|  | //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the newly proposed standard C++ interfaces for hashing | 
|  | // arbitrary data and building hash functions for user-defined types. This | 
|  | // interface was originally proposed in N3333[1] and is currently under review | 
|  | // for inclusion in a future TR and/or standard. | 
|  | // | 
|  | // The primary interfaces provide are comprised of one type and three functions: | 
|  | // | 
|  | //  -- 'hash_code' class is an opaque type representing the hash code for some | 
|  | //     data. It is the intended product of hashing, and can be used to implement | 
|  | //     hash tables, checksumming, and other common uses of hashes. It is not an | 
|  | //     integer type (although it can be converted to one) because it is risky | 
|  | //     to assume much about the internals of a hash_code. In particular, each | 
|  | //     execution of the program has a high probability of producing a different | 
|  | //     hash_code for a given input. Thus their values are not stable to save or | 
|  | //     persist, and should only be used during the execution for the | 
|  | //     construction of hashing datastructures. | 
|  | // | 
|  | //  -- 'hash_value' is a function designed to be overloaded for each | 
|  | //     user-defined type which wishes to be used within a hashing context. It | 
|  | //     should be overloaded within the user-defined type's namespace and found | 
|  | //     via ADL. Overloads for primitive types are provided by this library. | 
|  | // | 
|  | //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid | 
|  | //      programmers in easily and intuitively combining a set of data into | 
|  | //      a single hash_code for their object. They should only logically be used | 
|  | //      within the implementation of a 'hash_value' routine or similar context. | 
|  | // | 
|  | // Note that 'hash_combine_range' contains very special logic for hashing | 
|  | // a contiguous array of integers or pointers. This logic is *extremely* fast, | 
|  | // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were | 
|  | // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys | 
|  | // under 32-bytes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_ADT_HASHING_H | 
|  | #define LLVM_ADT_HASHING_H | 
|  |  | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/Host.h" | 
|  | #include "llvm/Support/SwapByteOrder.h" | 
|  | #include "llvm/Support/type_traits.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstring> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | /// \brief An opaque object representing a hash code. | 
|  | /// | 
|  | /// This object represents the result of hashing some entity. It is intended to | 
|  | /// be used to implement hashtables or other hashing-based data structures. | 
|  | /// While it wraps and exposes a numeric value, this value should not be | 
|  | /// trusted to be stable or predictable across processes or executions. | 
|  | /// | 
|  | /// In order to obtain the hash_code for an object 'x': | 
|  | /// \code | 
|  | ///   using llvm::hash_value; | 
|  | ///   llvm::hash_code code = hash_value(x); | 
|  | /// \endcode | 
|  | class hash_code { | 
|  | size_t value; | 
|  |  | 
|  | public: | 
|  | /// \brief Default construct a hash_code. | 
|  | /// Note that this leaves the value uninitialized. | 
|  | hash_code() = default; | 
|  |  | 
|  | /// \brief Form a hash code directly from a numerical value. | 
|  | hash_code(size_t value) : value(value) {} | 
|  |  | 
|  | /// \brief Convert the hash code to its numerical value for use. | 
|  | /*explicit*/ operator size_t() const { return value; } | 
|  |  | 
|  | friend bool operator==(const hash_code &lhs, const hash_code &rhs) { | 
|  | return lhs.value == rhs.value; | 
|  | } | 
|  | friend bool operator!=(const hash_code &lhs, const hash_code &rhs) { | 
|  | return lhs.value != rhs.value; | 
|  | } | 
|  |  | 
|  | /// \brief Allow a hash_code to be directly run through hash_value. | 
|  | friend size_t hash_value(const hash_code &code) { return code.value; } | 
