blob: d7a2a51d4652f7248eac11a993b9a65c97b354d8 [file] [log] [blame]
//===-- SystemZFrameLowering.cpp - Frame lowering for SystemZ -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SystemZFrameLowering.h"
#include "SystemZCallingConv.h"
#include "SystemZInstrBuilder.h"
#include "SystemZInstrInfo.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZRegisterInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
namespace {
// The ABI-defined register save slots, relative to the CFA (i.e.
// incoming stack pointer + SystemZMC::ELFCallFrameSize).
static const TargetFrameLowering::SpillSlot ELFSpillOffsetTable[] = {
{ SystemZ::R2D, 0x10 },
{ SystemZ::R3D, 0x18 },
{ SystemZ::R4D, 0x20 },
{ SystemZ::R5D, 0x28 },
{ SystemZ::R6D, 0x30 },
{ SystemZ::R7D, 0x38 },
{ SystemZ::R8D, 0x40 },
{ SystemZ::R9D, 0x48 },
{ SystemZ::R10D, 0x50 },
{ SystemZ::R11D, 0x58 },
{ SystemZ::R12D, 0x60 },
{ SystemZ::R13D, 0x68 },
{ SystemZ::R14D, 0x70 },
{ SystemZ::R15D, 0x78 },
{ SystemZ::F0D, 0x80 },
{ SystemZ::F2D, 0x88 },
{ SystemZ::F4D, 0x90 },
{ SystemZ::F6D, 0x98 }
};
static const TargetFrameLowering::SpillSlot XPLINKSpillOffsetTable[] = {
{SystemZ::R4D, 0x00}, {SystemZ::R5D, 0x08}, {SystemZ::R6D, 0x10},
{SystemZ::R7D, 0x18}, {SystemZ::R8D, 0x20}, {SystemZ::R9D, 0x28},
{SystemZ::R10D, 0x30}, {SystemZ::R11D, 0x38}, {SystemZ::R12D, 0x40},
{SystemZ::R13D, 0x48}, {SystemZ::R14D, 0x50}, {SystemZ::R15D, 0x58}};
} // end anonymous namespace
SystemZFrameLowering::SystemZFrameLowering(StackDirection D, Align StackAl,
int LAO, Align TransAl,
bool StackReal)
: TargetFrameLowering(D, StackAl, LAO, TransAl, StackReal) {}
std::unique_ptr<SystemZFrameLowering>
SystemZFrameLowering::create(const SystemZSubtarget &STI) {
if (STI.isTargetXPLINK64())
return std::make_unique<SystemZXPLINKFrameLowering>();
return std::make_unique<SystemZELFFrameLowering>();
}
MachineBasicBlock::iterator SystemZFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
switch (MI->getOpcode()) {
case SystemZ::ADJCALLSTACKDOWN:
case SystemZ::ADJCALLSTACKUP:
assert(hasReservedCallFrame(MF) &&
"ADJSTACKDOWN and ADJSTACKUP should be no-ops");
return MBB.erase(MI);
break;
default:
llvm_unreachable("Unexpected call frame instruction");
}
}
namespace {
struct SZFrameSortingObj {
bool IsValid = false; // True if we care about this Object.
uint32_t ObjectIndex = 0; // Index of Object into MFI list.
uint64_t ObjectSize = 0; // Size of Object in bytes.
uint32_t D12Count = 0; // 12-bit displacement only.
uint32_t DPairCount = 0; // 12 or 20 bit displacement.
};
typedef std::vector<SZFrameSortingObj> SZFrameObjVec;
} // namespace
// TODO: Move to base class.
void SystemZELFFrameLowering::orderFrameObjects(
const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
auto *TII = MF.getSubtarget<SystemZSubtarget>().getInstrInfo();
// Make a vector of sorting objects to track all MFI objects and mark those
// to be sorted as valid.
if (ObjectsToAllocate.size() <= 1)
return;
SZFrameObjVec SortingObjects(MFI.getObjectIndexEnd());
for (auto &Obj : ObjectsToAllocate) {
SortingObjects[Obj].IsValid = true;
SortingObjects[Obj].ObjectIndex = Obj;
SortingObjects[Obj].ObjectSize = MFI.getObjectSize(Obj);
}
// Examine uses for each object and record short (12-bit) and "pair"
// displacement types.
for (auto &MBB : MF)
for (auto &MI : MBB) {
if (MI.isDebugInstr())
continue;
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isFI())
continue;
int Index = MO.getIndex();
if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
SortingObjects[Index].IsValid) {
if (TII->hasDisplacementPairInsn(MI.getOpcode()))
SortingObjects[Index].DPairCount++;
else if (!(MI.getDesc().TSFlags & SystemZII::Has20BitOffset))
SortingObjects[Index].D12Count++;
}
}
}
// Sort all objects for short/paired displacements, which should be
// sufficient as it seems like all frame objects typically are within the
// long displacement range. Sorting works by computing the "density" as
// Count / ObjectSize. The comparisons of two such fractions are refactored
// by multiplying both sides with A.ObjectSize * B.ObjectSize, in order to
// eliminate the (fp) divisions. A higher density object needs to go after
// in the list in order for it to end up lower on the stack.
auto CmpD12 = [](const SZFrameSortingObj &A, const SZFrameSortingObj &B) {
// Put all invalid and variable sized objects at the end.
if (!A.IsValid || !B.IsValid)
return A.IsValid;
if (!A.ObjectSize || !B.ObjectSize)
return A.ObjectSize > 0;
uint64_t ADensityCmp = A.D12Count * B.ObjectSize;
uint64_t BDensityCmp = B.D12Count * A.ObjectSize;
if (ADensityCmp != BDensityCmp)
return ADensityCmp < BDensityCmp;
return A.DPairCount * B.ObjectSize < B.DPairCount * A.ObjectSize;
};
std::stable_sort(SortingObjects.begin(), SortingObjects.end(), CmpD12);
// Now modify the original list to represent the final order that
// we want.
unsigned Idx = 0;
for (auto &Obj : SortingObjects) {
// All invalid items are sorted at the end, so it's safe to stop.
if (!Obj.IsValid)
break;
ObjectsToAllocate[Idx++] = Obj.ObjectIndex;
}
}
bool SystemZFrameLowering::hasReservedCallFrame(
const MachineFunction &MF) const {
// The ELF ABI requires us to allocate 160 bytes of stack space for the
// callee, with any outgoing stack arguments being placed above that. It
// seems better to make that area a permanent feature of the frame even if
// we're using a frame pointer. Similarly, 64-bit XPLINK requires 96 bytes
// of stack space for the register save area.
