| //===-- M68kInstrArithmetic.td - Integer Arith Instrs ------*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file describes the integer arithmetic instructions in the M68k |
| /// architecture. Here is the current status of the file: |
| /// |
| /// Machine: |
| /// |
| /// ADD [~] ADDA [~] ADDI [~] ADDQ [ ] ADDX [~] |
| /// CLR [ ] CMP [~] CMPA [~] CMPI [~] CMPM [ ] |
| /// CMP2 [ ] DIVS/DIVU [~] DIVSL/DIVUL [ ] EXT [~] EXTB [ ] |
| /// MULS/MULU [~] NEG [~] NEGX [~] SUB [~] SUBA [~] |
| /// SUBI [~] SUBQ [ ] SUBX [~] |
| /// |
| /// Map: |
| /// |
| /// [ ] - was not touched at all |
| /// [!] - requires extarnal stuff implemented |
| /// [~] - functional implementation |
| /// [X] - complete implementation |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // OPMODE Encoding |
| //===----------------------------------------------------------------------===// |
| class MxOpModeEncoding<bits<3> encoding> { |
| bits<3> Value = encoding; |
| } |
| |
| // op EA, Dn |
| def MxOpMode8_d_EA : MxOpModeEncoding<0b000>; |
| def MxOpMode16_d_EA : MxOpModeEncoding<0b001>; |
| def MxOpMode32_d_EA : MxOpModeEncoding<0b010>; |
| |
| // op Dn, EA |
| def MxOpMode8_EA_d : MxOpModeEncoding<0b100>; |
| def MxOpMode16_EA_d : MxOpModeEncoding<0b101>; |
| def MxOpMode32_EA_d : MxOpModeEncoding<0b110>; |
| |
| // op EA, An |
| def MxOpMode16_a_EA : MxOpModeEncoding<0b011>; |
| def MxOpMode32_a_EA : MxOpModeEncoding<0b111>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Encoding |
| //===----------------------------------------------------------------------===// |
| |
| let Defs = [CCR] in { |
| let Constraints = "$src = $dst" in { |
| |
| /// Encoding for Normal forms |
| /// ---------------------------------------------------- |
| /// F E D C | B A 9 | 8 7 6 | 5 4 3 | 2 1 0 |
| /// ---------------------------------------------------- |
| /// | | | EFFECTIVE ADDRESS |
| /// x x x x | REG | OP MODE | MODE | REG |
| /// ---------------------------------------------------- |
| |
| // $reg, $ccr <- $reg op $reg |
| class MxBiArOp_R_RR_xEA<string MN, SDNode NODE, MxType DST_TYPE, MxType SRC_TYPE, |
| bits<4> CMD> |
| : MxInst<(outs DST_TYPE.ROp:$dst), (ins DST_TYPE.ROp:$src, SRC_TYPE.ROp:$opd), |
| MN#"."#DST_TYPE.Prefix#"\t$opd, $dst", |
| [(set DST_TYPE.VT:$dst, CCR, (NODE DST_TYPE.VT:$src, SRC_TYPE.VT:$opd))]> { |
| let Inst = (descend |
| CMD, (operand "$dst", 3), |
| !cast<MxOpModeEncoding>("MxOpMode"#DST_TYPE.Size#"_"#DST_TYPE.RLet#"_EA").Value, |
| !cond( |
| !eq(SRC_TYPE.RLet, "r") : (descend 0b00, (operand "$opd", 4)), |
| !eq(SRC_TYPE.RLet, "d") : (descend 0b000, (operand "$opd", 3)) |
| ) |
| ); |
| } |
| |
| /// This Op is similar to the one above except it uses reversed opmode, some |
| /// commands(e.g. eor) do not support dEA or rEA modes and require EAd for |
| /// register only operations. |
| /// NOTE when using dd commands it is irrelevant which opmode to use(as it seems) |
| /// but some opcodes support address register and some do not which creates this |
| /// mess. |
| class MxBiArOp_R_RR_EAd<string MN, SDNode NODE, MxType TYPE, bits<4> CMD> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd), |
| MN#"."#TYPE.Prefix#"\t$opd, $dst", |
| [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd))]> { |
| let Inst = (descend |
| CMD, (operand "$opd", 3), |
| !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_EA_"#TYPE.RLet).Value, |
| /*Destination can only be a data register*/ |
| /*MODE*/0b000, |
| /*REGISTER*/(operand "$dst", 3)); |
| } |
| |
| let mayLoad = 1 in |
| class MxBiArOp_R_RM<string MN, SDNode NODE, MxType TYPE, MxOperand OPD, ComplexPattern PAT, |
| bits<4> CMD, MxEncMemOp SRC_ENC> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, OPD:$opd), |
| MN#"."#TYPE.Prefix#"\t$opd, $dst", |
| [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, (TYPE.Load PAT:$opd)))]> { |
| let Inst = (ascend |
| (descend CMD, (operand "$dst", 3), |
| !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_"#TYPE.RLet#"_EA").Value, |
| SRC_ENC.EA), |
| SRC_ENC.Supplement |
| ); |
| } |
| |
| /// Encoding for Immediate forms |
