| //==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the machine model for the ARM Cortex-A55 processors. Note |
| // that this schedule is currently used as the default for -mcpu=generic. As a |
| // result, some of the modelling decision made do not precisely model the |
| // Cortex-A55, instead aiming to be a good compromise between different cpus. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // ===---------------------------------------------------------------------===// |
| // The following definitions describe the per-operand machine model. |
| // This works with MachineScheduler. See MCSchedModel.h for details. |
| |
| // Cortex-A55 machine model for scheduling and other instruction cost heuristics. |
| def CortexA55Model : SchedMachineModel { |
| let MicroOpBufferSize = 0; // The Cortex-A55 is an in-order processor |
| let IssueWidth = 2; // It dual-issues under most circumstances |
| let LoadLatency = 4; // Cycles for loads to access the cache. The |
| // optimisation guide shows that most loads have |
| // a latency of 3, but some have a latency of 4 |
| // or 5. Setting it 4 looked to be good trade-off. |
| let MispredictPenalty = 8; // A branch direction mispredict. |
| let PostRAScheduler = 1; // Enable PostRA scheduler pass. |
| let CompleteModel = 0; // Covers instructions applicable to Cortex-A55. |
| |
| list<Predicate> UnsupportedFeatures = [HasSVE, HasMTE]; |
| |
| // FIXME: Remove when all errors have been fixed. |
| let FullInstRWOverlapCheck = 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Define each kind of processor resource and number available. |
| |
| // Modeling each pipeline as a ProcResource using the BufferSize = 0 since the |
| // Cortex-A55 is in-order. |
| |
| def CortexA55UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU |
| def CortexA55UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide |
| def CortexA55UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined |
| def CortexA55UnitLd : ProcResource<1> { let BufferSize = 0; } // Load pipe |
| def CortexA55UnitSt : ProcResource<1> { let BufferSize = 0; } // Store pipe |
| def CortexA55UnitB : ProcResource<1> { let BufferSize = 0; } // Branch |
| |
| // The FP DIV/SQRT instructions execute totally differently from the FP ALU |
| // instructions, which can mostly be dual-issued; that's why for now we model |
| // them with 2 resources. |
| def CortexA55UnitFPALU : ProcResource<2> { let BufferSize = 0; } // FP ALU |
| def CortexA55UnitFPMAC : ProcResource<2> { let BufferSize = 0; } // FP MAC |
| def CortexA55UnitFPDIV : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 |
| |
| //===----------------------------------------------------------------------===// |
| // Subtarget-specific SchedWrite types |
| |
| let SchedModel = CortexA55Model in { |
| |
| // These latencies are modeled without taking into account forwarding paths |
| // (the software optimisation guide lists latencies taking into account |
| // typical forwarding paths). |
| def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; } // MOVN, MOVZ |
| def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; } // ALU |
| def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Shifted-Reg |
| def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Extended-Reg |
| def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; } // EXTR from a reg pair |
| def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; } // Shift/Scale |
| |
| // MAC |
| def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; } // 32-bit Multiply |
| def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; } // 64-bit Multiply |
| |
| // Div |
| def : WriteRes<WriteID32, [CortexA55UnitDiv]> { |
| let Latency = 8; let ResourceCycles = [8]; |
| } |
| def : WriteRes<WriteID64, [CortexA55UnitDiv]> { |
| let Latency = 8; let ResourceCycles = [8]; |
| } |
| |
| // Load |
| def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; } |
| def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; } |
| def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; } |
| |
| // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd |
| // below, choosing the median of 3 which makes the latency 6. |
| // An extra cycle is needed to get the swizzling right. |
| def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6; |
| let ResourceCycles = [3]; } |
| def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } |
| def CortexA55WriteVLD1SI : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; let SingleIssue = 1; } |
| def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; |
| let ResourceCycles = [2]; } |
| def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; |
| let ResourceCycles = [3]; } |
| def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; |
| let ResourceCycles = [4]; } |
| def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; |
| let ResourceCycles = [5]; } |
| def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; |
| let ResourceCycles = [6]; } |
| def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; |
| let ResourceCycles = [7]; } |
| def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; |
| let ResourceCycles = [8]; } |
| |
| def CortexA55WriteLDP1 : SchedWriteRes<[]> { let Latency = 4; } |
| def CortexA55WriteLDP2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; } |
| def CortexA55WriteLDP4 : SchedWriteRes<[CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd]> { let Latency = 6; } |