|  | }; | 
|  |  | 
|  | /// \brief Compute a hash_code for any integer value. | 
|  | /// | 
|  | /// Note that this function is intended to compute the same hash_code for | 
|  | /// a particular value without regard to the pre-promotion type. This is in | 
|  | /// contrast to hash_combine which may produce different hash_codes for | 
|  | /// differing argument types even if they would implicit promote to a common | 
|  | /// type without changing the value. | 
|  | template <typename T> | 
|  | typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type | 
|  | hash_value(T value); | 
|  |  | 
|  | /// \brief Compute a hash_code for a pointer's address. | 
|  | /// | 
|  | /// N.B.: This hashes the *address*. Not the value and not the type. | 
|  | template <typename T> hash_code hash_value(const T *ptr); | 
|  |  | 
|  | /// \brief Compute a hash_code for a pair of objects. | 
|  | template <typename T, typename U> | 
|  | hash_code hash_value(const std::pair<T, U> &arg); | 
|  |  | 
|  | /// \brief Compute a hash_code for a standard string. | 
|  | template <typename T> | 
|  | hash_code hash_value(const std::basic_string<T> &arg); | 
|  |  | 
|  |  | 
|  | /// \brief Override the execution seed with a fixed value. | 
|  | /// | 
|  | /// This hashing library uses a per-execution seed designed to change on each | 
|  | /// run with high probability in order to ensure that the hash codes are not | 
|  | /// attackable and to ensure that output which is intended to be stable does | 
|  | /// not rely on the particulars of the hash codes produced. | 
|  | /// | 
|  | /// That said, there are use cases where it is important to be able to | 
|  | /// reproduce *exactly* a specific behavior. To that end, we provide a function | 
|  | /// which will forcibly set the seed to a fixed value. This must be done at the | 
|  | /// start of the program, before any hashes are computed. Also, it cannot be | 
|  | /// undone. This makes it thread-hostile and very hard to use outside of | 
|  | /// immediately on start of a simple program designed for reproducible | 
|  | /// behavior. | 
|  | void set_fixed_execution_hash_seed(size_t fixed_value); | 
|  |  | 
|  |  | 
|  | // All of the implementation details of actually computing the various hash | 
|  | // code values are held within this namespace. These routines are included in | 
|  | // the header file mainly to allow inlining and constant propagation. | 
|  | namespace hashing { | 
|  | namespace detail { | 
|  |  | 
|  | inline uint64_t fetch64(const char *p) { | 
|  | uint64_t result; | 
|  | memcpy(&result, p, sizeof(result)); | 
|  | if (sys::IsBigEndianHost) | 
|  | sys::swapByteOrder(result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | inline uint32_t fetch32(const char *p) { | 
|  | uint32_t result; | 
|  | memcpy(&result, p, sizeof(result)); | 
|  | if (sys::IsBigEndianHost) | 
|  | sys::swapByteOrder(result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// Some primes between 2^63 and 2^64 for various uses. | 
|  | static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; | 
|  | static const uint64_t k1 = 0xb492b66fbe98f273ULL; | 
|  | static const uint64_t k2 = 0x9ae16a3b2f90404fULL; | 
|  | static const uint64_t k3 = 0xc949d7c7509e6557ULL; | 
|  |  | 
|  | /// \brief Bitwise right rotate. | 
|  | /// Normally this will compile to a single instruction, especially if the | 
|  | /// shift is a manifest constant. | 
|  | inline uint64_t rotate(uint64_t val, size_t shift) { | 
|  | // Avoid shifting by 64: doing so yields an undefined result. | 
|  | return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); | 
|  | } | 
|  |  | 
|  | inline uint64_t shift_mix(uint64_t val) { | 
|  | return val ^ (val >> 47); | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) { | 
|  | // Murmur-inspired hashing. | 
|  | const uint64_t kMul = 0x9ddfea08eb382d69ULL; | 
|  | uint64_t a = (low ^ high) * kMul; | 
|  | a ^= (a >> 47); | 
|  | uint64_t b = (high ^ a) * kMul; | 
|  | b ^= (b >> 47); | 
|  | b *= kMul; | 
|  | return b; | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) { | 