| /// --------------------------------------------------- |
| /// F E D C B A 9 8 | 7 6 | 5 4 3 | 2 1 0 |
| /// --------------------------------------------------- |
| /// | | EFFECTIVE ADDRESS |
| /// x x x x x x x x | SIZE | MODE | REG |
| /// --------------------------------------------------- |
| /// 16-BIT WORD DATA | 8-BIT BYTE DATA |
| /// --------------------------------------------------- |
| /// 32-BIT LONG DATA |
| /// --------------------------------------------------- |
| /// NOTE It is used to store an immediate to memory, imm-to-reg are handled with |
| /// normal version |
| |
| // $reg <- $reg op $imm |
| class MxBiArOp_R_RI_xEA<string MN, SDNode NODE, MxType TYPE, bits<4> CMD> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd), |
| MN#"."#TYPE.Prefix#"\t$opd, $dst", |
| [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))]> { |
| let Inst = (ascend |
| (descend CMD, (operand "$dst", 3), |
| !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_"#TYPE.RLet#"_EA").Value, |
| MxEncAddrMode_i<"opd", TYPE.Size>.EA), |
| MxEncAddrMode_i<"opd", TYPE.Size>.Supplement |
| ); |
| } |
| |
| // Again, there are two ways to write an immediate to Dn register either dEA |
| // opmode or using *I encoding, and again some instructions also support address |
| // registers some do not. |
| class MxBiArOp_R_RI<string MN, SDNode NODE, MxType TYPE, bits<4> CMD> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd), |
| MN#"i."#TYPE.Prefix#"\t$opd, $dst", |
| [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))]> { |
| let Inst = (ascend |
| (descend 0b0000, CMD, |
| !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| // The destination cannot be address register, so it's always |
| // the MODE for data register direct mode. |
| /*MODE*/0b000, |
| /*REGISTER*/(operand "$dst", 3)), |
| // Source (i.e. immediate value) encoding |
| MxEncAddrMode_i<"opd", TYPE.Size>.Supplement |
| ); |
| } |
| } // Constraints |
| |
| let mayLoad = 1, mayStore = 1 in { |
| |
| // FIXME MxBiArOp_FMR/FMI cannot consume CCR from MxAdd/MxSub which leads for |
| // MxAdd to survive the match and subsequent mismatch. |
| class MxBiArOp_MR<string MN, MxType TYPE, |
| MxOperand MEMOpd, bits<4> CMD, MxEncMemOp DST_ENC> |
| : MxInst<(outs), (ins MEMOpd:$dst, TYPE.ROp:$opd), |
| MN#"."#TYPE.Prefix#"\t$opd, $dst", []> { |
| let Inst = (ascend |
| (descend CMD, (operand "$opd", 3), |
| !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_EA_"#TYPE.RLet).Value, |
| DST_ENC.EA), |
| DST_ENC.Supplement |
| ); |
| } |
| |
| class MxBiArOp_MI<string MN, MxType TYPE, |
| MxOperand MEMOpd, bits<4> CMD, MxEncMemOp DST_ENC> |
| : MxInst<(outs), (ins MEMOpd:$dst, TYPE.IOp:$opd), |
| MN#"."#TYPE.Prefix#"\t$opd, $dst", []> { |
| let Inst = (ascend |
| (descend 0b0000, CMD, |
| !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| DST_ENC.EA), |
| // Source (i.e. immediate value) encoding |
| MxEncAddrMode_i<"opd", TYPE.Size>.Supplement, |
| // Destination encoding |
| DST_ENC.Supplement |
| ); |
| } |
| } // mayLoad, mayStore |
| } // Defs = [CCR] |
| |
| multiclass MxBiArOp_DF<string MN, SDNode NODE, bit isComm, |
| bits<4> CMD, bits<4> CMDI> { |
| |
| foreach SZ = [8, 16, 32] in { |
| // op $mem, $reg |
| def NAME#SZ#"dk" : MxBiArOp_R_RM<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).KOp, |
| !cast<MxType>("MxType"#SZ).KPat, |
| CMD, MxEncAddrMode_k<"opd">>; |
| |
| def NAME#SZ#"dq" : MxBiArOp_R_RM<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).QOp, |
| !cast<MxType>("MxType"#SZ).QPat, |
| CMD, MxEncAddrMode_q<"opd">>; |
| |
| def NAME#SZ#"dp" : MxBiArOp_R_RM<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).POp, |
| !cast<MxType>("MxType"#SZ).PPat, |
| CMD, MxEncAddrMode_p<"opd">>; |
| |
| def NAME#SZ#"df" : MxBiArOp_R_RM<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).FOp, |
| !cast<MxType>("MxType"#SZ).FPat, |
| CMD, MxEncAddrMode_f<"opd">>; |
| |
| def NAME#SZ#"dj" : MxBiArOp_R_RM<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).JOp, |
| !cast<MxType>("MxType"#SZ).JPat, |
| CMD, MxEncAddrMode_j<"opd">>; |
| // op $imm, $reg |
