|  | //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of the MC-JIT runtime dynamic linker. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "dyld" | 
|  | #include "llvm/ADT/OwningPtr.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "RuntimeDyldImpl.h" | 
|  | using namespace llvm; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | bool RuntimeDyldMachO:: | 
|  | resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, | 
|  | unsigned Type, unsigned Size) { | 
|  | // This just dispatches to the proper target specific routine. | 
|  | switch (CPUType) { | 
|  | default: assert(0 && "Unsupported CPU type!"); | 
|  | case mach::CTM_x86_64: | 
|  | return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, | 
|  | isPCRel, Type, Size); | 
|  | case mach::CTM_ARM: | 
|  | return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, | 
|  | isPCRel, Type, Size); | 
|  | } | 
|  | llvm_unreachable(""); | 
|  | } | 
|  |  | 
|  | bool RuntimeDyldMachO:: | 
|  | resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, | 
|  | bool isPCRel, unsigned Type, | 
|  | unsigned Size) { | 
|  | // If the relocation is PC-relative, the value to be encoded is the | 
|  | // pointer difference. | 
|  | if (isPCRel) | 
|  | // FIXME: It seems this value needs to be adjusted by 4 for an effective PC | 
|  | // address. Is that expected? Only for branches, perhaps? | 
|  | Value -= Address + 4; | 
|  |  | 
|  | switch(Type) { | 
|  | default: | 
|  | llvm_unreachable("Invalid relocation type!"); | 
|  | case macho::RIT_X86_64_Unsigned: | 
|  | case macho::RIT_X86_64_Branch: { | 
|  | // Mask in the target value a byte at a time (we don't have an alignment | 
|  | // guarantee for the target address, so this is safest). | 
|  | uint8_t *p = (uint8_t*)Address; | 
|  | for (unsigned i = 0; i < Size; ++i) { | 
|  | *p++ = (uint8_t)Value; | 
|  | Value >>= 8; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case macho::RIT_X86_64_Signed: | 
|  | case macho::RIT_X86_64_GOTLoad: | 
|  | case macho::RIT_X86_64_GOT: | 
|  | case macho::RIT_X86_64_Subtractor: | 
|  | case macho::RIT_X86_64_Signed1: | 
|  | case macho::RIT_X86_64_Signed2: | 
|  | case macho::RIT_X86_64_Signed4: | 
|  | case macho::RIT_X86_64_TLV: | 
|  | return Error("Relocation type not implemented yet!"); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, | 
|  | bool isPCRel, unsigned Type, | 
|  | unsigned Size) { | 
|  | // If the relocation is PC-relative, the value to be encoded is the | 
|  | // pointer difference. | 
|  | if (isPCRel) { | 
|  | Value -= Address; | 
|  | // ARM PCRel relocations have an effective-PC offset of two instructions | 
|  | // (four bytes in Thumb mode, 8 bytes in ARM mode). | 
|  | // FIXME: For now, assume ARM mode. | 
|  | Value -= 8; | 
|  | } | 
|  |  | 
|  | switch(Type) { | 
|  | default: | 
|  | llvm_unreachable("Invalid relocation type!"); | 
|  | case macho::RIT_Vanilla: { | 
|  | llvm_unreachable("Invalid relocation type!"); | 
|  | // Mask in the target value a byte at a time (we don't have an alignment | 
|  | // guarantee for the target address, so this is safest). | 
|  | uint8_t *p = (uint8_t*)Address; | 
|  | for (unsigned i = 0; i < Size; ++i) { | 
|  | *p++ = (uint8_t)Value; | 
|  | Value >>= 8; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case macho::RIT_ARM_Branch24Bit: { | 
|  | // Mask the value into the target address. We know instructions are | 
|  | // 32-bit aligned, so we can do it all at once. | 
|  | uint32_t *p = (uint32_t*)Address; | 
|  | // The low two bits of the value are not encoded. | 
|  | Value >>= 2; | 
|  | // Mask the value to 24 bits. | 
|  | Value &= 0xffffff; | 
|  | // FIXME: If the destination is a Thumb function (and the instruction | 
|  | // is a non-predicated BL instruction), we need to change it to a BLX | 
|  | // instruction instead. | 
|  |  | 
|  | // Insert the value into the instruction. | 
|  | *p = (*p & ~0xffffff) | Value; | 
|  | break; | 
|  | } | 
|  | case macho::RIT_ARM_ThumbBranch22Bit: | 
|  | case macho::RIT_ARM_ThumbBranch32Bit: | 
|  | case macho::RIT_ARM_Half: | 
|  | case macho::RIT_ARM_HalfDifference: | 
|  | case macho::RIT_Pair: | 
|  | case macho::RIT_Difference: | 
|  | case macho::RIT_ARM_LocalDifference: | 
|  | case macho::RIT_ARM_PreboundLazyPointer: | 
|  | return Error("Relocation type not implemented yet!"); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RuntimeDyldMachO:: | 
