blob: e2d10511cccd37e1b7073d774d3b08941dbad95c [file] [log] [blame]
//===-- AArch64BranchTargets.cpp -- Harden code using v8.5-A BTI extension -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts BTI instructions at the start of every function and basic
// block which could be indirectly called. The hardware will (when enabled)
// trap when an indirect branch or call instruction targets an instruction
// which is not a valid BTI instruction. This is intended to guard against
// control-flow hijacking attacks. Note that this does not do anything for RET
// instructions, as they can be more precisely protected by return address
// signing.
//
//===----------------------------------------------------------------------===//
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-branch-targets"
#define AARCH64_BRANCH_TARGETS_NAME "AArch64 Branch Targets"
namespace {
class AArch64BranchTargets : public MachineFunctionPass {
public:
static char ID;
AArch64BranchTargets() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return AARCH64_BRANCH_TARGETS_NAME; }
private:
void addBTI(MachineBasicBlock &MBB, bool CouldCall, bool CouldJump,
bool NeedsWinCFI);
};
} // end anonymous namespace
char AArch64BranchTargets::ID = 0;
INITIALIZE_PASS(AArch64BranchTargets, "aarch64-branch-targets",
AARCH64_BRANCH_TARGETS_NAME, false, false)
void AArch64BranchTargets::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
FunctionPass *llvm::createAArch64BranchTargetsPass() {
return new AArch64BranchTargets();
}
bool AArch64BranchTargets::runOnMachineFunction(MachineFunction &MF) {
if (!MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
return false;
LLVM_DEBUG(
dbgs() << "********** AArch64 Branch Targets **********\n"
<< "********** Function: " << MF.getName() << '\n');
// LLVM does not consider basic blocks which are the targets of jump tables
// to be address-taken (the address can't escape anywhere else), but they are
// used for indirect branches, so need BTI instructions.
SmallPtrSet<MachineBasicBlock *, 8> JumpTableTargets;
if (auto *JTI = MF.getJumpTableInfo())
for (auto &JTE : JTI->getJumpTables())
for (auto *MBB : JTE.MBBs)
JumpTableTargets.insert(MBB);
bool MadeChange = false;
bool HasWinCFI = MF.hasWinCFI();
for (MachineBasicBlock &MBB : MF) {
bool CouldCall = false, CouldJump = false;
// Even in cases where a function has internal linkage and is only called
// directly in its translation unit, it can still be called indirectly if
// the linker decides to add a thunk to it for whatever reason (say, for
// example, if it is finally placed far from its call site and a BL is not
// long-range enough). PLT entries and tail-calls use BR, but when they are
// are in guarded pages should all use x16 or x17 to hold the called
// address, so we don't need to set CouldJump here. BR instructions in
// non-guarded pages (which might be non-BTI-aware code) are allowed to
// branch to a "BTI c" using any register.
if (&MBB == &*MF.begin())
CouldCall = true;
// If the block itself is address-taken, it could be indirectly branched
// to, but not called.
if (MBB.hasAddressTaken() || JumpTableTargets.count(&MBB))
CouldJump = true;
if (CouldCall || CouldJump) {
addBTI(MBB, CouldCall, CouldJump, HasWinCFI);
MadeChange = true;
}
}
return MadeChange;
}
void AArch64BranchTargets::addBTI(MachineBasicBlock &MBB, bool CouldCall,
bool CouldJump, bool HasWinCFI) {
LLVM_DEBUG(dbgs() << "Adding BTI " << (CouldJump ? "j" : "")
<< (CouldCall ? "c" : "") << " to " << MBB.getName()
<< "\n");
const AArch64InstrInfo *TII = static_cast<const AArch64InstrInfo *>(
MBB.getParent()->getSubtarget().getInstrInfo());
unsigned HintNum = 32;
if (CouldCall)
HintNum |= 2;
if (CouldJump)
HintNum |= 4;
assert(HintNum != 32 && "No target kinds!");
auto MBBI = MBB.begin();
// Skip the meta instructions, those will be removed anyway.
for (; MBBI != MBB.end() &&
(MBBI->isMetaInstruction() || MBBI->getOpcode() == AArch64::EMITBKEY);
++MBBI)
;
// SCTLR_EL1.BT[01] is set to 0 by default which means
// PACI[AB]SP are implicitly BTI C so no BTI C instruction is needed there.
if (MBBI != MBB.end() && HintNum == 34 &&
(MBBI->getOpcode() == AArch64::PACIASP ||
MBBI->getOpcode() == AArch64::PACIBSP))
return;
if (HasWinCFI && MBBI->getFlag(MachineInstr::FrameSetup)) {
BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
TII->get(AArch64::SEH_Nop));
}
BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
TII->get(AArch64::HINT))
.addImm(HintNum);
}