| //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the checking of insns inside a bundle according to the |
| // packet constraint rules of the Hexagon ISA. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/HexagonMCChecker.h" |
| #include "MCTargetDesc/HexagonBaseInfo.h" |
| #include "MCTargetDesc/HexagonMCInstrInfo.h" |
| #include "MCTargetDesc/HexagonMCShuffler.h" |
| #include "MCTargetDesc/HexagonMCTargetDesc.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include <cassert> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore, |
| cl::Hidden, cl::desc("Relax checks of new-value validity")); |
| |
| const HexagonMCChecker::PredSense |
| HexagonMCChecker::Unconditional(Hexagon::NoRegister, false); |
| |
| void HexagonMCChecker::init() { |
| // Initialize read-only registers set. |
| ReadOnly.insert(Hexagon::PC); |
| ReadOnly.insert(Hexagon::C9_8); |
| |
| // Figure out the loop-registers definitions. |
| if (HexagonMCInstrInfo::isInnerLoop(MCB)) { |
| Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0? |
| Defs[Hexagon::LC0].insert(Unconditional); |
| } |
| if (HexagonMCInstrInfo::isOuterLoop(MCB)) { |
| Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0? |
| Defs[Hexagon::LC1].insert(Unconditional); |
| } |
| |
| if (HexagonMCInstrInfo::isBundle(MCB)) |
| // Unfurl a bundle. |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| MCInst const &Inst = *I.getInst(); |
| if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) { |
| init(*Inst.getOperand(0).getInst()); |
| init(*Inst.getOperand(1).getInst()); |
| } else |
| init(Inst); |
| } |
| else |
| init(MCB); |
| } |
| |
| void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg, |
| bool &isTrue) { |
| if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) { |
| // Note an used predicate register. |
| PredReg = R; |
| isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI); |
| |
| // Note use of new predicate register. |
| if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| NewPreds.insert(PredReg); |
| } else |
| // Note register use. Super-registers are not tracked directly, |
| // but their components. |
| for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); |
| SRI.isValid(); ++SRI) |
| if (!MCSubRegIterator(*SRI, &RI).isValid()) |
| // Skip super-registers used indirectly. |
| Uses.insert(*SRI); |
| } |
| |
| void HexagonMCChecker::init(MCInst const &MCI) { |
| const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI); |
| unsigned PredReg = Hexagon::NoRegister; |
| bool isTrue = false; |
| |
| // Get used registers. |
| for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) |
| if (MCI.getOperand(i).isReg()) |
| initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue); |
| for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i) |
| initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue); |
| |
| // Get implicit register definitions. |
| if (const MCPhysReg *ImpDef = MCID.getImplicitDefs()) |
| for (; *ImpDef; ++ImpDef) { |
| unsigned R = *ImpDef; |
| |
| if (Hexagon::R31 != R && MCID.isCall()) |
| // Any register other than the LR and the PC are actually volatile ones |
| // as defined by the ABI, not modified implicitly by the call insn. |
| continue; |
| if (Hexagon::PC == R) |
| // Branches are the only insns that can change the PC, |
| // otherwise a read-only register. |
| continue; |
| |
| if (Hexagon::USR_OVF == R) |
| // Many insns change the USR implicitly, but only one or another flag. |
| // The instruction table models the USR.OVF flag, which can be |
| // implicitly modified more than once, but cannot be modified in the |
| // same packet with an instruction that modifies is explicitly. Deal |
| // with such situations individually. |
| SoftDefs.insert(R); |
| else if (isPredicateRegister(R) && |
| HexagonMCInstrInfo::isPredicateLate(MCII, MCI)) |
| // Include implicit late predicates. |
| LatePreds.insert(R); |
| else |
| Defs[R].insert(PredSense(PredReg, isTrue)); |