return true;
}
bool SystemZELFFrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI) const {
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineFrameInfo &MFFrame = MF.getFrameInfo();
bool IsVarArg = MF.getFunction().isVarArg();
if (CSI.empty())
return true; // Early exit if no callee saved registers are modified!
unsigned LowGPR = 0;
unsigned HighGPR = SystemZ::R15D;
int StartSPOffset = SystemZMC::ELFCallFrameSize;
for (auto &CS : CSI) {
Register Reg = CS.getReg();
int Offset = getRegSpillOffset(MF, Reg);
if (Offset) {
if (SystemZ::GR64BitRegClass.contains(Reg) && StartSPOffset > Offset) {
LowGPR = Reg;
StartSPOffset = Offset;
}
Offset -= SystemZMC::ELFCallFrameSize;
int FrameIdx = MFFrame.CreateFixedSpillStackObject(8, Offset);
CS.setFrameIdx(FrameIdx);
} else
CS.setFrameIdx(INT32_MAX);
}
// Save the range of call-saved registers, for use by the
// prologue/epilogue inserters.
ZFI->setRestoreGPRRegs(LowGPR, HighGPR, StartSPOffset);
if (IsVarArg) {
// Also save the GPR varargs, if any. R6D is call-saved, so would
// already be included, but we also need to handle the call-clobbered
// argument registers.
Register FirstGPR = ZFI->getVarArgsFirstGPR();
if (FirstGPR < SystemZ::ELFNumArgGPRs) {
unsigned Reg = SystemZ::ELFArgGPRs[FirstGPR];
int Offset = getRegSpillOffset(MF, Reg);
if (StartSPOffset > Offset) {
LowGPR = Reg; StartSPOffset = Offset;
}
}
}
ZFI->setSpillGPRRegs(LowGPR, HighGPR, StartSPOffset);
// Create fixed stack objects for the remaining registers.
int CurrOffset = -SystemZMC::ELFCallFrameSize;
if (usePackedStack(MF))
CurrOffset += StartSPOffset;
for (auto &CS : CSI) {
if (CS.getFrameIdx() != INT32_MAX)
continue;
Register Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
unsigned Size = TRI->getSpillSize(*RC);
CurrOffset -= Size;
assert(CurrOffset % 8 == 0 &&
"8-byte alignment required for for all register save slots");
int FrameIdx = MFFrame.CreateFixedSpillStackObject(Size, CurrOffset);
CS.setFrameIdx(FrameIdx);
}
return true;
}
void SystemZELFFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
MachineFrameInfo &MFFrame = MF.getFrameInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
bool HasFP = hasFP(MF);
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
bool IsVarArg = MF.getFunction().isVarArg();
// va_start stores incoming FPR varargs in the normal way, but delegates
// the saving of incoming GPR varargs to spillCalleeSavedRegisters().
// Record these pending uses, which typically include the call-saved
// argument register R6D.
if (IsVarArg)
for (unsigned I = MFI->getVarArgsFirstGPR(); I < SystemZ::ELFNumArgGPRs; ++I)
SavedRegs.set(SystemZ::ELFArgGPRs[I]);
// If there are any landing pads, entering them will modify r6/r7.
if (!MF.getLandingPads().empty()) {
SavedRegs.set(SystemZ::R6D);
SavedRegs.set(SystemZ::R7D);
}
// If the function requires a frame pointer, record that the hard
// frame pointer will be clobbered.
if (HasFP)
SavedRegs.set(SystemZ::R11D);
// If the function calls other functions, record that the return
// address register will be clobbered.
if (MFFrame.hasCalls())
SavedRegs.set(SystemZ::R14D);
// If we are saving GPRs other than the stack pointer, we might as well
// save and restore the stack pointer at the same time, via STMG and LMG.
// This allows the deallocation to be done by the LMG, rather than needing
// a separate %r15 addition.
const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
for (unsigned I = 0; CSRegs[I]; ++I) {
unsigned Reg = CSRegs[I];
if (SystemZ::GR64BitRegClass.contains(Reg) && SavedRegs.test(Reg)) {
SavedRegs.set(SystemZ::R15D);
break;
}
}
}
SystemZELFFrameLowering::SystemZELFFrameLowering()
: SystemZFrameLowering(TargetFrameLowering::StackGrowsDown, Align(8), 0,
Align(8), /* StackRealignable */ false),
RegSpillOffsets(0) {
// Due to the SystemZ ABI, the DWARF CFA (Canonical Frame Address) is not
// equal to the incoming stack pointer, but to incoming stack pointer plus
// 160. Instead of using a Local Area Offset, the Register save area will
// be occupied by fixed frame objects, and all offsets are actually
// relative to CFA.
// Create a mapping from register number to save slot offset.
// These offsets are relative to the start of the register save area.
RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
for (const auto &Entry : ELFSpillOffsetTable)
RegSpillOffsets[Entry.Reg] = Entry.Offset;
}
// Add GPR64 to the save instruction being built by MIB, which is in basic
// block MBB. IsImplicit says whether this is an explicit operand to the
// instruction, or an implicit one that comes between the explicit start
// and end registers.
static void addSavedGPR(MachineBasicBlock &MBB, MachineInstrBuilder &MIB,
unsigned GPR64, bool IsImplicit) {
const TargetRegisterInfo *RI =
MBB.getParent()->getSubtarget().getRegisterInfo();
Register GPR32 = RI->getSubReg(GPR64, SystemZ::subreg_l32);
bool IsLive = MBB.isLiveIn(GPR64) || MBB.isLiveIn(GPR32);
if (!IsLive || !IsImplicit) {
MIB.addReg(GPR64, getImplRegState(IsImplicit) | getKillRegState(!IsLive));
if (!IsLive)
MBB.addLiveIn(GPR64);
}
}
bool SystemZELFFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
bool IsVarArg = MF.getFunction().isVarArg();
DebugLoc DL;
// Save GPRs
SystemZ::GPRRegs SpillGPRs = ZFI->getSpillGPRRegs();
if (SpillGPRs.LowGPR) {
assert(SpillGPRs.LowGPR != SpillGPRs.HighGPR &&
"Should be saving %r15 and something else");
// Build an STMG instruction.