|  | loadSegment32(const MachOObject *Obj, | 
|  | const MachOObject::LoadCommandInfo *SegmentLCI, | 
|  | const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { | 
|  | InMemoryStruct<macho::SegmentLoadCommand> SegmentLC; | 
|  | Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); | 
|  | if (!SegmentLC) | 
|  | return Error("unable to load segment load command"); | 
|  |  | 
|  | for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { | 
|  | InMemoryStruct<macho::Section> Sect; | 
|  | Obj->ReadSection(*SegmentLCI, SectNum, Sect); | 
|  | if (!Sect) | 
|  | return Error("unable to load section: '" + Twine(SectNum) + "'"); | 
|  |  | 
|  | // FIXME: For the time being, we're only loading text segments. | 
|  | if (Sect->Flags != 0x80000400) | 
|  | continue; | 
|  |  | 
|  | // Address and names of symbols in the section. | 
|  | typedef std::pair<uint64_t, StringRef> SymbolEntry; | 
|  | SmallVector<SymbolEntry, 64> Symbols; | 
|  | // Index of all the names, in this section or not. Used when we're | 
|  | // dealing with relocation entries. | 
|  | SmallVector<StringRef, 64> SymbolNames; | 
|  | for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { | 
|  | InMemoryStruct<macho::SymbolTableEntry> STE; | 
|  | Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); | 
|  | if (!STE) | 
|  | return Error("unable to read symbol: '" + Twine(i) + "'"); | 
|  | if (STE->SectionIndex > SegmentLC->NumSections) | 
|  | return Error("invalid section index for symbol: '" + Twine(i) + "'"); | 
|  | // Get the symbol name. | 
|  | StringRef Name = Obj->getStringAtIndex(STE->StringIndex); | 
|  | SymbolNames.push_back(Name); | 
|  |  | 
|  | // Just skip symbols not defined in this section. | 
|  | if ((unsigned)STE->SectionIndex - 1 != SectNum) | 
|  | continue; | 
|  |  | 
|  | // FIXME: Check the symbol type and flags. | 
|  | if (STE->Type != 0xF)  // external, defined in this section. | 
|  | continue; | 
|  | // Flags == 0x8 marks a thumb function for ARM, which is fine as it | 
|  | // doesn't require any special handling here. | 
|  | if (STE->Flags != 0x0 && STE->Flags != 0x8) | 
|  | continue; | 
|  |  | 
|  | // Remember the symbol. | 
|  | Symbols.push_back(SymbolEntry(STE->Value, Name)); | 
|  |  | 
|  | DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << | 
|  | (Sect->Address + STE->Value) << "\n"); | 
|  | } | 
|  | // Sort the symbols by address, just in case they didn't come in that way. | 
|  | array_pod_sort(Symbols.begin(), Symbols.end()); | 
|  |  | 
|  | // If there weren't any functions (odd, but just in case...) | 
|  | if (!Symbols.size()) | 
|  | continue; | 
|  |  | 
|  | // Extract the function data. | 
|  | uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, | 
|  | SegmentLC->FileSize).data(); | 
|  | for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { | 
|  | uint64_t StartOffset = Sect->Address + Symbols[i].first; | 
|  | uint64_t EndOffset = Symbols[i + 1].first - 1; | 
|  | DEBUG(dbgs() << "Extracting function: " << Symbols[i].second | 
|  | << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
|  | extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); | 
|  | } | 
|  | // The last symbol we do after since the end address is calculated | 
|  | // differently because there is no next symbol to reference. | 
|  | uint64_t StartOffset = Symbols[Symbols.size() - 1].first; | 
|  | uint64_t EndOffset = Sect->Size - 1; | 
|  | DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second | 
|  | << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
|  | extractFunction(Symbols[Symbols.size()-1].second, | 
|  | Base + StartOffset, Base + EndOffset); | 
|  |  | 
|  | // Now extract the relocation information for each function and process it. | 
|  | for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { | 
|  | InMemoryStruct<macho::RelocationEntry> RE; | 
|  | Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); | 
|  | if (RE->Word0 & macho::RF_Scattered) | 
|  | return Error("NOT YET IMPLEMENTED: scattered relocations."); | 
|  | // Word0 of the relocation is the offset into the section where the | 
|  | // relocation should be applied. We need to translate that into an | 
|  | // offset into a function since that's our atom. | 
|  | uint32_t Offset = RE->Word0; | 