| def NAME#SZ#"di" : MxBiArOp_R_RI_xEA<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| CMD>; |
| // op $reg, $mem |
| def NAME#SZ#"pd" : MxBiArOp_MR<MN, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).POp, |
| CMD, MxEncAddrMode_p<"dst">>; |
| |
| def NAME#SZ#"fd" : MxBiArOp_MR<MN, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).FOp, |
| CMD, MxEncAddrMode_f<"dst">>; |
| |
| def NAME#SZ#"jd" : MxBiArOp_MR<MN, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ).JOp, |
| CMD, MxEncAddrMode_j<"dst">>; |
| // op $imm, $mem |
| def NAME#SZ#"pi" : MxBiArOp_MI<MN, |
| !cast<MxType>("MxType"#SZ), |
| !cast<MxType>("MxType"#SZ).POp, |
| CMDI, MxEncAddrMode_p<"dst">>; |
| |
| def NAME#SZ#"fi" : MxBiArOp_MI<MN, |
| !cast<MxType>("MxType"#SZ), |
| !cast<MxType>("MxType"#SZ).FOp, |
| CMDI, MxEncAddrMode_f<"dst">>; |
| |
| def NAME#SZ#"ji" : MxBiArOp_MI<MN, |
| !cast<MxType>("MxType"#SZ), |
| !cast<MxType>("MxType"#SZ).JOp, |
| CMDI, MxEncAddrMode_j<"dst">>; |
| // op $reg, $reg |
| let isCommutable = isComm in |
| def NAME#SZ#"dd" : MxBiArOp_R_RR_xEA<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ#"d"), |
| CMD>; |
| } // foreach SZ |
| |
| foreach SZ = [16, 32] in |
| def NAME#SZ#"dr" : MxBiArOp_R_RR_xEA<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| !cast<MxType>("MxType"#SZ#"r"), |
| CMD>; |
| |
| } // MxBiArOp_DF |
| |
| |
| // These special snowflakes allowed to match address registers but since *A |
| // operations do not produce CCR we should not match them against Mx nodes that |
| // produce it. |
| let Pattern = [(null_frag)] in |
| multiclass MxBiArOp_AF<string MN, SDNode NODE, bits<4> CMD> { |
| |
| def NAME#"32ak" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.KOp, MxType32.KPat, |
| CMD, MxEncAddrMode_k<"opd">>; |
| def NAME#"32aq" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.QOp, MxType32.QPat, |
| CMD, MxEncAddrMode_q<"opd">>; |
| def NAME#"32af" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.FOp, MxType32.FPat, |
| CMD, MxEncAddrMode_f<"opd">>; |
| def NAME#"32ap" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.POp, MxType32.PPat, |
| CMD, MxEncAddrMode_p<"opd">>; |
| def NAME#"32aj" : MxBiArOp_R_RM<MN, NODE, MxType32a, MxType32.JOp, MxType32.JPat, |
| CMD, MxEncAddrMode_j<"opd">>; |
| def NAME#"32ai" : MxBiArOp_R_RI_xEA<MN, NODE, MxType32a, CMD>; |
| |
| def NAME#"32ar" : MxBiArOp_R_RR_xEA<MN, NODE, MxType32a, MxType32r, CMD>; |
| |
| } // MxBiArOp_AF |
| |
| // NOTE These naturally produce CCR |
| |
| //===----------------------------------------------------------------------===// |
| // Add/Sub |
| //===----------------------------------------------------------------------===// |
| |
| defm ADD : MxBiArOp_DF<"add", MxAdd, 1, 0xD, 0x6>; |
| defm ADD : MxBiArOp_AF<"adda", MxAdd, 0xD>; |
| defm SUB : MxBiArOp_DF<"sub", MxSub, 0, 0x9, 0x4>; |
| defm SUB : MxBiArOp_AF<"suba", MxSub, 0x9>; |
| |
| |
| let Uses = [CCR], Defs = [CCR] in { |
| let Constraints = "$src = $dst" in { |
| |
| /// Encoding for Extended forms |
| /// ------------------------------------------------------ |
| /// F E D C | B A 9 | 8 | 7 6 | 5 4 | 3 | 2 1 0 |
| /// ------------------------------------------------------ |
| /// x x x x | REG Rx | 1 | SIZE | 0 0 | M | REG Ry |
| /// ------------------------------------------------------ |
| /// Rx - destination |
| /// Ry - source |
| /// M - address mode switch |
| |
| // $reg, ccr <- $reg op $reg op ccr |
| class MxBiArOp_R_RRX<string MN, SDNode NODE, MxType TYPE, bits<4> CMD> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd), |
| MN#"."#TYPE.Prefix#"\t$opd, $dst", |
| [(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd, CCR))]> { |
| let Inst = (descend CMD, |
| // Destination register |
| (operand "$dst", 3), |
| 0b1, |
| // SIZE |
| !cond(!eq(TYPE.Size, 8): 0b00, |
| !eq(TYPE.Size, 16): 0b01, |
| !eq(TYPE.Size, 32): 0b10), |
| 0b00, /*R/M*/0b0, |
| // Source register |
| (operand "$opd", 3) |
| ); |
| } |
| } // Constraints |
| } // Uses, Defs |
| |
| multiclass MxBiArOp_RFF<string MN, SDNode NODE, bit isComm, bits<4> CMD> { |
| |
| let isCommutable = isComm in { |
| foreach SZ = [8, 16, 32] in |