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::STMG));
// Add the explicit register operands.
addSavedGPR(MBB, MIB, SpillGPRs.LowGPR, false);
addSavedGPR(MBB, MIB, SpillGPRs.HighGPR, false);
// Add the address.
MIB.addReg(SystemZ::R15D).addImm(SpillGPRs.GPROffset);
// Make sure all call-saved GPRs are included as operands and are
// marked as live on entry.
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (SystemZ::GR64BitRegClass.contains(Reg))
addSavedGPR(MBB, MIB, Reg, true);
}
// ...likewise GPR varargs.
if (IsVarArg)
for (unsigned I = ZFI->getVarArgsFirstGPR(); I < SystemZ::ELFNumArgGPRs; ++I)
addSavedGPR(MBB, MIB, SystemZ::ELFArgGPRs[I], true);
}
// Save FPRs/VRs in the normal TargetInstrInfo way.
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (SystemZ::FP64BitRegClass.contains(Reg)) {
MBB.addLiveIn(Reg);
TII->storeRegToStackSlot(MBB, MBBI, Reg, true, I.getFrameIdx(),
&SystemZ::FP64BitRegClass, TRI, Register());
}
if (SystemZ::VR128BitRegClass.contains(Reg)) {
MBB.addLiveIn(Reg);
TII->storeRegToStackSlot(MBB, MBBI, Reg, true, I.getFrameIdx(),
&SystemZ::VR128BitRegClass, TRI, Register());
}
}
return true;
}
bool SystemZELFFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
bool HasFP = hasFP(MF);
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
// Restore FPRs/VRs in the normal TargetInstrInfo way.
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (SystemZ::FP64BitRegClass.contains(Reg))
TII->loadRegFromStackSlot(MBB, MBBI, Reg, I.getFrameIdx(),
&SystemZ::FP64BitRegClass, TRI, Register());
if (SystemZ::VR128BitRegClass.contains(Reg))
TII->loadRegFromStackSlot(MBB, MBBI, Reg, I.getFrameIdx(),
&SystemZ::VR128BitRegClass, TRI, Register());
}
// Restore call-saved GPRs (but not call-clobbered varargs, which at
// this point might hold return values).
SystemZ::GPRRegs RestoreGPRs = ZFI->getRestoreGPRRegs();
if (RestoreGPRs.LowGPR) {
// If we saved any of %r2-%r5 as varargs, we should also be saving
// and restoring %r6. If we're saving %r6 or above, we should be
// restoring it too.
assert(RestoreGPRs.LowGPR != RestoreGPRs.HighGPR &&
"Should be loading %r15 and something else");
// Build an LMG instruction.
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::LMG));
// Add the explicit register operands.
MIB.addReg(RestoreGPRs.LowGPR, RegState::Define);
MIB.addReg(RestoreGPRs.HighGPR, RegState::Define);
// Add the address.
MIB.addReg(HasFP ? SystemZ::R11D : SystemZ::R15D);
MIB.addImm(RestoreGPRs.GPROffset);
// Do a second scan adding regs as being defined by instruction
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (Reg != RestoreGPRs.LowGPR && Reg != RestoreGPRs.HighGPR &&
SystemZ::GR64BitRegClass.contains(Reg))
MIB.addReg(Reg, RegState::ImplicitDefine);
}
}
return true;
}
void SystemZELFFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
MachineFrameInfo &MFFrame = MF.getFrameInfo();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineRegisterInfo *MRI = &MF.getRegInfo();
bool BackChain = MF.getFunction().hasFnAttribute("backchain");
if (!usePackedStack(MF) || BackChain)
// Create the incoming register save area.
getOrCreateFramePointerSaveIndex(MF);
// Get the size of our stack frame to be allocated ...
uint64_t StackSize = (MFFrame.estimateStackSize(MF) +
SystemZMC::ELFCallFrameSize);
// ... and the maximum offset we may need to reach into the
// caller's frame to access the save area or stack arguments.
int64_t MaxArgOffset = 0;
for (int I = MFFrame.getObjectIndexBegin(); I != 0; ++I)
if (MFFrame.getObjectOffset(I) >= 0) {
int64_t ArgOffset = MFFrame.getObjectOffset(I) +
MFFrame.getObjectSize(I);
MaxArgOffset = std::max(MaxArgOffset, ArgOffset);
}
uint64_t MaxReach = StackSize + MaxArgOffset;
if (!isUInt<12>(MaxReach)) {
// We may need register scavenging slots if some parts of the frame
// are outside the reach of an unsigned 12-bit displacement.
// Create 2 for the case where both addresses in an MVC are
// out of range.
RS->addScavengingFrameIndex(MFFrame.CreateStackObject(8, Align(8), false));
RS->addScavengingFrameIndex(MFFrame.CreateStackObject(8, Align(8), false));
}
// If R6 is used as an argument register it is still callee saved. If it in
// this case is not clobbered (and restored) it should never be marked as
// killed.
if (MF.front().isLiveIn(SystemZ::R6D) &&
ZFI->getRestoreGPRRegs().LowGPR != SystemZ::R6D)
for (auto &MO : MRI->use_nodbg_operands(SystemZ::R6D))
MO.setIsKill(false);
}
// Emit instructions before MBBI (in MBB) to add NumBytes to Reg.
static void emitIncrement(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI, const DebugLoc &DL,
Register Reg, int64_t NumBytes,
const TargetInstrInfo *TII) {
while (NumBytes) {
unsigned Opcode;
int64_t ThisVal = NumBytes;
if (isInt<16>(NumBytes))
Opcode = SystemZ::AGHI;
else {
Opcode = SystemZ::AGFI;
// Make sure we maintain 8-byte stack alignment.
int64_t MinVal = -uint64_t(1) << 31;
int64_t MaxVal = (int64_t(1) << 31) - 8;
if (ThisVal < MinVal)
ThisVal = MinVal;
else if (ThisVal > MaxVal)
ThisVal = MaxVal;
}
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII->get(Opcode), Reg)
.addReg(Reg).addImm(ThisVal);
// The CC implicit def is dead.