| |
| // Pre/Post Indexing - Performed as part of address generation |
| def : WriteRes<WriteAdr, []> { let Latency = 0; } |
| |
| // Store |
| let RetireOOO = 1 in { |
| def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 1; } |
| def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 1; } |
| def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 1; } |
| } |
| def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; } |
| |
| // Vector Store - Similar to vector loads, can take 1-3 cycles to issue. |
| def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5; |
| let ResourceCycles = [2];} |
| def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } |
| def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; |
| let ResourceCycles = [2]; } |
| def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; |
| let ResourceCycles = [3]; } |
| def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; |
| let ResourceCycles = [4]; } |
| |
| def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } |
| |
| // Branch |
| def : WriteRes<WriteBr, [CortexA55UnitB]>; |
| def : WriteRes<WriteBrReg, [CortexA55UnitB]>; |
| def : WriteRes<WriteSys, [CortexA55UnitB]>; |
| def : WriteRes<WriteBarrier, [CortexA55UnitB]>; |
| def : WriteRes<WriteHint, [CortexA55UnitB]>; |
| |
| // FP ALU |
| // As WriteF result is produced in F5 and it can be mostly forwarded |
| // to consumer at F1, the effectively latency is set as 4. |
| def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; } |
| def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; } |
| def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; } |
| def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; } |
| def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; } |
| |
| // NEON |
| class CortexA55WriteVd<int n, ProcResourceKind res> : SchedWriteRes<[res]> { |
| let Latency = n; |
| } |
| class CortexA55WriteVq<int n, ProcResourceKind res> : SchedWriteRes<[res, res]> { |
| let Latency = n; |
| let BeginGroup = 1; |
| } |
| def CortexA55WriteDotScVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; |
| def CortexA55WriteDotVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; |
| def CortexA55WriteDotVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; |
| def CortexA55WriteMlaLVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; |
| def CortexA55WriteMlaIxVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; |
| def CortexA55WriteMlaVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; |
| def CortexA55WriteMlaVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVd_3 : CortexA55WriteVd<3, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVq_3 : CortexA55WriteVq<3, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVd_2 : CortexA55WriteVd<2, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVq_2 : CortexA55WriteVq<2, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVd_1 : CortexA55WriteVd<1, CortexA55UnitFPALU>; |
| def CortexA55WriteAluVq_1 : CortexA55WriteVq<1, CortexA55UnitFPALU>; |
| def : SchedAlias<WriteVd, CortexA55WriteVd<4, CortexA55UnitFPALU>>; |
| def : SchedAlias<WriteVq, CortexA55WriteVq<4, CortexA55UnitFPALU>>; |
| |
| // FP ALU specific new schedwrite definitions |
| def CortexA55WriteFPALU_F2 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 2;} |
| def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} |
| def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} |
| def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} |
| |
| // FP Mul, Div, Sqrt. Div/Sqrt are not pipelined |
| def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; } |
| |
| let RetireOOO = 1 in { |
| def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22; |
| let ResourceCycles = [29]; } |
| def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } |
| def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; |
| let ResourceCycles = [5]; } |
| def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; |
| let ResourceCycles = [10]; } |
| def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; |
| let ResourceCycles = [19]; } |
| def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; |
| let ResourceCycles = [5]; } |
| def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; |
| let ResourceCycles = [9]; } |
| def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; |
| let ResourceCycles = [19]; } |
| } |
| //===----------------------------------------------------------------------===// |
| // Subtarget-specific SchedRead types. |
| |
| def : ReadAdvance<ReadVLD, 0>; |
| def : ReadAdvance<ReadExtrHi, 1>; |
| def : ReadAdvance<ReadAdrBase, 1>; |
| def : ReadAdvance<ReadST, 1>; |
| |
| // ALU - ALU input operands are generally needed in EX1. An operand produced in |
| // in say EX2 can be forwarded for consumption to ALU in EX1, thereby |
| // allowing back-to-back ALU operations such as add. If an operand requires |
| // a shift, it will, however, be required in ISS stage. |
| def : ReadAdvance<ReadI, 2, [WriteImm,WriteI, |
| WriteISReg, WriteIEReg,WriteIS, |
| WriteID32,WriteID64, |
| WriteIM32,WriteIM64]>; |
| // Shifted operand |
| def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, |
| WriteISReg, WriteIEReg,WriteIS, |
| WriteID32,WriteID64, |
| WriteIM32,WriteIM64]>; |
| def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, |
| WriteISReg, WriteIEReg,WriteIS, |