|  | uint8_t a = s[0]; | 
|  | uint8_t b = s[len >> 1]; | 
|  | uint8_t c = s[len - 1]; | 
|  | uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); | 
|  | uint32_t z = len + (static_cast<uint32_t>(c) << 2); | 
|  | return shift_mix(y * k2 ^ z * k3 ^ seed) * k2; | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) { | 
|  | uint64_t a = fetch32(s); | 
|  | return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4)); | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) { | 
|  | uint64_t a = fetch64(s); | 
|  | uint64_t b = fetch64(s + len - 8); | 
|  | return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b; | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) { | 
|  | uint64_t a = fetch64(s) * k1; | 
|  | uint64_t b = fetch64(s + 8); | 
|  | uint64_t c = fetch64(s + len - 8) * k2; | 
|  | uint64_t d = fetch64(s + len - 16) * k0; | 
|  | return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d, | 
|  | a + rotate(b ^ k3, 20) - c + len + seed); | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) { | 
|  | uint64_t z = fetch64(s + 24); | 
|  | uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0; | 
|  | uint64_t b = rotate(a + z, 52); | 
|  | uint64_t c = rotate(a, 37); | 
|  | a += fetch64(s + 8); | 
|  | c += rotate(a, 7); | 
|  | a += fetch64(s + 16); | 
|  | uint64_t vf = a + z; | 
|  | uint64_t vs = b + rotate(a, 31) + c; | 
|  | a = fetch64(s + 16) + fetch64(s + len - 32); | 
|  | z = fetch64(s + len - 8); | 
|  | b = rotate(a + z, 52); | 
|  | c = rotate(a, 37); | 
|  | a += fetch64(s + len - 24); | 
|  | c += rotate(a, 7); | 
|  | a += fetch64(s + len - 16); | 
|  | uint64_t wf = a + z; | 
|  | uint64_t ws = b + rotate(a, 31) + c; | 
|  | uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0); | 
|  | return shift_mix((seed ^ (r * k0)) + vs) * k2; | 
|  | } | 
|  |  | 
|  | inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) { | 
|  | if (length >= 4 && length <= 8) | 
|  | return hash_4to8_bytes(s, length, seed); | 
|  | if (length > 8 && length <= 16) | 
|  | return hash_9to16_bytes(s, length, seed); | 
|  | if (length > 16 && length <= 32) | 
|  | return hash_17to32_bytes(s, length, seed); | 
|  | if (length > 32) | 
|  | return hash_33to64_bytes(s, length, seed); | 
|  | if (length != 0) | 
|  | return hash_1to3_bytes(s, length, seed); | 
|  |  | 
|  | return k2 ^ seed; | 
|  | } | 
|  |  | 
|  | /// \brief The intermediate state used during hashing. | 
|  | /// Currently, the algorithm for computing hash codes is based on CityHash and | 
|  | /// keeps 56 bytes of arbitrary state. | 
|  | struct hash_state { | 
|  | uint64_t h0, h1, h2, h3, h4, h5, h6; | 
|  |  | 
|  | /// \brief Create a new hash_state structure and initialize it based on the | 
|  | /// seed and the first 64-byte chunk. | 
|  | /// This effectively performs the initial mix. | 
|  | static hash_state create(const char *s, uint64_t seed) { | 
|  | hash_state state = { | 
|  | 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49), | 
|  | seed * k1, shift_mix(seed), 0 }; | 
|  | state.h6 = hash_16_bytes(state.h4, state.h5); | 
|  | state.mix(s); | 
|  | return state; | 
|  | } | 
|  |  | 
|  | /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a' | 
|  | /// and 'b', including whatever is already in 'a' and 'b'. | 
|  | static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) { | 
|  | a += fetch64(s); | 
|  | uint64_t c = fetch64(s + 24); | 
|  | b = rotate(b + a + c, 21); | 
|  | uint64_t d = a; | 
|  | a += fetch64(s + 8) + fetch64(s + 16); | 
|  | b += rotate(a, 44) + d; | 
|  | a += c; | 
|  | } | 
|  |  | 
|  | /// \brief Mix in a 64-byte buffer of data. | 
|  | /// We mix all 64 bytes even when the chunk length is smaller, but we | 
|  | /// record the actual length. | 
|  | void mix(const char *s) { | 
|  | h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1; | 
|  | h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1; | 
|  | h0 ^= h6; | 
|  | h1 += h3 + fetch64(s + 40); | 
|  | h2 = rotate(h2 + h5, 33) * k1; | 
|  | h3 = h4 * k1; | 
|  | h4 = h0 + h5; | 
