vector whose elements are a whole number of bytes |
| // in width. Also check for presence of vector support. |
| bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { |
| if (!Subtarget.hasVector()) |
| return false; |
| |
| return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); |
| } |
| |
| // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT |
| // producing a result of type ResVT. Op is a possibly bitcast version |
| // of the input vector and Index is the index (based on type VecVT) that |
| // should be extracted. Return the new extraction if a simplification |
| // was possible or if Force is true. |
| SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, |
| EVT VecVT, SDValue Op, |
| unsigned Index, |
| DAGCombinerInfo &DCI, |
| bool Force) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // The number of bytes being extracted. |
| unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); |
| |
| for (;;) { |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::BITCAST) |
| // Look through bitcasts. |
| Op = Op.getOperand(0); |
| else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && |
| canTreatAsByteVector(Op.getValueType())) { |
| // Get a VPERM-like permute mask and see whether the bytes covered |
| // by the extracted element are a contiguous sequence from one |
| // source operand. |
| SmallVector<int, SystemZ::VectorBytes> Bytes; |
| if (!getVPermMask(Op, Bytes)) |
| break; |
| int First; |
| if (!getShuffleInput(Bytes, Index * BytesPerElement, |
| BytesPerElement, First)) |
| break; |
| if (First < 0) |
| return DAG.getUNDEF(ResVT); |
| // Make sure the contiguous sequence starts at a multiple of the |
| // original element size. |
| unsigned Byte = unsigned(First) % Bytes.size(); |
| if (Byte % BytesPerElement != 0) |
| break; |
| // We can get the extracted value directly from an input. |
| Index = Byte / BytesPerElement; |
| Op = Op.getOperand(unsigned(First) / Bytes.size()); |
| Force = true; |
| } else if (Opcode == ISD::BUILD_VECTOR && |
| canTreatAsByteVector(Op.getValueType())) { |
| // We can only optimize this case if the BUILD_VECTOR elements are |
| // at least as wide as the extracted value. |
| EVT OpVT = Op.getValueType(); |
| unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); |
| if (OpBytesPerElement < BytesPerElement) |
| break; |
| // Make sure that the least-significant bit of the extracted value |
| // is the least significant bit of an input. |
| unsigned End = (Index + 1) * BytesPerElement; |
| if (End % OpBytesPerElement != 0) |
| break; |
| // We're extracting the low part of one operand of the BUILD_VECTOR. |
| Op = Op.getOperand(End / OpBytesPerElement - 1); |
| if (!Op.getValueType().isInteger()) { |
| EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); |
| Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); |
| DCI.AddToWorklist(Op.getNode()); |
| } |
| EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); |
| Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); |
| if (VT != ResVT) { |
| DCI.AddToWorklist(Op.getNode()); |
| Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); |
| } |
| return Op; |
| } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || |
| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || |
| Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && |
| canTreatAsByteVector(Op.getValueType()) && |
| canTreatAsByteVector(Op.getOperand(0).getValueType())) { |
| // Make sure that only the unextended bits are significant. |
| EVT ExtVT = Op.getValueType(); |
| EVT OpVT = Op.getOperand(0).getValueType(); |
| unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); |
| unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); |
| unsigned Byte = Index * BytesPerElement; |
| unsigned SubByte = Byte % ExtBytesPerElement; |
| unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; |
| if (SubByte < MinSubByte || |
| SubByte + BytesPerElement > ExtBytesPerElement) |
| break; |
| // Get the byte offset of the unextended element |
| Byte = Byte / ExtBytesPerElement * OpBytesPerElement; |
| // ...then add the byte offset relative to that element. |
| Byte += SubByte - MinSubByte; |
| if (Byte % BytesPerElement != 0) |
| break; |
| Op = Op.getOperand(0); |
| Index = Byte / BytesPerElement; |
| Force = true; |
| } else |
| break; |
| } |
| if (Force) { |
| if (Op.getValueType() != VecVT) { |
| Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); |
| DCI.AddToWorklist(Op.getNode()); |
| } |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, |
| DAG.getConstant(Index, DL, MVT::i32)); |
| } |
| return SDValue(); |
| } |
| |
| // Optimize vector operations in scalar value Op on the basis that Op |
| // is truncated to TruncVT. |
| SDValue SystemZTargetLowering::combineTruncateExtract( |
| const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { |
| // If we have (trunc (extract_vector_elt X, Y)), try to turn it into |
| // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements |
| // of type TruncVT. |
| if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| TruncVT.getSizeInBits() % 8 == 0) { |
| SDValue Vec = Op.getOperand(0); |
| EVT VecVT = Vec.getValueType(); |
| if (canTreatAsByteVector(VecVT)) { |
| if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); |
| unsigned TruncBytes = TruncVT.getStoreSize(); |
| if (BytesPerElement % TruncBytes == 0) { |
| // Calculate the value of Y' in the above description. We are |
| // splitting the original elements into Scale equal-sized pieces |
| // and for truncation purposes want the last (least-significant) |
| // of these pieces for IndexN. This is easiest to do by calculating |
| // the start index of the following element and then subtracting 1. |
| unsigned Scale = BytesPerElement / TruncBytes; |
| unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; |
| |
| // Defer the creation of the bitcast from X to combineExtract, |
| // which might be able to optimize the extraction. |
| VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), |
| VecVT.getStoreSize() / TruncBytes); |
| EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); |
| return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineZERO_EXTEND( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { |
| auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); |
| auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (TrueOp && FalseOp) { |
| SDLoc DL(N0); |
| SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), |
| DAG.getConstant(FalseOp->getZExtValue(), DL, VT), |
| N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; |
| SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); |
| // If N0 has multiple uses, change other uses as well. |
| if (!N0.hasOneUse()) { |
| SDValue TruncSelect = |
| DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); |
| DCI.CombineTo(N0.getNode(), TruncSelect); |
| } |
| return NewSelect; |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) |
| // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) |
| // into (select_cc LHS, RHS, -1, 0, COND) |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) |
| N0 = N0.getOperand(0); |
| if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { |
| SDLoc DL(N0); |
| SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), |
| DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), |
| N0.getOperand(2) }; |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineSIGN_EXTEND( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| // Convert (sext (ashr (shl X, C1), C2)) to |
| // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as |
| // cheap as narrower ones. |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { |
| auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| SDValue Inner = N0.getOperand(0); |
| if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { |
| if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { |
| unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); |
| unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; |
| unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; |
| EVT ShiftVT = N0.getOperand(1).getValueType(); |
| SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, |
| Inner.getOperand(0)); |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, |
| DAG.getConstant(NewShlAmt, SDLoc(Inner), |
| ShiftVT)); |
| return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, |
| DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineMERGE( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| unsigned Opcode = N->getOpcode(); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| if (Op0.getOpcode() == ISD::BITCAST) |
| Op0 = Op0.getOperand(0); |
| if (ISD::isBuildVectorAllZeros(Op0.getNode())) { |
| // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF |
| // for v4f32. |
| if (Op1 == N->getOperand(0)) |
| return Op1; |
| // (z_merge_? 0, X) -> (z_unpackl_? 0, X). |
| EVT VT = Op1.getValueType(); |
| unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); |
| if (ElemBytes <= 4) { |
| Opcode = (Opcode == SystemZISD::MERGE_HIGH ? |
| SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); |
| EVT InVT = VT.changeVectorElementTypeToInteger(); |
| EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), |
| SystemZ::VectorBytes / ElemBytes / 2); |
| if (VT != InVT) { |
| Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); |
| DCI.AddToWorklist(Op1.getNode()); |
| } |
| SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); |
| DCI.AddToWorklist(Op.getNode()); |
| return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineLOAD( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT LdVT = N->getValueType(0); |
| if (LdVT.isVector() || LdVT.isInteger()) |
| return SDValue(); |
| // Transform a scalar load that is REPLICATEd as well as having other |
| // use(s) to the form where the other use(s) use the first element of the |
| // REPLICATE instead of the load. Otherwise instruction selection will not |
| // produce a VLREP. Avoid extracting to a GPR, so only do this for floating |
| // point loads. |
| |
| SDValue Replicate; |
| SmallVector<SDNode*, 8> OtherUses; |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) { |
| if (UI->getOpcode() == SystemZISD::REPLICATE) { |
| if (Replicate) |
| return SDValue(); // Should never happen |
| Replicate = SDValue(*UI, 0); |
| } |
| else if (UI.getUse().getResNo() == 0) |
| OtherUses.push_back(*UI); |
| } |
| if (!Replicate || OtherUses.empty()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, |
| Replicate, DAG.getConstant(0, DL, MVT::i32)); |
| // Update uses of the loaded Value while preserving old chains. |
| for (SDNode *U : OtherUses) { |
| SmallVector<SDValue, 8> Ops; |
| for (SDValue Op : U->ops()) |
| Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); |
| DAG.UpdateNodeOperands(U, Ops); |
| } |
| return SDValue(N, 0); |
| } |
| |
| bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { |
| if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) |
| return true; |
| if (Subtarget.hasVectorEnhancements2()) |
| if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) |
| return true; |
| return false; |
| } |
| |
| static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { |
| if (!VT.isVector() || !VT.isSimple() || |
| VT.getSizeInBits() != 128 || |
| VT.getScalarSizeInBits() % 8 != 0) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (M[i] < 0) continue; // ignore UNDEF indices |
| if ((unsigned) M[i] != NumElts - 1 - i) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { |
| for (auto *U : StoredVal->uses()) { |
| if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { |
| EVT CurrMemVT = ST->getMemoryVT().getScalarType(); |
| if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) |
| continue; |
| } else if (isa<BuildVectorSDNode>(U)) { |
| SDValue BuildVector = SDValue(U, 0); |
| if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && |
| isOnlyUsedByStores(BuildVector, DAG)) |
| continue; |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| SDValue SystemZTargetLowering::combineSTORE( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| auto *SN = cast<StoreSDNode>(N); |
| auto &Op1 = N->getOperand(1); |
| EVT MemVT = SN->getMemoryVT(); |
| // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better |
| // for the extraction to be done on a vMiN value, so that we can use VSTE. |
| // If X has wider elements then convert it to: |
| // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). |
| if (MemVT.isInteger() && SN->isTruncatingStore()) { |
| if (SDValue Value = |
| combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { |
| DCI.AddToWorklist(Value.getNode()); |
| |
| // Rewrite the store with the new form of stored value. |
| return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, |
| SN->getBasePtr(), SN->getMemoryVT(), |
| SN->getMemOperand()); |
| } |
| } |
| // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR |
| if (!SN->isTruncatingStore() && |
| Op1.getOpcode() == ISD::BSWAP && |
| Op1.getNode()->hasOneUse() && |
| canLoadStoreByteSwapped(Op1.getValueType())) { |
| |
| SDValue BSwapOp = Op1.getOperand(0); |
| |
| if (BSwapOp.getValueType() == MVT::i16) |
| BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); |
