blob: 6bdd021970ef37ea0810684336b47d320c6eb635 [file] [log] [blame]
//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the ARM specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
#define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMFrameLowering.h"
#include "ARMISelLowering.h"
#include "ARMSelectionDAGInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Target/TargetOptions.h"
#include <memory>
#include <string>
#define GET_SUBTARGETINFO_HEADER
#include "ARMGenSubtargetInfo.inc"
namespace llvm {
class ARMBaseTargetMachine;
class GlobalValue;
class StringRef;
class ARMSubtarget : public ARMGenSubtargetInfo {
protected:
enum ARMProcFamilyEnum {
Others,
CortexA12,
CortexA15,
CortexA17,
CortexA32,
CortexA35,
CortexA5,
CortexA53,
CortexA55,
CortexA57,
CortexA7,
CortexA72,
CortexA73,
CortexA75,
CortexA76,
CortexA8,
CortexA9,
CortexM3,
CortexR4,
CortexR4F,
CortexR5,
CortexR52,
CortexR7,
Exynos,
Krait,
Kryo,
NeoverseN1,
Swift
};
enum ARMProcClassEnum {
None,
AClass,
MClass,
RClass
};
enum ARMArchEnum {
ARMv2,
ARMv2a,
ARMv3,
ARMv3m,
ARMv4,
ARMv4t,
ARMv5,
ARMv5t,
ARMv5te,
ARMv5tej,
ARMv6,
ARMv6k,
ARMv6kz,
ARMv6m,
ARMv6sm,
ARMv6t2,
ARMv7a,
ARMv7em,
ARMv7m,
ARMv7r,
ARMv7ve,
ARMv81a,
ARMv82a,
ARMv83a,
ARMv84a,
ARMv85a,
ARMv8a,
ARMv8mBaseline,
ARMv8mMainline,
ARMv8r,
ARMv81mMainline,
};
public:
/// What kind of timing do load multiple/store multiple instructions have.
enum ARMLdStMultipleTiming {
/// Can load/store 2 registers/cycle.
DoubleIssue,
/// Can load/store 2 registers/cycle, but needs an extra cycle if the access
/// is not 64-bit aligned.
DoubleIssueCheckUnalignedAccess,
/// Can load/store 1 register/cycle.
SingleIssue,
/// Can load/store 1 register/cycle, but needs an extra cycle for address
/// computation and potentially also for register writeback.
SingleIssuePlusExtras,
};
protected:
/// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
ARMProcFamilyEnum ARMProcFamily = Others;
/// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
ARMProcClassEnum ARMProcClass = None;
/// ARMArch - ARM architecture
ARMArchEnum ARMArch = ARMv4t;
/// HasV4TOps, HasV5TOps, HasV5TEOps,
/// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
/// Specify whether target support specific ARM ISA variants.
bool HasV4TOps = false;
bool HasV5TOps = false;
bool HasV5TEOps = false;
bool HasV6Ops = false;
bool HasV6MOps = false;
bool HasV6KOps = false;
bool HasV6T2Ops = false;
bool HasV7Ops = false;
bool HasV8Ops = false;
bool HasV8_1aOps = false;
bool HasV8_2aOps = false;
bool HasV8_3aOps = false;
bool HasV8_4aOps = false;
bool HasV8_5aOps = false;
bool HasV8MBaselineOps = false;
bool HasV8MMainlineOps = false;
bool HasV8_1MMainlineOps = false;
bool HasMVEIntegerOps = false;
bool HasMVEFloatOps = false;
/// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
/// floating point ISAs are supported.
bool HasVFPv2 = false;
bool HasVFPv3 = false;
bool HasVFPv4 = false;
bool HasFPARMv8 = false;
bool HasNEON = false;
bool HasFPRegs = false;
bool HasFPRegs16 = false;
bool HasFPRegs64 = false;
/// Versions of the VFP flags restricted to single precision, or to
/// 16 d-registers, or both.
