|  | //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass statically checks for common and easily-identified constructs | 
|  | // which produce undefined or likely unintended behavior in LLVM IR. | 
|  | // | 
|  | // It is not a guarantee of correctness, in two ways. First, it isn't | 
|  | // comprehensive. There are checks which could be done statically which are | 
|  | // not yet implemented. Some of these are indicated by TODO comments, but | 
|  | // those aren't comprehensive either. Second, many conditions cannot be | 
|  | // checked statically. This pass does no dynamic instrumentation, so it | 
|  | // can't check for all possible problems. | 
|  | // | 
|  | // Another limitation is that it assumes all code will be executed. A store | 
|  | // through a null pointer in a basic block which is never reached is harmless, | 
|  | // but this pass will warn about it anyway. This is the main reason why most | 
|  | // of these checks live here instead of in the Verifier pass. | 
|  | // | 
|  | // Optimization passes may make conditions that this pass checks for more or | 
|  | // less obvious. If an optimization pass appears to be introducing a warning, | 
|  | // it may be that the optimization pass is merely exposing an existing | 
|  | // condition in the code. | 
|  | // | 
|  | // This code may be run before instcombine. In many cases, instcombine checks | 
|  | // for the same kinds of things and turns instructions with undefined behavior | 
|  | // into unreachable (or equivalent). Because of this, this pass makes some | 
|  | // effort to look through bitcasts and so on. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/Lint.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | namespace MemRef { | 
|  | static unsigned Read     = 1; | 
|  | static unsigned Write    = 2; | 
|  | static unsigned Callee   = 4; | 
|  | static unsigned Branchee = 8; | 
|  | } | 
|  |  | 
|  | class Lint : public FunctionPass, public InstVisitor<Lint> { | 
|  | friend class InstVisitor<Lint>; | 
|  |  | 
|  | void visitFunction(Function &F); | 
|  |  | 
|  | void visitCallSite(CallSite CS); | 
|  | void visitMemoryReference(Instruction &I, Value *Ptr, | 
|  | uint64_t Size, unsigned Align, | 
|  | Type *Ty, unsigned Flags); | 
|  |  | 
|  | void visitCallInst(CallInst &I); | 
|  | void visitInvokeInst(InvokeInst &I); | 
|  | void visitReturnInst(ReturnInst &I); | 
|  | void visitLoadInst(LoadInst &I); | 
|  | void visitStoreInst(StoreInst &I); | 
|  | void visitXor(BinaryOperator &I); | 
|  | void visitSub(BinaryOperator &I); | 
|  | void visitLShr(BinaryOperator &I); | 
|  | void visitAShr(BinaryOperator &I); | 
|  | void visitShl(BinaryOperator &I); | 
|  | void visitSDiv(BinaryOperator &I); | 
|  | void visitUDiv(BinaryOperator &I); | 
|  | void visitSRem(BinaryOperator &I); | 
|  | void visitURem(BinaryOperator &I); | 
|  | void visitAllocaInst(AllocaInst &I); | 
|  | void visitVAArgInst(VAArgInst &I); | 
|  | void visitIndirectBrInst(IndirectBrInst &I); | 
|  | void visitExtractElementInst(ExtractElementInst &I); | 
|  | void visitInsertElementInst(InsertElementInst &I); | 
|  | void visitUnreachableInst(UnreachableInst &I); | 
|  |  | 
|  | Value *findValue(Value *V, bool OffsetOk) const; | 
|  | Value *findValueImpl(Value *V, bool OffsetOk, | 
|  | SmallPtrSet<Value *, 4> &Visited) const; | 
|  |  | 
|  | public: | 
|  | Module *Mod; | 
|  | AliasAnalysis *AA; | 
|  | DominatorTree *DT; | 
|  | TargetData *TD; | 
|  |  | 
|  | std::string Messages; | 
|  | raw_string_ostream MessagesStr; | 
|  |  | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | Lint() : FunctionPass(ID), MessagesStr(Messages) { | 
|  | initializeLintPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | } | 
|  | virtual void print(raw_ostream &O, const Module *M) const {} | 
|  |  | 
|  | void WriteValue(const Value *V) { | 
|  | if (!V) return; | 
|  | if (isa<Instruction>(V)) { | 
|  | MessagesStr << *V << '\n'; | 
|  | } else { | 
|  | WriteAsOperand(MessagesStr, V, true, Mod); | 