| |
| SDValue Ops[] = { |
| N->getOperand(0), BSwapOp, N->getOperand(2) |
| }; |
| |
| return |
| DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), |
| Ops, MemVT, SN->getMemOperand()); |
| } |
| // Combine STORE (element-swap) into VSTER |
| if (!SN->isTruncatingStore() && |
| Op1.getOpcode() == ISD::VECTOR_SHUFFLE && |
| Op1.getNode()->hasOneUse() && |
| Subtarget.hasVectorEnhancements2()) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); |
| ArrayRef<int> ShuffleMask = SVN->getMask(); |
| if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { |
| SDValue Ops[] = { |
| N->getOperand(0), Op1.getOperand(0), N->getOperand(2) |
| }; |
| |
| return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), |
| DAG.getVTList(MVT::Other), |
| Ops, MemVT, SN->getMemOperand()); |
| } |
| } |
| |
| // Replicate a reg or immediate with VREP instead of scalar multiply or |
| // immediate load. It seems best to do this during the first DAGCombine as |
| // it is straight-forward to handle the zero-extend node in the initial |
| // DAG, and also not worry about the keeping the new MemVT legal (e.g. when |
| // extracting an i16 element from a v16i8 vector). |
| if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && |
| isOnlyUsedByStores(Op1, DAG)) { |
| SDValue Word = SDValue(); |
| EVT WordVT; |
| |
| // Find a replicated immediate and return it if found in Word and its |
| // type in WordVT. |
| auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { |
| // Some constants are better handled with a scalar store. |
| if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || |
| isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) |
| return; |
| SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); |
| if (VCI.isVectorConstantLegal(Subtarget) && |
| VCI.Opcode == SystemZISD::REPLICATE) { |
| Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); |
| WordVT = VCI.VecVT.getScalarType(); |
| } |
| }; |
| |
| // Find a replicated register and return it if found in Word and its type |
| // in WordVT. |
| auto FindReplicatedReg = [&](SDValue MulOp) { |
| EVT MulVT = MulOp.getValueType(); |
| if (MulOp->getOpcode() == ISD::MUL && |
| (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { |
| // Find a zero extended value and its type. |
| SDValue LHS = MulOp->getOperand(0); |
| if (LHS->getOpcode() == ISD::ZERO_EXTEND) |
| WordVT = LHS->getOperand(0).getValueType(); |
| else if (LHS->getOpcode() == ISD::AssertZext) |
| WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); |
| else |
| return; |
| // Find a replicating constant, e.g. 0x00010001. |
| if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { |
| SystemZVectorConstantInfo VCI( |
| APInt(MulVT.getSizeInBits(), C->getZExtValue())); |
| if (VCI.isVectorConstantLegal(Subtarget) && |
| VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && |
| WordVT == VCI.VecVT.getScalarType()) |
| Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); |
| } |
| } |
| }; |
| |
| if (isa<BuildVectorSDNode>(Op1) && |
| DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { |
| SDValue SplatVal = Op1->getOperand(0); |
| if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) |
| FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); |
| else |
| FindReplicatedReg(SplatVal); |
| } else { |
| if (auto *C = dyn_cast<ConstantSDNode>(Op1)) |
| FindReplicatedImm(C, MemVT.getStoreSize()); |
| else |
| FindReplicatedReg(Op1); |
| } |
| |
| if (Word != SDValue()) { |
| assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && |
| "Bad type handling"); |
| unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); |
| EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); |
| SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); |
| return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, |
| SN->getBasePtr(), SN->getMemOperand()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| // Combine element-swap (LOAD) into VLER |
| if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && |
| N->getOperand(0).hasOneUse() && |
| Subtarget.hasVectorEnhancements2()) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); |
| ArrayRef<int> ShuffleMask = SVN->getMask(); |
| if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { |
| SDValue Load = N->getOperand(0); |
| LoadSDNode *LD = cast<LoadSDNode>(Load); |
| |
| // Create the element-swapping load. |
| SDValue Ops[] = { |
| LD->getChain(), // Chain |
| LD->getBasePtr() // Ptr |
| }; |
| SDValue ESLoad = |
| DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), |
| DAG.getVTList(LD->getValueType(0), MVT::Other), |
| Ops, LD->getMemoryVT(), LD->getMemOperand()); |
| |
| // First, combine the VECTOR_SHUFFLE away. This makes the value produced |
| // by the load dead. |
| DCI.CombineTo(N, ESLoad); |
| |
| // Next, combine the load away, we give it a bogus result value but a real |
| // chain result. The result value is dead because the shuffle is dead. |
| DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); |
| |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if (!Subtarget.hasVector()) |
| return SDValue(); |
| |
| // Look through bitcasts that retain the number of vector elements. |
| SDValue Op = N->getOperand(0); |
| if (Op.getOpcode() == ISD::BITCAST && |
| Op.getValueType().isVector() && |
| Op.getOperand(0).getValueType().isVector() && |
| Op.getValueType().getVectorNumElements() == |
| Op.getOperand(0).getValueType().getVectorNumElements()) |
| Op = Op.getOperand(0); |
| |
| // Pull BSWAP out of a vector extraction. |
| if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { |
| EVT VecVT = Op.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, |
| Op.getOperand(0), N->getOperand(1)); |
| DCI.AddToWorklist(Op.getNode()); |
| Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); |
| if (EltVT != N->getValueType(0)) { |
| DCI.AddToWorklist(Op.getNode()); |
| Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); |
| } |
| return Op; |
| } |
| |
| // Try to simplify a vector extraction. |
| if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| SDValue Op0 = N->getOperand(0); |
| EVT VecVT = Op0.getValueType(); |
| return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, |
| IndexN->getZExtValue(), DCI, false); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineJOIN_DWORDS( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| // (join_dwords X, X) == (replicate X) |
| if (N->getOperand(0) == N->getOperand(1)) |
| return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), |
| N->getOperand(0)); |
| return SDValue(); |
| } |
| |
| static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { |
| SDValue Chain1 = N1->getOperand(0); |
| SDValue Chain2 = N2->getOperand(0); |
| |
| // Trivial case: both nodes take the same chain. |
| if (Chain1 == Chain2) |
| return Chain1; |
| |
| // FIXME - we could handle more complex cases via TokenFactor, |
| // assuming we can verify that this would not create a cycle. |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineFP_ROUND( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| |
| if (!Subtarget.hasVector()) |
| return SDValue(); |
| |
| // (fpround (extract_vector_elt X 0)) |
| // (fpround (extract_vector_elt X 1)) -> |
| // (extract_vector_elt (VROUND X) 0) |
| // (extract_vector_elt (VROUND X) 2) |
| // |
| // This is a special case since the target doesn't really support v2f32s. |
| unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Op0 = N->getOperand(OpNo); |
| if (N->getValueType(0) == MVT::f32 && |
| Op0.hasOneUse() && |
| Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op0.getOperand(0).getValueType() == MVT::v2f64 && |
| Op0.getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { |
| SDValue Vec = Op0.getOperand(0); |
| for (auto *U : Vec->uses()) { |
| if (U != Op0.getNode() && |
| U->hasOneUse() && |
| U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| U->getOperand(0) == Vec && |
| U->getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { |
| SDValue OtherRound = SDValue(*U->use_begin(), 0); |
| if (OtherRound.getOpcode() == N->getOpcode() && |
| OtherRound.getOperand(OpNo) == SDValue(U, 0) && |
| OtherRound.getValueType() == MVT::f32) { |
| SDValue VRound, Chain; |
| if (N->isStrictFPOpcode()) { |
| Chain = MergeInputChains(N, OtherRound.getNode()); |
| if (!Chain) |
| continue; |
| VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), |
| {MVT::v4f32, MVT::Other}, {Chain, Vec}); |
| Chain = VRound.getValue(1); |
| } else |
| VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), |
| MVT::v4f32, Vec); |
| DCI.AddToWorklist(VRound.getNode()); |
| SDValue Extract1 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, |
| VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); |
| DCI.AddToWorklist(Extract1.getNode()); |
| DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); |
| if (Chain) |
| DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); |
| SDValue Extract0 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, |
| VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); |
| if (Chain) |
| return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), |
| N->getVTList(), Extract0, Chain); |
| return Extract0; |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineFP_EXTEND( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| |
| if (!Subtarget.hasVector()) |
| return SDValue(); |
| |
| // (fpextend (extract_vector_elt X 0)) |
| // (fpextend (extract_vector_elt X 2)) -> |
| // (extract_vector_elt (VEXTEND X) 0) |
| // (extract_vector_elt (VEXTEND X) 1) |
| // |
| // This is a special case since the target doesn't really support v2f32s. |
| unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Op0 = N->getOperand(OpNo); |
| if (N->getValueType(0) == MVT::f64 && |
| Op0.hasOneUse() && |
| Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| Op0.getOperand(0).getValueType() == MVT::v4f32 && |
| Op0.getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { |
| SDValue Vec = Op0.getOperand(0); |
| for (auto *U : Vec->uses()) { |
| if (U != Op0.getNode() && |
| U->hasOneUse() && |
| U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| U->getOperand(0) == Vec && |
| U->getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { |
| SDValue OtherExtend = SDValue(*U->use_begin(), 0); |
| if (OtherExtend.getOpcode() == N->getOpcode() && |
| OtherExtend.getOperand(OpNo) == SDValue(U, 0) && |
| OtherExtend.getValueType() == MVT::f64) { |
| SDValue VExtend, Chain; |
| if (N->isStrictFPOpcode()) { |
| Chain = MergeInputChains(N, OtherExtend.getNode()); |
| if (!Chain) |
| continue; |
| VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), |
| {MVT::v2f64, MVT::Other}, {Chain, Vec}); |
| Chain = VExtend.getValue(1); |
| } else |
| VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), |
| MVT::v2f64, Vec); |
| DCI.AddToWorklist(VExtend.getNode()); |
| SDValue Extract1 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, |
| VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); |
| DCI.AddToWorklist(Extract1.getNode()); |
| DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); |
| if (Chain) |
| DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); |
| SDValue Extract0 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, |
| VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); |
| if (Chain) |
| return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), |
| N->getVTList(), Extract0, Chain); |
| return Extract0; |
| } |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineINT_TO_FP( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| if (DCI.Level != BeforeLegalizeTypes) |
| return SDValue(); |
| SelectionDAG &DAG = DCI.DAG; |
| LLVMContext &Ctx = *DAG.getContext(); |
| unsigned Opcode = N->getOpcode(); |
| EVT OutVT = N->getValueType(0); |
| Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); |
| SDValue Op = N->getOperand(0); |
| unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); |
| unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); |
| |
| // Insert an extension before type-legalization to avoid scalarization, e.g.: |
| // v2f64 = uint_to_fp v2i16 |
| // => |
| // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) |
| if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && |
| OutScalarBits <= 64) { |
| unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); |
| EVT ExtVT = EVT::getVectorVT( |
| Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); |
| unsigned ExtOpcode = |
| (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); |
| SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); |
| return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineBSWAP( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR |
| if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && |
| N->getOperand(0).hasOneUse() && |
| canLoadStoreByteSwapped(N->getValueType(0))) { |
| SDValue Load = N->getOperand(0); |
| LoadSDNode *LD = cast<LoadSDNode>(Load); |
| |
| // Create the byte-swapping load. |
| SDValue Ops[] = { |
| LD->getChain(), // Chain |
| LD->getBasePtr() // Ptr |
| }; |
| EVT LoadVT = N->getValueType(0); |
| if (LoadVT == MVT::i16) |
| LoadVT = MVT::i32; |
| SDValue BSLoad = |
| DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), |
| DAG.getVTList(LoadVT, MVT::Other), |
| Ops, LD->getMemoryVT(), LD->getMemOperand()); |
| |
| // If this is an i16 load, insert the truncate. |
| SDValue ResVal = BSLoad; |
| if (N->getValueType(0) == MVT::i16) |
| ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); |
| |
| // First, combine the bswap away. This makes the value produced by the |
| // load dead. |
| DCI.CombineTo(N, ResVal); |
| |
| // Next, combine the load away, we give it a bogus result value but a real |
| // chain result. The result value is dead because the bswap is dead. |
| DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); |
| |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| |
| // Look through bitcasts that retain the number of vector elements. |
| SDValue Op = N->getOperand(0); |
| if (Op.getOpcode() == ISD::BITCAST && |
| Op.getValueType().isVector() && |
| Op.getOperand(0).getValueType().isVector() && |
| Op.getValueType().getVectorNumElements() == |
| Op.getOperand(0).getValueType().getVectorNumElements()) |
| Op = Op.getOperand(0); |
| |
| // Push BSWAP into a vector insertion if at least one side then simplifies. |
| if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Elt = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || |
| Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || |
| DAG.isConstantIntBuildVectorOrConstantInt(Elt) || |
| Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || |
| (canLoadStoreByteSwapped(N->getValueType(0)) && |
| ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { |
| EVT VecVT = N->getValueType(0); |
| EVT EltVT = N->getValueType(0).getVectorElementType(); |
| if (VecVT != Vec.getValueType()) { |
| Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); |
| DCI.AddToWorklist(Vec.getNode()); |
| } |
| if (EltVT != Elt.getValueType()) { |
| Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); |
| DCI.AddToWorklist(Elt.getNode()); |
| } |
| Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); |
| DCI.AddToWorklist(Vec.getNode()); |
| Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); |
| DCI.AddToWorklist(Elt.getNode()); |
| return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, |
| Vec, Elt, Idx); |
| } |
| } |
| |
| // Push BSWAP into a vector shuffle if at least one side then simplifies. |
| ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); |
| if (SV && Op.hasOneUse()) { |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| |
| if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || |
| Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || |
| DAG.isConstantIntBuildVectorOrConstantInt(Op1) || |
| Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { |
| EVT VecVT = N->getValueType(0); |
| if (VecVT != Op0.getValueType()) { |
| Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); |
| DCI.AddToWorklist(Op0.getNode()); |
| } |
| if (VecVT != Op1.getValueType()) { |
| Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); |
| DCI.AddToWorklist(Op1.getNode()); |
| } |
| Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); |
| DCI.AddToWorklist(Op0.getNode()); |
| Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); |
| DCI.AddToWorklist(Op1.getNode()); |
| return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { |
| // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code |
| // set by the CCReg instruction using the CCValid / CCMask masks, |
| // If the CCReg instruction is itself a ICMP testing the condition |
| // code set by some other instruction, see whether we can directly |
| // use that condition code. |
| |
| // Verify that we have an ICMP against some constant. |
| if (CCValid != SystemZ::CCMASK_ICMP) |
| return false; |
| auto *ICmp = CCReg.getNode(); |
| if (ICmp->getOpcode() != SystemZISD::ICMP) |
| return false; |
| auto *CompareLHS = ICmp->getOperand(0).getNode(); |
| auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); |
| if (!CompareRHS) |
| return false; |
| |
| // Optimize the case where CompareLHS is a SELECT_CCMASK. |
| if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { |
| // Verify that we have an appropriate mask for a EQ or NE comparison. |
| bool Invert = false; |
| if (CCMask == SystemZ::CCMASK_CMP_NE) |
| Invert = !Invert; |
| else if (CCMask != SystemZ::CCMASK_CMP_EQ) |
| return false; |
| |
| // Verify that the ICMP compares against one of select values. |
| auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); |
| if (!TrueVal) |
| return false; |
| auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); |
| if (!FalseVal) |
| return false; |
| if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) |
| Invert = !Invert; |
| else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) |
| return false; |
| |
| // Compute the effective CC mask for the new branch or select. |
| auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); |
| auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); |
| if (!NewCCValid || !NewCCMask) |
| return false; |
| CCValid = NewCCValid->getZExtValue(); |
| CCMask = NewCCMask->getZExtValue(); |
| if (Invert) |
| CCMask ^= CCValid; |
| |
| // Return the updated CCReg link. |
| CCReg = CompareLHS->getOperand(4); |
| return true; |
| } |
| |
| // Optimize the case where CompareRHS is (SRA (SHL (IPM))). |
| if (CompareLHS->getOpcode() == ISD::SRA) { |
| auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); |
| if (!SRACount || SRACount->getZExtValue() != 30) |
| return false; |
| auto *SHL = CompareLHS->getOperand(0).getNode(); |
| if (SHL->getOpcode() != ISD::SHL) |
| return false; |
| auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); |
| if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) |
| return false; |
| auto *IPM = SHL->getOperand(0).getNode(); |
| if (IPM->getOpcode() != SystemZISD::IPM) |
| return false; |
| |
| // Avoid introducing CC spills (because SRA would clobber CC). |
| if (!CompareLHS->hasOneUse()) |
| return false; |
| // Verify that the ICMP compares against zero. |
| if (CompareRHS->getZExtValue() != 0) |
| return false; |
| |
| // Compute the effective CC mask for the new branch or select. |
| CCMask = SystemZ::reverseCCMask(CCMask); |
| |
| // Return the updated CCReg link. |
| CCReg = IPM->getOperand(0); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| SDValue SystemZTargetLowering::combineBR_CCMASK( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. |
| auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); |
| if (!CCValid || !CCMask) |
| return SDValue(); |
| |
| int CCValidVal = CCValid->getZExtValue(); |
| int CCMaskVal = CCMask->getZExtValue(); |
| SDValue Chain = N->getOperand(0); |
| SDValue CCReg = N->getOperand(4); |
| |
| if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) |
| return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), |
| Chain, |
| DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), |
| DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), |
| N->getOperand(3), CCReg); |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineSELECT_CCMASK( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. |
| auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); |
| auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); |
| if (!CCValid || !CCMask) |
| return SDValue(); |
| |
| int CCValidVal = CCValid->getZExtValue(); |
| int CCMaskVal = CCMask->getZExtValue(); |
| SDValue CCReg = N->getOperand(4); |
| |
| if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) |
| return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), |
| N->getOperand(0), N->getOperand(1), |
| DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), |
| DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), |
| CCReg); |
| return SDValue(); |
| } |
| |
| |
| SDValue SystemZTargetLowering::combineGET_CCMASK( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| |
| // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible |
| auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); |
| if (!CCValid || !CCMask) |
| return SDValue(); |
| int CCValidVal = CCValid->getZExtValue(); |
| int CCMaskVal = CCMask->getZExtValue(); |
| |
| SDValue Select = N->getOperand(0); |
| if (Select->getOpcode() == ISD::TRUNCATE) |
| Select = Select->getOperand(0); |
| if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) |
| return SDValue(); |
| |
| auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); |
| auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); |
| if (!SelectCCValid || !SelectCCMask) |
| return SDValue(); |
| int SelectCCValidVal = SelectCCValid->getZExtValue(); |
| int SelectCCMaskVal = SelectCCMask->getZExtValue(); |
| |
| auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); |
| auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); |
| if (!TrueVal || !FalseVal) |
| return SDValue(); |
| if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) |
| ; |
| else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) |
| SelectCCMaskVal ^= SelectCCValidVal; |
| else |
| return SDValue(); |
| |
| if (SelectCCValidVal & ~CCValidVal) |
| return SDValue(); |
| if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) |
| return SDValue(); |
| |
| return Select->getOperand(4); |
| } |
| |
| SDValue SystemZTargetLowering::combineIntDIVREM( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| // In the case where the divisor is a vector of constants a cheaper |
| // sequence of instructions can replace the divide. BuildSDIV is called to |
| // do this during DAG combining, but it only succeeds when it can build a |
| // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and |
| // since it is not Legal but Custom it can only happen before |
| // legalization. Therefore we must scalarize this early before Combine |
| // 1. For widened vectors, this is already the result of type legalization. |
| if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && |
| DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) |
| return DAG.UnrollVectorOp(N); |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::combineINTRINSIC( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (Id) { |
| // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 |
| // or larger is simply a vector load. |
| case Intrinsic::s390_vll: |
| case Intrinsic::s390_vlrl: |
| if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) |
| if (C->getZExtValue() >= 15) |
| return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), |
| N->getOperand(3), MachinePointerInfo()); |
| break; |
| // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. |
| case Intrinsic::s390_vstl: |
| case Intrinsic::s390_vstrl: |
| if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) |
| if (C->getZExtValue() >= 15) |
| return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), |
| N->getOperand(4), MachinePointerInfo()); |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { |
| if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) |
| return N->getOperand(0); |
| return N; |
| } |
| |
| SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch(N->getOpcode()) { |
| default: break; |
| case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); |
| case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); |
| case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); |
| case SystemZISD::MERGE_HIGH: |
| case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); |
| case ISD::LOAD: return combineLOAD(N, DCI); |
| case ISD::STORE: return combineSTORE(N, DCI); |
| case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); |
| case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); |
| case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); |
| case ISD::STRICT_FP_ROUND: |
| case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); |
| case ISD::STRICT_FP_EXTEND: |
| case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); |
| case ISD::BSWAP: return combineBSWAP(N, DCI); |
| case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); |
| case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); |
| case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: return combineIntDIVREM(N, DCI); |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Return the demanded elements for the OpNo source operand of Op. DemandedElts |
| // are for Op. |
| static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, |
| unsigned OpNo) { |
| EVT VT = Op.getValueType(); |
| unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); |
| APInt SrcDemE; |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::INTRINSIC_WO_CHAIN) { |
| unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (Id) { |
| case Intrinsic::s390_vpksh: // PACKS |
| case Intrinsic::s390_vpksf: |
| case Intrinsic::s390_vpksg: |
| case Intrinsic::s390_vpkshs: // PACKS_CC |
| case Intrinsic::s390_vpksfs: |
| case Intrinsic::s390_vpksgs: |
| case Intrinsic::s390_vpklsh: // PACKLS |
| case Intrinsic::s390_vpklsf: |
| case Intrinsic::s390_vpklsg: |
| case Intrinsic::s390_vpklshs: // PACKLS_CC |
| case Intrinsic::s390_vpklsfs: |
| case Intrinsic::s390_vpklsgs: |
| // VECTOR PACK truncates the elements of two source vectors into one. |
| SrcDemE = DemandedElts; |
| if (OpNo == 2) |