MI->getOperand(3).setIsDead();
NumBytes -= ThisVal;
}
}
// Add CFI for the new CFA offset.
static void buildCFAOffs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, int Offset,
const SystemZInstrInfo *ZII) {
unsigned CFIIndex = MBB.getParent()->addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
}
// Add CFI for the new frame location.
static void buildDefCFAReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, unsigned Reg,
const SystemZInstrInfo *ZII) {
MachineFunction &MF = *MBB.getParent();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
}
void SystemZELFFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
const SystemZSubtarget &STI = MF.getSubtarget<SystemZSubtarget>();
const SystemZTargetLowering &TLI = *STI.getTargetLowering();
MachineFrameInfo &MFFrame = MF.getFrameInfo();
auto *ZII = static_cast<const SystemZInstrInfo *>(STI.getInstrInfo());
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineModuleInfo &MMI = MF.getMMI();
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
const std::vector<CalleeSavedInfo> &CSI = MFFrame.getCalleeSavedInfo();
bool HasFP = hasFP(MF);
// In GHC calling convention C stack space, including the ABI-defined
// 160-byte base area, is (de)allocated by GHC itself. This stack space may
// be used by LLVM as spill slots for the tail recursive GHC functions. Thus
// do not allocate stack space here, too.
if (MF.getFunction().getCallingConv() == CallingConv::GHC) {
if (MFFrame.getStackSize() > 2048 * sizeof(long)) {
report_fatal_error(
"Pre allocated stack space for GHC function is too small");
}
if (HasFP) {
report_fatal_error(
"In GHC calling convention a frame pointer is not supported");
}
MFFrame.setStackSize(MFFrame.getStackSize() + SystemZMC::ELFCallFrameSize);
return;
}
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// The current offset of the stack pointer from the CFA.
int64_t SPOffsetFromCFA = -SystemZMC::ELFCFAOffsetFromInitialSP;
if (ZFI->getSpillGPRRegs().LowGPR) {
// Skip over the GPR saves.
if (MBBI != MBB.end() && MBBI->getOpcode() == SystemZ::STMG)
++MBBI;
else
llvm_unreachable("Couldn't skip over GPR saves");
// Add CFI for the GPR saves.
for (auto &Save : CSI) {
Register Reg = Save.getReg();
if (SystemZ::GR64BitRegClass.contains(Reg)) {
int FI = Save.getFrameIdx();
int64_t Offset = MFFrame.getObjectOffset(FI);
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
}
}
}
uint64_t StackSize = MFFrame.getStackSize();
// We need to allocate the ABI-defined 160-byte base area whenever
// we allocate stack space for our own use and whenever we call another
// function.
bool HasStackObject = false;
for (unsigned i = 0, e = MFFrame.getObjectIndexEnd(); i != e; ++i)
if (!MFFrame.isDeadObjectIndex(i)) {
HasStackObject = true;
break;
}
if (HasStackObject || MFFrame.hasCalls())
StackSize += SystemZMC::ELFCallFrameSize;
// Don't allocate the incoming reg save area.
StackSize = StackSize > SystemZMC::ELFCallFrameSize
? StackSize - SystemZMC::ELFCallFrameSize
: 0;
MFFrame.setStackSize(StackSize);
if (StackSize) {
// Allocate StackSize bytes.
int64_t Delta = -int64_t(StackSize);
const unsigned ProbeSize = TLI.getStackProbeSize(MF);
bool FreeProbe = (ZFI->getSpillGPRRegs().GPROffset &&
(ZFI->getSpillGPRRegs().GPROffset + StackSize) < ProbeSize);
if (!FreeProbe &&
MF.getSubtarget().getTargetLowering()->hasInlineStackProbe(MF)) {
// Stack probing may involve looping, but splitting the prologue block
// is not possible at this point since it would invalidate the
// SaveBlocks / RestoreBlocks sets of PEI in the single block function
// case. Build a pseudo to be handled later by inlineStackProbe().
BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::PROBED_STACKALLOC))
.addImm(StackSize);
}
else {
bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
// If we need backchain, save current stack pointer. R1 is free at
// this point.
if (StoreBackchain)
BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::LGR))
.addReg(SystemZ::R1D, RegState::Define).addReg(SystemZ::R15D);
emitIncrement(MBB, MBBI, DL, SystemZ::R15D, Delta, ZII);
buildCFAOffs(MBB, MBBI, DL, SPOffsetFromCFA + Delta, ZII);
if (StoreBackchain)
BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::STG))
.addReg(SystemZ::R1D, RegState::Kill).addReg(SystemZ::R15D)
.addImm(getBackchainOffset(MF)).addReg(0);
}
SPOffsetFromCFA += Delta;
}
if (HasFP) {
// Copy the base of the frame to R11.
BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::LGR), SystemZ::R11D)
.addReg(SystemZ::R15D);
// Add CFI for the new frame location.
buildDefCFAReg(MBB, MBBI, DL, SystemZ::R11D, ZII);
// Mark the FramePtr as live at the beginning of every block except
// the entry block. (We'll have marked R11 as live on entry when
// saving the GPRs.)
for (MachineBasicBlock &MBBJ : llvm::drop_begin(MF))
MBBJ.addLiveIn(SystemZ::R11D);
}
// Skip over the FPR/VR saves.
SmallVector<unsigned, 8> CFIIndexes;
for (auto &Save : CSI) {
Register Reg = Save.getReg();
if (SystemZ::FP64BitRegClass.contains(Reg)) {
if (MBBI != MBB.end() &&
(MBBI->getOpcode() == SystemZ::STD ||
MBBI->getOpcode() == SystemZ::STDY))
++MBBI;
else
llvm_unreachable("Couldn't skip over FPR save");
} else if (SystemZ::VR128BitRegClass.contains(Reg)) {
if (MBBI != MBB.end() &&
MBBI->getOpcode() == SystemZ::VST)
++MBBI;
else
llvm_unreachable("Couldn't skip over VR save");
} else
continue;
// Add CFI for the this save.
