blob: 924f429fc13885e32766e2eb53e6da4318dcd32e [file] [log] [blame]
//===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that fixes zero-extension of setcc patterns.
// X86 setcc instructions are modeled to have no input arguments, and a single
// GR8 output argument. This is consistent with other similar instructions
// (e.g. movb), but means it is impossible to directly generate a setcc into
// the lower GR8 of a specified GR32.
// This means that ISel must select (zext (setcc)) into something like
// seta %al; movzbl %al, %eax.
// Unfortunately, this can cause a stall due to the partial register write
// performed by the setcc. Instead, we can use:
// xor %eax, %eax; seta %al
// This both avoids the stall, and encodes shorter.
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-setcc"
STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted");
namespace {
class X86FixupSetCCPass : public MachineFunctionPass {
public:
X86FixupSetCCPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "X86 Fixup SetCC"; }
bool runOnMachineFunction(MachineFunction &MF) override;
private:
MachineRegisterInfo *MRI = nullptr;
const X86InstrInfo *TII = nullptr;
enum { SearchBound = 16 };
static char ID;
};
char X86FixupSetCCPass::ID = 0;
}
FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); }
bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
MRI = &MF.getRegInfo();
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
SmallVector<MachineInstr*, 4> ToErase;
for (auto &MBB : MF) {
MachineInstr *FlagsDefMI = nullptr;
for (auto &MI : MBB) {
// Remember the most recent preceding eflags defining instruction.
if (MI.definesRegister(X86::EFLAGS))
FlagsDefMI = &MI;
// Find a setcc that is used by a zext.
// This doesn't have to be the only use, the transformation is safe
// regardless.
if (MI.getOpcode() != X86::SETCCr)
continue;
MachineInstr *ZExt = nullptr;
for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg()))
if (Use.getOpcode() == X86::MOVZX32rr8)
ZExt = &Use;
if (!ZExt)
continue;
if (!FlagsDefMI)
continue;
// We'd like to put something that clobbers eflags directly before
// FlagsDefMI. This can't hurt anything after FlagsDefMI, because
// it, itself, by definition, clobbers eflags. But it may happen that
// FlagsDefMI also *uses* eflags, in which case the transformation is
// invalid.
if (FlagsDefMI->readsRegister(X86::EFLAGS))
continue;
++NumSubstZexts;
Changed = true;
// On 32-bit, we need to be careful to force an ABCD register.
const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit()
? &X86::GR32RegClass
: &X86::GR32_ABCDRegClass;
Register ZeroReg = MRI->createVirtualRegister(RC);
Register InsertReg = MRI->createVirtualRegister(RC);
// Initialize a register with 0. This must go before the eflags def
BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0),
ZeroReg);
// X86 setcc only takes an output GR8, so fake a GR32 input by inserting
// the setcc result into the low byte of the zeroed register.
BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(),
TII->get(X86::INSERT_SUBREG), InsertReg)
.addReg(ZeroReg)
.addReg(MI.getOperand(0).getReg())
.addImm(X86::sub_8bit);
MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg);
ToErase.push_back(ZExt);
}
}
for (auto &I : ToErase)
I->eraseFromParent();
return Changed;
}