bool HasVFPv2SP = false;
bool HasVFPv3SP = false;
bool HasVFPv4SP = false;
bool HasFPARMv8SP = false;
bool HasVFPv3D16 = false;
bool HasVFPv4D16 = false;
bool HasFPARMv8D16 = false;
bool HasVFPv3D16SP = false;
bool HasVFPv4D16SP = false;
bool HasFPARMv8D16SP = false;
/// HasDotProd - True if the ARMv8.2A dot product instructions are supported.
bool HasDotProd = false;
/// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
/// specified. Use the method useNEONForSinglePrecisionFP() to
/// determine if NEON should actually be used.
bool UseNEONForSinglePrecisionFP = false;
/// UseMulOps - True if non-microcoded fused integer multiply-add and
/// multiply-subtract instructions should be used.
bool UseMulOps = false;
/// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
/// whether the FP VML[AS] instructions are slow (if so, don't use them).
bool SlowFPVMLx = false;
/// SlowFPVFMx - If the VFP4 / NEON instructions are available, indicates
/// whether the FP VFM[AS] instructions are slow (if so, don't use them).
bool SlowFPVFMx = false;
/// HasVMLxForwarding - If true, NEON has special multiplier accumulator
/// forwarding to allow mul + mla being issued back to back.
bool HasVMLxForwarding = false;
/// SlowFPBrcc - True if floating point compare + branch is slow.
bool SlowFPBrcc = false;
/// InThumbMode - True if compiling for Thumb, false for ARM.
bool InThumbMode = false;
/// UseSoftFloat - True if we're using software floating point features.
bool UseSoftFloat = false;
/// UseMISched - True if MachineScheduler should be used for this subtarget.
bool UseMISched = false;
/// DisablePostRAScheduler - False if scheduling should happen again after
/// register allocation.
bool DisablePostRAScheduler = false;
/// HasThumb2 - True if Thumb2 instructions are supported.
bool HasThumb2 = false;
/// NoARM - True if subtarget does not support ARM mode execution.
bool NoARM = false;
/// ReserveR9 - True if R9 is not available as a general purpose register.
bool ReserveR9 = false;
/// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
/// 32-bit imms (including global addresses).
bool NoMovt = false;
/// SupportsTailCall - True if the OS supports tail call. The dynamic linker
/// must be able to synthesize call stubs for interworking between ARM and
/// Thumb.
bool SupportsTailCall = false;
/// HasFP16 - True if subtarget supports half-precision FP conversions
bool HasFP16 = false;
/// HasFullFP16 - True if subtarget supports half-precision FP operations
bool HasFullFP16 = false;
/// HasFP16FML - True if subtarget supports half-precision FP fml operations
bool HasFP16FML = false;
/// HasD32 - True if subtarget has the full 32 double precision
/// FP registers for VFPv3.
bool HasD32 = false;
/// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode
bool HasHardwareDivideInThumb = false;
/// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
bool HasHardwareDivideInARM = false;
/// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
/// instructions.
bool HasDataBarrier = false;
/// HasFullDataBarrier - True if the subtarget supports DFB data barrier
/// instruction.
bool HasFullDataBarrier = false;
/// HasV7Clrex - True if the subtarget supports CLREX instructions
bool HasV7Clrex = false;
/// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc)
/// instructions
bool HasAcquireRelease = false;
/// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
/// over 16-bit ones.
bool Pref32BitThumb = false;
/// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
/// that partially update CPSR and add false dependency on the previous
/// CPSR setting instruction.
bool AvoidCPSRPartialUpdate = false;
/// CheapPredicableCPSRDef - If true, disable +1 predication cost
/// for instructions updating CPSR. Enabled for Cortex-A57.
bool CheapPredicableCPSRDef = false;
/// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
/// movs with shifter operand (i.e. asr, lsl, lsr).
bool AvoidMOVsShifterOperand = false;
/// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should
/// avoid issue "normal" call instructions to callees which do not return.