| def NAME#SZ#"dd" : MxBiArOp_R_RRX<MN, NODE, !cast<MxType>("MxType"#SZ#"d"), CMD>; |
| } // isComm |
| |
| } // MxBiArOp_RFF |
| |
| // NOTE These consume and produce CCR |
| defm ADDX : MxBiArOp_RFF<"addx", MxAddX, 1, 0xD>; |
| defm SUBX : MxBiArOp_RFF<"subx", MxSubX, 0, 0x9>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // And/Xor/Or |
| //===----------------------------------------------------------------------===// |
| |
| defm AND : MxBiArOp_DF<"and", MxAnd, 1, 0xC, 0x2>; |
| defm OR : MxBiArOp_DF<"or", MxOr, 1, 0x8, 0x0>; |
| |
| multiclass MxBiArOp_DF_EAd<string MN, SDNode NODE, bits<4> CMD, bits<4> CMDI> { |
| foreach SZ = [8, 16, 32] in { |
| let isCommutable = 1 in |
| def NAME#SZ#"dd" : MxBiArOp_R_RR_EAd<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| CMD>; |
| |
| def NAME#SZ#"di" : MxBiArOp_R_RI<MN, NODE, |
| !cast<MxType>("MxType"#SZ#"d"), |
| CMDI>; |
| } // foreach SZ |
| } // MxBiArOp_DF_EAd |
| |
| defm XOR : MxBiArOp_DF_EAd<"eor", MxXor, 0xB, 0xA>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // CMP |
| //===----------------------------------------------------------------------===// |
| |
| let Defs = [CCR] in { |
| class MxCmp_RR<MxType LHS_TYPE, MxType RHS_TYPE = LHS_TYPE> |
| : MxInst<(outs), (ins LHS_TYPE.ROp:$lhs, RHS_TYPE.ROp:$rhs), |
| "cmp."#RHS_TYPE.Prefix#"\t$lhs, $rhs", |
| [(set CCR, (MxCmp LHS_TYPE.VT:$lhs, RHS_TYPE.VT:$rhs))]> { |
| let Inst = (descend 0b1011, |
| // REGISTER |
| (operand "$rhs", 3), |
| // OPMODE |
| !cast<MxOpModeEncoding>("MxOpMode"#RHS_TYPE.Size#"_"#RHS_TYPE.RLet#"_EA").Value, |
| // MODE without last bit |
| 0b00, |
| // REGISTER prefixed by D/A bit |
| (operand "$lhs", 4) |
| ); |
| } |
| |
| class MxCmp_RI<MxType TYPE> |
| : MxInst<(outs), (ins TYPE.IOp:$imm, TYPE.ROp:$reg), |
| "cmpi."#TYPE.Prefix#"\t$imm, $reg", |
| [(set CCR, (MxCmp TYPE.IPat:$imm, TYPE.VT:$reg))]> { |
| let Inst = (ascend |
| (descend 0b00001100, |
| !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| // The destination cannot be address register, so it's always |
| // the MODE for data register direct mode. |
| /*MODE*/0b000, |
| /*REGISTER*/(operand "$reg", 3)), |
| // Source (i.e. immediate value) encoding |
| MxEncAddrMode_i<"imm", TYPE.Size>.Supplement |
| ); |
| } |
| |
| let mayLoad = 1 in { |
| |
| class MxCmp_MI<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat, |
| MxEncMemOp MEM_ENC> |
| : MxInst<(outs), (ins TYPE.IOp:$imm, MEMOpd:$mem), |
| "cmpi."#TYPE.Prefix#"\t$imm, $mem", |
| [(set CCR, (MxCmp TYPE.IPat:$imm, (load MEMPat:$mem)))]> { |
| let Inst = (ascend |
| (descend 0b00001100, |
| !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| MEM_ENC.EA), |
| // Source (i.e. immediate value) encoding |
| MxEncAddrMode_i<"imm", TYPE.Size>.Supplement, |
| // Destination (i.e. memory operand) encoding |
| MEM_ENC.Supplement |
| ); |
| } |
| |
| // FIXME: What about abs.W? |
| class MxCmp_BI<MxType TYPE> |
| : MxInst<(outs), (ins TYPE.IOp:$imm, MxAL32:$abs), |
| "cmpi."#TYPE.Prefix#"\t$imm, $abs", |
| [(set CCR, (MxCmp TYPE.IPat:$imm, |
| (load (i32 (MxWrapper tglobaladdr:$abs)))))]> { |
| defvar AbsEncoding = MxEncAddrMode_abs<"abs", true>; |
| let Inst = (ascend |
| (descend 0b00001100, |
| !cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| AbsEncoding.EA), |
| // Source (i.e. immediate value) encoding |
| MxEncAddrMode_i<"imm", TYPE.Size>.Supplement, |
| // Destination (i.e. memory operand) encoding |
| AbsEncoding.Supplement |
| ); |
| } |
| |
| class MxCmp_RM<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat, |
| MxEncMemOp MEM_ENC> |
| : MxInst<(outs), (ins TYPE.ROp:$reg, MEMOpd:$mem), |
| "cmp."#TYPE.Prefix#"\t$mem, $reg", |
| [(set CCR, (MxCmp (load MEMPat:$mem), TYPE.ROp:$reg))]> { |
| let Inst = (ascend |
| (descend 0b1011, |
| // REGISTER |
| (operand "$reg", 3), |
| // OPMODE |
| !cast<MxOpModeEncoding>("MxOpMode"#TYPE.Size#"_d_EA").Value, |
| MEM_ENC.EA), |
| MEM_ENC.Supplement |
| ); |
| } |
| } // let mayLoad = 1 |
| |
| } // let Defs = [CCR] |
| |
| multiclass MMxCmp_RM<MxType TYPE> { |
| def NAME#TYPE.KOp.Letter : MxCmp_RM<TYPE, TYPE.KOp, TYPE.KPat, MxEncAddrMode_k<"mem">>; |