| SrcDemE.lshrInPlace(NumElts / 2); |
| SrcDemE = SrcDemE.trunc(NumElts / 2); |
| break; |
| // VECTOR UNPACK extends half the elements of the source vector. |
| case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH |
| case Intrinsic::s390_vuphh: |
| case Intrinsic::s390_vuphf: |
| case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH |
| case Intrinsic::s390_vuplhh: |
| case Intrinsic::s390_vuplhf: |
| SrcDemE = APInt(NumElts * 2, 0); |
| SrcDemE.insertBits(DemandedElts, 0); |
| break; |
| case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW |
| case Intrinsic::s390_vuplhw: |
| case Intrinsic::s390_vuplf: |
| case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW |
| case Intrinsic::s390_vupllh: |
| case Intrinsic::s390_vupllf: |
| SrcDemE = APInt(NumElts * 2, 0); |
| SrcDemE.insertBits(DemandedElts, NumElts); |
| break; |
| case Intrinsic::s390_vpdi: { |
| // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. |
| SrcDemE = APInt(NumElts, 0); |
| if (!DemandedElts[OpNo - 1]) |
| break; |
| unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| unsigned MaskBit = ((OpNo - 1) ? 1 : 4); |
| // Demand input element 0 or 1, given by the mask bit value. |
| SrcDemE.setBit((Mask & MaskBit)? 1 : 0); |
| break; |
| } |
| case Intrinsic::s390_vsldb: { |
| // VECTOR SHIFT LEFT DOUBLE BY BYTE |
| assert(VT == MVT::v16i8 && "Unexpected type."); |
| unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); |
| unsigned NumSrc0Els = 16 - FirstIdx; |
| SrcDemE = APInt(NumElts, 0); |
| if (OpNo == 1) { |
| APInt DemEls = DemandedElts.trunc(NumSrc0Els); |
| SrcDemE.insertBits(DemEls, FirstIdx); |
| } else { |
| APInt DemEls = DemandedElts.lshr(NumSrc0Els); |
| SrcDemE.insertBits(DemEls, 0); |
| } |
| break; |
| } |
| case Intrinsic::s390_vperm: |
| SrcDemE = APInt(NumElts, 1); |
| break; |
| default: |
| llvm_unreachable("Unhandled intrinsic."); |
| break; |
| } |
| } else { |
| switch (Opcode) { |
| case SystemZISD::JOIN_DWORDS: |
| // Scalar operand. |
| SrcDemE = APInt(1, 1); |
| break; |
| case SystemZISD::SELECT_CCMASK: |
| SrcDemE = DemandedElts; |
| break; |
| default: |
| llvm_unreachable("Unhandled opcode."); |
| break; |
| } |
| } |
| return SrcDemE; |
| } |
| |
| static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, unsigned Depth, |
| unsigned OpNo) { |
| APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); |
| APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); |
| KnownBits LHSKnown = |
| DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); |
| KnownBits RHSKnown = |
| DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); |
| Known = KnownBits::commonBits(LHSKnown, RHSKnown); |
| } |
| |
| void |
| SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| Known.resetAll(); |
| |
| // Intrinsic CC result is returned in the two low bits. |
| unsigned tmp0, tmp1; // not used |
| if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { |
| Known.Zero.setBitsFrom(2); |
| return; |
| } |
| EVT VT = Op.getValueType(); |
| if (Op.getResNo() != 0 || VT == MVT::Untyped) |
| return; |
| assert (Known.getBitWidth() == VT.getScalarSizeInBits() && |
| "KnownBits does not match VT in bitwidth"); |
| assert ((!VT.isVector() || |
| (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && |
| "DemandedElts does not match VT number of elements"); |
| unsigned BitWidth = Known.getBitWidth(); |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::INTRINSIC_WO_CHAIN) { |
| bool IsLogical = false; |
| unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (Id) { |
| case Intrinsic::s390_vpksh: // PACKS |
| case Intrinsic::s390_vpksf: |
| case Intrinsic::s390_vpksg: |
| case Intrinsic::s390_vpkshs: // PACKS_CC |
| case Intrinsic::s390_vpksfs: |
| case Intrinsic::s390_vpksgs: |
| case Intrinsic::s390_vpklsh: // PACKLS |
| case Intrinsic::s390_vpklsf: |
| case Intrinsic::s390_vpklsg: |
| case Intrinsic::s390_vpklshs: // PACKLS_CC |
| case Intrinsic::s390_vpklsfs: |
| case Intrinsic::s390_vpklsgs: |
| case Intrinsic::s390_vpdi: |
| case Intrinsic::s390_vsldb: |
| case Intrinsic::s390_vperm: |
| computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); |
| break; |
| case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH |
| case Intrinsic::s390_vuplhh: |
| case Intrinsic::s390_vuplhf: |
| case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW |
| case Intrinsic::s390_vupllh: |
| case Intrinsic::s390_vupllf: |
| IsLogical = true; |
| [[fallthrough]]; |
| case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH |
| case Intrinsic::s390_vuphh: |
| case Intrinsic::s390_vuphf: |
| case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW |
| case Intrinsic::s390_vuplhw: |
| case Intrinsic::s390_vuplf: { |
| SDValue SrcOp = Op.getOperand(1); |
| APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); |
| Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); |
| if (IsLogical) { |
| Known = Known.zext(BitWidth); |
| } else |
| Known = Known.sext(BitWidth); |
| break; |
| } |
| default: |
| break; |
| } |
| } else { |
| switch (Opcode) { |
| case SystemZISD::JOIN_DWORDS: |
| case SystemZISD::SELECT_CCMASK: |
| computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); |
| break; |
| case SystemZISD::REPLICATE: { |
| SDValue SrcOp = Op.getOperand(0); |
| Known = DAG.computeKnownBits(SrcOp, Depth + 1); |
| if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) |
| Known = Known.sext(BitWidth); // VREPI sign extends the immedate. |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| // Known has the width of the source operand(s). Adjust if needed to match |
| // the passed bitwidth. |
| if (Known.getBitWidth() != BitWidth) |
| Known = Known.anyextOrTrunc(BitWidth); |
| } |
| |
| static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, |
| const SelectionDAG &DAG, unsigned Depth, |
| unsigned OpNo) { |
| APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); |
| unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); |
| if (LHS == 1) return 1; // Early out. |
| APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); |
| unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); |
| if (RHS == 1) return 1; // Early out. |
| unsigned Common = std::min(LHS, RHS); |
| unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getScalarSizeInBits(); |
| if (SrcBitWidth > VTBits) { // PACK |
| unsigned SrcExtraBits = SrcBitWidth - VTBits; |
| if (Common > SrcExtraBits) |
| return (Common - SrcExtraBits); |
| return 1; |
| } |
| assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); |
| return Common; |
| } |
| |
| unsigned |
| SystemZTargetLowering::ComputeNumSignBitsForTargetNode( |
| SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| unsigned Depth) const { |
| if (Op.getResNo() != 0) |
| return 1; |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::INTRINSIC_WO_CHAIN) { |
| unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (Id) { |
| case Intrinsic::s390_vpksh: // PACKS |
| case Intrinsic::s390_vpksf: |
| case Intrinsic::s390_vpksg: |
| case Intrinsic::s390_vpkshs: // PACKS_CC |
| case Intrinsic::s390_vpksfs: |
| case Intrinsic::s390_vpksgs: |
| case Intrinsic::s390_vpklsh: // PACKLS |
| case Intrinsic::s390_vpklsf: |
| case Intrinsic::s390_vpklsg: |
| case Intrinsic::s390_vpklshs: // PACKLS_CC |
| case Intrinsic::s390_vpklsfs: |
| case Intrinsic::s390_vpklsgs: |
| case Intrinsic::s390_vpdi: |
| case Intrinsic::s390_vsldb: |
| case Intrinsic::s390_vperm: |
| return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); |
| case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH |
| case Intrinsic::s390_vuphh: |
| case Intrinsic::s390_vuphf: |
| case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW |
| case Intrinsic::s390_vuplhw: |
| case Intrinsic::s390_vuplf: { |
| SDValue PackedOp = Op.getOperand(1); |
| APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); |
| unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getScalarSizeInBits(); |
| Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); |
| return Tmp; |
| } |
| default: |
| break; |
| } |
| } else { |
| switch (Opcode) { |
| case SystemZISD::SELECT_CCMASK: |
| return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); |
| default: |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| unsigned |
| SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { |
| const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| unsigned StackAlign = TFI->getStackAlignment(); |
| assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && |
| "Unexpected stack alignment"); |
| // The default stack probe size is 4096 if the function has no |
| // stack-probe-size attribute. |
| unsigned StackProbeSize = |
| MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); |
| // Round down to the stack alignment. |
| StackProbeSize &= ~(StackAlign - 1); |
| return StackProbeSize ? StackProbeSize : StackAlign; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom insertion |
| //===----------------------------------------------------------------------===// |
| |
| // Force base value Base into a register before MI. Return the register. |
| static Register forceReg(MachineInstr &MI, MachineOperand &Base, |
| const SystemZInstrInfo *TII) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| MachineFunction &MF = *MBB->getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (Base.isReg()) { |
| // Copy Base into a new virtual register to help register coalescing in |
| // cases with multiple uses. |
| Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) |
| .add(Base); |
| return Reg; |
| } |
| |
| Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) |
| .add(Base) |
| .addImm(0) |
| .addReg(0); |
| return Reg; |
| } |
| |
| // The CC operand of MI might be missing a kill marker because there |
| // were multiple uses of CC, and ISel didn't know which to mark. |
| // Figure out whether MI should have had a kill marker. |
| static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { |
| // Scan forward through BB for a use/def of CC. |
| MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); |
| for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { |
| const MachineInstr& mi = *miI; |
| if (mi.readsRegister(SystemZ::CC)) |
| return false; |
| if (mi.definesRegister(SystemZ::CC)) |
| break; // Should have kill-flag - update below. |
| } |
| |
| // If we hit the end of the block, check whether CC is live into a |
| // successor. |
| if (miI == MBB->end()) { |
| for (const MachineBasicBlock *Succ : MBB->successors()) |
| if (Succ->isLiveIn(SystemZ::CC)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Return true if it is OK for this Select pseudo-opcode to be cascaded |
| // together with other Select pseudo-opcodes into a single basic-block with |
| // a conditional jump around it. |
| static bool isSelectPseudo(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| case SystemZ::Select32: |
| case SystemZ::Select64: |
| case SystemZ::SelectF32: |
| case SystemZ::SelectF64: |
| case SystemZ::SelectF128: |
| case SystemZ::SelectVR32: |
| case SystemZ::SelectVR64: |
| case SystemZ::SelectVR128: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Helper function, which inserts PHI functions into SinkMBB: |
| // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], |
| // where %FalseValue(i) and %TrueValue(i) are taken from Selects. |
| static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, |
| MachineBasicBlock *TrueMBB, |
| MachineBasicBlock *FalseMBB, |
| MachineBasicBlock *SinkMBB) { |
| MachineFunction *MF = TrueMBB->getParent(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| |
| MachineInstr *FirstMI = Selects.front(); |
| unsigned CCValid = FirstMI->getOperand(3).getImm(); |
| unsigned CCMask = FirstMI->getOperand(4).getImm(); |
| |
| MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); |
| |
| // As we are creating the PHIs, we have to be careful if there is more than |
| // one. Later Selects may reference the results of earlier Selects, but later |
| // PHIs have to reference the individual true/false inputs from earlier PHIs. |
| // That also means that PHI construction must work forward from earlier to |
| // later, and that the code must maintain a mapping from earlier PHI's |
| // destination registers, and the registers that went into the PHI. |
| DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; |
| |
| for (auto *MI : Selects) { |
| Register DestReg = MI->getOperand(0).getReg(); |
| Register TrueReg = MI->getOperand(1).getReg(); |
| Register FalseReg = MI->getOperand(2).getReg(); |
| |
| // If this Select we are generating is the opposite condition from |
| // the jump we generated, then we have to swap the operands for the |
| // PHI that is going to be generated. |
| if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) |
| std::swap(TrueReg, FalseReg); |
| |
| if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) |
| TrueReg = RegRewriteTable[TrueReg].first; |
| |
| if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) |
| FalseReg = RegRewriteTable[FalseReg].second; |
| |
| DebugLoc DL = MI->getDebugLoc(); |
| BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) |
| .addReg(TrueReg).addMBB(TrueMBB) |
