| //===-- SISchedule.td - SI Scheduling definitions -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // MachineModel definitions for Southern Islands (SI) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| def : PredicateProlog<[{ |
| const SIInstrInfo *TII = |
| static_cast<const SIInstrInfo*>(SchedModel->getInstrInfo()); |
| (void)TII; |
| }]>; |
| |
| def WriteBranch : SchedWrite; |
| def WriteExport : SchedWrite; |
| def WriteLDS : SchedWrite; |
| def WriteSALU : SchedWrite; |
| def WriteSMEM : SchedWrite; |
| def WriteVMEM : SchedWrite; |
| def WriteBarrier : SchedWrite; |
| |
| def MIVGPRRead : SchedRead; |
| def MIMFMARead : SchedRead; |
| |
| // Normal 16 or 32 bit VALU instructions |
| def Write32Bit : SchedWrite; |
| // Conversion to or from F32 (but not converting F64 to or from F32) |
| def WriteFloatCvt : SchedWrite; |
| // F16 or F32 transcendental instructions (these are quarter rate) |
| def WriteTrans32 : SchedWrite; |
| // Other quarter rate VALU instructions |
| def WriteQuarterRate32 : SchedWrite; |
| |
| def WriteFloatFMA : SchedWrite; |
| |
| // Slow quarter rate f64 instruction. |
| def WriteDouble : SchedWrite; |
| |
| // half rate f64 instruction (same as v_add_f64) |
| def WriteDoubleAdd : SchedWrite; |
| |
| // Conversion to or from f64 instruction |
| def WriteDoubleCvt : SchedWrite; |
| |
| // F64 "transcendental" (actually only reciprocal and/or square root) |
| // instructions |
| def WriteTrans64 : SchedWrite; |
| |
| // Half rate 64-bit instructions. |
| def Write64Bit : SchedWrite; |
| |
| // Integer multiplications. |
| def WriteIntMul : SchedWrite; |
| |
| // mAI multipass instructions. |
| def Write2PassMAI : SchedWrite; |
| def Write4PassMAI : SchedWrite; |
| def Write8PassMAI : SchedWrite; |
| def Write16PassMAI : SchedWrite; |
| def Write4PassDGEMM : SchedWrite; |
| def Write8PassDGEMM : SchedWrite; |
| |
| // FIXME: Should there be a class for instructions which are VALU |
| // instructions and have VALU rates, but write to the SALU (i.e. VOPC |
| // instructions) |
| |
| class SISchedMachineModel : SchedMachineModel { |
| let CompleteModel = 1; |
| // MicroOpBufferSize = 1 means that instructions will always be added |
| // the ready queue when they become available. This exposes them |
| // to the register pressure analysis. |
| let MicroOpBufferSize = 1; |
| let IssueWidth = 1; |
| let PostRAScheduler = 1; |
| |
| // FIXME:Approximate 2 * branch cost. Try to hack around bad |
| // early-ifcvt heuristics. These need improvement to avoid the OOE |
| // heuristics. |
| int MispredictPenalty = 20; |
| } |
| |
| def SIFullSpeedModel : SISchedMachineModel; |
| def SIQuarterSpeedModel : SISchedMachineModel; |
| def SIDPFullSpeedModel : SISchedMachineModel; |
| def SIDPGFX940FullSpeedModel : SISchedMachineModel; |
| def GFX10SpeedModel : SISchedMachineModel; |
| def GFX11SpeedModel : SISchedMachineModel; |
| |
| // XXX: Are the resource counts correct? |
| def HWBranch : ProcResource<1> { |
| let BufferSize = 1; |
| } |
| def HWExport : ProcResource<1> { |
| let BufferSize = 1; |
| } |
| def HWLGKM : ProcResource<1> { |
| let BufferSize = 1; |
| } |
| def HWSALU : ProcResource<1> { |
| let BufferSize = 1; |
| } |