| def NAME#TYPE.QOp.Letter : MxCmp_RM<TYPE, TYPE.QOp, TYPE.QPat, MxEncAddrMode_q<"mem">>; |
| def NAME#TYPE.POp.Letter : MxCmp_RM<TYPE, TYPE.POp, TYPE.PPat, MxEncAddrMode_p<"mem">>; |
| def NAME#TYPE.FOp.Letter : MxCmp_RM<TYPE, TYPE.FOp, TYPE.FPat, MxEncAddrMode_f<"mem">>; |
| def NAME#TYPE.JOp.Letter : MxCmp_RM<TYPE, TYPE.JOp, TYPE.JPat, MxEncAddrMode_j<"mem">>; |
| } |
| |
| multiclass MMxCmp_MI<MxType TYPE> { |
| def NAME#TYPE.KOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.KOp, TYPE.KPat, |
| MxEncAddrMode_k<"mem">>; |
| def NAME#TYPE.QOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.QOp, TYPE.QPat, |
| MxEncAddrMode_q<"mem">>; |
| def NAME#TYPE.POp.Letter#"i" : MxCmp_MI<TYPE, TYPE.POp, TYPE.PPat, |
| MxEncAddrMode_p<"mem">>; |
| def NAME#TYPE.FOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.FOp, TYPE.FPat, |
| MxEncAddrMode_f<"mem">>; |
| def NAME#TYPE.JOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.JOp, TYPE.JPat, |
| MxEncAddrMode_j<"mem">>; |
| } |
| |
| foreach S = [8, 16, 32] in { |
| def CMP#S#di : MxCmp_RI<!cast<MxType>("MxType"#S#"d")>; |
| def CMP#S#bi : MxCmp_BI<!cast<MxType>("MxType"#S#"d")>; |
| } // foreach |
| |
| def CMP8dd : MxCmp_RR<MxType8d>; |
| foreach S = [16, 32] in { |
| def CMP#S#dr : MxCmp_RR<!cast<MxType>("MxType"#S#"r"), |
| !cast<MxType>("MxType"#S#"d")>; |
| } |
| |
| // cmp mem, Dn |
| defm CMP8d : MMxCmp_RM<MxType8d>; |
| defm CMP16d : MMxCmp_RM<MxType16d>; |
| defm CMP32d : MMxCmp_RM<MxType32d>; |
| |
| // cmp #imm, mem |
| defm CMP8 : MMxCmp_MI<MxType8d>; |
| defm CMP16 : MMxCmp_MI<MxType16d>; |
| defm CMP32 : MMxCmp_MI<MxType32d>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // EXT |
| //===----------------------------------------------------------------------===// |
| |
| /// --------------------------------------------------- |
| /// F E D C B A 9 | 8 7 6 | 5 4 3 | 2 1 0 |
| /// --------------------------------------------------- |
| /// 0 1 0 0 1 0 0 | OPMODE | 0 0 0 | REG |
| /// --------------------------------------------------- |
| let Defs = [CCR] in |
| let Constraints = "$src = $dst" in |
| class MxExt<MxType TO, MxType FROM> |
| : MxInst<(outs TO.ROp:$dst), (ins TO.ROp:$src), |
| "ext."#TO.Prefix#"\t$src", []> { |
| let Inst = (descend 0b0100100, |
| // OPMODE |
| !cond( |
| // byte -> word |
| !and(!eq(FROM.Size, 8), !eq(TO.Size, 16)): 0b010, |
| // word -> long |
| !and(!eq(FROM.Size, 16), !eq(TO.Size, 32)): 0b011, |
| // byte -> long |
| !and(!eq(FROM.Size, 8), !eq(TO.Size, 32)): 0b111 |
| ), |
| 0b000, |
| // REGISTER |
| (operand "$src", 3) |
| ); |
| } |
| |
| def EXT16 : MxExt<MxType16d, MxType8d>; |
| def EXT32 : MxExt<MxType32d, MxType16d>; |
| |
| def : Pat<(sext_inreg i16:$src, i8), (EXT16 $src)>; |
| def : Pat<(sext_inreg i32:$src, i16), (EXT32 $src)>; |
| def : Pat<(sext_inreg i32:$src, i8), |
| (EXT32 (MOVXd32d16 (EXT16 (EXTRACT_SUBREG $src, MxSubRegIndex16Lo))))>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DIV/MUL |
| //===----------------------------------------------------------------------===// |
| |
| /// Word operation: |
| /// ---------------------------------------------------- |
| /// F E D C | B A 9 | 8 7 6 | 5 4 3 | 2 1 0 |
| /// ---------------------------------------------------- |
| /// | | | EFFECTIVE ADDRESS |
| /// x x x x | REG | OP MODE | MODE | REG |
| /// ---------------------------------------------------- |
| let Defs = [CCR] in { |
| let Constraints = "$src = $dst" in { |
| // $dreg <- $dreg op $dreg |
| class MxDiMuOp_DD<string MN, bits<4> CMD, bit SIGNED = false, |
| MxOperand DST, MxOperand OPD> |
| : MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", []> { |
| let Inst = (descend CMD, |
| // REGISTER |
| (operand "$dst", 3), |
| !if(SIGNED, 0b111, 0b011), |
| /*MODE*/0b000, /*REGISTER*/(operand "$opd", 3) |
| ); |
| } |
| |
| // $reg <- $reg op $imm |
| class MxDiMuOp_DI<string MN, bits<4> CMD, bit SIGNED = false, |
| MxOperand DST, MxOperand OPD> |
| : MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", []> { |
| // FIXME: Support immediates with different widths. |
| defvar ImmEnc = MxEncAddrMode_i<"opd", 16>; |