| .addReg(FalseReg).addMBB(FalseMBB); |
| |
| // Add this PHI to the rewrite table. |
| RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); |
| } |
| |
| MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); |
| } |
| |
| // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. |
| MachineBasicBlock * |
| SystemZTargetLowering::emitSelect(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| unsigned CCValid = MI.getOperand(3).getImm(); |
| unsigned CCMask = MI.getOperand(4).getImm(); |
| |
| // If we have a sequence of Select* pseudo instructions using the |
| // same condition code value, we want to expand all of them into |
| // a single pair of basic blocks using the same condition. |
| SmallVector<MachineInstr*, 8> Selects; |
| SmallVector<MachineInstr*, 8> DbgValues; |
| Selects.push_back(&MI); |
| unsigned Count = 0; |
| for (MachineInstr &NextMI : llvm::make_range( |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { |
| if (isSelectPseudo(NextMI)) { |
| assert(NextMI.getOperand(3).getImm() == CCValid && |
| "Bad CCValid operands since CC was not redefined."); |
| if (NextMI.getOperand(4).getImm() == CCMask || |
| NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { |
| Selects.push_back(&NextMI); |
| continue; |
| } |
| break; |
| } |
| if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) |
| break; |
| bool User = false; |
| for (auto *SelMI : Selects) |
| if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { |
| User = true; |
| break; |
| } |
| if (NextMI.isDebugInstr()) { |
| if (User) { |
| assert(NextMI.isDebugValue() && "Unhandled debug opcode."); |
| DbgValues.push_back(&NextMI); |
| } |
| } else if (User || ++Count > 20) |
| break; |
| } |
| |
| MachineInstr *LastMI = Selects.back(); |
| bool CCKilled = |
| (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); |
| MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); |
| |
| // Unless CC was killed in the last Select instruction, mark it as |
| // live-in to both FalseMBB and JoinMBB. |
| if (!CCKilled) { |
| FalseMBB->addLiveIn(SystemZ::CC); |
| JoinMBB->addLiveIn(SystemZ::CC); |
| } |
| |
| // StartMBB: |
| // BRC CCMask, JoinMBB |
| // # fallthrough to FalseMBB |
| MBB = StartMBB; |
| BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) |
| .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); |
| MBB->addSuccessor(JoinMBB); |
| MBB->addSuccessor(FalseMBB); |
| |
| // FalseMBB: |
| // # fallthrough to JoinMBB |
| MBB = FalseMBB; |
| MBB->addSuccessor(JoinMBB); |
| |
| // JoinMBB: |
| // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] |
| // ... |
| MBB = JoinMBB; |
| createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); |
| for (auto *SelMI : Selects) |
| SelMI->eraseFromParent(); |
| |
| MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); |
| for (auto *DbgMI : DbgValues) |
| MBB->splice(InsertPos, StartMBB, DbgMI); |
| |
| return JoinMBB; |
| } |
| |
| // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. |
| // StoreOpcode is the store to use and Invert says whether the store should |
| // happen when the condition is false rather than true. If a STORE ON |
| // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. |
| MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| unsigned StoreOpcode, |
| unsigned STOCOpcode, |
| bool Invert) const { |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| Register SrcReg = MI.getOperand(0).getReg(); |
| MachineOperand Base = MI.getOperand(1); |
| int64_t Disp = MI.getOperand(2).getImm(); |
| Register IndexReg = MI.getOperand(3).getReg(); |
| unsigned CCValid = MI.getOperand(4).getImm(); |
| unsigned CCMask = MI.getOperand(5).getImm(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); |
| |
| // ISel pattern matching also adds a load memory operand of the same |
| // address, so take special care to find the storing memory operand. |
| MachineMemOperand *MMO = nullptr; |
| for (auto *I : MI.memoperands()) |
| if (I->isStore()) { |
| MMO = I; |
| break; |
| } |
| |
| // Use STOCOpcode if possible. We could use different store patterns in |
| // order to avoid matching the index register, but the performance trade-offs |
| // might be more complicated in that case. |
| if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { |
| if (Invert) |
| CCMask ^= CCValid; |
| |
| BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) |
| .addReg(SrcReg) |
| .add(Base) |
| .addImm(Disp) |
| .addImm(CCValid) |
| .addImm(CCMask) |
| .addMemOperand(MMO); |
| |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| |
| // Get the condition needed to branch around the store. |
| if (!Invert) |
| CCMask ^= CCValid; |
| |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); |
| MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); |
| |
| // Unless CC was killed in the CondStore instruction, mark it as |
| // live-in to both FalseMBB and JoinMBB. |
| if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { |
| FalseMBB->addLiveIn(SystemZ::CC); |
| JoinMBB->addLiveIn(SystemZ::CC); |
| } |
| |
| // StartMBB: |
| // BRC CCMask, JoinMBB |
| // # fallthrough to FalseMBB |
| MBB = StartMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); |
| MBB->addSuccessor(JoinMBB); |
| MBB->addSuccessor(FalseMBB); |
| |
| // FalseMBB: |
| // store %SrcReg, %Disp(%Index,%Base) |
| // # fallthrough to JoinMBB |
| MBB = FalseMBB; |
| BuildMI(MBB, DL, TII->get(StoreOpcode)) |
| .addReg(SrcReg) |
| .add(Base) |
| .addImm(Disp) |
| .addReg(IndexReg) |
| .addMemOperand(MMO); |
| MBB->addSuccessor(JoinMBB); |
| |
| MI.eraseFromParent(); |
| return JoinMBB; |
| } |
| |
| // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* |
| // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that |
| // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. |
| // BitSize is the width of the field in bits, or 0 if this is a partword |
| // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize |
| // is one of the operands. Invert says whether the field should be |
| // inverted after performing BinOpcode (e.g. for NAND). |
| MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( |
| MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, |
| unsigned BitSize, bool Invert) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| bool IsSubWord = (BitSize < 32); |
| |
| // Extract the operands. Base can be a register or a frame index. |
| // Src2 can be a register or immediate. |
| Register Dest = MI.getOperand(0).getReg(); |
| MachineOperand Base = earlyUseOperand(MI.getOperand(1)); |
| int64_t Disp = MI.getOperand(2).getImm(); |
| MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); |
| Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); |
| Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); |
| DebugLoc DL = MI.getDebugLoc(); |
| if (IsSubWord) |
| BitSize = MI.getOperand(6).getImm(); |
| |
| // Subword operations use 32-bit registers. |
| const TargetRegisterClass *RC = (BitSize <= 32 ? |
| &SystemZ::GR32BitRegClass : |
| &SystemZ::GR64BitRegClass); |
| unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; |
| unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; |
| |
| // Get the right opcodes for the displacement. |
| LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); |
| CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); |
| assert(LOpcode && CSOpcode && "Displacement out of range"); |
| |
| // Create virtual registers for temporary results. |
| Register OrigVal = MRI.createVirtualRegister(RC); |
| Register OldVal = MRI.createVirtualRegister(RC); |
| Register NewVal = (BinOpcode || IsSubWord ? |
| MRI.createVirtualRegister(RC) : Src2.getReg()); |
| Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); |
| Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); |
| |
| // Insert a basic block for the main loop. |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); |
| |
| // StartMBB: |
| // ... |
| // %OrigVal = L Disp(%Base) |
| // # fall through to LoopMBB |
| MBB = StartMBB; |
| BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); |
| MBB->addSuccessor(LoopMBB); |
| |
| // LoopMBB: |
| // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] |
| // %RotatedOldVal = RLL %OldVal, 0(%BitShift) |
| // %RotatedNewVal = OP %RotatedOldVal, %Src2 |
| // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) |
| // %Dest = CS %OldVal, %NewVal, Disp(%Base) |
| // JNE LoopMBB |
| // # fall through to DoneMBB |
| MBB = LoopMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) |
| .addReg(OrigVal).addMBB(StartMBB) |
| .addReg(Dest).addMBB(LoopMBB); |
| if (IsSubWord) |
| BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) |
| .addReg(OldVal).addReg(BitShift).addImm(0); |
| if (Invert) { |
| // Perform the operation normally and then invert every bit of the field. |
| Register Tmp = MRI.createVirtualRegister(RC); |
| BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); |
| if (BitSize <= 32) |
| // XILF with the upper BitSize bits set. |
| BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) |
| .addReg(Tmp).addImm(-1U << (32 - BitSize)); |
| else { |
| // Use LCGR and add -1 to the result, which is more compact than |
| // an XILF, XILH pair. |
| Register Tmp2 = MRI.createVirtualRegister(RC); |
| BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); |
| BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) |
| .addReg(Tmp2).addImm(-1); |
| } |
| } else if (BinOpcode) |
| // A simply binary operation. |
| BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) |
| .addReg(RotatedOldVal) |
| .add(Src2); |
| else if (IsSubWord) |
| // Use RISBG to rotate Src2 into position and use it to replace the |
| // field in RotatedOldVal. |
| BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) |
| .addReg(RotatedOldVal).addReg(Src2.getReg()) |
| .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); |
| if (IsSubWord) |
| BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) |
| .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); |
| BuildMI(MBB, DL, TII->get(CSOpcode), Dest) |
| .addReg(OldVal) |
| .addReg(NewVal) |
| .add(Base) |
| .addImm(Disp); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); |
| MBB->addSuccessor(LoopMBB); |
| MBB->addSuccessor(DoneMBB); |
| |
| MI.eraseFromParent(); |
| return DoneMBB; |
| } |
| |
| // Implement EmitInstrWithCustomInserter for pseudo |
| // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the |
| // instruction that should be used to compare the current field with the |
| // minimum or maximum value. KeepOldMask is the BRC condition-code mask |
| // for when the current field should be kept. BitSize is the width of |
| // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. |
| MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( |
| MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, |
| unsigned KeepOldMask, unsigned BitSize) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| bool IsSubWord = (BitSize < 32); |
| |
| // Extract the operands. Base can be a register or a frame index. |
| Register Dest = MI.getOperand(0).getReg(); |
| MachineOperand Base = earlyUseOperand(MI.getOperand(1)); |
| int64_t Disp = MI.getOperand(2).getImm(); |
| Register Src2 = MI.getOperand(3).getReg(); |
| Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); |
| Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); |
| DebugLoc DL = MI.getDebugLoc(); |
| if (IsSubWord) |
| BitSize = MI.getOperand(6).getImm(); |
| |
| // Subword operations use 32-bit registers. |
| const TargetRegisterClass *RC = (BitSize <= 32 ? |
| &SystemZ::GR32BitRegClass : |
| &SystemZ::GR64BitRegClass); |
| unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; |
| unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; |
| |
| // Get the right opcodes for the displacement. |
| LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); |
| CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); |
| assert(LOpcode && CSOpcode && "Displacement out of range"); |
| |
| // Create virtual registers for temporary results. |
| Register OrigVal = MRI.createVirtualRegister(RC); |
| Register OldVal = MRI.createVirtualRegister(RC); |
| Register NewVal = MRI.createVirtualRegister(RC); |
| Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); |
| Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); |
| Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); |
| |
| // Insert 3 basic blocks for the loop. |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); |
| MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); |
| MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); |
| |
| // StartMBB: |
| // ... |
| // %OrigVal = L Disp(%Base) |
| // # fall through to LoopMBB |
| MBB = StartMBB; |
| BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); |
| MBB->addSuccessor(LoopMBB); |
| |
| // LoopMBB: |
| // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] |
| // %RotatedOldVal = RLL %OldVal, 0(%BitShift) |
| // CompareOpcode %RotatedOldVal, %Src2 |
| // BRC KeepOldMask, UpdateMBB |
| MBB = LoopMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) |
| .addReg(OrigVal).addMBB(StartMBB) |
| .addReg(Dest).addMBB(UpdateMBB); |
| if (IsSubWord) |
| BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) |