| def HWVMEM : ProcResource<1> { |
| let BufferSize = 1; |
| } |
| def HWVALU : ProcResource<1> { |
| let BufferSize = 1; |
| } |
| def HWTransVALU : ProcResource<1> { // Transcendental VALU |
| let BufferSize = 1; |
| } |
| def HWRC : ProcResource<1> { // Register destination cache |
| let BufferSize = 1; |
| } |
| def HWXDL : ProcResource<1> { // MFMA CU |
| let BufferSize = 0; |
| } |
| |
| class HWWriteRes<SchedWrite write, list<ProcResourceKind> resources, |
| int latency> : WriteRes<write, resources> { |
| let Latency = latency; |
| } |
| |
| class HWVALUWriteRes<SchedWrite write, int latency> : |
| HWWriteRes<write, [HWVALU], latency>; |
| |
| def PredMIReadVGPR : SchedPredicate<[{TII->hasVGPRUses(*MI)}]>; |
| |
| def MIReadVGPR : SchedReadVariant<[ |
| SchedVar<PredMIReadVGPR, [MIVGPRRead]>, |
| SchedVar<NoSchedPred, [ReadDefault]>]>; |
| |
| // The latency numbers are taken from AMD Accelerated Parallel Processing |
| // guide. They may not be accurate. |
| |
| // The latency values are 1 / (operations / cycle) / 4. |
| multiclass SICommonWriteRes { |
| |
| let RetireOOO = 1 in { // llvm-mca specific flag |
| def : HWWriteRes<WriteBranch, [HWBranch], 8>; |
| def : HWWriteRes<WriteExport, [HWExport], 4>; |
| def : HWWriteRes<WriteLDS, [HWLGKM], 5>; // Can be between 2 and 64 |
| def : HWWriteRes<WriteSALU, [HWSALU], 1>; |
| def : HWWriteRes<WriteSMEM, [HWLGKM], 5>; |
| def : HWWriteRes<WriteVMEM, [HWVMEM], 80>; |
| def : HWWriteRes<WriteBarrier, [HWBranch], 500>; // XXX: Guessed ??? |
| |
| def : HWVALUWriteRes<Write32Bit, 1>; |
| def : HWVALUWriteRes<WriteFloatCvt, 4>; |
| def : HWVALUWriteRes<WriteTrans32, 4>; |
| def : HWVALUWriteRes<WriteQuarterRate32, 4>; |
| |
| def : HWVALUWriteRes<Write4PassDGEMM, 4>; |
| def : HWVALUWriteRes<Write8PassDGEMM, 16>; |
| |
| let ResourceCycles = [2] in |
| def : HWWriteRes<Write2PassMAI, [HWXDL], 2>; |
| let ResourceCycles = [4] in |
| def : HWWriteRes<Write4PassMAI, [HWXDL], 4>; |
| let ResourceCycles = [8] in |
| def : HWWriteRes<Write8PassMAI, [HWXDL], 8>; |
| let ResourceCycles = [16] in |
| def : HWWriteRes<Write16PassMAI, [HWXDL], 16>; |
| } // End RetireOOO = 1 |
| |
| def : ReadAdvance<MIVGPRRead, -2>; |
| |
| // Technically mfma reads can be from 0 to 4 cycles but that does not make |
| // sense to model because its register setup is huge. In particular if we |
| // properly model read advance as -2 for a vgpr read it will result in a |
| // bad scheduling of acc writes before that mfma. To avoid it we would |
| // need to consume 2 or 4 more vgprs to be initialized before the acc |
| // write sequence. Just assume worst case here. |
| def : ReadAdvance<MIMFMARead, -4>; |
| } |
| |
| def PredIsVGPR32Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) <= 32}]>; |
| def PredIsVGPR64Copy : SchedPredicate<[{TII->isVGPRCopy(*MI) && TII->getOpSize(*MI, 0) > 32}]>; |
| def WriteCopy : SchedWriteVariant<[ |
| SchedVar<PredIsVGPR32Copy, [Write32Bit]>, |
| SchedVar<PredIsVGPR64Copy, [Write64Bit]>, |
| SchedVar<NoSchedPred, [WriteSALU]>]>; |
| |
| let SchedModel = SIFullSpeedModel in { |
| |
| defm : SICommonWriteRes; |
| |
| let RetireOOO = 1 in { // llvm-mca specific flag |
| def : HWVALUWriteRes<Write64Bit, 2>; |