|  | MessagesStr << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | // CheckFailed - A check failed, so print out the condition and the message | 
|  | // that failed.  This provides a nice place to put a breakpoint if you want | 
|  | // to see why something is not correct. | 
|  | void CheckFailed(const Twine &Message, | 
|  | const Value *V1 = 0, const Value *V2 = 0, | 
|  | const Value *V3 = 0, const Value *V4 = 0) { | 
|  | MessagesStr << Message.str() << "\n"; | 
|  | WriteValue(V1); | 
|  | WriteValue(V2); | 
|  | WriteValue(V3); | 
|  | WriteValue(V4); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | char Lint::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR", | 
|  | false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTree) | 
|  | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) | 
|  | INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR", | 
|  | false, true) | 
|  |  | 
|  | // Assert - We know that cond should be true, if not print an error message. | 
|  | #define Assert(C, M) \ | 
|  | do { if (!(C)) { CheckFailed(M); return; } } while (0) | 
|  | #define Assert1(C, M, V1) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) | 
|  | #define Assert2(C, M, V1, V2) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) | 
|  | #define Assert3(C, M, V1, V2, V3) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) | 
|  | #define Assert4(C, M, V1, V2, V3, V4) \ | 
|  | do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) | 
|  |  | 
|  | // Lint::run - This is the main Analysis entry point for a | 
|  | // function. | 
|  | // | 
|  | bool Lint::runOnFunction(Function &F) { | 
|  | Mod = F.getParent(); | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  | DT = &getAnalysis<DominatorTree>(); | 
|  | TD = getAnalysisIfAvailable<TargetData>(); | 
|  | visit(F); | 
|  | dbgs() << MessagesStr.str(); | 
|  | Messages.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Lint::visitFunction(Function &F) { | 
|  | // This isn't undefined behavior, it's just a little unusual, and it's a | 
|  | // fairly common mistake to neglect to name a function. | 
|  | Assert1(F.hasName() || F.hasLocalLinkage(), | 
|  | "Unusual: Unnamed function with non-local linkage", &F); | 
|  |  | 
|  | // TODO: Check for irreducible control flow. | 
|  | } | 
|  |  | 
|  | void Lint::visitCallSite(CallSite CS) { | 
|  | Instruction &I = *CS.getInstruction(); | 
|  | Value *Callee = CS.getCalledValue(); | 
|  |  | 
|  | visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize, | 
|  | 0, 0, MemRef::Callee); | 
|  |  | 
|  | if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) { | 
|  | Assert1(CS.getCallingConv() == F->getCallingConv(), | 
|  | "Undefined behavior: Caller and callee calling convention differ", | 
|  | &I); | 
|  |  | 
|  | FunctionType *FT = F->getFunctionType(); | 
|  | unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); | 
|  |  | 
|  | Assert1(FT->isVarArg() ? | 
|  | FT->getNumParams() <= NumActualArgs : | 
|  | FT->getNumParams() == NumActualArgs, | 
|  | "Undefined behavior: Call argument count mismatches callee " | 
|  | "argument count", &I); | 
|  |  | 
|  | Assert1(FT->getReturnType() == I.getType(), | 
|  | "Undefined behavior: Call return type mismatches " | 
|  | "callee return type", &I); | 
|  |  | 
|  | // Check argument types (in case the callee was casted) and attributes. | 
|  | // TODO: Verify that caller and callee attributes are compatible. | 
|  | Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); | 
|  | CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); | 
|  | for (; AI != AE; ++AI) { | 
|  | Value *Actual = *AI; | 
|  | if (PI != PE) { | 
|  | Argument *Formal = PI++; | 
|  | Assert1(Formal->getType() == Actual->getType(), | 
|  | "Undefined behavior: Call argument type mismatches " | 
|  | "callee parameter type", &I); | 
|  |  | 
|  | // Check that noalias arguments don't alias other arguments. This is | 
|  | // not fully precise because we don't know the sizes of the dereferenced | 
|  | // memory regions. | 