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
Register IgnoredFrameReg;
int64_t Offset =
getFrameIndexReference(MF, Save.getFrameIdx(), IgnoredFrameReg)
.getFixed();
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, DwarfReg, SPOffsetFromCFA + Offset));
CFIIndexes.push_back(CFIIndex);
}
// Complete the CFI for the FPR/VR saves, modelling them as taking effect
// after the last save.
for (auto CFIIndex : CFIIndexes) {
BuildMI(MBB, MBBI, DL, ZII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
}
}
void SystemZELFFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
auto *ZII =
static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineFrameInfo &MFFrame = MF.getFrameInfo();
// See SystemZELFFrameLowering::emitPrologue
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Skip the return instruction.
assert(MBBI->isReturn() && "Can only insert epilogue into returning blocks");
uint64_t StackSize = MFFrame.getStackSize();
if (ZFI->getRestoreGPRRegs().LowGPR) {
--MBBI;
unsigned Opcode = MBBI->getOpcode();
if (Opcode != SystemZ::LMG)
llvm_unreachable("Expected to see callee-save register restore code");
unsigned AddrOpNo = 2;
DebugLoc DL = MBBI->getDebugLoc();
uint64_t Offset = StackSize + MBBI->getOperand(AddrOpNo + 1).getImm();
unsigned NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
// If the offset is too large, use the largest stack-aligned offset
// and add the rest to the base register (the stack or frame pointer).
if (!NewOpcode) {
uint64_t NumBytes = Offset - 0x7fff8;
emitIncrement(MBB, MBBI, DL, MBBI->getOperand(AddrOpNo).getReg(),
NumBytes, ZII);
Offset -= NumBytes;
NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
assert(NewOpcode && "No restore instruction available");
}
MBBI->setDesc(ZII->get(NewOpcode));
MBBI->getOperand(AddrOpNo + 1).ChangeToImmediate(Offset);
} else if (StackSize) {
DebugLoc DL = MBBI->getDebugLoc();
emitIncrement(MBB, MBBI, DL, SystemZ::R15D, StackSize, ZII);
}
}
void SystemZELFFrameLowering::inlineStackProbe(
MachineFunction &MF, MachineBasicBlock &PrologMBB) const {
auto *ZII =
static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
const SystemZSubtarget &STI = MF.getSubtarget<SystemZSubtarget>();
const SystemZTargetLowering &TLI = *STI.getTargetLowering();
MachineInstr *StackAllocMI = nullptr;
for (MachineInstr &MI : PrologMBB)
if (MI.getOpcode() == SystemZ::PROBED_STACKALLOC) {
StackAllocMI = &MI;
break;
}
if (StackAllocMI == nullptr)
return;
uint64_t StackSize = StackAllocMI->getOperand(0).getImm();
const unsigned ProbeSize = TLI.getStackProbeSize(MF);
uint64_t NumFullBlocks = StackSize / ProbeSize;
uint64_t Residual = StackSize % ProbeSize;
int64_t SPOffsetFromCFA = -SystemZMC::ELFCFAOffsetFromInitialSP;
MachineBasicBlock *MBB = &PrologMBB;
MachineBasicBlock::iterator MBBI = StackAllocMI;
const DebugLoc DL = StackAllocMI->getDebugLoc();
// Allocate a block of Size bytes on the stack and probe it.
auto allocateAndProbe = [&](MachineBasicBlock &InsMBB,
MachineBasicBlock::iterator InsPt, unsigned Size,
bool EmitCFI) -> void {
emitIncrement(InsMBB, InsPt, DL, SystemZ::R15D, -int64_t(Size), ZII);
if (EmitCFI) {
SPOffsetFromCFA -= Size;
buildCFAOffs(InsMBB, InsPt, DL, SPOffsetFromCFA, ZII);
}
// Probe by means of a volatile compare.
MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo(),
MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
BuildMI(InsMBB, InsPt, DL, ZII->get(SystemZ::CG))
.addReg(SystemZ::R0D, RegState::Undef)
.addReg(SystemZ::R15D).addImm(Size - 8).addReg(0)
.addMemOperand(MMO);
};
bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
if (StoreBackchain)
BuildMI(*MBB, MBBI, DL, ZII->get(SystemZ::LGR))
.addReg(SystemZ::R1D, RegState::Define).addReg(SystemZ::R15D);
MachineBasicBlock *DoneMBB = nullptr;
MachineBasicBlock *LoopMBB = nullptr;
if (NumFullBlocks < 3) {
// Emit unrolled probe statements.
for (unsigned int i = 0; i < NumFullBlocks; i++)
allocateAndProbe(*MBB, MBBI, ProbeSize, true/*EmitCFI*/);
} else {
// Emit a loop probing the pages.
uint64_t LoopAlloc = ProbeSize * NumFullBlocks;
SPOffsetFromCFA -= LoopAlloc;
// Use R0D to hold the exit value.
BuildMI(*MBB, MBBI, DL, ZII->get(SystemZ::LGR), SystemZ::R0D)
.addReg(SystemZ::R15D);
buildDefCFAReg(*MBB, MBBI, DL, SystemZ::R0D, ZII);
emitIncrement(*MBB, MBBI, DL, SystemZ::R0D, -int64_t(LoopAlloc), ZII);
buildCFAOffs(*MBB, MBBI, DL, -int64_t(SystemZMC::ELFCallFrameSize + LoopAlloc),
ZII);
DoneMBB = SystemZ::splitBlockBefore(MBBI, MBB);
LoopMBB = SystemZ::emitBlockAfter(MBB);
MBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(DoneMBB);
MBB = LoopMBB;
allocateAndProbe(*MBB, MBB->end(), ProbeSize, false/*EmitCFI*/);
BuildMI(*MBB, MBB->end(), DL, ZII->get(SystemZ::CLGR))
.addReg(SystemZ::R15D).addReg(SystemZ::R0D);
BuildMI(*MBB, MBB->end(), DL, ZII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_GT).addMBB(MBB);
MBB = DoneMBB;
MBBI = DoneMBB->begin();
buildDefCFAReg(*MBB, MBBI, DL, SystemZ::R15D, ZII);
}
if (Residual)
allocateAndProbe(*MBB, MBBI, Residual, true/*EmitCFI*/);
if (StoreBackchain)
BuildMI(*MBB, MBBI, DL, ZII->get(SystemZ::STG))
.addReg(SystemZ::R1D, RegState::Kill).addReg(SystemZ::R15D)
.addImm(getBackchainOffset(MF)).addReg(0);
StackAllocMI->eraseFromParent();
if (DoneMBB != nullptr) {
// Compute the live-in lists for the new blocks.
recomputeLiveIns(*DoneMBB);
recomputeLiveIns(*LoopMBB);
}
}
bool SystemZELFFrameLowering::hasFP(const MachineFunction &MF) const {
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
MF.getFrameInfo().hasVarSizedObjects());
}
StackOffset SystemZELFFrameLowering::getFrameIndexReference(
const MachineFunction &MF, int FI, Register &FrameReg) const {
// Our incoming SP is actually SystemZMC::ELFCallFrameSize below the CFA, so
// add that difference here.