| } |
| |
| // Figure out explicit register definitions. |
| for (unsigned i = 0; i < MCID.getNumDefs(); ++i) { |
| unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister; |
| // USR has subregisters (while C8 does not for technical reasons), so |
| // reset R to USR, since we know how to handle multiple defs of USR, |
| // taking into account its subregisters. |
| if (R == Hexagon::C8) |
| R = Hexagon::USR; |
| |
| // Note register definitions, direct ones as well as indirect side-effects. |
| // Super-registers are not tracked directly, but their components. |
| for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); |
| SRI.isValid(); ++SRI) { |
| if (MCSubRegIterator(*SRI, &RI).isValid()) |
| // Skip super-registers defined indirectly. |
| continue; |
| |
| if (R == *SRI) { |
| if (S == R) |
| // Avoid scoring the defined register multiple times. |
| continue; |
| else |
| // Note that the defined register has already been scored. |
| S = R; |
| } |
| |
| if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI) |
| // P3:0 is a special case, since multiple predicate register definitions |
| // in a packet is allowed as the equivalent of their logical "and". |
| // Only an explicit definition of P3:0 is noted as such; if a |
| // side-effect, then note as a soft definition. |
| SoftDefs.insert(*SRI); |
| else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && |
| isPredicateRegister(*SRI)) |
| // Some insns produce predicates too late to be used in the same packet. |
| LatePreds.insert(*SRI); |
| else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) == |
| HexagonII::TypeCVI_VM_TMP_LD) |
| // Temporary loads should be used in the same packet, but don't commit |
| // results, so it should be disregarded if another insn changes the same |
| // register. |
| // TODO: relies on the impossibility of a current and a temporary loads |
| // in the same packet. |
| TmpDefs.insert(*SRI); |
| else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) |
| // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and |
| // destination registers with this instruction. same for vdeal(Vx,Vy,Rx) |
| Uses.insert(*SRI); |
| else |
| Defs[*SRI].insert(PredSense(PredReg, isTrue)); |
| } |
| } |
| |
| // Figure out definitions of new predicate registers. |
| if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) |
| for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) |
| if (MCI.getOperand(i).isReg()) { |
| unsigned P = MCI.getOperand(i).getReg(); |
| |
| if (isPredicateRegister(P)) |
| NewPreds.insert(P); |
| } |
| } |
| |
| HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII, |
| MCSubtargetInfo const &STI, MCInst &mcb, |
| MCRegisterInfo const &ri, bool ReportErrors) |
| : Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI), |
| ReportErrors(ReportErrors) { |
| init(); |
| } |
| |
| HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other, |
| MCSubtargetInfo const &STI, |
| bool CopyReportErrors) |
| : Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII), |
| STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false) {} |
| |
| bool HexagonMCChecker::check(bool FullCheck) { |
| bool chkP = checkPredicates(); |
| bool chkNV = checkNewValues(); |
| bool chkR = checkRegisters(); |
| bool chkRRO = checkRegistersReadOnly(); |
| checkRegisterCurDefs(); |
| bool chkS = checkSolo(); |
| bool chkSh = true; |
| if (FullCheck) |
| chkSh = checkShuffle(); |
| bool chkSl = true; |
| if (FullCheck) |
| chkSl = checkSlots(); |
| bool chkAXOK = checkAXOK(); |
| bool chkCofMax1 = checkCOFMax1(); |
| bool chkHWLoop = checkHWLoop(); |
| bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl && |
| chkAXOK && chkCofMax1 && chkHWLoop; |
| |
| return chk; |
| } |
| |
| static bool isDuplexAGroup(unsigned Opcode) { |
| switch (Opcode) { |
| case Hexagon::SA1_addi: |
| case Hexagon::SA1_addrx: |
| case Hexagon::SA1_addsp: |
| case Hexagon::SA1_and1: |
| case Hexagon::SA1_clrf: |