| WriteID32,WriteID64, |
| WriteIM32,WriteIM64]>; |
| def CortexA55ReadISReg : SchedReadVariant<[ |
| SchedVar<RegShiftedPred, [CortexA55ReadShifted]>, |
| SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; |
| def : SchedAlias<ReadISReg, CortexA55ReadISReg>; |
| |
| def CortexA55ReadIEReg : SchedReadVariant<[ |
| SchedVar<RegExtendedPred, [CortexA55ReadShifted]>, |
| SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; |
| def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>; |
| |
| // MUL |
| def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI, |
| WriteISReg, WriteIEReg,WriteIS, |
| WriteID32,WriteID64, |
| WriteIM32,WriteIM64]>; |
| def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI, |
| WriteISReg, WriteIEReg,WriteIS, |
| WriteID32,WriteID64, |
| WriteIM32,WriteIM64]>; |
| |
| // Div |
| def : ReadAdvance<ReadID, 1, [WriteImm,WriteI, |
| WriteISReg, WriteIEReg,WriteIS, |
| WriteID32,WriteID64, |
| WriteIM32,WriteIM64]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Subtarget-specific InstRWs. |
| |
| //--- |
| // Miscellaneous |
| //--- |
| def : InstRW<[CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?Wi")>; |
| def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPSi")>; |
| def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)i")>; |
| def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQi")>; |
| def : InstRW<[WriteAdr, CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?W(pre|post)")>; |
| def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPS(pre|post)")>; |
| def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)(pre|post)")>; |
| def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQ(pre|post)")>; |
| def : InstRW<[WriteI], (instrs COPY)>; |
| //--- |
| // Vector Loads - 64-bit per cycle |
| //--- |
| // 1-element structures |
| def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>; // single element |
| def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate |
| def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures |
| def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; |
| def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; |
| def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; |
| |
| def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; |
| |
| // 2-element structures |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; |
| def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; |
| |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>; |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; |
| def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; |
| |
| // 3-element structures |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; |
| def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; |
| |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; |
| |
| // 4-element structures |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>; // load single 4-el structure to one lane of 4 regs. |
| def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. |
| def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>; // load multiple 4-el structures to 4 regs. |
| def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; |
| |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; |
| def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; |
| |
| //--- |
| // Vector Stores |
| //--- |
| def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; |
| def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| |
| def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; |
| def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; |
| def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>; |
| def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; |
| |
| def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; |
| def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; |
| |
| def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; |
| def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; |
| def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>; |
| def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; |
| |
| //--- |
| // Floating Point Conversions, MAC, DIV, SQRT |
| //--- |
| def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^DUP(v2i64|v4i32|v8i16|v16i8)")>; |
| def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^XTN")>; |
| def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; |
| def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; |
| |
| def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; |
| def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; |
| def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; |
| |
| def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; |
| def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; |
| def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; |
| def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; |
| def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; |
| def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; |
| def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; |
| def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; |
| def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; |
| def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; |
| def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; |
| |
| // 4.15. Advanced SIMD integer instructions |
| // ASIMD absolute diff |
| def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]ABDv(2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDv(16i8|4i32|8i16)")>; |
| // ASIMD absolute diff accum |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ABAL?v")>; |
| // ASIMD absolute diff long |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDLv")>; |
| // ASIMD arith #1 |
| def : InstRW<[CortexA55WriteAluVd_2], (instregex "(ADD|SUB|NEG)v(1i64|2i32|4i16|8i8)", |
| "[SU]R?HADDv(2i32|4i16|8i8)", "[SU]HSUBv(2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_2], (instregex "(ADD|SUB|NEG)v(2i64|4i32|8i16|16i8)", |
| "[SU]R?HADDv(8i16|4i32|16i8)", "[SU]HSUBv(8i16|4i32|16i8)")>; |
| // ASIMD arith #2 |
| def : InstRW<[CortexA55WriteAluVd_3], (instregex "ABSv(1i64|2i32|4i16|8i8)$", |
| "[SU]ADDLPv(2i32_v1i64|4i16_v2i32|8i8_v4i16)$", |
| "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(1i16|1i32|1i64|1i8|2i32|4i16|8i8)$", |
| "ADDPv(2i32|4i16|8i8)$")>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "ABSv(2i64|4i32|8i16|16i8)$", |
| "[SU]ADDLPv(16i8_v8i16|4i32_v2i64|8i16_v4i32)$", |
| "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(16i8|2i64|4i32|8i16)$", |
| "ADDPv(16i8|2i64|4i32|8i16)$")>; |
| // ASIMD arith #3 |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "SADDLv", "UADDLv", "SADDWv", |
| "UADDWv", "SSUBLv", "USUBLv", "SSUBWv", "USUBWv", "ADDHNv", "SUBHNv")>; |
| // ASIMD arith #5 |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "RADDHNv", "RSUBHNv")>; |
| // ASIMD arith, reduce |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "ADDVv", "SADDLVv", "UADDLVv")>; |
| // ASIMD compare #1 |
| def : InstRW<[CortexA55WriteAluVd_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(1i64|2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(2i64|4i32|8i16|16i8)")>; |
| // ASIMD compare #2 |
| def : InstRW<[CortexA55WriteAluVd_3], (instregex "CMTSTv(1i64|2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "CMTSTv(2i64|4i32|8i16|16i8)")>; |
| // ASIMD logical $1 |
| def : InstRW<[CortexA55WriteAluVd_1], (instregex "(AND|EOR|NOT|ORN)v8i8", |
| "(ORR|BIC)v(2i32|4i16|8i8)$", "MVNIv(2i|2s|4i16)")>; |
| def : InstRW<[CortexA55WriteAluVq_1], (instregex "(AND|EOR|NOT|ORN)v16i8", |
| "(ORR|BIC)v(16i8|4i32|8i16)$", "MVNIv(4i32|4s|8i16)")>; |
| // ASIMD max/min, basic |
| def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU](MIN|MAX)P?v(2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU](MIN|MAX)P?v(16i8|4i132|8i16)")>; |
| // SIMD max/min, reduce |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU](MAX|MIN)Vv")>; |
| // ASIMD multiply, by element |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "MULv(2i32|4i16|4i32|8i16)_indexed$", |
| "SQR?DMULHv(1i16|1i32|2i32|4i16|4i32|8i16)_indexed$")>; |
| // ASIMD multiply |
| def : InstRW<[CortexA55WriteAluVd_3], (instrs PMULv8i8)>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULv16i8)>; |
| // ASIMD multiply accumulate |
| def : InstRW<[CortexA55WriteMlaVd_4], (instregex "ML[AS]v(2i32|4i16|8i8)$")>; |
| def : InstRW<[CortexA55WriteMlaVq_4], (instregex "ML[AS]v(16i8|4i32|8i16)$")>; |
| def : InstRW<[CortexA55WriteMlaIxVq_4], (instregex "ML[AS]v(2i32|4i16|4i32|8i16)_indexed$")>; |
| // ASIMD multiply accumulate half |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQRDML[AS]H[vi]")>; |
| // ASIMD multiply accumulate long |
| def : InstRW<[CortexA55WriteMlaLVq_4], (instregex "[SU]ML[AS]Lv")>; |
| // ASIMD multiply accumulate long #2 |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQDML[AS]L[iv]")>; |
| // ASIMD dot product |
| def : InstRW<[CortexA55WriteDotVd_4], (instregex "[SU]DOTv8i8")>; |
| def : InstRW<[CortexA55WriteDotVq_4], (instregex "[SU]DOTv16i8")>; |
| // ASIMD dot product, by scalar |
| def : InstRW<[CortexA55WriteDotScVq_4], (instregex "[SU]DOTlanev")>; |
| // ASIMD multiply long |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]MULLv", "SQDMULL[iv]")>; |
| // ASIMD polynomial (8x8) multiply long |
| def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULLv8i8, PMULLv16i8)>; |
| // ASIMD pairwise add and accumulate |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ADALPv")>; |
| // ASIMD shift accumulate |
| def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]SRA(d|v2i32|v4i16|v8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]SRAv(16i8|2i64|4i32|8i16)")>; |
| // ASIMD shift accumulate #2 |
| def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]RSRA[vd]")>; |
| // ASIMD shift by immed |
| def : InstRW<[CortexA55WriteAluVd_2], (instregex "SHLd$", "SHLv", |
| "SLId$", "SRId$", "[SU]SHR[vd]", "SHRNv")>; |
| // ASIMD shift by immed |
| // SXTL and UXTL are aliases for SHLL |
| def : InstRW<[CortexA55WriteAluVq_2], (instregex "[US]?SHLLv")>; |
| // ASIMD shift by immed #2 |
| def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHR(d|v2i32|v4i16|v8i8)", |
| "RSHRNv(2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHRv(16i8|2i64|4i32|8i16)", |
| "RSHRNv(16i8|4i32|8i16)")>; |
| // ASIMD shift by register |
| def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU]SHLv(1i64|2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU]SHLv(2i64|4i32|8i16|16i8)")>; |
| // ASIMD shift by register #2 |
| def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHLv(1i64|2i32|4i16|8i8)")>; |
| def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHLv(2i64|4i32|8i16|16i8)")>; |
| |
| } |