| .addReg(OldVal).addReg(BitShift).addImm(0); |
| BuildMI(MBB, DL, TII->get(CompareOpcode)) |
| .addReg(RotatedOldVal).addReg(Src2); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); |
| MBB->addSuccessor(UpdateMBB); |
| MBB->addSuccessor(UseAltMBB); |
| |
| // UseAltMBB: |
| // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 |
| // # fall through to UpdateMBB |
| MBB = UseAltMBB; |
| if (IsSubWord) |
| BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) |
| .addReg(RotatedOldVal).addReg(Src2) |
| .addImm(32).addImm(31 + BitSize).addImm(0); |
| MBB->addSuccessor(UpdateMBB); |
| |
| // UpdateMBB: |
| // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], |
| // [ %RotatedAltVal, UseAltMBB ] |
| // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) |
| // %Dest = CS %OldVal, %NewVal, Disp(%Base) |
| // JNE LoopMBB |
| // # fall through to DoneMBB |
| MBB = UpdateMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) |
| .addReg(RotatedOldVal).addMBB(LoopMBB) |
| .addReg(RotatedAltVal).addMBB(UseAltMBB); |
| if (IsSubWord) |
| BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) |
| .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); |
| BuildMI(MBB, DL, TII->get(CSOpcode), Dest) |
| .addReg(OldVal) |
| .addReg(NewVal) |
| .add(Base) |
| .addImm(Disp); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); |
| MBB->addSuccessor(LoopMBB); |
| MBB->addSuccessor(DoneMBB); |
| |
| MI.eraseFromParent(); |
| return DoneMBB; |
| } |
| |
| // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW |
| // instruction MI. |
| MachineBasicBlock * |
| SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // Extract the operands. Base can be a register or a frame index. |
| Register Dest = MI.getOperand(0).getReg(); |
| MachineOperand Base = earlyUseOperand(MI.getOperand(1)); |
| int64_t Disp = MI.getOperand(2).getImm(); |
| Register CmpVal = MI.getOperand(3).getReg(); |
| Register OrigSwapVal = MI.getOperand(4).getReg(); |
| Register BitShift = MI.getOperand(5).getReg(); |
| Register NegBitShift = MI.getOperand(6).getReg(); |
| int64_t BitSize = MI.getOperand(7).getImm(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; |
| |
| // Get the right opcodes for the displacement and zero-extension. |
| unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); |
| unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); |
| unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; |
| assert(LOpcode && CSOpcode && "Displacement out of range"); |
| |
| // Create virtual registers for temporary results. |
| Register OrigOldVal = MRI.createVirtualRegister(RC); |
| Register OldVal = MRI.createVirtualRegister(RC); |
| Register SwapVal = MRI.createVirtualRegister(RC); |
| Register StoreVal = MRI.createVirtualRegister(RC); |
| Register OldValRot = MRI.createVirtualRegister(RC); |
| Register RetryOldVal = MRI.createVirtualRegister(RC); |
| Register RetrySwapVal = MRI.createVirtualRegister(RC); |
| |
| // Insert 2 basic blocks for the loop. |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); |
| MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); |
| |
| // StartMBB: |
| // ... |
| // %OrigOldVal = L Disp(%Base) |
| // # fall through to LoopMBB |
| MBB = StartMBB; |
| BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) |
| .add(Base) |
| .addImm(Disp) |
| .addReg(0); |
| MBB->addSuccessor(LoopMBB); |
| |
| // LoopMBB: |
| // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] |
| // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] |
| // %OldValRot = RLL %OldVal, BitSize(%BitShift) |
| // ^^ The low BitSize bits contain the field |
| // of interest. |
| // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 |
| // ^^ Replace the upper 32-BitSize bits of the |
| // swap value with those that we loaded and rotated. |
| // %Dest = LL[CH] %OldValRot |
| // CR %Dest, %CmpVal |
| // JNE DoneMBB |
| // # Fall through to SetMBB |
| MBB = LoopMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) |
| .addReg(OrigOldVal).addMBB(StartMBB) |
| .addReg(RetryOldVal).addMBB(SetMBB); |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) |
| .addReg(OrigSwapVal).addMBB(StartMBB) |
| .addReg(RetrySwapVal).addMBB(SetMBB); |
| BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) |
| .addReg(OldVal).addReg(BitShift).addImm(BitSize); |
| BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) |
| .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); |
| BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) |
| .addReg(OldValRot); |
| BuildMI(MBB, DL, TII->get(SystemZ::CR)) |
| .addReg(Dest).addReg(CmpVal); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP) |
| .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); |
| MBB->addSuccessor(DoneMBB); |
| MBB->addSuccessor(SetMBB); |
| |
| // SetMBB: |
| // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) |
| // ^^ Rotate the new field to its proper position. |
| // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) |
| // JNE LoopMBB |
| // # fall through to ExitMBB |
| MBB = SetMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) |
| .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); |
| BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) |
| .addReg(OldVal) |
| .addReg(StoreVal) |
| .add(Base) |
| .addImm(Disp); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); |
| MBB->addSuccessor(LoopMBB); |
| MBB->addSuccessor(DoneMBB); |
| |
| // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in |
| // to the block after the loop. At this point, CC may have been defined |
| // either by the CR in LoopMBB or by the CS in SetMBB. |
| if (!MI.registerDefIsDead(SystemZ::CC)) |
| DoneMBB->addLiveIn(SystemZ::CC); |
| |
| MI.eraseFromParent(); |
| return DoneMBB; |
| } |
| |
| // Emit a move from two GR64s to a GR128. |
| MachineBasicBlock * |
| SystemZTargetLowering::emitPair128(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| Register Dest = MI.getOperand(0).getReg(); |
| Register Hi = MI.getOperand(1).getReg(); |
| Register Lo = MI.getOperand(2).getReg(); |
| Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); |
| Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); |
| |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) |
| .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) |
| .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); |
| |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| |
| // Emit an extension from a GR64 to a GR128. ClearEven is true |
| // if the high register of the GR128 value must be cleared or false if |
| // it's "don't care". |
| MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| bool ClearEven) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| Register Dest = MI.getOperand(0).getReg(); |
| Register Src = MI.getOperand(1).getReg(); |
| Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); |
| |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); |
| if (ClearEven) { |
| Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); |
| Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); |
| |
| BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) |
| .addImm(0); |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) |
| .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); |
| In128 = NewIn128; |
| } |
| BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) |
| .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); |
| |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| |
| MachineBasicBlock * |
| SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| unsigned Opcode, bool IsMemset) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); |
| uint64_t DestDisp = MI.getOperand(1).getImm(); |
| MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); |
| uint64_t SrcDisp; |
| |
| // Fold the displacement Disp if it is out of range. |
| auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { |
| if (!isUInt<12>(Disp)) { |
| Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) |
| .add(Base).addImm(Disp).addReg(0); |
| Base = MachineOperand::CreateReg(Reg, false); |
| Disp = 0; |
| } |
| }; |
| |
| if (!IsMemset) { |
| SrcBase = earlyUseOperand(MI.getOperand(2)); |
| SrcDisp = MI.getOperand(3).getImm(); |
| } else { |
| SrcBase = DestBase; |
| SrcDisp = DestDisp++; |
| foldDisplIfNeeded(DestBase, DestDisp); |
| } |
| |
| MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); |
| bool IsImmForm = LengthMO.isImm(); |
| bool IsRegForm = !IsImmForm; |
| |
| // Build and insert one Opcode of Length, with special treatment for memset. |
| auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, |
| MachineBasicBlock::iterator InsPos, |
| MachineOperand DBase, uint64_t DDisp, |
| MachineOperand SBase, uint64_t SDisp, |
| unsigned Length) -> void { |
| assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); |
| if (IsMemset) { |
| MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); |
| if (ByteMO.isImm()) |
| BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) |
| .add(SBase).addImm(SDisp).add(ByteMO); |
| else |
| BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) |
| .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); |
| if (--Length == 0) |
| return; |
| } |
| BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) |
| .add(DBase).addImm(DDisp).addImm(Length) |
| .add(SBase).addImm(SDisp) |
| .setMemRefs(MI.memoperands()); |
| }; |
| |
| bool NeedsLoop = false; |
| uint64_t ImmLength = 0; |
| Register LenAdjReg = SystemZ::NoRegister; |
| if (IsImmForm) { |
| ImmLength = LengthMO.getImm(); |
| ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. |
| if (ImmLength == 0) { |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| if (Opcode == SystemZ::CLC) { |
| if (ImmLength > 3 * 256) |
| // A two-CLC sequence is a clear win over a loop, not least because |
| // it needs only one branch. A three-CLC sequence needs the same |
| // number of branches as a loop (i.e. 2), but is shorter. That |
| // brings us to lengths greater than 768 bytes. It seems relatively |
| // likely that a difference will be found within the first 768 bytes, |
| // so we just optimize for the smallest number of branch |
| // instructions, in order to avoid polluting the prediction buffer |
| // too much. |
| NeedsLoop = true; |
| } else if (ImmLength > 6 * 256) |
| // The heuristic we use is to prefer loops for anything that would |
| // require 7 or more MVCs. With these kinds of sizes there isn't much |
| // to choose between straight-line code and looping code, since the |
| // time will be dominated by the MVCs themselves. |
| NeedsLoop = true; |
| } else { |
| NeedsLoop = true; |
| LenAdjReg = LengthMO.getReg(); |
| } |
| |
| // When generating more than one CLC, all but the last will need to |
| // branch to the end when a difference is found. |
| MachineBasicBlock *EndMBB = |
| (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) |
| ? SystemZ::splitBlockAfter(MI, MBB) |
| : nullptr); |
| |
| if (NeedsLoop) { |
| Register StartCountReg = |
| MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); |
| if (IsImmForm) { |
| TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); |
| ImmLength &= 255; |
| } else { |
| BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) |
| .addReg(LenAdjReg) |
| .addReg(0) |
| .addImm(8); |
| } |
| |
| bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); |
| auto loadZeroAddress = [&]() -> MachineOperand { |
| Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); |
| return MachineOperand::CreateReg(Reg, false); |
| }; |
| if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) |
| DestBase = loadZeroAddress(); |
| if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) |
| SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); |
| |
| MachineBasicBlock *StartMBB = nullptr; |
| MachineBasicBlock *LoopMBB = nullptr; |
| MachineBasicBlock *NextMBB = nullptr; |
| MachineBasicBlock *DoneMBB = nullptr; |
| MachineBasicBlock *AllDoneMBB = nullptr; |
| |
| Register StartSrcReg = forceReg(MI, SrcBase, TII); |
| Register StartDestReg = |
| (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); |
| |
| const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; |
| Register ThisSrcReg = MRI.createVirtualRegister(RC); |
| Register ThisDestReg = |
| (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); |
| Register NextSrcReg = MRI.createVirtualRegister(RC); |
| Register NextDestReg = |
| (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); |
| RC = &SystemZ::GR64BitRegClass; |
| Register ThisCountReg = MRI.createVirtualRegister(RC); |
| Register NextCountReg = MRI.createVirtualRegister(RC); |
| |
| if (IsRegForm) { |
| AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| StartMBB = SystemZ::emitBlockAfter(MBB); |
| LoopMBB = SystemZ::emitBlockAfter(StartMBB); |
| NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); |
| DoneMBB = SystemZ::emitBlockAfter(NextMBB); |
| |
| // MBB: |
| // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. |
| BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) |
| .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) |
| .addMBB(AllDoneMBB); |
| MBB->addSuccessor(AllDoneMBB); |
| if (!IsMemset) |
| MBB->addSuccessor(StartMBB); |
| else { |