StackOffset Offset =
TargetFrameLowering::getFrameIndexReference(MF, FI, FrameReg);
return Offset + StackOffset::getFixed(SystemZMC::ELFCallFrameSize);
}
unsigned SystemZELFFrameLowering::getRegSpillOffset(MachineFunction &MF,
Register Reg) const {
bool IsVarArg = MF.getFunction().isVarArg();
bool BackChain = MF.getFunction().hasFnAttribute("backchain");
bool SoftFloat = MF.getSubtarget<SystemZSubtarget>().hasSoftFloat();
unsigned Offset = RegSpillOffsets[Reg];
if (usePackedStack(MF) && !(IsVarArg && !SoftFloat)) {
if (SystemZ::GR64BitRegClass.contains(Reg))
// Put all GPRs at the top of the Register save area with packed
// stack. Make room for the backchain if needed.
Offset += BackChain ? 24 : 32;
else
Offset = 0;
}
return Offset;
}
int SystemZELFFrameLowering::getOrCreateFramePointerSaveIndex(
MachineFunction &MF) const {
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
int FI = ZFI->getFramePointerSaveIndex();
if (!FI) {
MachineFrameInfo &MFFrame = MF.getFrameInfo();
int Offset = getBackchainOffset(MF) - SystemZMC::ELFCallFrameSize;
FI = MFFrame.CreateFixedObject(8, Offset, false);
ZFI->setFramePointerSaveIndex(FI);
}
return FI;
}
bool SystemZELFFrameLowering::usePackedStack(MachineFunction &MF) const {
bool HasPackedStackAttr = MF.getFunction().hasFnAttribute("packed-stack");
bool BackChain = MF.getFunction().hasFnAttribute("backchain");
bool SoftFloat = MF.getSubtarget<SystemZSubtarget>().hasSoftFloat();
if (HasPackedStackAttr && BackChain && !SoftFloat)
report_fatal_error("packed-stack + backchain + hard-float is unsupported.");
bool CallConv = MF.getFunction().getCallingConv() != CallingConv::GHC;
return HasPackedStackAttr && CallConv;
}
SystemZXPLINKFrameLowering::SystemZXPLINKFrameLowering()
: SystemZFrameLowering(TargetFrameLowering::StackGrowsDown, Align(32), 0,
Align(32), /* StackRealignable */ false),
RegSpillOffsets(-1) {
// Create a mapping from register number to save slot offset.
// These offsets are relative to the start of the local are area.
RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
for (const auto &Entry : XPLINKSpillOffsetTable)
RegSpillOffsets[Entry.Reg] = Entry.Offset;
}
// Checks if the function is a potential candidate for being a XPLeaf routine.
static bool isXPLeafCandidate(const MachineFunction &MF) {
const MachineFrameInfo &MFFrame = MF.getFrameInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
auto *Regs =
static_cast<SystemZXPLINK64Registers *>(Subtarget.getSpecialRegisters());
// If function calls other functions including alloca, then it is not a XPLeaf
// routine.
if (MFFrame.hasCalls())
return false;
// If the function has var Sized Objects, then it is not a XPLeaf routine.
if (MFFrame.hasVarSizedObjects())
return false;
// If the function adjusts the stack, then it is not a XPLeaf routine.
if (MFFrame.adjustsStack())
return false;
// If function modifies the stack pointer register, then it is not a XPLeaf
// routine.
if (MRI.isPhysRegModified(Regs->getStackPointerRegister()))
return false;
// If function modifies the ADA register, then it is not a XPLeaf routine.
if (MRI.isPhysRegModified(Regs->getAddressOfCalleeRegister()))
return false;
// If function modifies the return address register, then it is not a XPLeaf
// routine.
if (MRI.isPhysRegModified(Regs->getReturnFunctionAddressRegister()))
return false;
// If the backchain pointer should be stored, then it is not a XPLeaf routine.
if (MF.getFunction().hasFnAttribute("backchain"))
return false;
// If function acquires its own stack frame, then it is not a XPLeaf routine.
// At the time this function is called, only slots for local variables are
// allocated, so this is a very rough estimate.
if (MFFrame.estimateStackSize(MF) > 0)
return false;
return true;
}
bool SystemZXPLINKFrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI) const {
MachineFrameInfo &MFFrame = MF.getFrameInfo();
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
auto &GRRegClass = SystemZ::GR64BitRegClass;
// At this point, the result of isXPLeafCandidate() is not accurate because
// the size of the save area has not yet been determined. If
// isXPLeafCandidate() indicates a potential leaf function, and there are no
// callee-save registers, then it is indeed a leaf function, and we can early
// exit.
// TODO: It is possible for leaf functions to use callee-saved registers.
// It can use the 0-2k range between R4 and the caller's stack frame without
// acquiring its own stack frame.
bool IsLeaf = CSI.empty() && isXPLeafCandidate(MF);
if (IsLeaf)
return true;
// For non-leaf functions:
// - the address of callee (entry point) register R6 must be saved
CSI.push_back(CalleeSavedInfo(Regs.getAddressOfCalleeRegister()));
CSI.back().setRestored(false);
// The return address register R7 must be saved and restored.
CSI.push_back(CalleeSavedInfo(Regs.getReturnFunctionAddressRegister()));
// If the function needs a frame pointer, or if the backchain pointer should
// be stored, then save the stack pointer register R4.
if (hasFP(MF) || MF.getFunction().hasFnAttribute("backchain"))
CSI.push_back(CalleeSavedInfo(Regs.getStackPointerRegister()));
// Scan the call-saved GPRs and find the bounds of the register spill area.
Register LowRestoreGPR = 0;
int LowRestoreOffset = INT32_MAX;
Register LowSpillGPR = 0;
int LowSpillOffset = INT32_MAX;
Register HighGPR = 0;
int HighOffset = -1;
for (auto &CS : CSI) {
Register Reg = CS.getReg();
int Offset = RegSpillOffsets[Reg];
if (Offset >= 0) {
if (GRRegClass.contains(Reg)) {
if (LowSpillOffset > Offset) {
LowSpillOffset = Offset;
LowSpillGPR = Reg;
}
if (CS.isRestored() && LowRestoreOffset > Offset) {
LowRestoreOffset = Offset;
LowRestoreGPR = Reg;
}
if (Offset > HighOffset) {
HighOffset = Offset;
HighGPR = Reg;
}
// Non-volatile GPRs are saved in the dedicated register save area at
// the bottom of the stack and are not truly part of the "normal" stack
// frame. Mark the frame index as NoAlloc to indicate it as such.