|  | // Look for the function containing the address. This is used for JIT | 
|  | // code, so the number of functions in section is almost always going | 
|  | // to be very small (usually just one), so until we have use cases | 
|  | // where that's not true, just use a trivial linear search. | 
|  | unsigned SymbolNum; | 
|  | unsigned NumSymbols = Symbols.size(); | 
|  | assert(NumSymbols > 0 && Symbols[0].first <= Offset && | 
|  | "No symbol containing relocation!"); | 
|  | for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) | 
|  | if (Symbols[SymbolNum + 1].first > Offset) | 
|  | break; | 
|  | // Adjust the offset to be relative to the symbol. | 
|  | Offset -= Symbols[SymbolNum].first; | 
|  | // Get the name of the symbol containing the relocation. | 
|  | StringRef TargetName = SymbolNames[SymbolNum]; | 
|  |  | 
|  | bool isExtern = (RE->Word1 >> 27) & 1; | 
|  | // Figure out the source symbol of the relocation. If isExtern is true, | 
|  | // this relocation references the symbol table, otherwise it references | 
|  | // a section in the same object, numbered from 1 through NumSections | 
|  | // (SectionBases is [0, NumSections-1]). | 
|  | // FIXME: Some targets (ARM) use internal relocations even for | 
|  | // externally visible symbols, if the definition is in the same | 
|  | // file as the reference. We need to convert those back to by-name | 
|  | // references. We can resolve the address based on the section | 
|  | // offset and see if we have a symbol at that address. If we do, | 
|  | // use that; otherwise, puke. | 
|  | if (!isExtern) | 
|  | return Error("Internal relocations not supported."); | 
|  | uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value | 
|  | StringRef SourceName = SymbolNames[SourceNum]; | 
|  |  | 
|  | // FIXME: Get the relocation addend from the target address. | 
|  |  | 
|  | // Now store the relocation information. Associate it with the source | 
|  | // symbol. | 
|  | Relocations[SourceName].push_back(RelocationEntry(TargetName, | 
|  | Offset, | 
|  | RE->Word1, | 
|  | 0 /*Addend*/)); | 
|  | DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset | 
|  | << " from '" << SourceName << "(Word1: " | 
|  | << format("0x%x", RE->Word1) << ")\n"); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool RuntimeDyldMachO:: | 
|  | loadSegment64(const MachOObject *Obj, | 
|  | const MachOObject::LoadCommandInfo *SegmentLCI, | 
|  | const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { | 
|  | InMemoryStruct<macho::Segment64LoadCommand> Segment64LC; | 
|  | Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); | 
|  | if (!Segment64LC) | 
|  | return Error("unable to load segment load command"); | 
|  |  | 
|  | for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { | 
|  | InMemoryStruct<macho::Section64> Sect; | 
|  | Obj->ReadSection64(*SegmentLCI, SectNum, Sect); | 
|  | if (!Sect) | 
|  | return Error("unable to load section: '" + Twine(SectNum) + "'"); | 
|  |  | 
|  | // FIXME: For the time being, we're only loading text segments. | 
|  | if (Sect->Flags != 0x80000400) | 
|  | continue; | 
|  |  | 
|  | // Address and names of symbols in the section. | 
|  | typedef std::pair<uint64_t, StringRef> SymbolEntry; | 
|  | SmallVector<SymbolEntry, 64> Symbols; | 
|  | // Index of all the names, in this section or not. Used when we're | 
|  | // dealing with relocation entries. | 
|  | SmallVector<StringRef, 64> SymbolNames; | 
|  | for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { | 
|  | InMemoryStruct<macho::Symbol64TableEntry> STE; | 
|  | Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); | 
|  | if (!STE) | 
|  | return Error("unable to read symbol: '" + Twine(i) + "'"); | 
|  | if (STE->SectionIndex > Segment64LC->NumSections) | 
|  | return Error("invalid section index for symbol: '" + Twine(i) + "'"); | 
|  | // Get the symbol name. | 
|  | StringRef Name = Obj->getStringAtIndex(STE->StringIndex); | 
|  | SymbolNames.push_back(Name); | 
|  |  | 
|  | // Just skip symbols not defined in this section. | 
|  | if ((unsigned)STE->SectionIndex - 1 != SectNum) | 
|  | continue; | 
|  |  | 
|  | // FIXME: Check the symbol type and flags. | 
|  | if (STE->Type != 0xF)  // external, defined in this section. | 
|  | continue; | 
|  | if (STE->Flags != 0x0) | 
|  | continue; | 
|  |  | 
|  | // Remember the symbol. | 