| case Hexagon::SA1_clrfnew: |
| case Hexagon::SA1_clrt: |
| case Hexagon::SA1_clrtnew: |
| case Hexagon::SA1_cmpeqi: |
| case Hexagon::SA1_combine0i: |
| case Hexagon::SA1_combine1i: |
| case Hexagon::SA1_combine2i: |
| case Hexagon::SA1_combine3i: |
| case Hexagon::SA1_combinerz: |
| case Hexagon::SA1_combinezr: |
| case Hexagon::SA1_dec: |
| case Hexagon::SA1_inc: |
| case Hexagon::SA1_seti: |
| case Hexagon::SA1_setin1: |
| case Hexagon::SA1_sxtb: |
| case Hexagon::SA1_sxth: |
| case Hexagon::SA1_tfr: |
| case Hexagon::SA1_zxtb: |
| case Hexagon::SA1_zxth: |
| return true; |
| break; |
| default: |
| return false; |
| } |
| } |
| |
| static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) { |
| unsigned Result = 0; |
| unsigned Type = HexagonMCInstrInfo::getType(MCII, ID); |
| if (Type == HexagonII::TypeDUPLEX) { |
| unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode(); |
| unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode(); |
| Result += !isDuplexAGroup(subInst0Opcode); |
| Result += !isDuplexAGroup(subInst1Opcode); |
| } else |
| Result += |
| Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op && |
| Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op && |
| Type != HexagonII::TypeS_3op && |
| (Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID)); |
| return Result != 0; |
| } |
| |
| bool HexagonMCChecker::checkAXOK() { |
| MCInst const *HasSoloAXInst = nullptr; |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| if (HexagonMCInstrInfo::isSoloAX(MCII, I)) { |
| HasSoloAXInst = &I; |
| } |
| } |
| if (!HasSoloAXInst) |
| return true; |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) { |
| reportError( |
| HasSoloAXInst->getLoc(), |
| Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE " |
| "instructions")); |
| reportError(I.getLoc(), |
| Twine("Not an ALU or non-FPU XTYPE instruction")); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void HexagonMCChecker::reportBranchErrors() { |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I); |
| if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) |
| reportNote(I.getLoc(), "Branching instruction"); |
| } |
| } |
| |
| bool HexagonMCChecker::checkHWLoop() { |
| if (!HexagonMCInstrInfo::isInnerLoop(MCB) && |
| !HexagonMCInstrInfo::isOuterLoop(MCB)) |
| return true; |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I); |
| if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) { |
| reportError(MCB.getLoc(), |
| "Branches cannot be in a packet with hardware loops"); |
| reportBranchErrors(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool HexagonMCChecker::checkCOFMax1() { |
| SmallVector<MCInst const *, 2> BranchLocations; |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I); |
| if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) |
| BranchLocations.push_back(&I); |
| } |
| for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) { |
| MCInst const &I = *BranchLocations[J]; |
| if (HexagonMCInstrInfo::isCofMax1(MCII, I)) { |
| bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, I); |
| bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, I); |
| if (N > 1 && !Relax1 && !Relax2) { |
| reportError(I.getLoc(), |
| "Instruction may not be in a packet with other branches"); |
| reportBranchErrors(); |
| return false; |
| } |
| if (N > 1 && J == 0 && !Relax1) { |
| reportError(I.getLoc(), |
| "Instruction may not be the first branch in packet"); |
| reportBranchErrors(); |
| return false; |
| } |
| if (N > 1 && J == 1 && !Relax2) { |
| reportError(I.getLoc(), |
| "Instruction may not be the second branch in packet"); |
| reportBranchErrors(); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool HexagonMCChecker::checkSlots() { |
| unsigned slotsUsed = 0; |
| for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| MCInst const &MCI = *HMI.getInst(); |
| if (HexagonMCInstrInfo::isImmext(MCI)) |
| continue; |
| if (HexagonMCInstrInfo::isDuplex(MCII, MCI)) |
