| //===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SIMachineFunctionInfo.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIRegisterInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MIRParser/MIParser.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Function.h" |
| #include <cassert> |
| #include <optional> |
| #include <vector> |
| |
| #define MAX_LANES 64 |
| |
| using namespace llvm; |
| |
| const GCNTargetMachine &getTM(const GCNSubtarget *STI) { |
| const SITargetLowering *TLI = STI->getTargetLowering(); |
| return static_cast<const GCNTargetMachine &>(TLI->getTargetMachine()); |
| } |
| |
| SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F, |
| const GCNSubtarget *STI) |
| : AMDGPUMachineFunction(F, *STI), |
| Mode(F), |
| GWSResourcePSV(getTM(STI)), |
| PrivateSegmentBuffer(false), |
| DispatchPtr(false), |
| QueuePtr(false), |
| KernargSegmentPtr(false), |
| DispatchID(false), |
| FlatScratchInit(false), |
| WorkGroupIDX(false), |
| WorkGroupIDY(false), |
| WorkGroupIDZ(false), |
| WorkGroupInfo(false), |
| LDSKernelId(false), |
| PrivateSegmentWaveByteOffset(false), |
| WorkItemIDX(false), |
| WorkItemIDY(false), |
| WorkItemIDZ(false), |
| ImplicitBufferPtr(false), |
| ImplicitArgPtr(false), |
| GITPtrHigh(0xffffffff), |
| HighBitsOf32BitAddress(0) { |
| const GCNSubtarget &ST = *static_cast<const GCNSubtarget *>(STI); |
| FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F); |
| WavesPerEU = ST.getWavesPerEU(F); |
| |
| Occupancy = ST.computeOccupancy(F, getLDSSize()); |
| CallingConv::ID CC = F.getCallingConv(); |
| |
| // FIXME: Should have analysis or something rather than attribute to detect |
| // calls. |
| const bool HasCalls = F.hasFnAttribute("amdgpu-calls"); |
| |
| const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL || |
| CC == CallingConv::SPIR_KERNEL; |
| |
| if (IsKernel) { |
| if (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0) |
| KernargSegmentPtr = true; |
| WorkGroupIDX = true; |
| WorkItemIDX = true; |
| } else if (CC == CallingConv::AMDGPU_PS) { |
| PSInputAddr = AMDGPU::getInitialPSInputAddr(F); |
| } |
| |
| MayNeedAGPRs = ST.hasMAIInsts(); |
| |
| if (!isEntryFunction()) { |
| if (CC != CallingConv::AMDGPU_Gfx) |
| ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; |
| |
| // TODO: Pick a high register, and shift down, similar to a kernel. |
| FrameOffsetReg = AMDGPU::SGPR33; |
| StackPtrOffsetReg = AMDGPU::SGPR32; |
| |
| if (!ST.enableFlatScratch()) { |
| // Non-entry functions have no special inputs for now, other registers |
| // required for scratch access. |
| ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3; |
| |
| ArgInfo.PrivateSegmentBuffer = |
| ArgDescriptor::createRegister(ScratchRSrcReg); |
| } |
| |
| if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr")) |
| ImplicitArgPtr = true; |
| } else { |
| ImplicitArgPtr = false; |
| MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(), |
| MaxKernArgAlign); |
| |
| if (ST.hasGFX90AInsts() && |
| ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() && |
| !mayUseAGPRs(F)) |
| MayNeedAGPRs = false; // We will select all MAI with VGPR operands. |
| } |
| |
| bool isAmdHsaOrMesa = ST.isAmdHsaOrMesa(F); |
| if (isAmdHsaOrMesa && !ST.enableFlatScratch()) |
| PrivateSegmentBuffer = true; |
| else if (ST.isMesaGfxShader(F)) |
| ImplicitBufferPtr = true; |
| |
| if (!AMDGPU::isGraphics(CC)) { |
| if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x")) |
| WorkGroupIDX = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y")) |
| WorkGroupIDY = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z")) |
| WorkGroupIDZ = true; |
| |
| if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x")) |
| WorkItemIDX = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") && |
| ST.getMaxWorkitemID(F, 1) != 0) |
| WorkItemIDY = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") && |
| ST.getMaxWorkitemID(F, 2) != 0) |
| WorkItemIDZ = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr")) |