unsigned RegSize = 8;
int FrameIdx = MFFrame.CreateFixedSpillStackObject(RegSize, Offset);
CS.setFrameIdx(FrameIdx);
MFFrame.setStackID(FrameIdx, TargetStackID::NoAlloc);
}
} else {
Register Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
Align Alignment = TRI->getSpillAlign(*RC);
unsigned Size = TRI->getSpillSize(*RC);
Alignment = std::min(Alignment, getStackAlign());
int FrameIdx = MFFrame.CreateStackObject(Size, Alignment, true);
CS.setFrameIdx(FrameIdx);
}
}
// Save the range of call-saved registers, for use by the
// prologue/epilogue inserters.
if (LowRestoreGPR)
MFI->setRestoreGPRRegs(LowRestoreGPR, HighGPR, LowRestoreOffset);
// Save the range of call-saved registers, for use by the epilogue inserter.
assert(LowSpillGPR && "Expected registers to spill");
MFI->setSpillGPRRegs(LowSpillGPR, HighGPR, LowSpillOffset);
return true;
}
void SystemZXPLINKFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
bool HasFP = hasFP(MF);
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
// If the function requires a frame pointer, record that the hard
// frame pointer will be clobbered.
if (HasFP)
SavedRegs.set(Regs.getFramePointerRegister());
}
bool SystemZXPLINKFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction &MF = *MBB.getParent();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
SystemZ::GPRRegs SpillGPRs = ZFI->getSpillGPRRegs();
DebugLoc DL;
// Save GPRs
if (SpillGPRs.LowGPR) {
assert(SpillGPRs.LowGPR != SpillGPRs.HighGPR &&
"Should be saving multiple registers");
// Build an STM/STMG instruction.
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::STMG));
// Add the explicit register operands.
addSavedGPR(MBB, MIB, SpillGPRs.LowGPR, false);
addSavedGPR(MBB, MIB, SpillGPRs.HighGPR, false);
// Add the address r4
MIB.addReg(Regs.getStackPointerRegister());
// Add the partial offset
// We cannot add the actual offset as, at the stack is not finalized
MIB.addImm(SpillGPRs.GPROffset);
// Make sure all call-saved GPRs are included as operands and are
// marked as live on entry.
auto &GRRegClass = SystemZ::GR64BitRegClass;
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (GRRegClass.contains(Reg))
addSavedGPR(MBB, MIB, Reg, true);
}
}
// Spill FPRs to the stack in the normal TargetInstrInfo way
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (SystemZ::FP64BitRegClass.contains(Reg)) {
MBB.addLiveIn(Reg);
TII->storeRegToStackSlot(MBB, MBBI, Reg, true, I.getFrameIdx(),
&SystemZ::FP64BitRegClass, TRI, Register());
}
if (SystemZ::VR128BitRegClass.contains(Reg)) {
MBB.addLiveIn(Reg);
TII->storeRegToStackSlot(MBB, MBBI, Reg, true, I.getFrameIdx(),
&SystemZ::VR128BitRegClass, TRI, Register());
}
}
return true;
}
bool SystemZXPLINKFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
MachineFunction &MF = *MBB.getParent();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
// Restore FPRs in the normal TargetInstrInfo way.
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (SystemZ::FP64BitRegClass.contains(Reg))
TII->loadRegFromStackSlot(MBB, MBBI, Reg, I.getFrameIdx(),
&SystemZ::FP64BitRegClass, TRI, Register());
if (SystemZ::VR128BitRegClass.contains(Reg))
TII->loadRegFromStackSlot(MBB, MBBI, Reg, I.getFrameIdx(),
&SystemZ::VR128BitRegClass, TRI, Register());
}
// Restore call-saved GPRs (but not call-clobbered varargs, which at
// this point might hold return values).
SystemZ::GPRRegs RestoreGPRs = ZFI->getRestoreGPRRegs();
if (RestoreGPRs.LowGPR) {
assert(isInt<20>(Regs.getStackPointerBias() + RestoreGPRs.GPROffset));
if (RestoreGPRs.LowGPR == RestoreGPRs.HighGPR)
// Build an LG/L instruction.
BuildMI(MBB, MBBI, DL, TII->get(SystemZ::LG), RestoreGPRs.LowGPR)
.addReg(Regs.getStackPointerRegister())
.addImm(Regs.getStackPointerBias() + RestoreGPRs.GPROffset)
.addReg(0);
else {
// Build an LMG/LM instruction.
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(SystemZ::LMG));
// Add the explicit register operands.
MIB.addReg(RestoreGPRs.LowGPR, RegState::Define);
MIB.addReg(RestoreGPRs.HighGPR, RegState::Define);
// Add the address.
MIB.addReg(Regs.getStackPointerRegister());
MIB.addImm(Regs.getStackPointerBias() + RestoreGPRs.GPROffset);
// Do a second scan adding regs as being defined by instruction
for (const CalleeSavedInfo &I : CSI) {
Register Reg = I.getReg();
if (Reg > RestoreGPRs.LowGPR && Reg < RestoreGPRs.HighGPR)
MIB.addReg(Reg, RegState::ImplicitDefine);
}
}
}
return true;
}
void SystemZXPLINKFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = MBB.begin();
auto *ZII = static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
MachineFrameInfo &MFFrame = MF.getFrameInfo();
MachineInstr *StoreInstr = nullptr;
determineFrameLayout(MF);
bool HasFP = hasFP(MF);
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
uint64_t Offset = 0;
const uint64_t StackSize = MFFrame.getStackSize();
if (ZFI->getSpillGPRRegs().LowGPR) {
// Skip over the GPR saves.
if ((MBBI != MBB.end()) && ((MBBI->getOpcode() == SystemZ::STMG))) {
const int Operand = 3;
// Now we can set the offset for the operation, since now the Stack
// has been finalized.
Offset = Regs.getStackPointerBias() + MBBI->getOperand(Operand).getImm();
// Maximum displacement for STMG instruction.
if (isInt<20>(Offset - StackSize))
Offset -= StackSize;
else
StoreInstr = &*MBBI;
MBBI->getOperand(Operand).setImm(Offset);
++MBBI;
} else
llvm_unreachable("Couldn't skip over GPR saves");
}
if (StackSize) {
MachineBasicBlock::iterator InsertPt = StoreInstr ? StoreInstr : MBBI;
// Allocate StackSize bytes.
int64_t Delta = -int64_t(StackSize);
// In case the STM(G) instruction also stores SP (R4), but the displacement
// is too large, the SP register is manipulated first before storing,
// resulting in the wrong value stored and retrieved later. In this case, we
// need to temporarily save the value of SP, and store it later to memory.
if (StoreInstr && HasFP) {
// Insert LR r0,r4 before STMG instruction.
BuildMI(MBB, InsertPt, DL, ZII->get(SystemZ::LGR))
.addReg(SystemZ::R0D, RegState::Define)
.addReg(SystemZ::R4D);
// Insert ST r0,xxx(,r4) after STMG instruction.
BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::STG))
.addReg(SystemZ::R0D, RegState::Kill)
.addReg(SystemZ::R4D)
.addImm(Offset)
.addReg(0);
}
emitIncrement(MBB, InsertPt, DL, Regs.getStackPointerRegister(), Delta,
ZII);
// If the requested stack size is larger than the guard page, then we need
// to check if we need to call the stack extender. This requires adding a
// conditional branch, but splitting the prologue block is not possible at
// this point since it would invalidate the SaveBlocks / RestoreBlocks sets
// of PEI in the single block function case. Build a pseudo to be handled
// later by inlineStackProbe().
const uint64_t GuardPageSize = 1024 * 1024;
if (StackSize > GuardPageSize) {
assert(StoreInstr && "Wrong insertion point");
BuildMI(MBB, InsertPt, DL, ZII->get(SystemZ::XPLINK_STACKALLOC));
}
}
if (HasFP) {
// Copy the base of the frame to Frame Pointer Register.
BuildMI(MBB, MBBI, DL, ZII->get(SystemZ::LGR),
Regs.getFramePointerRegister())
.addReg(Regs.getStackPointerRegister());
// Mark the FramePtr as live at the beginning of every block except
// the entry block. (We'll have marked R8 as live on entry when
// saving the GPRs.)
for (MachineBasicBlock &B : llvm::drop_begin(MF))
B.addLiveIn(Regs.getFramePointerRegister());
}
}
void SystemZXPLINKFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();
MachineFrameInfo &MFFrame = MF.getFrameInfo();
auto *ZII = static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
// Skip the return instruction.
assert(MBBI->isReturn() && "Can only insert epilogue into returning blocks");
uint64_t StackSize = MFFrame.getStackSize();
if (StackSize) {
unsigned SPReg = Regs.getStackPointerRegister();
if (ZFI->getRestoreGPRRegs().LowGPR != SPReg) {
DebugLoc DL = MBBI->getDebugLoc();
emitIncrement(MBB, MBBI, DL, SPReg, StackSize, ZII);
}
}
}
// Emit a compare of the stack pointer against the stack floor, and a call to
// the LE stack extender if needed.
void SystemZXPLINKFrameLowering::inlineStackProbe(
MachineFunction &MF, MachineBasicBlock &PrologMBB) const {
auto *ZII =
static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
MachineInstr *StackAllocMI = nullptr;
for (MachineInstr &MI : PrologMBB)
if (MI.getOpcode() == SystemZ::XPLINK_STACKALLOC) {
StackAllocMI = &MI;
break;
}
if (StackAllocMI == nullptr)
return;
MachineBasicBlock &MBB = PrologMBB;
const DebugLoc DL = StackAllocMI->getDebugLoc();
// The 2nd half of block MBB after split.
MachineBasicBlock *NextMBB;
// Add new basic block for the call to the stack overflow function.
MachineBasicBlock *StackExtMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.push_back(StackExtMBB);
// LG r3,72(,r3)
BuildMI(StackExtMBB, DL, ZII->get(SystemZ::LG), SystemZ::R3D)
.addReg(SystemZ::R3D)
.addImm(72)
.addReg(0);
// BASR r3,r3
BuildMI(StackExtMBB, DL, ZII->get(SystemZ::CallBASR_STACKEXT))
.addReg(SystemZ::R3D);
// LLGT r3,1208
BuildMI(MBB, StackAllocMI, DL, ZII->get(SystemZ::LLGT), SystemZ::R3D)
.addReg(0)
.addImm(1208)
.addReg(0);
// CG r4,64(,r3)
BuildMI(MBB, StackAllocMI, DL, ZII->get(SystemZ::CG))
.addReg(SystemZ::R4D)
.addReg(SystemZ::R3D)
.addImm(64)
.addReg(0);
// JLL b'0100',F'37'
BuildMI(MBB, StackAllocMI, DL, ZII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP)
.addImm(SystemZ::CCMASK_CMP_LT)
.addMBB(StackExtMBB);
NextMBB = SystemZ::splitBlockBefore(StackAllocMI, &MBB);
MBB.addSuccessor(NextMBB);
MBB.addSuccessor(StackExtMBB);
// Add jump back from stack extension BB.
BuildMI(StackExtMBB, DL, ZII->get(SystemZ::J)).addMBB(NextMBB);
StackExtMBB->addSuccessor(NextMBB);
StackAllocMI->eraseFromParent();
// Compute the live-in lists for the new blocks.
recomputeLiveIns(*NextMBB);
recomputeLiveIns(*StackExtMBB);
}
bool SystemZXPLINKFrameLowering::hasFP(const MachineFunction &MF) const {
return (MF.getFrameInfo().hasVarSizedObjects());
}
void SystemZXPLINKFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
MachineFrameInfo &MFFrame = MF.getFrameInfo();
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
// Setup stack frame offset
MFFrame.setOffsetAdjustment(Regs.getStackPointerBias());
}
// Determines the size of the frame, and creates the deferred spill objects.
void SystemZXPLINKFrameLowering::determineFrameLayout(
MachineFunction &MF) const {
MachineFrameInfo &MFFrame = MF.getFrameInfo();
const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
auto *Regs =
static_cast<SystemZXPLINK64Registers *>(Subtarget.getSpecialRegisters());
uint64_t StackSize = MFFrame.getStackSize();
if (StackSize == 0)
return;
// Add the size of the register save area and the reserved area to the size.
StackSize += Regs->getCallFrameSize();
MFFrame.setStackSize(StackSize);
// We now know the stack size. Create the fixed spill stack objects for the
// register save area now. This has no impact on the stack frame layout, as
// this is already computed. However, it makes sure that all callee saved
// registers have a valid frame index assigned.
const unsigned RegSize = MF.getDataLayout().getPointerSize();
for (auto &CS : MFFrame.getCalleeSavedInfo()) {
int Offset = RegSpillOffsets[CS.getReg()];
if (Offset >= 0)
CS.setFrameIdx(
MFFrame.CreateFixedSpillStackObject(RegSize, Offset - StackSize));
}
}