| slotsUsed += 2; |
| else |
| ++slotsUsed; |
| } |
| |
| if (slotsUsed > HEXAGON_PACKET_SIZE) { |
| reportError("invalid instruction packet: out of slots"); |
| return false; |
| } |
| return true; |
| } |
| |
| // Check legal use of predicate registers. |
| bool HexagonMCChecker::checkPredicates() { |
| // Check for proper use of new predicate registers. |
| for (const auto &I : NewPreds) { |
| unsigned P = I; |
| |
| if (!Defs.count(P) || LatePreds.count(P)) { |
| // Error out if the new predicate register is not defined, |
| // or defined "late" |
| // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }"). |
| reportErrorNewValue(P); |
| return false; |
| } |
| } |
| |
| // Check for proper use of auto-anded of predicate registers. |
| for (const auto &I : LatePreds) { |
| unsigned P = I; |
| |
| if (LatePreds.count(P) > 1 || Defs.count(P)) { |
| // Error out if predicate register defined "late" multiple times or |
| // defined late and regularly defined |
| // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }". |
| reportErrorRegisters(P); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Check legal use of new values. |
| bool HexagonMCChecker::checkNewValues() { |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| if (!HexagonMCInstrInfo::isNewValue(MCII, I)) |
| continue; |
| auto Consumer = HexagonMCInstrInfo::predicateInfo(MCII, I); |
| bool Branch = HexagonMCInstrInfo::getDesc(MCII, I).isBranch(); |
| MCOperand const &Op = HexagonMCInstrInfo::getNewValueOperand(MCII, I); |
| assert(Op.isReg()); |
| auto Producer = registerProducer(Op.getReg(), Consumer); |
| if (std::get<0>(Producer) == nullptr) { |
| reportError(I.getLoc(), "New value register consumer has no producer"); |
| return false; |
| } |
| if (!RelaxNVChecks) { |
| // Checks that statically prove correct new value consumption |
| if (std::get<2>(Producer).isPredicated() && |
| (!Consumer.isPredicated() || |
| llvm::HexagonMCInstrInfo::getType(MCII, I) == HexagonII::TypeNCJ)) { |
| reportNote( |
| std::get<0>(Producer)->getLoc(), |
| "Register producer is predicated and consumer is unconditional"); |
| reportError(I.getLoc(), |
| "Instruction does not have a valid new register producer"); |
| return false; |
| } |
| if (std::get<2>(Producer).Register != Hexagon::NoRegister && |
| std::get<2>(Producer).Register != Consumer.Register) { |
| reportNote(std::get<0>(Producer)->getLoc(), |
| "Register producer does not use the same predicate " |
| "register as the consumer"); |
| reportError(I.getLoc(), |
| "Instruction does not have a valid new register producer"); |
| return false; |
| } |
| } |
| if (std::get<2>(Producer).Register == Consumer.Register && |
| Consumer.PredicatedTrue != std::get<2>(Producer).PredicatedTrue) { |
| reportNote( |
| std::get<0>(Producer)->getLoc(), |
| "Register producer has the opposite predicate sense as consumer"); |
| reportError(I.getLoc(), |
| "Instruction does not have a valid new register producer"); |
| return false; |
| } |
| MCInstrDesc const &Desc = |
| HexagonMCInstrInfo::getDesc(MCII, *std::get<0>(Producer)); |
| if (Desc.OpInfo[std::get<1>(Producer)].RegClass == |
| Hexagon::DoubleRegsRegClassID) { |
| reportNote(std::get<0>(Producer)->getLoc(), |
| "Double registers cannot be new-value producers"); |
| reportError(I.getLoc(), |
| "Instruction does not have a valid new register producer"); |
| return false; |
| } |
| if ((Desc.mayLoad() && std::get<1>(Producer) == 1) || |
| (Desc.mayStore() && std::get<1>(Producer) == 0)) { |
| unsigned Mode = |
| HexagonMCInstrInfo::getAddrMode(MCII, *std::get<0>(Producer)); |
| StringRef ModeError; |
| if (Mode == HexagonII::AbsoluteSet) |
| ModeError = "Absolute-set"; |
| if (Mode == HexagonII::PostInc) |
| ModeError = "Auto-increment"; |
| if (!ModeError.empty()) { |
| reportNote(std::get<0>(Producer)->getLoc(), |
| ModeError + " registers cannot be a new-value " |
| "producer"); |
| reportError(I.getLoc(), |