| DispatchPtr = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-queue-ptr")) |
| QueuePtr = true; |
| |
| if (!F.hasFnAttribute("amdgpu-no-dispatch-id")) |
| DispatchID = true; |
| |
| if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id")) |
| LDSKernelId = true; |
| } |
| |
| // FIXME: This attribute is a hack, we just need an analysis on the function |
| // to look for allocas. |
| bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects"); |
| |
| // TODO: This could be refined a lot. The attribute is a poor way of |
| // detecting calls or stack objects that may require it before argument |
| // lowering. |
| if (ST.hasFlatAddressSpace() && isEntryFunction() && |
| (isAmdHsaOrMesa || ST.enableFlatScratch()) && |
| (HasCalls || HasStackObjects || ST.enableFlatScratch()) && |
| !ST.flatScratchIsArchitected()) { |
| FlatScratchInit = true; |
| } |
| |
| if (isEntryFunction()) { |
| // X, XY, and XYZ are the only supported combinations, so make sure Y is |
| // enabled if Z is. |
| if (WorkItemIDZ) |
| WorkItemIDY = true; |
| |
| if (!ST.flatScratchIsArchitected()) { |
| PrivateSegmentWaveByteOffset = true; |
| |
| // HS and GS always have the scratch wave offset in SGPR5 on GFX9. |
| if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 && |
| (CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS)) |
| ArgInfo.PrivateSegmentWaveByteOffset = |
| ArgDescriptor::createRegister(AMDGPU::SGPR5); |
| } |
| } |
| |
| Attribute A = F.getFnAttribute("amdgpu-git-ptr-high"); |
| StringRef S = A.getValueAsString(); |
| if (!S.empty()) |
| S.consumeInteger(0, GITPtrHigh); |
| |
| A = F.getFnAttribute("amdgpu-32bit-address-high-bits"); |
| S = A.getValueAsString(); |
| if (!S.empty()) |
| S.consumeInteger(0, HighBitsOf32BitAddress); |
| |
| // On GFX908, in order to guarantee copying between AGPRs, we need a scratch |
| // VGPR available at all times. For now, reserve highest available VGPR. After |
| // RA, shift it to the lowest available unused VGPR if the one exist. |
| if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) { |
| VGPRForAGPRCopy = |
| AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1); |
| } |
| } |
| |
| MachineFunctionInfo *SIMachineFunctionInfo::clone( |
| BumpPtrAllocator &Allocator, MachineFunction &DestMF, |
| const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) |
| const { |
| return DestMF.cloneInfo<SIMachineFunctionInfo>(*this); |
| } |
| |
| void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) { |
| limitOccupancy(getMaxWavesPerEU()); |
| const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>(); |
| limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(), |
| MF.getFunction())); |
| } |
| |
| Register SIMachineFunctionInfo::addPrivateSegmentBuffer( |
| const SIRegisterInfo &TRI) { |
| ArgInfo.PrivateSegmentBuffer = |
| ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass)); |
| NumUserSGPRs += 4; |
| return ArgInfo.PrivateSegmentBuffer.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) { |
| ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); |
| NumUserSGPRs += 2; |
| return ArgInfo.DispatchPtr.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) { |
| ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); |
| NumUserSGPRs += 2; |
| return ArgInfo.QueuePtr.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) { |
| ArgInfo.KernargSegmentPtr |
| = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); |
| NumUserSGPRs += 2; |
| return ArgInfo.KernargSegmentPtr.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) { |
| ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); |
| NumUserSGPRs += 2; |
| return ArgInfo.DispatchID.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) { |
| ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); |
| NumUserSGPRs += 2; |
| return ArgInfo.FlatScratchInit.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) { |
| ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg( |
| getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass)); |
| NumUserSGPRs += 2; |
| return ArgInfo.ImplicitBufferPtr.getRegister(); |
| } |
| |
| Register SIMachineFunctionInfo::addLDSKernelId() { |
| ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR()); |
| NumUserSGPRs += 1; |
| return ArgInfo.LDSKernelId.getRegister(); |
| } |
| |
| void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR, |
| uint64_t Size, Align Alignment) { |
| // Skip if it is an entry function or the register is already added. |
| if (isEntryFunction() || WWMSpills.count(VGPR)) |
| return; |
| |
| WWMSpills.insert(std::make_pair( |
| VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment))); |
| } |
| |
| // Separate out the callee-saved and scratch registers. |
| void SIMachineFunctionInfo::splitWWMSpillRegisters( |
| MachineFunction &MF, |
| SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs, |
| SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const { |
| const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); |
| for (auto &Reg : WWMSpills) { |
| if (isCalleeSavedReg(CSRegs, Reg.first)) |
| CalleeSavedRegs.push_back(Reg); |
| else |
| ScratchRegs.push_back(Reg); |
| } |
| } |
| |
| bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs, |
| MCPhysReg Reg) const { |
| for (unsigned I = 0; CSRegs[I]; ++I) { |
| if (CSRegs[I] == Reg) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool SIMachineFunctionInfo::allocateVGPRForSGPRSpills(MachineFunction &MF, |
| int FI, |
| unsigned LaneIndex) { |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| Register LaneVGPR; |
| if (!LaneIndex) { |
| LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF); |
| if (LaneVGPR == AMDGPU::NoRegister) { |
| // We have no VGPRs left for spilling SGPRs. Reset because we will not |
| // partially spill the SGPR to VGPRs. |
| SGPRSpillToVGPRLanes.erase(FI); |
| return false; |
| } |
| |
| SpillVGPRs.push_back(LaneVGPR); |
| // Add this register as live-in to all blocks to avoid machine verifier |
| // complaining about use of an undefined physical register. |
| for (MachineBasicBlock &BB : MF) |
| BB.addLiveIn(LaneVGPR); |
| } else { |
| LaneVGPR = SpillVGPRs.back(); |
| } |
| |
| SGPRSpillToVGPRLanes[FI].push_back( |
| SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex)); |
| return true; |
| } |
| |
| bool SIMachineFunctionInfo::allocateVGPRForPrologEpilogSGPRSpills( |
| MachineFunction &MF, int FI, unsigned LaneIndex) { |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| Register LaneVGPR; |
| if (!LaneIndex) { |
| LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF); |
| if (LaneVGPR == AMDGPU::NoRegister) { |
| // We have no VGPRs left for spilling SGPRs. Reset because we will not |
| // partially spill the SGPR to VGPRs. |
| PrologEpilogSGPRSpillToVGPRLanes.erase(FI); |
| return false; |
| } |
| |
| allocateWWMSpill(MF, LaneVGPR); |
| } else { |
| LaneVGPR = WWMSpills.back().first; |
| } |
| |
| PrologEpilogSGPRSpillToVGPRLanes[FI].push_back( |
| SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex)); |
| return true; |
| } |
| |
| bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(MachineFunction &MF, |
| int FI, |
| bool IsPrologEpilog) { |
| std::vector<SIRegisterInfo::SpilledReg> &SpillLanes = |
| IsPrologEpilog ? PrologEpilogSGPRSpillToVGPRLanes[FI] |
| : SGPRSpillToVGPRLanes[FI]; |
| |
| // This has already been allocated. |
| if (!SpillLanes.empty()) |
| return true; |
| |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| unsigned WaveSize = ST.getWavefrontSize(); |
| |
| unsigned Size = FrameInfo.getObjectSize(FI); |
| unsigned NumLanes = Size / 4; |
| |
| if (NumLanes > WaveSize) |
| return false; |
| |
| assert(Size >= 4 && "invalid sgpr spill size"); |
| assert(ST.getRegisterInfo()->spillSGPRToVGPR() && |
| "not spilling SGPRs to VGPRs"); |
| |
| unsigned &NumSpillLanes = |
| IsPrologEpilog ? NumVGPRPrologEpilogSpillLanes : NumVGPRSpillLanes; |
| |
| for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) { |