|  | Symbols.push_back(SymbolEntry(STE->Value, Name)); | 
|  |  | 
|  | DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << | 
|  | (Sect->Address + STE->Value) << "\n"); | 
|  | } | 
|  | // Sort the symbols by address, just in case they didn't come in that way. | 
|  | array_pod_sort(Symbols.begin(), Symbols.end()); | 
|  |  | 
|  | // If there weren't any functions (odd, but just in case...) | 
|  | if (!Symbols.size()) | 
|  | continue; | 
|  |  | 
|  | // Extract the function data. | 
|  | uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, | 
|  | Segment64LC->FileSize).data(); | 
|  | for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { | 
|  | uint64_t StartOffset = Sect->Address + Symbols[i].first; | 
|  | uint64_t EndOffset = Symbols[i + 1].first - 1; | 
|  | DEBUG(dbgs() << "Extracting function: " << Symbols[i].second | 
|  | << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
|  | extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); | 
|  | } | 
|  | // The last symbol we do after since the end address is calculated | 
|  | // differently because there is no next symbol to reference. | 
|  | uint64_t StartOffset = Symbols[Symbols.size() - 1].first; | 
|  | uint64_t EndOffset = Sect->Size - 1; | 
|  | DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second | 
|  | << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
|  | extractFunction(Symbols[Symbols.size()-1].second, | 
|  | Base + StartOffset, Base + EndOffset); | 
|  |  | 
|  | // Now extract the relocation information for each function and process it. | 
|  | for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { | 
|  | InMemoryStruct<macho::RelocationEntry> RE; | 
|  | Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); | 
|  | if (RE->Word0 & macho::RF_Scattered) | 
|  | return Error("NOT YET IMPLEMENTED: scattered relocations."); | 
|  | // Word0 of the relocation is the offset into the section where the | 
|  | // relocation should be applied. We need to translate that into an | 
|  | // offset into a function since that's our atom. | 
|  | uint32_t Offset = RE->Word0; | 
|  | // Look for the function containing the address. This is used for JIT | 
|  | // code, so the number of functions in section is almost always going | 
|  | // to be very small (usually just one), so until we have use cases | 
|  | // where that's not true, just use a trivial linear search. | 
|  | unsigned SymbolNum; | 
|  | unsigned NumSymbols = Symbols.size(); | 
|  | assert(NumSymbols > 0 && Symbols[0].first <= Offset && | 
|  | "No symbol containing relocation!"); | 
|  | for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) | 
|  | if (Symbols[SymbolNum + 1].first > Offset) | 
|  | break; | 
|  | // Adjust the offset to be relative to the symbol. | 
|  | Offset -= Symbols[SymbolNum].first; | 
|  | // Get the name of the symbol containing the relocation. | 
|  | StringRef TargetName = SymbolNames[SymbolNum]; | 
|  |  | 
|  | bool isExtern = (RE->Word1 >> 27) & 1; | 
|  | // Figure out the source symbol of the relocation. If isExtern is true, | 
|  | // this relocation references the symbol table, otherwise it references | 
|  | // a section in the same object, numbered from 1 through NumSections | 
|  | // (SectionBases is [0, NumSections-1]). | 
|  | if (!isExtern) | 
|  | return Error("Internal relocations not supported."); | 
|  | uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value | 
|  | StringRef SourceName = SymbolNames[SourceNum]; | 
|  |  | 
|  | // FIXME: Get the relocation addend from the target address. | 
|  |  | 
|  | // Now store the relocation information. Associate it with the source | 
|  | // symbol. | 
|  | Relocations[SourceName].push_back(RelocationEntry(TargetName, | 
|  | Offset, | 
|  | RE->Word1, | 
|  | 0 /*Addend*/)); | 
|  | DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset | 
|  | << " from '" << SourceName << "(Word1: " | 
|  | << format("0x%x", RE->Word1) << ")\n"); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { | 
|  | // If the linker is in an error state, don't do anything. | 
|  | if (hasError()) | 
|  | return true; | 
|  | // Load the Mach-O wrapper object. | 
|  | std::string ErrorStr; | 
|  | OwningPtr<MachOObject> Obj( | 
|  | MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); | 
|  | if (!Obj) | 
|  | return Error("unable to load object: '" + ErrorStr + "'"); | 
|  |  | 