|  | if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) | 
|  | for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) | 
|  | if (AI != BI && (*BI)->getType()->isPointerTy()) { | 
|  | AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI); | 
|  | Assert1(Result != AliasAnalysis::MustAlias && | 
|  | Result != AliasAnalysis::PartialAlias, | 
|  | "Unusual: noalias argument aliases another argument", &I); | 
|  | } | 
|  |  | 
|  | // Check that an sret argument points to valid memory. | 
|  | if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { | 
|  | Type *Ty = | 
|  | cast<PointerType>(Formal->getType())->getElementType(); | 
|  | visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty), | 
|  | TD ? TD->getABITypeAlignment(Ty) : 0, | 
|  | Ty, MemRef::Read | MemRef::Write); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall()) | 
|  | for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); | 
|  | AI != AE; ++AI) { | 
|  | Value *Obj = findValue(*AI, /*OffsetOk=*/true); | 
|  | Assert1(!isa<AllocaInst>(Obj), | 
|  | "Undefined behavior: Call with \"tail\" keyword references " | 
|  | "alloca", &I); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  |  | 
|  | // TODO: Check more intrinsics | 
|  |  | 
|  | case Intrinsic::memcpy: { | 
|  | MemCpyInst *MCI = cast<MemCpyInst>(&I); | 
|  | // TODO: If the size is known, use it. | 
|  | visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize, | 
|  | MCI->getAlignment(), 0, | 
|  | MemRef::Write); | 
|  | visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize, | 
|  | MCI->getAlignment(), 0, | 
|  | MemRef::Read); | 
|  |  | 
|  | // Check that the memcpy arguments don't overlap. The AliasAnalysis API | 
|  | // isn't expressive enough for what we really want to do. Known partial | 
|  | // overlap is not distinguished from the case where nothing is known. | 
|  | uint64_t Size = 0; | 
|  | if (const ConstantInt *Len = | 
|  | dyn_cast<ConstantInt>(findValue(MCI->getLength(), | 
|  | /*OffsetOk=*/false))) | 
|  | if (Len->getValue().isIntN(32)) | 
|  | Size = Len->getValue().getZExtValue(); | 
|  | Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != | 
|  | AliasAnalysis::MustAlias, | 
|  | "Undefined behavior: memcpy source and destination overlap", &I); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | MemMoveInst *MMI = cast<MemMoveInst>(&I); | 
|  | // TODO: If the size is known, use it. | 
|  | visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize, | 
|  | MMI->getAlignment(), 0, | 
|  | MemRef::Write); | 
|  | visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize, | 
|  | MMI->getAlignment(), 0, | 
|  | MemRef::Read); | 
|  | break; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | MemSetInst *MSI = cast<MemSetInst>(&I); | 
|  | // TODO: If the size is known, use it. | 
|  | visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize, | 
|  | MSI->getAlignment(), 0, | 
|  | MemRef::Write); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Intrinsic::vastart: | 
|  | Assert1(I.getParent()->getParent()->isVarArg(), | 
|  | "Undefined behavior: va_start called in a non-varargs function", | 
|  | &I); | 
|  |  | 
|  | visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, | 
|  | 0, 0, MemRef::Read | MemRef::Write); | 
|  | break; | 
|  | case Intrinsic::vacopy: | 
|  | visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, | 
|  | 0, 0, MemRef::Write); | 
|  | visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize, | 
|  | 0, 0, MemRef::Read); | 
|  | break; | 
|  | case Intrinsic::vaend: | 
|  | visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, | 
|  | 0, 0, MemRef::Read | MemRef::Write); | 
|  | break; | 
|  |  | 
|  | case Intrinsic::stackrestore: | 
|  | // Stackrestore doesn't read or write memory, but it sets the | 
|  | // stack pointer, which the compiler may read from or write to | 
|  | // at any time, so check it for both readability and writeability. | 
|  | visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, | 
|  | 0, 0, MemRef::Read | MemRef::Write); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Lint::visitCallInst(CallInst &I) { | 
|  | return visitCallSite(&I); | 
|  | } | 
|  |  | 
|  | void Lint::visitInvokeInst(InvokeInst &I) { | 
|  | return visitCallSite(&I); | 
|  | } | 
|  |  | 
|  | void Lint::visitReturnInst(ReturnInst &I) { | 
|  | Function *F = I.getParent()->getParent(); | 
|  | Assert1(!F->doesNotReturn(), | 
|  | "Unusual: Return statement in function with noreturn attribute", | 
|  | &I); | 
|  |  | 
|  | if (Value *V = I.getReturnValue()) { | 
|  | Value *Obj = findValue(V, /*OffsetOk=*/true); | 
|  | Assert1(!isa<AllocaInst>(Obj), | 
|  | "Unusual: Returning alloca value", &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: Check that the reference is in bounds. | 
|  | // TODO: Check readnone/readonly function attributes. | 
|  | void Lint::visitMemoryReference(Instruction &I, | 
|  | Value *Ptr, uint64_t Size, unsigned Align, | 
|  | Type *Ty, unsigned Flags) { | 
|  | // If no memory is being referenced, it doesn't matter if the pointer | 
|  | // is valid. | 
|  | if (Size == 0) | 
|  | return; | 
|  |  | 
|  | Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); | 
|  | Assert1(!isa<ConstantPointerNull>(UnderlyingObject), | 
|  | "Undefined behavior: Null pointer dereference", &I); | 
|  | Assert1(!isa<UndefValue>(UnderlyingObject), | 
|  | "Undefined behavior: Undef pointer dereference", &I); | 
|  | Assert1(!isa<ConstantInt>(UnderlyingObject) || | 
|  | !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(), | 
|  | "Unusual: All-ones pointer dereference", &I); | 
|  | Assert1(!isa<ConstantInt>(UnderlyingObject) || | 
|  | !cast<ConstantInt>(UnderlyingObject)->isOne(), | 
|  | "Unusual: Address one pointer dereference", &I); | 
|  |  | 
|  | if (Flags & MemRef::Write) { | 
|  | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) | 
|  | Assert1(!GV->isConstant(), | 
|  | "Undefined behavior: Write to read-only memory", &I); | 
|  | Assert1(!isa<Function>(UnderlyingObject) && | 
|  | !isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Write to text section", &I); | 
|  | } | 
|  | if (Flags & MemRef::Read) { | 
|  | Assert1(!isa<Function>(UnderlyingObject), | 
|  | "Unusual: Load from function body", &I); | 
|  | Assert1(!isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Load from block address", &I); | 
|  | } | 
|  | if (Flags & MemRef::Callee) { | 
|  | Assert1(!isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Call to block address", &I); | 
|  | } | 
|  | if (Flags & MemRef::Branchee) { | 
|  | Assert1(!isa<Constant>(UnderlyingObject) || | 
|  | isa<BlockAddress>(UnderlyingObject), | 
|  | "Undefined behavior: Branch to non-blockaddress", &I); | 
|  | } | 
|  |  | 
|  | if (TD) { | 
|  | if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty); | 
|  |  | 
|  | if (Align != 0) { | 
|  | unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType()); | 
|  | APInt Mask = APInt::getAllOnesValue(BitWidth), | 
|  | KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD); | 
|  | Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))), | 
|  | "Undefined behavior: Memory reference address is misaligned", &I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Lint::visitLoadInst(LoadInst &I) { | 
|  | visitMemoryReference(I, I.getPointerOperand(), | 
|  | AA->getTypeStoreSize(I.getType()), I.getAlignment(), | 
|  | I.getType(), MemRef::Read); | 
|  | } | 
|  |  | 
|  | void Lint::visitStoreInst(StoreInst &I) { | 
|  | visitMemoryReference(I, I.getPointerOperand(), | 
|  | AA->getTypeStoreSize(I.getOperand(0)->getType()), | 
|  | I.getAlignment(), | 
|  | I.getOperand(0)->getType(), MemRef::Write); | 
|  | } | 
|  |  | 
|  | void Lint::visitXor(BinaryOperator &I) { | 
|  | Assert1(!isa<UndefValue>(I.getOperand(0)) || | 
|  | !isa<UndefValue>(I.getOperand(1)), | 
|  | "Undefined result: xor(undef, undef)", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitSub(BinaryOperator &I) { | 
|  | Assert1(!isa<UndefValue>(I.getOperand(0)) || | 
|  | !isa<UndefValue>(I.getOperand(1)), | 
|  | "Undefined result: sub(undef, undef)", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitLShr(BinaryOperator &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
|  | Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
|  | "Undefined result: Shift count out of range", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitAShr(BinaryOperator &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
|  | Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
|  | "Undefined result: Shift count out of range", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitShl(BinaryOperator &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
|  | Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
|  | "Undefined result: Shift count out of range", &I); | 
|  | } | 
|  |  | 
|  | static bool isZero(Value *V, TargetData *TD) { | 
|  | // Assume undef could be zero. | 
|  | if (isa<UndefValue>(V)) return true; | 
|  |  | 
|  | unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); | 
|  | APInt Mask = APInt::getAllOnesValue(BitWidth), | 
|  | KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
|  | ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); | 
|  | return KnownZero.isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | void Lint::visitSDiv(BinaryOperator &I) { | 
|  | Assert1(!isZero(I.getOperand(1), TD), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitUDiv(BinaryOperator &I) { | 
|  | Assert1(!isZero(I.getOperand(1), TD), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitSRem(BinaryOperator &I) { | 
|  | Assert1(!isZero(I.getOperand(1), TD), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitURem(BinaryOperator &I) { | 
|  | Assert1(!isZero(I.getOperand(1), TD), | 
|  | "Undefined behavior: Division by zero", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitAllocaInst(AllocaInst &I) { | 
|  | if (isa<ConstantInt>(I.getArraySize())) | 
|  | // This isn't undefined behavior, it's just an obvious pessimization. | 
|  | Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), | 
|  | "Pessimization: Static alloca outside of entry block", &I); | 
|  |  | 
|  | // TODO: Check for an unusual size (MSB set?) | 
|  | } | 
|  |  | 
|  | void Lint::visitVAArgInst(VAArgInst &I) { | 
|  | visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0, | 
|  | MemRef::Read | MemRef::Write); | 
|  | } | 
|  |  | 
|  | void Lint::visitIndirectBrInst(IndirectBrInst &I) { | 
|  | visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0, | 
|  | MemRef::Branchee); | 
|  |  | 
|  | Assert1(I.getNumDestinations() != 0, | 
|  | "Undefined behavior: indirectbr with no destinations", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitExtractElementInst(ExtractElementInst &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), | 
|  | /*OffsetOk=*/false))) | 
|  | Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), | 
|  | "Undefined result: extractelement index out of range", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitInsertElementInst(InsertElementInst &I) { | 
|  | if (ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(findValue(I.getOperand(2), | 
|  | /*OffsetOk=*/false))) | 
|  | Assert1(CI->getValue().ult(I.getType()->getNumElements()), | 
|  | "Undefined result: insertelement index out of range", &I); | 
|  | } | 
|  |  | 
|  | void Lint::visitUnreachableInst(UnreachableInst &I) { | 
|  | // This isn't undefined behavior, it's merely suspicious. | 
|  | Assert1(&I == I.getParent()->begin() || | 
|  | prior(BasicBlock::iterator(&I))->mayHaveSideEffects(), | 
|  | "Unusual: unreachable immediately preceded by instruction without " | 
|  | "side effects", &I); | 
|  | } | 
|  |  | 
|  | /// findValue - Look through bitcasts and simple memory reference patterns | 
|  | /// to identify an equivalent, but more informative, value.  If OffsetOk | 
|  | /// is true, look through getelementptrs with non-zero offsets too. | 
|  | /// | 
|  | /// Most analysis passes don't require this logic, because instcombine | 
|  | /// will simplify most of these kinds of things away. But it's a goal of | 
|  | /// this Lint pass to be useful even on non-optimized IR. | 
|  | Value *Lint::findValue(Value *V, bool OffsetOk) const { | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | return findValueImpl(V, OffsetOk, Visited); | 
|  | } | 
|  |  | 
|  | /// findValueImpl - Implementation helper for findValue. | 
|  | Value *Lint::findValueImpl(Value *V, bool OffsetOk, | 
|  | SmallPtrSet<Value *, 4> &Visited) const { | 
|  | // Detect self-referential values. | 
|  | if (!Visited.insert(V)) | 
|  | return UndefValue::get(V->getType()); | 
|  |  | 
|  | // TODO: Look through sext or zext cast, when the result is known to | 
|  | // be interpreted as signed or unsigned, respectively. | 
|  | // TODO: Look through eliminable cast pairs. | 
|  | // TODO: Look through calls with unique return values. | 
|  | // TODO: Look through vector insert/extract/shuffle. | 
|  | V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts(); | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(V)) { | 
|  | BasicBlock::iterator BBI = L; | 
|  | BasicBlock *BB = L->getParent(); | 
|  | SmallPtrSet<BasicBlock *, 4> VisitedBlocks; | 
|  | for (;;) { | 
|  | if (!VisitedBlocks.insert(BB)) break; | 
|  | if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(), | 
|  | BB, BBI, 6, AA)) | 
|  | return findValueImpl(U, OffsetOk, Visited); | 
|  | if (BBI != BB->begin()) break; | 
|  | BB = BB->getUniquePredecessor(); | 
|  | if (!BB) break; | 
|  | BBI = BB->end(); | 
|  | } | 
|  | } else if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
|  | if (Value *W = PN->hasConstantValue()) | 
|  | if (W != V) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } else if (CastInst *CI = dyn_cast<CastInst>(V)) { | 
|  | if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) : | 
|  | Type::getInt64Ty(V->getContext()))) | 
|  | return findValueImpl(CI->getOperand(0), OffsetOk, Visited); | 
|  | } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { | 
|  | if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), | 
|  | Ex->getIndices())) | 
|  | if (W != V) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | // Same as above, but for ConstantExpr instead of Instruction. | 
|  | if (Instruction::isCast(CE->getOpcode())) { | 
|  | if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), | 
|  | CE->getOperand(0)->getType(), | 
|  | CE->getType(), | 
|  | TD ? TD->getIntPtrType(V->getContext()) : | 
|  | Type::getInt64Ty(V->getContext()))) | 
|  | return findValueImpl(CE->getOperand(0), OffsetOk, Visited); | 
|  | } else if (CE->getOpcode() == Instruction::ExtractValue) { | 
|  | ArrayRef<unsigned> Indices = CE->getIndices(); | 
|  | if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) | 
|  | if (W != V) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } | 
|  | } | 
|  |  | 
|  | // As a last resort, try SimplifyInstruction or constant folding. | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | if (Value *W = SimplifyInstruction(Inst, TD, DT)) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (Value *W = ConstantFoldConstantExpression(CE, TD)) | 
|  | if (W != V) | 
|  | return findValueImpl(W, OffsetOk, Visited); | 
|  | } | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Implement the public interfaces to this file... | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | FunctionPass *llvm::createLintPass() { | 
|  | return new Lint(); | 
|  | } | 
|  |  | 
|  | /// lintFunction - Check a function for errors, printing messages on stderr. | 
|  | /// | 
|  | void llvm::lintFunction(const Function &f) { | 
|  | Function &F = const_cast<Function&>(f); | 
|  | assert(!F.isDeclaration() && "Cannot lint external functions"); | 
|  |  | 
|  | FunctionPassManager FPM(F.getParent()); | 
|  | Lint *V = new Lint(); | 
|  | FPM.add(V); | 
|  | FPM.run(F); | 
|  | } | 
|  |  | 
|  | /// lintModule - Check a module for errors, printing messages on stderr. | 
|  | /// | 
|  | void llvm::lintModule(const Module &M) { | 
|  | PassManager PM; | 
|  | Lint *V = new Lint(); | 
|  | PM.add(V); | 
|  | PM.run(const_cast<Module&>(M)); | 
|  | } |