| let Inst = (ascend |
| (descend CMD, |
| // REGISTER |
| (operand "$dst", 3), |
| !if(SIGNED, 0b111, 0b011), ImmEnc.EA), |
| ImmEnc.Supplement |
| ); |
| } |
| } // let Constraints |
| } // Defs = [CCR] |
| |
| multiclass MxDiMuOp<string MN, bits<4> CMD, bit isComm = 0> { |
| let isCommutable = isComm in { |
| def "S"#NAME#"d32d16" : MxDiMuOp_DD<MN#"s", CMD, /*SIGNED*/true, MxDRD32, MxDRD16>; |
| def "U"#NAME#"d32d16" : MxDiMuOp_DD<MN#"u", CMD, /*SIGNED*/false, MxDRD32, MxDRD16>; |
| } |
| |
| def "S"#NAME#"d32i16" : MxDiMuOp_DI<MN#"s", CMD, /*SIGNED*/true, MxDRD32, Mxi16imm>; |
| def "U"#NAME#"d32i16" : MxDiMuOp_DI<MN#"u", CMD, /*SIGNED*/false, MxDRD32, Mxi16imm>; |
| } |
| |
| defm DIV : MxDiMuOp<"div", 0x8>; |
| |
| // This is used to cast immediates to 16-bits for operations which don't |
| // support smaller immediate sizes. |
| def as_i16imm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i16); |
| }]>; |
| |
| // RR i8 |
| def : Pat<(sdiv i8:$dst, i8:$opd), |
| (EXTRACT_SUBREG |
| (SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)), |
| MxSubRegIndex8Lo)>; |
| |
| def : Pat<(udiv i8:$dst, i8:$opd), |
| (EXTRACT_SUBREG |
| (UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)), |
| MxSubRegIndex8Lo)>; |
| |
| def : Pat<(srem i8:$dst, i8:$opd), |
| (EXTRACT_SUBREG |
| (ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)), 8), 8), |
| MxSubRegIndex8Lo)>; |
| |
| def : Pat<(urem i8:$dst, i8:$opd), |
| (EXTRACT_SUBREG |
| (LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)), 8), 8), |
| MxSubRegIndex8Lo)>; |
| |
| // RR i16 |
| def : Pat<(sdiv i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (SDIVd32d16 (MOVSXd32d16 $dst), $opd), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(udiv i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (UDIVd32d16 (MOVZXd32d16 $dst), $opd), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(srem i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d16 $dst), $opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(urem i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d16 $dst), $opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| |
| // RI i8 |
| def : Pat<(sdiv i8:$dst, MximmSExt8:$opd), |
| (EXTRACT_SUBREG |
| (SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)), |
| MxSubRegIndex8Lo)>; |
| |
| def : Pat<(udiv i8:$dst, MximmSExt8:$opd), |
| (EXTRACT_SUBREG |
| (UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)), |
| MxSubRegIndex8Lo)>; |
| |
| def : Pat<(srem i8:$dst, MximmSExt8:$opd), |
| (EXTRACT_SUBREG |
| (ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)), 8), 8), |
| MxSubRegIndex8Lo)>; |
| |
| def : Pat<(urem i8:$dst, MximmSExt8:$opd), |
| (EXTRACT_SUBREG |
| (LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)), 8), 8), |
| MxSubRegIndex8Lo)>; |
| |
| // RI i16 |
| def : Pat<(sdiv i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(udiv i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(srem i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(urem i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| |
| defm MUL : MxDiMuOp<"mul", 0xC, 1>; |
| |
| // RR |
| def : Pat<(mul i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (SMULd32d16 (MOVXd32d16 $dst), $opd), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(mulhs i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (ASR32di (ASR32di (SMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(mulhu i16:$dst, i16:$opd), |
| (EXTRACT_SUBREG |
| (LSR32di (LSR32di (UMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| |
| // RI |
| def : Pat<(mul i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (SMULd32i16 (MOVXd32d16 $dst), imm:$opd), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(mulhs i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (ASR32di (ASR32di (SMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| def : Pat<(mulhu i16:$dst, MximmSExt16:$opd), |
| (EXTRACT_SUBREG |
| (LSR32di (LSR32di (UMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8), |
| MxSubRegIndex16Lo)>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // NEG/NEGX |