|  | // Get the CPU type information from the header. | 
|  | const macho::Header &Header = Obj->getHeader(); | 
|  |  | 
|  | // FIXME: Error checking that the loaded object is compatible with | 
|  | //        the system we're running on. | 
|  | CPUType = Header.CPUType; | 
|  | CPUSubtype = Header.CPUSubtype; | 
|  |  | 
|  | // Validate that the load commands match what we expect. | 
|  | const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, | 
|  | *DysymtabLCI = 0; | 
|  | for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { | 
|  | const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); | 
|  | switch (LCI.Command.Type) { | 
|  | case macho::LCT_Segment: | 
|  | case macho::LCT_Segment64: | 
|  | if (SegmentLCI) | 
|  | return Error("unexpected input object (multiple segments)"); | 
|  | SegmentLCI = &LCI; | 
|  | break; | 
|  | case macho::LCT_Symtab: | 
|  | if (SymtabLCI) | 
|  | return Error("unexpected input object (multiple symbol tables)"); | 
|  | SymtabLCI = &LCI; | 
|  | break; | 
|  | case macho::LCT_Dysymtab: | 
|  | if (DysymtabLCI) | 
|  | return Error("unexpected input object (multiple symbol tables)"); | 
|  | DysymtabLCI = &LCI; | 
|  | break; | 
|  | default: | 
|  | return Error("unexpected input object (unexpected load command"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SymtabLCI) | 
|  | return Error("no symbol table found in object"); | 
|  | if (!SegmentLCI) | 
|  | return Error("no symbol table found in object"); | 
|  |  | 
|  | // Read and register the symbol table data. | 
|  | InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; | 
|  | Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); | 
|  | if (!SymtabLC) | 
|  | return Error("unable to load symbol table load command"); | 
|  | Obj->RegisterStringTable(*SymtabLC); | 
|  |  | 
|  | // Read the dynamic link-edit information, if present (not present in static | 
|  | // objects). | 
|  | if (DysymtabLCI) { | 
|  | InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC; | 
|  | Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); | 
|  | if (!DysymtabLC) | 
|  | return Error("unable to load dynamic link-exit load command"); | 
|  |  | 
|  | // FIXME: We don't support anything interesting yet. | 
|  | //    if (DysymtabLC->LocalSymbolsIndex != 0) | 
|  | //      return Error("NOT YET IMPLEMENTED: local symbol entries"); | 
|  | //    if (DysymtabLC->ExternalSymbolsIndex != 0) | 
|  | //      return Error("NOT YET IMPLEMENTED: non-external symbol entries"); | 
|  | //    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) | 
|  | //      return Error("NOT YET IMPLEMENTED: undefined symbol entries"); | 
|  | } | 
|  |  | 
|  | // Load the segment load command. | 
|  | if (SegmentLCI->Command.Type == macho::LCT_Segment) { | 
|  | if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) | 
|  | return true; | 
|  | } else { | 
|  | if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Assign an address to a symbol name and resolve all the relocations | 
|  | // associated with it. | 
|  | void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { | 
|  | // Assign the address in our symbol table. | 
|  | SymbolTable[Name] = Addr; | 
|  |  | 
|  | RelocationList &Relocs = Relocations[Name]; | 
|  | for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { | 
|  | RelocationEntry &RE = Relocs[i]; | 
|  | uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; | 
|  | bool isPCRel = (RE.Data >> 24) & 1; | 
|  | unsigned Type = (RE.Data >> 28) & 0xf; | 
|  | unsigned Size = 1 << ((RE.Data >> 25) & 3); | 
|  |  | 
|  | DEBUG(dbgs() << "Resolving relocation at '" << RE.Target | 
|  | << "' + " << RE.Offset << " (" << format("%p", Target) << ")" | 
|  | << " from '" << Name << " (" << format("%p", Addr) << ")" | 
|  | << "(" << (isPCRel ? "pcrel" : "absolute") | 
|  | << ", type: " << Type << ", Size: " << Size << ").\n"); | 
|  |  | 
|  | resolveRelocation(Target, Addr, isPCRel, Type, Size); | 
|  | RE.isResolved = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { | 
|  | StringRef Magic = InputBuffer->getBuffer().slice(0, 4); | 
|  | if (Magic == "\xFE\xED\xFA\xCE") return true; | 
|  | if (Magic == "\xCE\xFA\xED\xFE") return true; | 
|  | if (Magic == "\xFE\xED\xFA\xCF") return true; | 
|  | if (Magic == "\xCF\xFA\xED\xFE") return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |