blob: faa396a9561488cda1ca217061083040b59562bf [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Vulkan unit tests that provide coverage for functionality not tested by
// the dEQP test suite. Also used as a smoke test.
#include "Driver.hpp"
#include "Device.hpp"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "spirv-tools/libspirv.hpp"
#include <sstream>
#include <cstring>
namespace
{
size_t alignUp(size_t val, size_t alignment)
{
return alignment * ((val + alignment - 1) / alignment);
}
} // anonymous namespace
class SwiftShaderVulkanTest : public testing::Test
{
};
TEST_F(SwiftShaderVulkanTest, ICD_Check)
{
Driver driver;
ASSERT_TRUE(driver.loadSwiftShader());
auto createInstance = driver.vk_icdGetInstanceProcAddr(VK_NULL_HANDLE, "vkCreateInstance");
EXPECT_NE(createInstance, nullptr);
auto enumerateInstanceExtensionProperties =
driver.vk_icdGetInstanceProcAddr(VK_NULL_HANDLE, "vkEnumerateInstanceExtensionProperties");
EXPECT_NE(enumerateInstanceExtensionProperties, nullptr);
auto enumerateInstanceLayerProperties =
driver.vk_icdGetInstanceProcAddr(VK_NULL_HANDLE, "vkEnumerateInstanceLayerProperties");
EXPECT_NE(enumerateInstanceLayerProperties, nullptr);
auto enumerateInstanceVersion = driver.vk_icdGetInstanceProcAddr(VK_NULL_HANDLE, "vkEnumerateInstanceVersion");
EXPECT_NE(enumerateInstanceVersion, nullptr);
auto bad_function = driver.vk_icdGetInstanceProcAddr(VK_NULL_HANDLE, "bad_function");
EXPECT_EQ(bad_function, nullptr);
}
TEST_F(SwiftShaderVulkanTest, Version)
{
Driver driver;
ASSERT_TRUE(driver.loadSwiftShader());
uint32_t apiVersion = 0;
VkResult result = driver.vkEnumerateInstanceVersion(&apiVersion);
EXPECT_EQ(apiVersion, (uint32_t)VK_API_VERSION_1_1);
const VkInstanceCreateInfo createInfo = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
nullptr, // pApplicationInfo
0, // enabledLayerCount
nullptr, // ppEnabledLayerNames
0, // enabledExtensionCount
nullptr, // ppEnabledExtensionNames
};
VkInstance instance = VK_NULL_HANDLE;
result = driver.vkCreateInstance(&createInfo, nullptr, &instance);
EXPECT_EQ(result, VK_SUCCESS);
ASSERT_TRUE(driver.resolve(instance));
uint32_t pPhysicalDeviceCount = 0;
result = driver.vkEnumeratePhysicalDevices(instance, &pPhysicalDeviceCount, nullptr);
EXPECT_EQ(result, VK_SUCCESS);
EXPECT_EQ(pPhysicalDeviceCount, 1U);
VkPhysicalDevice pPhysicalDevice = VK_NULL_HANDLE;
result = driver.vkEnumeratePhysicalDevices(instance, &pPhysicalDeviceCount, &pPhysicalDevice);
EXPECT_EQ(result, VK_SUCCESS);
EXPECT_NE(pPhysicalDevice, (VkPhysicalDevice)VK_NULL_HANDLE);
VkPhysicalDeviceProperties physicalDeviceProperties;
driver.vkGetPhysicalDeviceProperties(pPhysicalDevice, &physicalDeviceProperties);
EXPECT_EQ(physicalDeviceProperties.apiVersion, (uint32_t)VK_API_VERSION_1_1);
EXPECT_EQ(physicalDeviceProperties.deviceID, 0xC0DEU);
EXPECT_EQ(physicalDeviceProperties.deviceType, VK_PHYSICAL_DEVICE_TYPE_CPU);
EXPECT_EQ(strncmp(physicalDeviceProperties.deviceName, "SwiftShader Device", VK_MAX_PHYSICAL_DEVICE_NAME_SIZE), 0);
}
std::vector<uint32_t> compileSpirv(const char* assembly)
{
spvtools::SpirvTools core(SPV_ENV_VULKAN_1_0);
core.SetMessageConsumer([](spv_message_level_t, const char*, const spv_position_t& p, const char* m) {
FAIL() << p.line << ":" << p.column << ": " << m;
});
std::vector<uint32_t> spirv;
EXPECT_TRUE(core.Assemble(assembly, &spirv));
EXPECT_TRUE(core.Validate(spirv));
// Warn if the disassembly does not match the source assembly.
// We do this as debugging tests in the debugger is often made much harder
// if the SSA names (%X) in the debugger do not match the source.
std::string disassembled;
core.Disassemble(spirv, &disassembled, SPV_BINARY_TO_TEXT_OPTION_NO_HEADER);
if (disassembled != assembly)
{
printf("-- WARNING: Disassembly does not match assembly: ---\n\n");
auto splitLines = [](const std::string& str) -> std::vector<std::string>
{
std::stringstream ss(str);
std::vector<std::string> out;
std::string line;
while (std::getline(ss, line, '\n')) { out.push_back(line); }
return out;
};
auto srcLines = splitLines(std::string(assembly));
auto disLines = splitLines(disassembled);
for (size_t line = 0; line < srcLines.size() && line < disLines.size(); line++)
{
auto srcLine = (line < srcLines.size()) ? srcLines[line] : "<missing>";
auto disLine = (line < disLines.size()) ? disLines[line] : "<missing>";
if (srcLine != disLine)
{
printf("%zu: '%s' != '%s'\n", line, srcLine.c_str(), disLine.c_str());
}
}
printf("\n\n---\n");
}
return spirv;
}
#define VK_ASSERT(x) ASSERT_EQ(x, VK_SUCCESS)
struct ComputeParams
{
size_t numElements;
int localSizeX;
int localSizeY;
int localSizeZ;
friend std::ostream& operator<<(std::ostream& os, const ComputeParams& params) {
return os << "ComputeParams{" <<
"numElements: " << params.numElements << ", " <<
"localSizeX: " << params.localSizeX << ", " <<
"localSizeY: " << params.localSizeY << ", " <<
"localSizeZ: " << params.localSizeZ <<
"}";
}
};
// Base class for compute tests that read from an input buffer and write to an
// output buffer of same length.
class SwiftShaderVulkanBufferToBufferComputeTest : public testing::TestWithParam<ComputeParams>
{
public:
void test(const std::string& shader,
std::function<uint32_t(uint32_t idx)> input,
std::function<uint32_t(uint32_t idx)> expected);
};
void SwiftShaderVulkanBufferToBufferComputeTest::test(
const std::string& shader,
std::function<uint32_t(uint32_t idx)> input,
std::function<uint32_t(uint32_t idx)> expected)
{
auto code = compileSpirv(shader.c_str());
Driver driver;
ASSERT_TRUE(driver.loadSwiftShader());
const VkInstanceCreateInfo createInfo = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
nullptr, // pApplicationInfo
0, // enabledLayerCount
nullptr, // ppEnabledLayerNames
0, // enabledExtensionCount
nullptr, // ppEnabledExtensionNames
};
VkInstance instance = VK_NULL_HANDLE;
VK_ASSERT(driver.vkCreateInstance(&createInfo, nullptr, &instance));
ASSERT_TRUE(driver.resolve(instance));
std::unique_ptr<Device> device;
VK_ASSERT(Device::CreateComputeDevice(&driver, instance, device));
ASSERT_TRUE(device->IsValid());
// struct Buffers
// {
// uint32_t pad0[63];
// uint32_t magic0;
// uint32_t in[NUM_ELEMENTS]; // Aligned to 0x100
// uint32_t magic1;
// uint32_t pad1[N];
// uint32_t magic2;
// uint32_t out[NUM_ELEMENTS]; // Aligned to 0x100
// uint32_t magic3;
// };
static constexpr uint32_t magic0 = 0x01234567;
static constexpr uint32_t magic1 = 0x89abcdef;
static constexpr uint32_t magic2 = 0xfedcba99;
static constexpr uint32_t magic3 = 0x87654321;
size_t numElements = GetParam().numElements;
size_t alignElements = 0x100 / sizeof(uint32_t);
size_t magic0Offset = alignElements - 1;
size_t inOffset = 1 + magic0Offset;
size_t magic1Offset = numElements + inOffset;
size_t magic2Offset = alignUp(magic1Offset+1, alignElements) - 1;
size_t outOffset = 1 + magic2Offset;
size_t magic3Offset = numElements + outOffset;
size_t buffersTotalElements = alignUp(1 + magic3Offset, alignElements);
size_t buffersSize = sizeof(uint32_t) * buffersTotalElements;
VkDeviceMemory memory;
VK_ASSERT(device->AllocateMemory(buffersSize,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&memory));
uint32_t* buffers;
VK_ASSERT(device->MapMemory(memory, 0, buffersSize, 0, (void**)&buffers));
buffers[magic0Offset] = magic0;
buffers[magic1Offset] = magic1;
buffers[magic2Offset] = magic2;
buffers[magic3Offset] = magic3;
for(size_t i = 0; i < numElements; i++)
{
buffers[inOffset + i] = input(i);
}
device->UnmapMemory(memory);
buffers = nullptr;
VkBuffer bufferIn;
VK_ASSERT(device->CreateStorageBuffer(memory,
sizeof(uint32_t) * numElements,
sizeof(uint32_t) * inOffset,
&bufferIn));
VkBuffer bufferOut;
VK_ASSERT(device->CreateStorageBuffer(memory,
sizeof(uint32_t) * numElements,
sizeof(uint32_t) * outOffset,
&bufferOut));
VkShaderModule shaderModule;
VK_ASSERT(device->CreateShaderModule(code, &shaderModule));
std::vector<VkDescriptorSetLayoutBinding> descriptorSetLayoutBindings =
{
{
0, // binding
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, // descriptorType
1, // descriptorCount
VK_SHADER_STAGE_COMPUTE_BIT, // stageFlags
0, // pImmutableSamplers
},
{
1, // binding
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, // descriptorType
1, // descriptorCount
VK_SHADER_STAGE_COMPUTE_BIT, // stageFlags
0, // pImmutableSamplers
}
};
VkDescriptorSetLayout descriptorSetLayout;
VK_ASSERT(device->CreateDescriptorSetLayout(descriptorSetLayoutBindings, &descriptorSetLayout));
VkPipelineLayout pipelineLayout;
VK_ASSERT(device->CreatePipelineLayout(descriptorSetLayout, &pipelineLayout));
VkPipeline pipeline;
VK_ASSERT(device->CreateComputePipeline(shaderModule, pipelineLayout, &pipeline));
VkDescriptorPool descriptorPool;
VK_ASSERT(device->CreateStorageBufferDescriptorPool(2, &descriptorPool));
VkDescriptorSet descriptorSet;
VK_ASSERT(device->AllocateDescriptorSet(descriptorPool, descriptorSetLayout, &descriptorSet));
std::vector<VkDescriptorBufferInfo> descriptorBufferInfos =
{
{
bufferIn, // buffer
0, // offset
VK_WHOLE_SIZE, // range
},
{
bufferOut, // buffer
0, // offset
VK_WHOLE_SIZE, // range
}
};
device->UpdateStorageBufferDescriptorSets(descriptorSet, descriptorBufferInfos);
VkCommandPool commandPool;
VK_ASSERT(device->CreateCommandPool(&commandPool));
VkCommandBuffer commandBuffer;
VK_ASSERT(device->AllocateCommandBuffer(commandPool, &commandBuffer));
VK_ASSERT(device->BeginCommandBuffer(VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, commandBuffer));
driver.vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
driver.vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0, 1, &descriptorSet,
0, nullptr);
driver.vkCmdDispatch(commandBuffer, numElements / GetParam().localSizeX, 1, 1);
VK_ASSERT(driver.vkEndCommandBuffer(commandBuffer));
VK_ASSERT(device->QueueSubmitAndWait(commandBuffer));
VK_ASSERT(device->MapMemory(memory, 0, buffersSize, 0, (void**)&buffers));
for (size_t i = 0; i < numElements; ++i)
{
auto got = buffers[i + outOffset];
EXPECT_EQ(expected(i), got) << "Unexpected output at " << i;
}
// Check for writes outside of bounds.
EXPECT_EQ(buffers[magic0Offset], magic0);
EXPECT_EQ(buffers[magic1Offset], magic1);
EXPECT_EQ(buffers[magic2Offset], magic2);
EXPECT_EQ(buffers[magic3Offset], magic3);
device->UnmapMemory(memory);
buffers = nullptr;
}
INSTANTIATE_TEST_CASE_P(ComputeParams, SwiftShaderVulkanBufferToBufferComputeTest, testing::Values(
ComputeParams{512, 1, 1, 1},
ComputeParams{512, 2, 1, 1},
ComputeParams{512, 4, 1, 1},
ComputeParams{512, 8, 1, 1},
ComputeParams{512, 16, 1, 1},
ComputeParams{512, 32, 1, 1},
// Non-multiple of SIMD-lane.
ComputeParams{3, 1, 1, 1},
ComputeParams{2, 1, 1, 1}
));
TEST_P(SwiftShaderVulkanBufferToBufferComputeTest, Memcpy)
{
std::stringstream src;
src <<
"OpCapability Shader\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %1 \"main\" %2\n"
"OpExecutionMode %1 LocalSize " <<
GetParam().localSizeX << " " <<
GetParam().localSizeY << " " <<
GetParam().localSizeZ << "\n" <<
"OpDecorate %3 ArrayStride 4\n"
"OpMemberDecorate %4 0 Offset 0\n"
"OpDecorate %4 BufferBlock\n"
"OpDecorate %5 DescriptorSet 0\n"
"OpDecorate %5 Binding 1\n"
"OpDecorate %2 BuiltIn GlobalInvocationId\n"
"OpDecorate %6 DescriptorSet 0\n"
"OpDecorate %6 Binding 0\n"
"%7 = OpTypeVoid\n"
"%8 = OpTypeFunction %7\n" // void()
"%9 = OpTypeInt 32 1\n" // int32
"%10 = OpTypeInt 32 0\n" // uint32
"%3 = OpTypeRuntimeArray %9\n" // int32[]
"%4 = OpTypeStruct %3\n" // struct{ int32[] }
"%11 = OpTypePointer Uniform %4\n" // struct{ int32[] }*
"%5 = OpVariable %11 Uniform\n" // struct{ int32[] }* in
"%12 = OpConstant %9 0\n" // int32(0)
"%13 = OpConstant %10 0\n" // uint32(0)
"%14 = OpTypeVector %10 3\n" // vec3<int32>
"%15 = OpTypePointer Input %14\n" // vec3<int32>*
"%2 = OpVariable %15 Input\n" // gl_GlobalInvocationId
"%16 = OpTypePointer Input %10\n" // uint32*
"%6 = OpVariable %11 Uniform\n" // struct{ int32[] }* out
"%17 = OpTypePointer Uniform %9\n" // int32*
"%1 = OpFunction %7 None %8\n" // -- Function begin --
"%18 = OpLabel\n"
"%19 = OpAccessChain %16 %2 %13\n" // &gl_GlobalInvocationId.x
"%20 = OpLoad %10 %19\n" // gl_GlobalInvocationId.x
"%21 = OpAccessChain %17 %6 %12 %20\n" // &in.arr[gl_GlobalInvocationId.x]
"%22 = OpLoad %9 %21\n" // out.arr[gl_GlobalInvocationId.x]
"%23 = OpAccessChain %17 %5 %12 %20\n" // &out.arr[gl_GlobalInvocationId.x]
"OpStore %23 %22\n" // out.arr[gl_GlobalInvocationId.x] = in[gl_GlobalInvocationId.x]
"OpReturn\n"
"OpFunctionEnd\n";
test(src.str(), [](uint32_t i) { return i; }, [](uint32_t i) { return i; });
}
TEST_P(SwiftShaderVulkanBufferToBufferComputeTest, GlobalInvocationId)
{
std::stringstream src;
src <<
"OpCapability Shader\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %1 \"main\" %2\n"
"OpExecutionMode %1 LocalSize " <<
GetParam().localSizeX << " " <<
GetParam().localSizeY << " " <<
GetParam().localSizeZ << "\n" <<
"OpDecorate %3 ArrayStride 4\n"
"OpMemberDecorate %4 0 Offset 0\n"
"OpDecorate %4 BufferBlock\n"
"OpDecorate %5 DescriptorSet 0\n"
"OpDecorate %5 Binding 1\n"
"OpDecorate %2 BuiltIn GlobalInvocationId\n"
"OpDecorate %6 DescriptorSet 0\n"
"OpDecorate %6 Binding 0\n"
"%7 = OpTypeVoid\n"
"%8 = OpTypeFunction %7\n" // void()
"%9 = OpTypeInt 32 1\n" // int32
"%10 = OpTypeInt 32 0\n" // uint32
"%3 = OpTypeRuntimeArray %9\n" // int32[]
"%4 = OpTypeStruct %3\n" // struct{ int32[] }
"%11 = OpTypePointer Uniform %4\n" // struct{ int32[] }*
"%5 = OpVariable %11 Uniform\n" // struct{ int32[] }* in