| unsigned LaneIndex = (NumSpillLanes % WaveSize); |
| |
| bool Allocated = |
| IsPrologEpilog |
| ? allocateVGPRForPrologEpilogSGPRSpills(MF, FI, LaneIndex) |
| : allocateVGPRForSGPRSpills(MF, FI, LaneIndex); |
| if (!Allocated) { |
| NumSpillLanes -= I; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI. |
| /// Either AGPR is spilled to VGPR to vice versa. |
| /// Returns true if a \p FI can be eliminated completely. |
| bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF, |
| int FI, |
| bool isAGPRtoVGPR) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| |
| assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI)); |
| |
| auto &Spill = VGPRToAGPRSpills[FI]; |
| |
| // This has already been allocated. |
| if (!Spill.Lanes.empty()) |
| return Spill.FullyAllocated; |
| |
| unsigned Size = FrameInfo.getObjectSize(FI); |
| unsigned NumLanes = Size / 4; |
| Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister); |
| |
| const TargetRegisterClass &RC = |
| isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass; |
| auto Regs = RC.getRegisters(); |
| |
| auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR; |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| Spill.FullyAllocated = true; |
| |
| // FIXME: Move allocation logic out of MachineFunctionInfo and initialize |
| // once. |
| BitVector OtherUsedRegs; |
| OtherUsedRegs.resize(TRI->getNumRegs()); |
| |
| const uint32_t *CSRMask = |
| TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv()); |
| if (CSRMask) |
| OtherUsedRegs.setBitsInMask(CSRMask); |
| |
| // TODO: Should include register tuples, but doesn't matter with current |
| // usage. |
| for (MCPhysReg Reg : SpillAGPR) |
| OtherUsedRegs.set(Reg); |
| for (MCPhysReg Reg : SpillVGPR) |
| OtherUsedRegs.set(Reg); |
| |
| SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin(); |
| for (int I = NumLanes - 1; I >= 0; --I) { |
| NextSpillReg = std::find_if( |
| NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) { |
| return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) && |
| !OtherUsedRegs[Reg]; |
| }); |
| |
| if (NextSpillReg == Regs.end()) { // Registers exhausted |
| Spill.FullyAllocated = false; |
| break; |
| } |
| |
| OtherUsedRegs.set(*NextSpillReg); |
| SpillRegs.push_back(*NextSpillReg); |
| MRI.reserveReg(*NextSpillReg, TRI); |
| Spill.Lanes[I] = *NextSpillReg++; |
| } |
| |
| return Spill.FullyAllocated; |
| } |
| |
| bool SIMachineFunctionInfo::removeDeadFrameIndices( |
| MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) { |
| // Remove dead frame indices from function frame. And also make sure to remove |
| // the frame indices from `SGPRSpillToVGPRLanes` data structure, otherwise, it |
| // could result in an unexpected side effect and bug, in case of any |
| // re-mapping of freed frame indices by later pass(es) like "stack slot |
| // coloring". |
| for (auto &R : make_early_inc_range(SGPRSpillToVGPRLanes)) { |
| MFI.RemoveStackObject(R.first); |
| SGPRSpillToVGPRLanes.erase(R.first); |
| } |
| |
| bool HaveSGPRToMemory = false; |
| |
| if (ResetSGPRSpillStackIDs) { |
| // All other SGPRs must be allocated on the default stack, so reset the |
| // stack ID. |
| for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E; |
| ++I) { |
| if (!checkIndexInPrologEpilogSGPRSpills(I)) { |
| if (MFI.getStackID(I) == TargetStackID::SGPRSpill) { |
| MFI.setStackID(I, TargetStackID::Default); |
| HaveSGPRToMemory = true; |
| } |
| } |
| } |
| } |
| |
| for (auto &R : VGPRToAGPRSpills) { |
| if (R.second.IsDead) |
| MFI.RemoveStackObject(R.first); |
| } |
| |
| return HaveSGPRToMemory; |
| } |
| |
| int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI, |
| const SIRegisterInfo &TRI) { |
| if (ScavengeFI) |
| return *ScavengeFI; |
| if (isEntryFunction()) { |
| ScavengeFI = MFI.CreateFixedObject( |
| TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false); |
| } else { |
| ScavengeFI = MFI.CreateStackObject( |
| TRI.getSpillSize(AMDGPU::SGPR_32RegClass), |
| TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false); |
| } |
| return *ScavengeFI; |
| } |
| |
| MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const { |
| assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs"); |
| return AMDGPU::SGPR0 + NumUserSGPRs; |
| } |
| |
| MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const { |
| return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs; |
| } |
| |
| Register |
| SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const { |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| if (!ST.isAmdPalOS()) |
| return Register(); |
| Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in |
| if (ST.hasMergedShaders()) { |
| switch (MF.getFunction().getCallingConv()) { |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_GS: |
| // Low GIT address is passed in s8 rather than s0 for an LS+HS or |
| // ES+GS merged shader on gfx9+. |
| GitPtrLo = AMDGPU::SGPR8; |
| return GitPtrLo; |
| default: |
| return GitPtrLo; |
| } |
| } |
| return GitPtrLo; |
| } |
| |
| static yaml::StringValue regToString(Register Reg, |
| const TargetRegisterInfo &TRI) { |
| yaml::StringValue Dest; |
| { |
| raw_string_ostream OS(Dest.Value); |
| OS << printReg(Reg, &TRI); |
| } |
| return Dest; |
| } |
| |
| static std::optional<yaml::SIArgumentInfo> |
| convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo, |
| const TargetRegisterInfo &TRI) { |
| yaml::SIArgumentInfo AI; |
| |
| auto convertArg = [&](std::optional<yaml::SIArgument> &A, |
| const ArgDescriptor &Arg) { |
| if (!Arg) |
| return false; |
| |
| // Create a register or stack argument. |
| yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister()); |
| if (Arg.isRegister()) { |
| raw_string_ostream OS(SA.RegisterName.Value); |
| OS << printReg(Arg.getRegister(), &TRI); |
| } else |
| SA.StackOffset = Arg.getStackOffset(); |
| // Check and update the optional mask. |
| if (Arg.isMasked()) |
| SA.Mask = Arg.getMask(); |
| |
| A = SA; |
| return true; |
| }; |
| |
| bool Any = false; |
| Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer); |
| Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr); |
| Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr); |
| Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr); |
| Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID); |
| Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit); |
| Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId); |
| Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize); |
| Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX); |
| Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY); |
| Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ); |
| Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo); |
| Any |= convertArg(AI.PrivateSegmentWaveByteOffset, |
| ArgInfo.PrivateSegmentWaveByteOffset); |
| Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr); |
| Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr); |
| Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX); |
| Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY); |
| Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ); |
| |
| if (Any) |
| return AI; |
| |
| return std::nullopt; |
| } |
| |
| yaml::SIMachineFunctionInfo::SIMachineFunctionInfo( |
| const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI, |
| const llvm::MachineFunction &MF) |
| : ExplicitKernArgSize(MFI.getExplicitKernArgSize()), |
| MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()), |
| GDSSize(MFI.getGDSSize()), |
| DynLDSAlign(MFI.getDynLDSAlign()), IsEntryFunction(MFI.isEntryFunction()), |
| NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()), |
| MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()), |
| HasSpilledSGPRs(MFI.hasSpilledSGPRs()), |
| HasSpilledVGPRs(MFI.hasSpilledVGPRs()), |
| HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()), |
| Occupancy(MFI.getOccupancy()), |
| ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)), |
| FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)), |
| StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)), |
| BytesInStackArgArea(MFI.getBytesInStackArgArea()), |
| ReturnsVoid(MFI.returnsVoid()), |
| ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)), Mode(MFI.getMode()) { |
| for (Register Reg : MFI.getWWMReservedRegs()) |
| WWMReservedRegs.push_back(regToString(Reg, TRI)); |
| |
| if (MFI.getVGPRForAGPRCopy()) |
| VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI); |
| auto SFI = MFI.getOptionalScavengeFI(); |
| if (SFI) |
| ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo()); |
| } |
| |
| void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) { |
| MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this); |
| } |
| |
| bool SIMachineFunctionInfo::initializeBaseYamlFields( |
| const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF, |
| PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) { |
| ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize; |
| MaxKernArgAlign = YamlMFI.MaxKernArgAlign; |
| LDSSize = YamlMFI.LDSSize; |
| GDSSize = YamlMFI.GDSSize; |
| DynLDSAlign = YamlMFI.DynLDSAlign; |
| HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress; |
| Occupancy = YamlMFI.Occupancy; |
| IsEntryFunction = YamlMFI.IsEntryFunction; |
| NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath; |
| MemoryBound = YamlMFI.MemoryBound; |
| WaveLimiter = YamlMFI.WaveLimiter; |
| HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs; |
| HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs; |
| BytesInStackArgArea = YamlMFI.BytesInStackArgArea; |
| ReturnsVoid = YamlMFI.ReturnsVoid; |
| |
| if (YamlMFI.ScavengeFI) { |
| auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo()); |
| if (!FIOrErr) { |
| // Create a diagnostic for a the frame index. |
| const MemoryBuffer &Buffer = |
| *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); |
| |
| Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1, |
| SourceMgr::DK_Error, toString(FIOrErr.takeError()), |
| "", std::nullopt, std::nullopt); |
| SourceRange = YamlMFI.ScavengeFI->SourceRange; |
| return true; |
| } |
| ScavengeFI = *FIOrErr; |
| } else { |
| ScavengeFI = std::nullopt; |
| } |
| return false; |
| } |
| |
| bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const { |
| for (const BasicBlock &BB : F) { |
| for (const Instruction &I : BB) { |
| const auto *CB = dyn_cast<CallBase>(&I); |
| if (!CB) |
| continue; |
| |
| if (CB->isInlineAsm()) { |
| const InlineAsm *IA = dyn_cast<InlineAsm>(CB->getCalledOperand()); |
| for (const auto &CI : IA->ParseConstraints()) { |
| for (StringRef Code : CI.Codes) { |
| Code.consume_front("{"); |
| if (Code.startswith("a")) |
| return true; |
| } |
| } |
| continue; |
| } |
| |
| const Function *Callee = |
| dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts()); |
| if (!Callee) |
| return true; |
| |
| if (Callee->getIntrinsicID() == Intrinsic::not_intrinsic) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool SIMachineFunctionInfo::usesAGPRs(const MachineFunction &MF) const { |
| if (UsesAGPRs) |
| return *UsesAGPRs; |
| |
| if (!mayNeedAGPRs()) { |
| UsesAGPRs = false; |
| return false; |
| } |
| |
| if (!AMDGPU::isEntryFunctionCC(MF.getFunction().getCallingConv()) || |
| MF.getFrameInfo().hasCalls()) { |
| UsesAGPRs = true; |
| return true; |
| } |
| |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| const Register Reg = Register::index2VirtReg(I); |
| const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); |
| if (RC && SIRegisterInfo::isAGPRClass(RC)) { |
| UsesAGPRs = true; |
| return true; |
| } else if (!RC && !MRI.use_empty(Reg) && MRI.getType(Reg).isValid()) { |
| // Defer caching UsesAGPRs, function might not yet been regbank selected. |
| return true; |
| } |
| } |
| |
| for (MCRegister Reg : AMDGPU::AGPR_32RegClass) { |
| if (MRI.isPhysRegUsed(Reg)) { |
| UsesAGPRs = true; |
| return true; |
| } |
| } |
| |
| UsesAGPRs = false; |
| return false; |
| } |