| //===----------------------------------------------------------------------===// |
| |
| /// ------------+------------+------+---------+--------- |
| /// F E D C | B A 9 8 | 7 6 | 5 4 3 | 2 1 0 |
| /// ------------+------------+------+------------------- |
| /// | | | EFFECTIVE ADDRESS |
| /// 0 1 0 0 | x x x x | SIZE | MODE | REG |
| /// ------------+------------+------+---------+--------- |
| let Defs = [CCR] in { |
| let Constraints = "$src = $dst" in { |
| |
| class MxNeg_D<MxType TYPE> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src), |
| "neg."#TYPE.Prefix#"\t$dst", |
| [(set TYPE.VT:$dst, (ineg TYPE.VT:$src))]> { |
| let Inst = (descend 0b01000100, |
| /*SIZE*/!cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| //MODE without last bit |
| 0b00, |
| //REGISTER prefixed by D/A bit |
| (operand "$dst", 4) |
| ); |
| } |
| |
| let Uses = [CCR] in { |
| class MxNegX_D<MxType TYPE> |
| : MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src), |
| "negx."#TYPE.Prefix#"\t$dst", |
| [(set TYPE.VT:$dst, (MxSubX 0, TYPE.VT:$src, CCR))]> { |
| let Inst = (descend 0b01000000, |
| /*SIZE*/!cast<MxNewEncSize>("MxNewEncSize"#TYPE.Size).Value, |
| //MODE without last bit |
| 0b00, |
| //REGISTER prefixed by D/A bit |
| (operand "$dst", 4) |
| ); |
| } |
| } |
| |
| } // let Constraints |
| } // let Defs = [CCR] |
| |
| foreach S = [8, 16, 32] in { |
| def NEG#S#d : MxNeg_D<!cast<MxType>("MxType"#S#"d")>; |
| def NEGX#S#d : MxNegX_D<!cast<MxType>("MxType"#S#"d")>; |
| } |
| |
| def : Pat<(MxSub 0, i8 :$src), (NEG8d MxDRD8 :$src)>; |
| def : Pat<(MxSub 0, i16:$src), (NEG16d MxDRD16:$src)>; |
| def : Pat<(MxSub 0, i32:$src), (NEG32d MxDRD32:$src)>; |
| |
| //===----------------------------------------------------------------------===// |
| // no-CCR Patterns |
| //===----------------------------------------------------------------------===// |
| |
| /// Basically the reason for this stuff is that add and addc share the same |
| /// operand types constraints for whatever reasons and I had to define a common |
| /// MxAdd and MxSub instructions that produce CCR and then pattern-map add and addc |
| /// to it. |
| /// NOTE On the other hand I see no reason why I cannot just drop explicit CCR |
| /// result. Anyway works for now, hopefully I will better understand how this stuff |
| /// is designed later |
| foreach N = ["add", "addc"] in { |
| |
| // add reg, reg |
| def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd), |
| (ADD8dd MxDRD8 :$src, MxDRD8 :$opd)>; |
| def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd), |
| (ADD16dr MxXRD16:$src, MxDRD16:$opd)>; |
| def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd), |
| (ADD32dr MxXRD32:$src, MxDRD32:$opd)>; |
| |
| // add (An), reg |
| def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)), |
| (ADD8dj MxDRD8:$src, MxType8.JOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)), |
| (ADD16dj MxDRD16:$src, MxType16.JOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)), |
| (ADD32dj MxDRD32:$src, MxType32.JOp:$opd)>; |
| |
| // add (i,An), reg |
| def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)), |
| (ADD8dp MxDRD8:$src, MxType8.POp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)), |
| (ADD16dp MxDRD16:$src, MxType16.POp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)), |
| (ADD32dp MxDRD32:$src, MxType32.POp:$opd)>; |
| |
| // add (i,An,Xn), reg |
| def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)), |
| (ADD8df MxDRD8:$src, MxType8.FOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)), |
| (ADD16df MxDRD16:$src, MxType16.FOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)), |
| (ADD32df MxDRD32:$src, MxType32.FOp:$opd)>; |
| |
| // add reg, imm |
| def : Pat<(!cast<SDNode>(N) i8: $src, MximmSExt8:$opd), |
| (ADD8di MxDRD8 :$src, imm:$opd)>; |
| def : Pat<(!cast<SDNode>(N) i16:$src, MximmSExt16:$opd), |
| (ADD16di MxDRD16:$src, imm:$opd)>; |
| |
| // LEAp is more complex and thus will be selected over normal ADD32ri but it cannot |
| // be used with data registers, here by adding complexity to a simple ADD32ri insts |
| // we make sure it will be selected over LEAp |
| let AddedComplexity = 15 in { |
| def : Pat<(!cast<SDNode>(N) i32:$src, MximmSExt32:$opd), |
| (ADD32di MxDRD32:$src, imm:$opd)>; |
| } // AddedComplexity = 15 |
| |
| // add imm, (An) |
| def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd), |
| MxType8.JPat:$dst), |
| (ADD8ji MxType8.JOp:$dst, imm:$opd)>; |
| def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd), |
| MxType16.JPat:$dst), |
| (ADD16ji MxType16.JOp:$dst, imm:$opd)>; |
| def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd), |
| MxType32.JPat:$dst), |
| (ADD32ji MxType32.JOp:$dst, imm:$opd)>; |
| |
| } // foreach add, addc |
| |
| def : Pat<(adde i8 :$src, i8 :$opd), (ADDX8dd MxDRD8 :$src, MxDRD8 :$opd)>; |
| def : Pat<(adde i16:$src, i16:$opd), (ADDX16dd MxDRD16:$src, MxDRD16:$opd)>; |
| def : Pat<(adde i32:$src, i32:$opd), (ADDX32dd MxDRD32:$src, MxDRD32:$opd)>; |
| |
| |
| |
| foreach N = ["sub", "subc"] in { |
| |
| // sub reg, reg |
| def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd), |
| (SUB8dd MxDRD8 :$src, MxDRD8 :$opd)>; |
| def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd), |
| (SUB16dd MxDRD16:$src, MxDRD16:$opd)>; |
| def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd), |
| (SUB32dd MxDRD32:$src, MxDRD32:$opd)>; |
| |
| |
| // sub (An), reg |
| def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)), |
| (SUB8dj MxDRD8:$src, MxType8.JOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)), |
| (SUB16dj MxDRD16:$src, MxType16.JOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)), |
| (SUB32dj MxDRD32:$src, MxType32.JOp:$opd)>; |
| |
| // sub (i,An), reg |
| def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)), |
| (SUB8dp MxDRD8:$src, MxType8.POp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)), |
| (SUB16dp MxDRD16:$src, MxType16.POp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)), |
| (SUB32dp MxDRD32:$src, MxType32.POp:$opd)>; |
| |
| // sub (i,An,Xn), reg |
| def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)), |
| (SUB8df MxDRD8:$src, MxType8.FOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)), |
| (SUB16df MxDRD16:$src, MxType16.FOp:$opd)>; |
| def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)), |
| (SUB32df MxDRD32:$src, MxType32.FOp:$opd)>; |
| |
| // sub reg, imm |
| def : Pat<(!cast<SDNode>(N) i8 :$src, MximmSExt8 :$opd), |
| (SUB8di MxDRD8 :$src, imm:$opd)>; |
| def : Pat<(!cast<SDNode>(N) i16:$src, MximmSExt16:$opd), |
| (SUB16di MxDRD16:$src, imm:$opd)>; |
| def : Pat<(!cast<SDNode>(N) i32:$src, MximmSExt32:$opd), |
| (SUB32di MxDRD32:$src, imm:$opd)>; |
| |
| // sub imm, (An) |
| def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd), |
| MxType8.JPat:$dst), |
| (SUB8ji MxType8.JOp:$dst, imm:$opd)>; |
| def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd), |
| MxType16.JPat:$dst), |
| (SUB16ji MxType16.JOp:$dst, imm:$opd)>; |
| def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd), |
| MxType32.JPat:$dst), |
| (SUB32ji MxType32.JOp:$dst, imm:$opd)>; |
| |
| } // foreach sub, subx |
| |
| def : Pat<(sube i8 :$src, i8 :$opd), (SUBX8dd MxDRD8 :$src, MxDRD8 :$opd)>; |
| def : Pat<(sube i16:$src, i16:$opd), (SUBX16dd MxDRD16:$src, MxDRD16:$opd)>; |
| def : Pat<(sube i32:$src, i32:$opd), (SUBX32dd MxDRD32:$src, MxDRD32:$opd)>; |
| |
| multiclass BitwisePat<string INST, SDNode OP> { |
| // op reg, reg |
| def : Pat<(OP i8 :$src, i8 :$opd), |
| (!cast<MxInst>(INST#"8dd") MxDRD8 :$src, MxDRD8 :$opd)>; |
| def : Pat<(OP i16:$src, i16:$opd), |
| (!cast<MxInst>(INST#"16dd") MxDRD16:$src, MxDRD16:$opd)>; |
| def : Pat<(OP i32:$src, i32:$opd), |
| (!cast<MxInst>(INST#"32dd") MxDRD32:$src, MxDRD32:$opd)>; |
| // op reg, imm |
| def : Pat<(OP i8: $src, MximmSExt8 :$opd), |
| (!cast<MxInst>(INST#"8di") MxDRD8 :$src, imm:$opd)>; |
| def : Pat<(OP i16:$src, MximmSExt16:$opd), |
| (!cast<MxInst>(INST#"16di") MxDRD16:$src, imm:$opd)>; |
| def : Pat<(OP i32:$src, MximmSExt32:$opd), |
| (!cast<MxInst>(INST#"32di") MxDRD32:$src, imm:$opd)>; |
| } |
| |
| defm : BitwisePat<"AND", and>; |
| defm : BitwisePat<"OR", or>; |
| defm : BitwisePat<"XOR", xor>; |