"%12 = OpConstant %9 0\n" // int32(0)
"%13 = OpConstant %9 1\n" // int32(1)
"%14 = OpConstant %10 0\n" // uint32(0)
"%15 = OpConstant %10 1\n" // uint32(1)
"%16 = OpConstant %10 2\n" // uint32(2)
"%17 = OpTypeVector %10 3\n" // vec3<int32>
"%18 = OpTypePointer Input %17\n" // vec3<int32>*
"%2 = OpVariable %18 Input\n" // gl_GlobalInvocationId
"%19 = OpTypePointer Input %10\n" // uint32*
"%6 = OpVariable %11 Uniform\n" // struct{ int32[] }* out
"%20 = OpTypePointer Uniform %9\n" // int32*
"%1 = OpFunction %7 None %8\n" // -- Function begin --
"%21 = OpLabel\n"
"%22 = OpAccessChain %19 %2 %14\n" // &gl_GlobalInvocationId.x
"%23 = OpAccessChain %19 %2 %15\n" // &gl_GlobalInvocationId.y
"%24 = OpAccessChain %19 %2 %16\n" // &gl_GlobalInvocationId.z
"%25 = OpLoad %10 %22\n" // gl_GlobalInvocationId.x
"%26 = OpLoad %10 %23\n" // gl_GlobalInvocationId.y
"%27 = OpLoad %10 %24\n" // gl_GlobalInvocationId.z
"%28 = OpAccessChain %20 %6 %12 %25\n" // &in.arr[gl_GlobalInvocationId.x]
"%29 = OpLoad %9 %28\n" // out.arr[gl_GlobalInvocationId.x]
"%30 = OpIAdd %9 %29 %26\n" // in[gl_GlobalInvocationId.x] + gl_GlobalInvocationId.y
"%31 = OpIAdd %9 %30 %27\n" // in[gl_GlobalInvocationId.x] + gl_GlobalInvocationId.y + gl_GlobalInvocationId.z
"%32 = OpAccessChain %20 %5 %12 %25\n" // &out.arr[gl_GlobalInvocationId.x]
"OpStore %32 %31\n" // out.arr[gl_GlobalInvocationId.x] = in[gl_GlobalInvocationId.x] + gl_GlobalInvocationId.y + gl_GlobalInvocationId.z
"OpReturn\n"
"OpFunctionEnd\n";
// gl_GlobalInvocationId.y and gl_GlobalInvocationId.z should both be zero.
test(src.str(), [](uint32_t i) { return i; }, [](uint32_t i) { return i; });
}
TEST_P(SwiftShaderVulkanBufferToBufferComputeTest, BranchSimple)
{
std::stringstream src;
src <<
"OpCapability Shader\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %1 \"main\" %2\n"
"OpExecutionMode %1 LocalSize " <<
GetParam().localSizeX << " " <<
GetParam().localSizeY << " " <<
GetParam().localSizeZ << "\n" <<
"OpDecorate %3 ArrayStride 4\n"
"OpMemberDecorate %4 0 Offset 0\n"
"OpDecorate %4 BufferBlock\n"
"OpDecorate %5 DescriptorSet 0\n"
"OpDecorate %5 Binding 1\n"
"OpDecorate %2 BuiltIn GlobalInvocationId\n"
"OpDecorate %6 DescriptorSet 0\n"
"OpDecorate %6 Binding 0\n"
"%7 = OpTypeVoid\n"
"%8 = OpTypeFunction %7\n" // void()
"%9 = OpTypeInt 32 1\n" // int32
"%10 = OpTypeInt 32 0\n" // uint32
"%3 = OpTypeRuntimeArray %9\n" // int32[]
"%4 = OpTypeStruct %3\n" // struct{ int32[] }
"%11 = OpTypePointer Uniform %4\n" // struct{ int32[] }*
"%5 = OpVariable %11 Uniform\n" // struct{ int32[] }* in
"%12 = OpConstant %9 0\n" // int32(0)
"%13 = OpConstant %10 0\n" // uint32(0)
"%14 = OpTypeVector %10 3\n" // vec3<int32>
"%15 = OpTypePointer Input %14\n" // vec3<int32>*
"%2 = OpVariable %15 Input\n" // gl_GlobalInvocationId
"%16 = OpTypePointer Input %10\n" // uint32*
"%6 = OpVariable %11 Uniform\n" // struct{ int32[] }* out
"%17 = OpTypePointer Uniform %9\n" // int32*
"%1 = OpFunction %7 None %8\n" // -- Function begin --
"%18 = OpLabel\n"
"%19 = OpAccessChain %16 %2 %13\n" // &gl_GlobalInvocationId.x
"%20 = OpLoad %10 %19\n" // gl_GlobalInvocationId.x
"%21 = OpAccessChain %17 %6 %12 %20\n" // &in.arr[gl_GlobalInvocationId.x]
"%22 = OpLoad %9 %21\n" // in.arr[gl_GlobalInvocationId.x]
"%23 = OpAccessChain %17 %5 %12 %20\n" // &out.arr[gl_GlobalInvocationId.x]
// Start of branch logic
// %22 = in value
"OpBranch %24\n"
"%24 = OpLabel\n"
"OpBranch %25\n"
"%25 = OpLabel\n"
"OpBranch %26\n"
"%26 = OpLabel\n"
// %22 = out value
// End of branch logic
"OpStore %23 %22\n"
"OpReturn\n"
"OpFunctionEnd\n";
test(src.str(), [](uint32_t i) { return i; }, [](uint32_t i) { return i; });
}
TEST_P(SwiftShaderVulkanBufferToBufferComputeTest, BranchDeclareSSA)
{
std::stringstream src;
src <<
"OpCapability Shader\n"
"OpMemoryModel Logical GLSL450\n"
"OpEntryPoint GLCompute %1 \"main\" %2\n"
"OpExecutionMode %1 LocalSize " <<
GetParam().localSizeX << " " <<
GetParam().localSizeY << " " <<
GetParam().localSizeZ << "\n" <<
"OpDecorate %3 ArrayStride 4\n"
"OpMemberDecorate %4 0 Offset 0\n"
"OpDecorate %4 BufferBlock\n"
"OpDecorate %5 DescriptorSet 0\n"
"OpDecorate %5 Binding 1\n"
"OpDecorate %2 BuiltIn GlobalInvocationId\n"
"OpDecorate %6 DescriptorSet 0\n"
"OpDecorate %6 Binding 0\n"
"%7 = OpTypeVoid\n"
"%8 = OpTypeFunction %7\n" // void()
"%9 = OpTypeInt 32 1\n" // int32
"%10 = OpTypeInt 32 0\n" // uint32
"%3 = OpTypeRuntimeArray %9\n" // int32[]
"%4 = OpTypeStruct %3\n" // struct{ int32[] }
"%11 = OpTypePointer Uniform %4\n" // struct{ int32[] }*
"%5 = OpVariable %11 Uniform\n" // struct{ int32[] }* in
"%12 = OpConstant %9 0\n" // int32(0)
"%13 = OpConstant %10 0\n" // uint32(0)
"%14 = OpTypeVector %10 3\n" // vec3<int32>
"%15 = OpTypePointer Input %14\n" // vec3<int32>*
"%2 = OpVariable %15 Input\n" // gl_GlobalInvocationId
"%16 = OpTypePointer Input %10\n" // uint32*
"%6 = OpVariable %11 Uniform\n" // struct{ int32[] }* out
"%17 = OpTypePointer Uniform %9\n" // int32*
"%1 = OpFunction %7 None %8\n" // -- Function begin --
"%18 = OpLabel\n"
"%19 = OpAccessChain %16 %2 %13\n" // &gl_GlobalInvocationId.x
"%20 = OpLoad %10 %19\n" // gl_GlobalInvocationId.x
"%21 = OpAccessChain %17 %6 %12 %20\n" // &in.arr[gl_GlobalInvocationId.x]
"%22 = OpLoad %9 %21\n" // in.arr[gl_GlobalInvocationId.x]
"%23 = OpAccessChain %17 %5 %12 %20\n" // &out.arr[gl_GlobalInvocationId.x]
// Start of branch logic
// %22 = in value
"OpBranch %24\n"
"%24 = OpLabel\n"
"%25 = OpIAdd %9 %22 %22\n" // %25 = in*2
"OpBranch %26\n"
"%26 = OpLabel\n"
"OpBranch %27\n"
"%27 = OpLabel\n"
// %25 = out value
// End of branch logic
"OpStore %23 %25\n" // use SSA value from previous block
"OpReturn\n"
"OpFunctionEnd\n";
test(src.str(), [](uint32_t i) { return i; }, [](uint32_t i) { return i * 2; });
}