| // MemsetOneCheckMBB: |
| // # Jump to MemsetOneMBB for a memset of length 1, or |
| // # fall thru to StartMBB. |
| MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); |
| MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); |
| MBB->addSuccessor(MemsetOneCheckMBB); |
| MBB = MemsetOneCheckMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) |
| .addReg(LenAdjReg).addImm(-1); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) |
| .addMBB(MemsetOneMBB); |
| MBB->addSuccessor(MemsetOneMBB, {10, 100}); |
| MBB->addSuccessor(StartMBB, {90, 100}); |
| |
| // MemsetOneMBB: |
| // # Jump back to AllDoneMBB after a single MVI or STC. |
| MBB = MemsetOneMBB; |
| insertMemMemOp(MBB, MBB->end(), |
| MachineOperand::CreateReg(StartDestReg, false), DestDisp, |
| MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, |
| 1); |
| BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); |
| MBB->addSuccessor(AllDoneMBB); |
| } |
| |
| // StartMBB: |
| // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. |
| MBB = StartMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) |
| .addReg(StartCountReg).addImm(0); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) |
| .addMBB(DoneMBB); |
| MBB->addSuccessor(DoneMBB); |
| MBB->addSuccessor(LoopMBB); |
| } |
| else { |
| StartMBB = MBB; |
| DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| LoopMBB = SystemZ::emitBlockAfter(StartMBB); |
| NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); |
| |
| // StartMBB: |
| // # fall through to LoopMBB |
| MBB->addSuccessor(LoopMBB); |
| |
| DestBase = MachineOperand::CreateReg(NextDestReg, false); |
| SrcBase = MachineOperand::CreateReg(NextSrcReg, false); |
| if (EndMBB && !ImmLength) |
| // If the loop handled the whole CLC range, DoneMBB will be empty with |
| // CC live-through into EndMBB, so add it as live-in. |
| DoneMBB->addLiveIn(SystemZ::CC); |
| } |
| |
| // LoopMBB: |
| // %ThisDestReg = phi [ %StartDestReg, StartMBB ], |
| // [ %NextDestReg, NextMBB ] |
| // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], |
| // [ %NextSrcReg, NextMBB ] |
| // %ThisCountReg = phi [ %StartCountReg, StartMBB ], |
| // [ %NextCountReg, NextMBB ] |
| // ( PFD 2, 768+DestDisp(%ThisDestReg) ) |
| // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) |
| // ( JLH EndMBB ) |
| // |
| // The prefetch is used only for MVC. The JLH is used only for CLC. |
| MBB = LoopMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) |
| .addReg(StartDestReg).addMBB(StartMBB) |
| .addReg(NextDestReg).addMBB(NextMBB); |
| if (!HaveSingleBase) |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) |
| .addReg(StartSrcReg).addMBB(StartMBB) |
| .addReg(NextSrcReg).addMBB(NextMBB); |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) |
| .addReg(StartCountReg).addMBB(StartMBB) |
| .addReg(NextCountReg).addMBB(NextMBB); |
| if (Opcode == SystemZ::MVC) |
| BuildMI(MBB, DL, TII->get(SystemZ::PFD)) |
| .addImm(SystemZ::PFD_WRITE) |
| .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); |
| insertMemMemOp(MBB, MBB->end(), |
| MachineOperand::CreateReg(ThisDestReg, false), DestDisp, |
| MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); |
| if (EndMBB) { |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) |
| .addMBB(EndMBB); |
| MBB->addSuccessor(EndMBB); |
| MBB->addSuccessor(NextMBB); |
| } |
| |
| // NextMBB: |
| // %NextDestReg = LA 256(%ThisDestReg) |
| // %NextSrcReg = LA 256(%ThisSrcReg) |
| // %NextCountReg = AGHI %ThisCountReg, -1 |
| // CGHI %NextCountReg, 0 |
| // JLH LoopMBB |
| // # fall through to DoneMBB |
| // |
| // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. |
| MBB = NextMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) |
| .addReg(ThisDestReg).addImm(256).addReg(0); |
| if (!HaveSingleBase) |
| BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) |
| .addReg(ThisSrcReg).addImm(256).addReg(0); |
| BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) |
| .addReg(ThisCountReg).addImm(-1); |
| BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) |
| .addReg(NextCountReg).addImm(0); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) |
| .addMBB(LoopMBB); |
| MBB->addSuccessor(LoopMBB); |
| MBB->addSuccessor(DoneMBB); |
| |
| MBB = DoneMBB; |
| if (IsRegForm) { |
| // DoneMBB: |
| // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. |
| // # Use EXecute Relative Long for the remainder of the bytes. The target |
| // instruction of the EXRL will have a length field of 1 since 0 is an |
| // illegal value. The number of bytes processed becomes (%LenAdjReg & |
| // 0xff) + 1. |
| // # Fall through to AllDoneMBB. |
| Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| Register RemDestReg = HaveSingleBase ? RemSrcReg |
| : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) |
| .addReg(StartDestReg).addMBB(StartMBB) |
| .addReg(NextDestReg).addMBB(NextMBB); |
| if (!HaveSingleBase) |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) |
| .addReg(StartSrcReg).addMBB(StartMBB) |
| .addReg(NextSrcReg).addMBB(NextMBB); |
| if (IsMemset) |
| insertMemMemOp(MBB, MBB->end(), |
| MachineOperand::CreateReg(RemDestReg, false), DestDisp, |
| MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); |
| MachineInstrBuilder EXRL_MIB = |
| BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) |
| .addImm(Opcode) |
| .addReg(LenAdjReg) |
| .addReg(RemDestReg).addImm(DestDisp) |
| .addReg(RemSrcReg).addImm(SrcDisp); |
| MBB->addSuccessor(AllDoneMBB); |
| MBB = AllDoneMBB; |
| if (EndMBB) { |
| EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); |
| MBB->addLiveIn(SystemZ::CC); |
| } |
| } |
| } |
| |
| // Handle any remaining bytes with straight-line code. |
| while (ImmLength > 0) { |
| uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); |
| // The previous iteration might have created out-of-range displacements. |
| // Apply them using LA/LAY if so. |
| foldDisplIfNeeded(DestBase, DestDisp); |
| foldDisplIfNeeded(SrcBase, SrcDisp); |
| insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); |
| DestDisp += ThisLength; |
| SrcDisp += ThisLength; |
| ImmLength -= ThisLength; |
| // If there's another CLC to go, branch to the end if a difference |
| // was found. |
| if (EndMBB && ImmLength > 0) { |
| MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) |
| .addMBB(EndMBB); |
| MBB->addSuccessor(EndMBB); |
| MBB->addSuccessor(NextMBB); |
| MBB = NextMBB; |
| } |
| } |
| if (EndMBB) { |
| MBB->addSuccessor(EndMBB); |
| MBB = EndMBB; |
| MBB->addLiveIn(SystemZ::CC); |
| } |
| |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| |
| // Decompose string pseudo-instruction MI into a loop that continually performs |
| // Opcode until CC != 3. |
| MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( |
| MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| uint64_t End1Reg = MI.getOperand(0).getReg(); |
| uint64_t Start1Reg = MI.getOperand(1).getReg(); |
| uint64_t Start2Reg = MI.getOperand(2).getReg(); |
| uint64_t CharReg = MI.getOperand(3).getReg(); |
| |
| const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; |
| uint64_t This1Reg = MRI.createVirtualRegister(RC); |
| uint64_t This2Reg = MRI.createVirtualRegister(RC); |
| uint64_t End2Reg = MRI.createVirtualRegister(RC); |
| |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); |
| MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); |
| |
| // StartMBB: |
| // # fall through to LoopMBB |
| MBB->addSuccessor(LoopMBB); |
| |
| // LoopMBB: |
| // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] |
| // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] |
| // R0L = %CharReg |
| // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L |
| // JO LoopMBB |
| // # fall through to DoneMBB |
| // |
| // The load of R0L can be hoisted by post-RA LICM. |
| MBB = LoopMBB; |
| |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) |
| .addReg(Start1Reg).addMBB(StartMBB) |
| .addReg(End1Reg).addMBB(LoopMBB); |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) |
| .addReg(Start2Reg).addMBB(StartMBB) |
| .addReg(End2Reg).addMBB(LoopMBB); |
| BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); |
| BuildMI(MBB, DL, TII->get(Opcode)) |
| .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) |
| .addReg(This1Reg).addReg(This2Reg); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); |
| MBB->addSuccessor(LoopMBB); |
| MBB->addSuccessor(DoneMBB); |
| |
| DoneMBB->addLiveIn(SystemZ::CC); |
| |
| MI.eraseFromParent(); |
| return DoneMBB; |
| } |
| |
| // Update TBEGIN instruction with final opcode and register clobbers. |
| MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( |
| MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, |
| bool NoFloat) const { |
| MachineFunction &MF = *MBB->getParent(); |
| const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| // Update opcode. |
| MI.setDesc(TII->get(Opcode)); |
| |
| // We cannot handle a TBEGIN that clobbers the stack or frame pointer. |
| // Make sure to add the corresponding GRSM bits if they are missing. |
| uint64_t Control = MI.getOperand(2).getImm(); |
| static const unsigned GPRControlBit[16] = { |
| 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, |
| 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 |
| }; |
| Control |= GPRControlBit[15]; |
| if (TFI->hasFP(MF)) |
| Control |= GPRControlBit[11]; |
| MI.getOperand(2).setImm(Control); |
| |
| // Add GPR clobbers. |
| for (int I = 0; I < 16; I++) { |
| if ((Control & GPRControlBit[I]) == 0) { |
| unsigned Reg = SystemZMC::GR64Regs[I]; |
| MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); |
| } |
| } |
| |
| // Add FPR/VR clobbers. |
| if (!NoFloat && (Control & 4) != 0) { |
| if (Subtarget.hasVector()) { |
| for (unsigned Reg : SystemZMC::VR128Regs) { |
| MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); |
| } |
| } else { |
| for (unsigned Reg : SystemZMC::FP64Regs) { |
| MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); |
| } |
| } |
| } |
| |
| return MBB; |
| } |
| |
| MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( |
| MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { |
| MachineFunction &MF = *MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| Register SrcReg = MI.getOperand(0).getReg(); |
| |
| // Create new virtual register of the same class as source. |
| const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); |
| Register DstReg = MRI->createVirtualRegister(RC); |
| |
| // Replace pseudo with a normal load-and-test that models the def as |
| // well. |
| BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) |
| .addReg(SrcReg) |
| .setMIFlags(MI.getFlags()); |
| MI.eraseFromParent(); |
| |
| return MBB; |
| } |
| |
| MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( |
| MachineInstr &MI, MachineBasicBlock *MBB) const { |
| MachineFunction &MF = *MBB->getParent(); |
| MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const unsigned ProbeSize = getStackProbeSize(MF); |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SizeReg = MI.getOperand(2).getReg(); |
| |
| MachineBasicBlock *StartMBB = MBB; |
| MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); |
| MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); |
| MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); |
| MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); |
| MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); |
| |
| MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), |
| MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); |
| |
| Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); |
| |
| // LoopTestMBB |
| // BRC TailTestMBB |
| // # fallthrough to LoopBodyMBB |
| StartMBB->addSuccessor(LoopTestMBB); |
| MBB = LoopTestMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) |
| .addReg(SizeReg) |
| .addMBB(StartMBB) |
| .addReg(IncReg) |
| .addMBB(LoopBodyMBB); |
| BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) |
| .addReg(PHIReg) |
| .addImm(ProbeSize); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) |
| .addMBB(TailTestMBB); |
| MBB->addSuccessor(LoopBodyMBB); |
| MBB->addSuccessor(TailTestMBB); |
| |
| // LoopBodyMBB: Allocate and probe by means of a volatile compare. |
| // J LoopTestMBB |
| MBB = LoopBodyMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) |
| .addReg(PHIReg) |
| .addImm(ProbeSize); |
| BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) |
| .addReg(SystemZ::R15D) |
| .addImm(ProbeSize); |
| BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) |
| .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) |
| .setMemRefs(VolLdMMO); |
| BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); |
| MBB->addSuccessor(LoopTestMBB); |
| |
| // TailTestMBB |
| // BRC DoneMBB |
| // # fallthrough to TailMBB |
| MBB = TailTestMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) |
| .addReg(PHIReg) |
| .addImm(0); |
| BuildMI(MBB, DL, TII->get(SystemZ::BRC)) |
| .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) |
| .addMBB(DoneMBB); |
| MBB->addSuccessor(TailMBB); |
| MBB->addSuccessor(DoneMBB); |
| |
| // TailMBB |
| // # fallthrough to DoneMBB |
| MBB = TailMBB; |
| BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) |