|  | mix_32_bytes(s, h3, h4); | 
|  | h5 = h2 + h6; | 
|  | h6 = h1 + fetch64(s + 16); | 
|  | mix_32_bytes(s + 32, h5, h6); | 
|  | std::swap(h2, h0); | 
|  | } | 
|  |  | 
|  | /// \brief Compute the final 64-bit hash code value based on the current | 
|  | /// state and the length of bytes hashed. | 
|  | uint64_t finalize(size_t length) { | 
|  | return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2, | 
|  | hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// \brief A global, fixed seed-override variable. | 
|  | /// | 
|  | /// This variable can be set using the \see llvm::set_fixed_execution_seed | 
|  | /// function. See that function for details. Do not, under any circumstances, | 
|  | /// set or read this variable. | 
|  | extern size_t fixed_seed_override; | 
|  |  | 
|  | inline size_t get_execution_seed() { | 
|  | // FIXME: This needs to be a per-execution seed. This is just a placeholder | 
|  | // implementation. Switching to a per-execution seed is likely to flush out | 
|  | // instability bugs and so will happen as its own commit. | 
|  | // | 
|  | // However, if there is a fixed seed override set the first time this is | 
|  | // called, return that instead of the per-execution seed. | 
|  | const uint64_t seed_prime = 0xff51afd7ed558ccdULL; | 
|  | static size_t seed = fixed_seed_override ? fixed_seed_override | 
|  | : (size_t)seed_prime; | 
|  | return seed; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Trait to indicate whether a type's bits can be hashed directly. | 
|  | /// | 
|  | /// A type trait which is true if we want to combine values for hashing by | 
|  | /// reading the underlying data. It is false if values of this type must | 
|  | /// first be passed to hash_value, and the resulting hash_codes combined. | 
|  | // | 
|  | // FIXME: We want to replace is_integral_or_enum and is_pointer here with | 
|  | // a predicate which asserts that comparing the underlying storage of two | 
|  | // values of the type for equality is equivalent to comparing the two values | 
|  | // for equality. For all the platforms we care about, this holds for integers | 
|  | // and pointers, but there are platforms where it doesn't and we would like to | 
|  | // support user-defined types which happen to satisfy this property. | 
|  | template <typename T> struct is_hashable_data | 
|  | : std::integral_constant<bool, ((is_integral_or_enum<T>::value || | 
|  | std::is_pointer<T>::value) && | 
|  | 64 % sizeof(T) == 0)> {}; | 
|  |  | 
|  | // Special case std::pair to detect when both types are viable and when there | 
|  | // is no alignment-derived padding in the pair. This is a bit of a lie because | 
|  | // std::pair isn't truly POD, but it's close enough in all reasonable | 
|  | // implementations for our use case of hashing the underlying data. | 
|  | template <typename T, typename U> struct is_hashable_data<std::pair<T, U> > | 
|  | : std::integral_constant<bool, (is_hashable_data<T>::value && | 
|  | is_hashable_data<U>::value && | 
|  | (sizeof(T) + sizeof(U)) == | 
|  | sizeof(std::pair<T, U>))> {}; | 
|  |  | 
|  | /// \brief Helper to get the hashable data representation for a type. | 
|  | /// This variant is enabled when the type itself can be used. | 
|  | template <typename T> | 
|  | typename std::enable_if<is_hashable_data<T>::value, T>::type | 
|  | get_hashable_data(const T &value) { | 
|  | return value; | 
|  | } | 
|  | /// \brief Helper to get the hashable data representation for a type. | 
|  | /// This variant is enabled when we must first call hash_value and use the | 
|  | /// result as our data. | 
|  | template <typename T> | 
|  | typename std::enable_if<!is_hashable_data<T>::value, size_t>::type | 
|  | get_hashable_data(const T &value) { | 
|  | using ::llvm::hash_value; | 
|  | return hash_value(value); | 
|  | } | 
|  |  | 
|  | /// \brief Helper to store data from a value into a buffer and advance the | 
|  | /// pointer into that buffer. | 
|  | /// | 
|  | /// This routine first checks whether there is enough space in the provided | 
|  | /// buffer, and if not immediately returns false. If there is space, it | 
|  | /// copies the underlying bytes of value into the buffer, advances the | 
|  | /// buffer_ptr past the copied bytes, and returns true. | 
|  | template <typename T> | 
|  | bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value, | 
|  | size_t offset = 0) { | 
|  | size_t store_size = sizeof(value) - offset; | 
|  | if (buffer_ptr + store_size > buffer_end) | 
|  | return false; | 
|  | const char *value_data = reinterpret_cast<const char *>(&value); | 
|  | memcpy(buffer_ptr, value_data + offset, store_size); | 
|  | buffer_ptr += store_size; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Implement the combining of integral values into a hash_code. | 
|  | /// | 
|  | /// This overload is selected when the value type of the iterator is | 
|  | /// integral. Rather than computing a hash_code for each object and then | 
|  | /// combining them, this (as an optimization) directly combines the integers. | 
|  | template <typename InputIteratorT> | 
|  | hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) { | 
|  | const size_t seed = get_execution_seed(); | 
|  | char buffer[64], *buffer_ptr = buffer; | 
|  | char *const buffer_end = std::end(buffer); | 
|  | while (first != last && store_and_advance(buffer_ptr, buffer_end, | 
|  | get_hashable_data(*first))) | 
|  | ++first; | 
|  | if (first == last) | 
|  | return hash_short(buffer, buffer_ptr - buffer, seed); | 
|  | assert(buffer_ptr == buffer_end); | 
|  |  | 
|  | hash_state state = state.create(buffer, seed); | 
|  | size_t length = 64; | 
|  | while (first != last) { | 
|  | // Fill up the buffer. We don't clear it, which re-mixes the last round | 
|  | // when only a partial 64-byte chunk is left. | 
|  | buffer_ptr = buffer; | 
|  | while (first != last && store_and_advance(buffer_ptr, buffer_end, | 
|  | get_hashable_data(*first))) | 
|  | ++first; | 
|  |  | 
|  | // Rotate the buffer if we did a partial fill in order to simulate doing | 
|  | // a mix of the last 64-bytes. That is how the algorithm works when we | 
|  | // have a contiguous byte sequence, and we want to emulate that here. | 
|  | std::rotate(buffer, buffer_ptr, buffer_end); | 
|  |  | 
|  | // Mix this chunk into the current state. | 
|  | state.mix(buffer); | 
|  | length += buffer_ptr - buffer; | 
|  | }; | 
|  |  | 
|  | return state.finalize(length); | 
|  | } | 
|  |  | 
|  | /// \brief Implement the combining of integral values into a hash_code. | 
|  | /// | 
|  | /// This overload is selected when the value type of the iterator is integral | 
|  | /// and when the input iterator is actually a pointer. Rather than computing | 
|  | /// a hash_code for each object and then combining them, this (as an | 
|  | /// optimization) directly combines the integers. Also, because the integers | 
|  | /// are stored in contiguous memory, this routine avoids copying each value | 
|  | /// and directly reads from the underlying memory. | 
|  | template <typename ValueT> | 
|  | typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type | 
|  | hash_combine_range_impl(ValueT *first, ValueT *last) { | 
|  | const size_t seed = get_execution_seed(); | 
|  | const char *s_begin = reinterpret_cast<const char *>(first); | 
|  | const char *s_end = reinterpret_cast<const char *>(last); | 
|  | const size_t length = std::distance(s_begin, s_end); | 
|  | if (length <= 64) | 
|  | return hash_short(s_begin, length, seed); | 
|  |  | 
|  | const char *s_aligned_end = s_begin + (length & ~63); | 
|  | hash_state state = state.create(s_begin, seed); | 
|  | s_begin += 64; | 
|  | while (s_begin != s_aligned_end) { | 
|  | state.mix(s_begin); | 
|  | s_begin += 64; | 
|  | } | 
|  | if (length & 63) | 
|  | state.mix(s_end - 64); | 
|  |  | 
|  | return state.finalize(length); | 
|  | } | 
|  |  | 
|  | } // namespace detail | 
|  | } // namespace hashing | 
|  |  | 
|  |  | 
|  | /// \brief Compute a hash_code for a sequence of values. | 
|  | /// | 
|  | /// This hashes a sequence of values. It produces the same hash_code as | 
|  | /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences | 
|  | /// and is significantly faster given pointers and types which can be hashed as | 
|  | /// a sequence of bytes. | 
|  | template <typename InputIteratorT> | 
|  | hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) { | 
|  | return ::llvm::hashing::detail::hash_combine_range_impl(first, last); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Implementation details for hash_combine. | 
|  | namespace hashing { | 
|  | namespace detail { | 
|  |  | 
|  | /// \brief Helper class to manage the recursive combining of hash_combine | 
|  | /// arguments. | 
|  | /// | 
|  | /// This class exists to manage the state and various calls involved in the | 
|  | /// recursive combining of arguments used in hash_combine. It is particularly | 
|  | /// useful at minimizing the code in the recursive calls to ease the pain | 
|  | /// caused by a lack of variadic functions. | 
|  | struct hash_combine_recursive_helper { | 
|  | char buffer[64]; | 
|  | hash_state state; | 
|  | const size_t seed; | 
|  |  | 
|  | public: | 
|  | /// \brief Construct a recursive hash combining helper. | 
|  | /// | 
|  | /// This sets up the state for a recursive hash combine, including getting | 
|  | /// the seed and buffer setup. | 
|  | hash_combine_recursive_helper() | 
|  | : seed(get_execution_seed()) {} | 
|  |  | 
|  | /// \brief Combine one chunk of data into the current in-flight hash. | 
|  | /// | 
|  | /// This merges one chunk of data into the hash. First it tries to buffer | 
|  | /// the data. If the buffer is full, it hashes the buffer into its | 
|  | /// hash_state, empties it, and then merges the new chunk in. This also | 
|  | /// handles cases where the data straddles the end of the buffer. | 
|  | template <typename T> | 
|  | char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) { | 
|  | if (!store_and_advance(buffer_ptr, buffer_end, data)) { | 
|  | // Check for skew which prevents the buffer from being packed, and do | 
|  | // a partial store into the buffer to fill it. This is only a concern | 
|  | // with the variadic combine because that formation can have varying | 
|  | // argument types. | 
|  | size_t partial_store_size = buffer_end - buffer_ptr; | 
|  | memcpy(buffer_ptr, &data, partial_store_size); | 
|  |  | 
|  | // If the store fails, our buffer is full and ready to hash. We have to | 
|  | // either initialize the hash state (on the first full buffer) or mix | 
|  | // this buffer into the existing hash state. Length tracks the *hashed* | 
|  | // length, not the buffered length. | 
|  | if (length == 0) { | 
|  | state = state.create(buffer, seed); | 
|  | length = 64; | 
|  | } else { | 
|  | // Mix this chunk into the current state and bump length up by 64. | 
|  | state.mix(buffer); | 
|  | length += 64; | 
|  | } | 
|  | // Reset the buffer_ptr to the head of the buffer for the next chunk of | 
|  | // data. | 
|  | buffer_ptr = buffer; | 
|  |  | 
|  | // Try again to store into the buffer -- this cannot fail as we only | 
|  | // store types smaller than the buffer. | 
|  | if (!store_and_advance(buffer_ptr, buffer_end, data, | 
|  | partial_store_size)) | 
|  | abort(); | 
|  | } | 
|  | return buffer_ptr; | 
|  | } | 
|  |  | 
|  | /// \brief Recursive, variadic combining method. | 
|  | /// | 
|  | /// This function recurses through each argument, combining that argument | 
|  | /// into a single hash. | 
|  | template <typename T, typename ...Ts> | 
|  | hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, | 
|  | const T &arg, const Ts &...args) { | 
|  | buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg)); | 
|  |  | 
|  | // Recurse to the next argument. | 
|  | return combine(length, buffer_ptr, buffer_end, args...); | 
|  | } | 
|  |  | 
|  | /// \brief Base case for recursive, variadic combining. | 
|  | /// | 
|  | /// The base case when combining arguments recursively is reached when all | 
|  | /// arguments have been handled. It flushes the remaining buffer and | 
|  | /// constructs a hash_code. | 
|  | hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) { | 