| "Instruction does not have a valid new register producer"); |
| return false; |
| } |
| } |
| if (Branch && HexagonMCInstrInfo::isFloat(MCII, *std::get<0>(Producer))) { |
| reportNote(std::get<0>(Producer)->getLoc(), |
| "FPU instructions cannot be new-value producers for jumps"); |
| reportError(I.getLoc(), |
| "Instruction does not have a valid new register producer"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool HexagonMCChecker::checkRegistersReadOnly() { |
| for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| MCInst const &Inst = *I.getInst(); |
| unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs(); |
| for (unsigned j = 0; j < Defs; ++j) { |
| MCOperand const &Operand = Inst.getOperand(j); |
| assert(Operand.isReg() && "Def is not a register"); |
| unsigned Register = Operand.getReg(); |
| if (ReadOnly.find(Register) != ReadOnly.end()) { |
| reportError(Inst.getLoc(), "Cannot write to read-only register `" + |
| Twine(RI.getName(Register)) + "'"); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool HexagonMCChecker::registerUsed(unsigned Register) { |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) |
| for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(), |
| n = I.getNumOperands(); |
| j < n; ++j) { |
| MCOperand const &Operand = I.getOperand(j); |
| if (Operand.isReg() && Operand.getReg() == Register) |
| return true; |
| } |
| return false; |
| } |
| |
| std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo> |
| HexagonMCChecker::registerProducer( |
| unsigned Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) { |
| std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo> |
| WrongSense; |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I); |
| auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, I); |
| for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J) |
| for (auto K = MCRegAliasIterator(I.getOperand(J).getReg(), &RI, true); |
| K.isValid(); ++K) |
| if (*K == Register) { |
| if (RelaxNVChecks || |
| (ProducerPredicate.Register == ConsumerPredicate.Register && |
| (ProducerPredicate.Register == Hexagon::NoRegister || |
| ProducerPredicate.PredicatedTrue == |
| ConsumerPredicate.PredicatedTrue))) |
| return std::make_tuple(&I, J, ProducerPredicate); |
| std::get<0>(WrongSense) = &I; |
| std::get<1>(WrongSense) = J; |
| std::get<2>(WrongSense) = ProducerPredicate; |
| } |
| if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, I)) |
| return std::make_tuple(&I, 0, HexagonMCInstrInfo::PredicateInfo()); |
| } |
| return WrongSense; |
| } |
| |
| void HexagonMCChecker::checkRegisterCurDefs() { |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| if (HexagonMCInstrInfo::isCVINew(MCII, I) && |
| HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) { |
| unsigned Register = I.getOperand(0).getReg(); |
| if (!registerUsed(Register)) |
| reportWarning("Register `" + Twine(RI.getName(Register)) + |
| "' used with `.cur' " |
| "but not used in the same packet"); |
| } |
| } |
| } |
| |
| // Check for legal register uses and definitions. |
| bool HexagonMCChecker::checkRegisters() { |
| // Check for proper register definitions. |
| for (const auto &I : Defs) { |
| unsigned R = I.first; |
| |
| if (isLoopRegister(R) && Defs.count(R) > 1 && |
| (HexagonMCInstrInfo::isInnerLoop(MCB) || |
| HexagonMCInstrInfo::isOuterLoop(MCB))) { |
| // Error out for definitions of loop registers at the end of a loop. |
| reportError("loop-setup and some branch instructions " |
| "cannot be in the same packet"); |
| return false; |
| } |
| if (SoftDefs.count(R)) { |
| // Error out for explicit changes to registers also weakly defined |
| // (e.g., "{ usr = r0; r0 = sfadd(...) }"). |
| unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:. |
| unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; |
| reportErrorRegisters(BadR); |
| return false; |
| } |
| if (!isPredicateRegister(R) && Defs[R].size() > 1) { |
| // Check for multiple register definitions. |
| PredSet &PM = Defs[R]; |
| |
| // Check for multiple unconditional register definitions. |
| if (PM.count(Unconditional)) { |
| // Error out on an unconditional change when there are any other |
| // changes, conditional or not. |
| unsigned UsrR = Hexagon::USR; |
| unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; |
| reportErrorRegisters(BadR); |
| return false; |
| } |
| // Check for multiple conditional register definitions. |
| for (const auto &J : PM) { |
| PredSense P = J; |
| |
| // Check for multiple uses of the same condition. |
| if (PM.count(P) > 1) { |
| // Error out on conditional changes based on the same predicate |
| // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }"). |
| reportErrorRegisters(R); |
| return false; |
| } |
| // Check for the use of the complementary condition. |
| P.second = !P.second; |
| if (PM.count(P) && PM.size() > 2) { |
| // Error out on conditional changes based on the same predicate |
| // multiple times |
| // (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =..."). |
| reportErrorRegisters(R); |
| return false; |
| } |
| } |
| } |
| } |
| |
| // Check for use of temporary definitions. |
| for (const auto &I : TmpDefs) { |
| unsigned R = I; |
| |
| if (!Uses.count(R)) { |
| // special case for vhist |
| bool vHistFound = false; |
| for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) { |
| if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == |
| HexagonII::TypeCVI_HIST) { |
| vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp |
| break; |
| } |
| } |
| // Warn on an unused temporary definition. |
| if (!vHistFound) { |
| reportWarning("register `" + Twine(RI.getName(R)) + |
| "' used with `.tmp' but not used in the same packet"); |
| return true; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Check for legal use of solo insns. |
| bool HexagonMCChecker::checkSolo() { |
| if (HexagonMCInstrInfo::bundleSize(MCB) > 1) |
| for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { |
| if (HexagonMCInstrInfo::isSolo(MCII, I)) { |
| reportError(I.getLoc(), "Instruction is marked `isSolo' and " |
| "cannot have other instructions in " |
| "the same packet"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool HexagonMCChecker::checkShuffle() { |
| HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB); |
| return MCSDX.check(); |
| } |
| |
| void HexagonMCChecker::compoundRegisterMap(unsigned &Register) { |
| switch (Register) { |
| default: |
| break; |
| case Hexagon::R15: |
| Register = Hexagon::R23; |
| break; |
| case Hexagon::R14: |
| Register = Hexagon::R22; |
| break; |
| case Hexagon::R13: |
| Register = Hexagon::R21; |
| break; |
| case Hexagon::R12: |
| Register = Hexagon::R20; |
| break; |
| case Hexagon::R11: |
| Register = Hexagon::R19; |
| break; |
| case Hexagon::R10: |
| Register = Hexagon::R18; |
| break; |
| case Hexagon::R9: |
| Register = Hexagon::R17; |
| break; |
| case Hexagon::R8: |
| Register = Hexagon::R16; |
| break; |
| } |
| } |
| |
| void HexagonMCChecker::reportErrorRegisters(unsigned Register) { |
| reportError("register `" + Twine(RI.getName(Register)) + |
| "' modified more than once"); |
| } |
| |
| void HexagonMCChecker::reportErrorNewValue(unsigned Register) { |
| reportError("register `" + Twine(RI.getName(Register)) + |
| "' used with `.new' " |
| "but not validly modified in the same packet"); |
| } |
| |
| void HexagonMCChecker::reportError(Twine const &Msg) { |
| reportError(MCB.getLoc(), Msg); |
| } |
| |
| void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) { |
| if (ReportErrors) |
| Context.reportError(Loc, Msg); |
| } |
| |
| void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) { |
| if (ReportErrors) { |
| auto SM = Context.getSourceManager(); |
| if (SM) |
| SM->PrintMessage(Loc, SourceMgr::DK_Note, Msg); |
| } |
| } |
| |
| void HexagonMCChecker::reportWarning(Twine const &Msg) { |
| if (ReportErrors) |
| Context.reportWarning(MCB.getLoc(), Msg); |
| } |