| .addReg(SystemZ::R15D) |
| .addReg(PHIReg); |
| BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) |
| .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) |
| .setMemRefs(VolLdMMO); |
| MBB->addSuccessor(DoneMBB); |
| |
| // DoneMBB |
| MBB = DoneMBB; |
| BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) |
| .addReg(SystemZ::R15D); |
| |
| MI.eraseFromParent(); |
| return DoneMBB; |
| } |
| |
| SDValue SystemZTargetLowering:: |
| getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); |
| SDLoc DL(SP); |
| return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, |
| DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); |
| } |
| |
| MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( |
| MachineInstr &MI, MachineBasicBlock *MBB) const { |
| switch (MI.getOpcode()) { |
| case SystemZ::Select32: |
| case SystemZ::Select64: |
| case SystemZ::SelectF32: |
| case SystemZ::SelectF64: |
| case SystemZ::SelectF128: |
| case SystemZ::SelectVR32: |
| case SystemZ::SelectVR64: |
| case SystemZ::SelectVR128: |
| return emitSelect(MI, MBB); |
| |
| case SystemZ::CondStore8Mux: |
| return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); |
| case SystemZ::CondStore8MuxInv: |
| return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); |
| case SystemZ::CondStore16Mux: |
| return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); |
| case SystemZ::CondStore16MuxInv: |
| return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); |
| case SystemZ::CondStore32Mux: |
| return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); |
| case SystemZ::CondStore32MuxInv: |
| return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); |
| case SystemZ::CondStore8: |
| return emitCondStore(MI, MBB, SystemZ::STC, 0, false); |
| case SystemZ::CondStore8Inv: |
| return emitCondStore(MI, MBB, SystemZ::STC, 0, true); |
| case SystemZ::CondStore16: |
| return emitCondStore(MI, MBB, SystemZ::STH, 0, false); |
| case SystemZ::CondStore16Inv: |
| return emitCondStore(MI, MBB, SystemZ::STH, 0, true); |
| case SystemZ::CondStore32: |
| return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); |
| case SystemZ::CondStore32Inv: |
| return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); |
| case SystemZ::CondStore64: |
| return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); |
| case SystemZ::CondStore64Inv: |
| return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); |
| case SystemZ::CondStoreF32: |
| return emitCondStore(MI, MBB, SystemZ::STE, 0, false); |
| case SystemZ::CondStoreF32Inv: |
| return emitCondStore(MI, MBB, SystemZ::STE, 0, true); |
| case SystemZ::CondStoreF64: |
| return emitCondStore(MI, MBB, SystemZ::STD, 0, false); |
| case SystemZ::CondStoreF64Inv: |
| return emitCondStore(MI, MBB, SystemZ::STD, 0, true); |
| |
| case SystemZ::PAIR128: |
| return emitPair128(MI, MBB); |
| case SystemZ::AEXT128: |
| return emitExt128(MI, MBB, false); |
| case SystemZ::ZEXT128: |
| return emitExt128(MI, MBB, true); |
| |
| case SystemZ::ATOMIC_SWAPW: |
| return emitAtomicLoadBinary(MI, MBB, 0, 0); |
| case SystemZ::ATOMIC_SWAP_32: |
| return emitAtomicLoadBinary(MI, MBB, 0, 32); |
| case SystemZ::ATOMIC_SWAP_64: |
| return emitAtomicLoadBinary(MI, MBB, 0, 64); |
| |
| case SystemZ::ATOMIC_LOADW_AR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); |
| case SystemZ::ATOMIC_LOADW_AFI: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); |
| case SystemZ::ATOMIC_LOAD_AR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); |
| case SystemZ::ATOMIC_LOAD_AHI: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); |
| case SystemZ::ATOMIC_LOAD_AFI: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); |
| case SystemZ::ATOMIC_LOAD_AGR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); |
| case SystemZ::ATOMIC_LOAD_AGHI: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); |
| case SystemZ::ATOMIC_LOAD_AGFI: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); |
| |
| case SystemZ::ATOMIC_LOADW_SR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); |
| case SystemZ::ATOMIC_LOAD_SR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); |
| case SystemZ::ATOMIC_LOAD_SGR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); |
| |
| case SystemZ::ATOMIC_LOADW_NR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); |
| case SystemZ::ATOMIC_LOADW_NILH: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); |
| case SystemZ::ATOMIC_LOAD_NR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); |
| case SystemZ::ATOMIC_LOAD_NILL: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); |
| case SystemZ::ATOMIC_LOAD_NILH: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); |
| case SystemZ::ATOMIC_LOAD_NILF: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); |
| case SystemZ::ATOMIC_LOAD_NGR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); |
| case SystemZ::ATOMIC_LOAD_NILL64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); |
| case SystemZ::ATOMIC_LOAD_NILH64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); |
| case SystemZ::ATOMIC_LOAD_NIHL64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); |
| case SystemZ::ATOMIC_LOAD_NIHH64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); |
| case SystemZ::ATOMIC_LOAD_NILF64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); |
| case SystemZ::ATOMIC_LOAD_NIHF64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); |
| |
| case SystemZ::ATOMIC_LOADW_OR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); |
| case SystemZ::ATOMIC_LOADW_OILH: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); |
| case SystemZ::ATOMIC_LOAD_OR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); |
| case SystemZ::ATOMIC_LOAD_OILL: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); |
| case SystemZ::ATOMIC_LOAD_OILH: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); |
| case SystemZ::ATOMIC_LOAD_OILF: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); |
| case SystemZ::ATOMIC_LOAD_OGR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); |
| case SystemZ::ATOMIC_LOAD_OILL64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); |
| case SystemZ::ATOMIC_LOAD_OILH64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); |
| case SystemZ::ATOMIC_LOAD_OIHL64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); |
| case SystemZ::ATOMIC_LOAD_OIHH64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); |
| case SystemZ::ATOMIC_LOAD_OILF64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); |
| case SystemZ::ATOMIC_LOAD_OIHF64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); |
| |
| case SystemZ::ATOMIC_LOADW_XR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); |
| case SystemZ::ATOMIC_LOADW_XILF: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); |
| case SystemZ::ATOMIC_LOAD_XR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); |
| case SystemZ::ATOMIC_LOAD_XILF: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); |
| case SystemZ::ATOMIC_LOAD_XGR: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); |
| case SystemZ::ATOMIC_LOAD_XILF64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); |
| case SystemZ::ATOMIC_LOAD_XIHF64: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); |
| |
| case SystemZ::ATOMIC_LOADW_NRi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); |
| case SystemZ::ATOMIC_LOADW_NILHi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); |
| case SystemZ::ATOMIC_LOAD_NRi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); |
| case SystemZ::ATOMIC_LOAD_NILLi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); |
| case SystemZ::ATOMIC_LOAD_NILHi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); |
| case SystemZ::ATOMIC_LOAD_NILFi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); |
| case SystemZ::ATOMIC_LOAD_NGRi: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); |
| case SystemZ::ATOMIC_LOAD_NILL64i: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); |
| case SystemZ::ATOMIC_LOAD_NILH64i: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); |
| case SystemZ::ATOMIC_LOAD_NIHL64i: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); |
| case SystemZ::ATOMIC_LOAD_NIHH64i: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); |
| case SystemZ::ATOMIC_LOAD_NILF64i: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); |
| case SystemZ::ATOMIC_LOAD_NIHF64i: |
| return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); |
| |
| case SystemZ::ATOMIC_LOADW_MIN: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| SystemZ::CCMASK_CMP_LE, 0); |
| case SystemZ::ATOMIC_LOAD_MIN_32: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| SystemZ::CCMASK_CMP_LE, 32); |
| case SystemZ::ATOMIC_LOAD_MIN_64: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, |
| SystemZ::CCMASK_CMP_LE, 64); |
| |
| case SystemZ::ATOMIC_LOADW_MAX: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| SystemZ::CCMASK_CMP_GE, 0); |
| case SystemZ::ATOMIC_LOAD_MAX_32: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, |
| SystemZ::CCMASK_CMP_GE, 32); |
| case SystemZ::ATOMIC_LOAD_MAX_64: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, |
| SystemZ::CCMASK_CMP_GE, 64); |
| |
| case SystemZ::ATOMIC_LOADW_UMIN: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| SystemZ::CCMASK_CMP_LE, 0); |
| case SystemZ::ATOMIC_LOAD_UMIN_32: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| SystemZ::CCMASK_CMP_LE, 32); |
| case SystemZ::ATOMIC_LOAD_UMIN_64: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, |
| SystemZ::CCMASK_CMP_LE, 64); |
| |
| case SystemZ::ATOMIC_LOADW_UMAX: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| SystemZ::CCMASK_CMP_GE, 0); |
| case SystemZ::ATOMIC_LOAD_UMAX_32: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, |
| SystemZ::CCMASK_CMP_GE, 32); |
| case SystemZ::ATOMIC_LOAD_UMAX_64: |
| return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, |
| SystemZ::CCMASK_CMP_GE, 64); |
| |
| case SystemZ::ATOMIC_CMP_SWAPW: |
| return emitAtomicCmpSwapW(MI, MBB); |
| case SystemZ::MVCImm: |
| case SystemZ::MVCReg: |
| return emitMemMemWrapper(MI, MBB, SystemZ::MVC); |
| case SystemZ::NCImm: |
| return emitMemMemWrapper(MI, MBB, SystemZ::NC); |
| case SystemZ::OCImm: |
| return emitMemMemWrapper(MI, MBB, SystemZ::OC); |
| case SystemZ::XCImm: |
| case SystemZ::XCReg: |
| return emitMemMemWrapper(MI, MBB, SystemZ::XC); |
| case SystemZ::CLCImm: |
| case SystemZ::CLCReg: |
| return emitMemMemWrapper(MI, MBB, SystemZ::CLC); |
| case SystemZ::MemsetImmImm: |
| case SystemZ::MemsetImmReg: |
| case SystemZ::MemsetRegImm: |
| case SystemZ::MemsetRegReg: |
| return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); |
| case SystemZ::CLSTLoop: |
| return emitStringWrapper(MI, MBB, SystemZ::CLST); |
| case SystemZ::MVSTLoop: |
| return emitStringWrapper(MI, MBB, SystemZ::MVST); |
| case SystemZ::SRSTLoop: |
| return emitStringWrapper(MI, MBB, SystemZ::SRST); |
| case SystemZ::TBEGIN: |
| return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); |
| case SystemZ::TBEGIN_nofloat: |
| return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); |
| case SystemZ::TBEGINC: |
| return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); |
| case SystemZ::LTEBRCompare_VecPseudo: |
| return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); |
| case SystemZ::LTDBRCompare_VecPseudo: |
| return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); |
| case SystemZ::LTXBRCompare_VecPseudo: |
| return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); |
| |
| case SystemZ::PROBED_ALLOCA: |
| return emitProbedAlloca(MI, MBB); |
| |
| case TargetOpcode::STACKMAP: |
| case TargetOpcode::PATCHPOINT: |
| return emitPatchPoint(MI, MBB); |
| |
| default: |
| llvm_unreachable("Unexpected instr type to insert"); |
| } |
| } |
| |
| // This is only used by the isel schedulers, and is needed only to prevent |
| // compiler from crashing when list-ilp is used. |
| const TargetRegisterClass * |
| SystemZTargetLowering::getRepRegClassFor(MVT VT) const { |
| if (VT == MVT::Untyped) |
| return &SystemZ::ADDR128BitRegClass; |
| return TargetLowering::getRepRegClassFor(VT); |
| } |
| |
| SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| /* |
| The rounding method is in FPC Byte 3 bits 6-7, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to 0 |
| 10 Round to +inf |
| 11 Round to -inf |
| |
| FLT_ROUNDS, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| */ |
| |
| // Save FPC to register. |
| SDValue Chain = Op.getOperand(0); |
| SDValue EFPC( |
| DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); |
| Chain = EFPC.getValue(1); |
| |
| // Transform as necessary |
| SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, |
| DAG.getConstant(3, dl, MVT::i32)); |
| // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 |
| SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, |
| DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, |
| DAG.getConstant(1, dl, MVT::i32))); |
| |
| SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, |
| DAG.getConstant(1, dl, MVT::i32)); |
| RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); |
| |
| return DAG.getMergeValues({RetVal, Chain}, dl); |
| } |