|  | // Check whether the entire set of values fit in the buffer. If so, we'll | 
|  | // use the optimized short hashing routine and skip state entirely. | 
|  | if (length == 0) | 
|  | return hash_short(buffer, buffer_ptr - buffer, seed); | 
|  |  | 
|  | // Mix the final buffer, rotating it if we did a partial fill in order to | 
|  | // simulate doing a mix of the last 64-bytes. That is how the algorithm | 
|  | // works when we have a contiguous byte sequence, and we want to emulate | 
|  | // that here. | 
|  | std::rotate(buffer, buffer_ptr, buffer_end); | 
|  |  | 
|  | // Mix this chunk into the current state. | 
|  | state.mix(buffer); | 
|  | length += buffer_ptr - buffer; | 
|  |  | 
|  | return state.finalize(length); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace detail | 
|  | } // namespace hashing | 
|  |  | 
|  | /// \brief Combine values into a single hash_code. | 
|  | /// | 
|  | /// This routine accepts a varying number of arguments of any type. It will | 
|  | /// attempt to combine them into a single hash_code. For user-defined types it | 
|  | /// attempts to call a \see hash_value overload (via ADL) for the type. For | 
|  | /// integer and pointer types it directly combines their data into the | 
|  | /// resulting hash_code. | 
|  | /// | 
|  | /// The result is suitable for returning from a user's hash_value | 
|  | /// *implementation* for their user-defined type. Consumers of a type should | 
|  | /// *not* call this routine, they should instead call 'hash_value'. | 
|  | template <typename ...Ts> hash_code hash_combine(const Ts &...args) { | 
|  | // Recursively hash each argument using a helper class. | 
|  | ::llvm::hashing::detail::hash_combine_recursive_helper helper; | 
|  | return helper.combine(0, helper.buffer, helper.buffer + 64, args...); | 
|  | } | 
|  |  | 
|  | // Implementation details for implementations of hash_value overloads provided | 
|  | // here. | 
|  | namespace hashing { | 
|  | namespace detail { | 
|  |  | 
|  | /// \brief Helper to hash the value of a single integer. | 
|  | /// | 
|  | /// Overloads for smaller integer types are not provided to ensure consistent | 
|  | /// behavior in the presence of integral promotions. Essentially, | 
|  | /// "hash_value('4')" and "hash_value('0' + 4)" should be the same. | 
|  | inline hash_code hash_integer_value(uint64_t value) { | 
|  | // Similar to hash_4to8_bytes but using a seed instead of length. | 
|  | const uint64_t seed = get_execution_seed(); | 
|  | const char *s = reinterpret_cast<const char *>(&value); | 
|  | const uint64_t a = fetch32(s); | 
|  | return hash_16_bytes(seed + (a << 3), fetch32(s + 4)); | 
|  | } | 
|  |  | 
|  | } // namespace detail | 
|  | } // namespace hashing | 
|  |  | 
|  | // Declared and documented above, but defined here so that any of the hashing | 
|  | // infrastructure is available. | 
|  | template <typename T> | 
|  | typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type | 
|  | hash_value(T value) { | 
|  | return ::llvm::hashing::detail::hash_integer_value( | 
|  | static_cast<uint64_t>(value)); | 
|  | } | 
|  |  | 
|  | // Declared and documented above, but defined here so that any of the hashing | 
|  | // infrastructure is available. | 
|  | template <typename T> hash_code hash_value(const T *ptr) { | 
|  | return ::llvm::hashing::detail::hash_integer_value( | 
|  | reinterpret_cast<uintptr_t>(ptr)); | 
|  | } | 
|  |  | 
|  | // Declared and documented above, but defined here so that any of the hashing | 
|  | // infrastructure is available. | 
|  | template <typename T, typename U> | 
|  | hash_code hash_value(const std::pair<T, U> &arg) { | 
|  | return hash_combine(arg.first, arg.second); | 
|  | } | 
|  |  | 
|  | // Declared and documented above, but defined here so that any of the hashing | 
|  | // infrastructure is available. | 
|  | template <typename T> | 
|  | hash_code hash_value(const std::basic_string<T> &arg) { | 
|  | return hash_combine_range(arg.begin(), arg.end()); | 
|  | } | 
|  |  | 
|  | } // namespace llvm | 
|  |  | 
|  | #endif |