| def : HWVALUWriteRes<WriteIntMul, 4>; |
| def : HWVALUWriteRes<WriteFloatFMA, 1>; |
| def : HWVALUWriteRes<WriteDouble, 4>; |
| def : HWVALUWriteRes<WriteDoubleAdd, 2>; |
| def : HWVALUWriteRes<WriteDoubleCvt, 4>; |
| def : HWVALUWriteRes<WriteTrans64, 4>; |
| } // End RetireOOO = 1 |
| |
| def : InstRW<[WriteCopy], (instrs COPY)>; |
| |
| } // End SchedModel = SIFullSpeedModel |
| |
| let SchedModel = SIQuarterSpeedModel in { |
| |
| defm : SICommonWriteRes; |
| |
| let RetireOOO = 1 in { // llvm-mca specific flag |
| def : HWVALUWriteRes<Write64Bit, 2>; |
| def : HWVALUWriteRes<WriteIntMul, 4>; |
| def : HWVALUWriteRes<WriteFloatFMA, 16>; |
| def : HWVALUWriteRes<WriteDouble, 16>; |
| def : HWVALUWriteRes<WriteDoubleAdd, 8>; |
| def : HWVALUWriteRes<WriteDoubleCvt, 4>; |
| def : HWVALUWriteRes<WriteTrans64, 16>; |
| } // End RetireOOO = 1 |
| |
| def : InstRW<[WriteCopy], (instrs COPY)>; |
| def : InstRW<[Write64Bit, MIReadVGPR], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>; |
| def : InstRW<[Write2PassMAI, MIMFMARead], (instregex "^V_MFMA_..._4X4X")>; |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_..._16X16X")>; |
| def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_..._32X32X")>; |
| |
| } // End SchedModel = SIQuarterSpeedModel |
| |
| let SchedModel = SIDPFullSpeedModel in { |
| |
| defm : SICommonWriteRes; |
| |
| let RetireOOO = 1 in { // llvm-mca specific flag |
| def : HWVALUWriteRes<WriteFloatFMA, 1>; |
| def : HWVALUWriteRes<WriteDouble, 1>; |
| def : HWVALUWriteRes<WriteDoubleAdd, 1>; |
| def : HWVALUWriteRes<WriteDoubleCvt, 1>; |
| def : HWVALUWriteRes<WriteTrans64, 4>; |
| def : HWVALUWriteRes<WriteIntMul, 1>; |
| def : HWVALUWriteRes<Write64Bit, 1>; |
| } // End RetireOOO = 1 |
| |
| def : InstRW<[WriteCopy], (instrs COPY)>; |
| def : InstRW<[Write64Bit], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>; |
| def : InstRW<[Write2PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_4X4X")>; |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_16X16X")>; |
| def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_32X32X")>; |
| def : InstRW<[Write4PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_4X4X")>; |
| def : InstRW<[Write8PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_16X16X")>; |
| |
| } // End SchedModel = SIDPFullSpeedModel |
| |
| let SchedModel = SIDPGFX940FullSpeedModel in { |
| |
| defm : SICommonWriteRes; |
| |
| def : HWVALUWriteRes<WriteFloatFMA, 1>; |
| def : HWVALUWriteRes<WriteDouble, 1>; |
| def : HWVALUWriteRes<WriteDoubleAdd, 1>; |
| def : HWVALUWriteRes<WriteDoubleCvt, 1>; |
| def : HWVALUWriteRes<WriteTrans64, 4>; |
| def : HWVALUWriteRes<WriteIntMul, 1>; |
| def : HWVALUWriteRes<Write64Bit, 1>; |
| |
| def : InstRW<[WriteCopy], (instrs COPY)>; |
| def : InstRW<[Write64Bit], (instregex "^V_ACCVGPR_WRITE_B32_e64$")>; |
| def : InstRW<[Write2PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_4X4X")>; |
| |
| def : InstRW<[Write4PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_16X16X8X")>; |
| def : InstRW<[Write4PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_16X16X16")>; |
| def : InstRW<[Write4PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_16X16X32")>; |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_16X16X[14][FBI]")>; |
| |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_32X32X4XF")>; |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_32X32X8")>; |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_32X32X16")>; |
| def : InstRW<[Write16PassMAI, MIMFMARead], (instregex "^V_MFMA_.32_32X32X[124][FBI]")>; |
| |
| def : InstRW<[Write4PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_4X4X")>; |
| def : InstRW<[Write8PassDGEMM, MIMFMARead], (instregex "^V_MFMA_.64_16X16X")>; |
| |
| def : InstRW<[Write4PassMAI, MIMFMARead], (instregex "^V_SMFMAC_.32_16X16X")>; |
| def : InstRW<[Write8PassMAI, MIMFMARead], (instregex "^V_SMFMAC_.32_32X32X")>; |
| |
| } // End SchedModel = SIDPGFX940FullSpeedModel |
| |
| let SchedModel = GFX10SpeedModel in { |
| |
| // The latency values are 1 / (operations / cycle). |
| // Add 1 stall cycle for VGPR read. |
| let RetireOOO = 1 in { // llvm-mca specific flag |
| def : HWWriteRes<Write32Bit, [HWVALU, HWRC], 5>; |
| def : HWWriteRes<WriteFloatCvt, [HWVALU, HWRC], 5>; |
| def : HWWriteRes<Write64Bit, [HWVALU, HWRC], 6>; |
| def : HWWriteRes<WriteTrans32, [HWTransVALU, HWRC], 10>; |
| def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC], 8>; |
| def : HWWriteRes<WriteFloatFMA, [HWVALU, HWRC], 5>; |
| def : HWWriteRes<WriteDouble, [HWVALU, HWRC], 22>; |
| def : HWWriteRes<WriteDoubleAdd, [HWVALU, HWRC], 22>; |
| def : HWWriteRes<WriteDoubleCvt, [HWVALU, HWRC], 22>; |
| def : HWWriteRes<WriteIntMul, [HWVALU, HWRC], 8>; |
| def : HWWriteRes<WriteTrans64, [HWVALU, HWTransVALU, HWRC], 24>; |
| |
| def : HWWriteRes<WriteBranch, [HWBranch], 32>; |
| def : HWWriteRes<WriteExport, [HWExport, HWRC], 16>; |
| def : HWWriteRes<WriteLDS, [HWLGKM, HWRC], 20>; |
| def : HWWriteRes<WriteSALU, [HWSALU, HWRC], 2>; |
| def : HWWriteRes<WriteSMEM, [HWLGKM, HWRC], 20>; |
| def : HWWriteRes<WriteVMEM, [HWVMEM, HWRC], 320>; |
| def : HWWriteRes<WriteBarrier, [HWBranch], 2000>; |
| } // End RetireOOO = 1 |
| |
| def : InstRW<[WriteCopy], (instrs COPY)>; |
| |
| } // End SchedModel = GFX10SpeedModel |
| |
| let SchedModel = GFX11SpeedModel in { |
| |
| def : HWWriteRes<Write32Bit, [HWVALU, HWRC], 5>; |
| def : HWWriteRes<WriteFloatCvt, [HWVALU, HWRC], 5>; |
| def : HWWriteRes<Write64Bit, [HWVALU, HWRC], 6>; |
| def : HWWriteRes<WriteTrans32, [HWVALU, HWRC], 10>; |
| def : HWWriteRes<WriteQuarterRate32, [HWVALU, HWRC], 8>; |
| def : HWWriteRes<WriteFloatFMA, [HWVALU, HWRC], 5>; |
| def : HWWriteRes<WriteDouble, [HWVALU, HWRC], 38>; |
| def : HWWriteRes<WriteDoubleAdd, [HWVALU, HWRC], 38>; |
| def : HWWriteRes<WriteDoubleCvt, [HWVALU, HWRC], 38>; |
| def : HWWriteRes<WriteIntMul, [HWVALU, HWRC], 8>; |
| def : HWWriteRes<WriteTrans64, [HWVALU, HWRC], 40>; |
| |
| def : HWWriteRes<WriteBranch, [HWBranch], 32>; |
| def : HWWriteRes<WriteExport, [HWExport, HWRC], 16>; |
| def : HWWriteRes<WriteLDS, [HWLGKM, HWRC], 20>; |
| def : HWWriteRes<WriteSALU, [HWSALU, HWRC], 2>; |
| def : HWWriteRes<WriteSMEM, [HWLGKM, HWRC], 20>; |
| def : HWWriteRes<WriteVMEM, [HWVMEM, HWRC], 320>; |
| def : HWWriteRes<WriteBarrier, [HWBranch], 2000>; |
| |
| def : InstRW<[WriteCopy], (instrs COPY)>; |
| |
| } // End SchedModel = GFX11SpeedModel |