bool HasRetAddrStack = false;
/// HasBranchPredictor - True if the subtarget has a branch predictor. Having
/// a branch predictor or not changes the expected cost of taking a branch
/// which affects the choice of whether to use predicated instructions.
bool HasBranchPredictor = true;
/// HasMPExtension - True if the subtarget supports Multiprocessing
/// extension (ARMv7 only).
bool HasMPExtension = false;
/// HasVirtualization - True if the subtarget supports the Virtualization
/// extension.
bool HasVirtualization = false;
/// HasFP64 - If true, the floating point unit supports double
/// precision.
bool HasFP64 = false;
/// If true, the processor supports the Performance Monitor Extensions. These
/// include a generic cycle-counter as well as more fine-grained (often
/// implementation-specific) events.
bool HasPerfMon = false;
/// HasTrustZone - if true, processor supports TrustZone security extensions
bool HasTrustZone = false;
/// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions
bool Has8MSecExt = false;
/// HasSHA2 - if true, processor supports SHA1 and SHA256
bool HasSHA2 = false;
/// HasAES - if true, processor supports AES
bool HasAES = false;
/// HasCrypto - if true, processor supports Cryptography extensions
bool HasCrypto = false;
/// HasCRC - if true, processor supports CRC instructions
bool HasCRC = false;
/// HasRAS - if true, the processor supports RAS extensions
bool HasRAS = false;
/// HasLOB - if true, the processor supports the Low Overhead Branch extension
bool HasLOB = false;
/// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
/// particularly effective at zeroing a VFP register.
bool HasZeroCycleZeroing = false;
/// HasFPAO - if true, processor does positive address offset computation faster
bool HasFPAO = false;
/// HasFuseAES - if true, processor executes back to back AES instruction
/// pairs faster.
bool HasFuseAES = false;
/// HasFuseLiterals - if true, processor executes back to back
/// bottom and top halves of literal generation faster.
bool HasFuseLiterals = false;
/// If true, if conversion may decide to leave some instructions unpredicated.
bool IsProfitableToUnpredicate = false;
/// If true, VMOV will be favored over VGETLNi32.
bool HasSlowVGETLNi32 = false;
/// If true, VMOV will be favored over VDUP.
bool HasSlowVDUP32 = false;
/// If true, VMOVSR will be favored over VMOVDRR.
bool PreferVMOVSR = false;
/// If true, ISHST barriers will be used for Release semantics.
bool PreferISHST = false;
/// If true, a VLDM/VSTM starting with an odd register number is considered to
/// take more microops than single VLDRS/VSTRS.
bool SlowOddRegister = false;
/// If true, loading into a D subregister will be penalized.
bool SlowLoadDSubregister = false;
/// If true, use a wider stride when allocating VFP registers.
bool UseWideStrideVFP = false;
/// If true, the AGU and NEON/FPU units are multiplexed.
bool HasMuxedUnits = false;
/// If true, VMOVS will never be widened to VMOVD.
bool DontWidenVMOVS = false;
/// If true, splat a register between VFP and NEON instructions.
bool SplatVFPToNeon = false;
/// If true, run the MLx expansion pass.
bool ExpandMLx = false;
/// If true, VFP/NEON VMLA/VMLS have special RAW hazards.
bool HasVMLxHazards = false;
// If true, read thread pointer from coprocessor register.
bool ReadTPHard = false;
/// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
bool UseNEONForFPMovs = false;
/// If true, VLDn instructions take an extra cycle for unaligned accesses.
bool CheckVLDnAlign = false;
/// If true, VFP instructions are not pipelined.
bool NonpipelinedVFP = false;
/// StrictAlign - If true, the subtarget disallows unaligned memory
/// accesses for some types. For details, see
/// ARMTargetLowering::allowsMisalignedMemoryAccesses().
bool StrictAlign = false;
/// RestrictIT - If true, the subtarget disallows generation of deprecated IT
/// blocks to conform to ARMv8 rule.
bool RestrictIT = false;
/// HasDSP - If true, the subtarget supports the DSP (saturating arith
/// and such) instructions.
bool HasDSP = false;
/// NaCl TRAP instruction is generated instead of the regular TRAP.
bool UseNaClTrap = false;
/// Generate calls via indirect call instructions.
bool GenLongCalls = false;
/// Generate code that does not contain data access to code sections.
bool GenExecuteOnly = false;
/// Target machine allowed unsafe FP math (such as use of NEON fp)
bool UnsafeFPMath = false;
/// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
bool UseSjLjEH = false;
/// Has speculation barrier
bool HasSB = false;
/// Implicitly convert an instruction to a different one if its immediates
/// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1.
bool NegativeImmediates = true;
/// stackAlignment - The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
Align stackAlignment = Align(4);
/// CPUString - String name of used CPU.
std::string CPUString;
unsigned MaxInterleaveFactor = 1;
/// Clearance before partial register updates (in number of instructions)
unsigned PartialUpdateClearance = 0;
/// What kind of timing do load multiple/store multiple have (double issue,
/// single issue etc).
ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
/// The adjustment that we need to apply to get the operand latency from the
/// operand cycle returned by the itinerary data for pre-ISel operands.
int PreISelOperandLatencyAdjustment = 2;
/// What alignment is preferred for loop bodies, in log2(bytes).
unsigned PrefLoopLogAlignment = 0;
/// The cost factor for MVE instructions, representing the multiple beats an
// instruction can take. The default is 2, (set in initSubtargetFeatures so
// that we can use subtarget features less than 2).
unsigned MVEVectorCostFactor = 0;
/// OptMinSize - True if we're optimising for minimum code size, equal to
/// the function attribute.
bool OptMinSize = false;
/// IsLittle - The target is Little Endian
bool IsLittle;
/// TargetTriple - What processor and OS we're targeting.
Triple TargetTriple;
/// SchedModel - Processor specific instruction costs.
MCSchedModel SchedModel;
/// Selected instruction itineraries (one entry per itinerary class.)
InstrItineraryData InstrItins;
/// Options passed via command line that could influence the target
const TargetOptions &Options;
const ARMBaseTargetMachine &TM;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
const ARMBaseTargetMachine &TM, bool IsLittle,
bool MinSize = false);
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
unsigned getMaxInlineSizeThreshold() const {
return 64;
}
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
/// so that we can use initializer lists for subtarget initialization.
ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
const ARMBaseInstrInfo *getInstrInfo() const override {
return InstrInfo.get();
}
const ARMTargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const ARMFrameLowering *getFrameLowering() const override {
return FrameLowering.get();
}
const ARMBaseRegisterInfo *getRegisterInfo() const override {
return &InstrInfo->getRegisterInfo();
}
const CallLowering *getCallLowering() const override;
InstructionSelector *getInstructionSelector() const override;
const LegalizerInfo *getLegalizerInfo() const override;
const RegisterBankInfo *getRegBankInfo() const override;
private:
ARMSelectionDAGInfo TSInfo;
// Either Thumb1FrameLowering or ARMFrameLowering.
std::unique_ptr<ARMFrameLowering> FrameLowering;
// Either Thumb1InstrInfo or Thumb2InstrInfo.
std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
ARMTargetLowering TLInfo;
/// GlobalISel related APIs.
std::unique_ptr<CallLowering> CallLoweringInfo;
std::unique_ptr<InstructionSelector> InstSelector;
std::unique_ptr<LegalizerInfo> Legalizer;
std::unique_ptr<RegisterBankInfo> RegBankInfo;
void initializeEnvironment();
void initSubtargetFeatures(StringRef CPU, StringRef FS);
ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
public:
void computeIssueWidth();
bool hasV4TOps() const { return HasV4TOps; }
bool hasV5TOps() const { return HasV5TOps; }
bool hasV5TEOps() const { return HasV5TEOps; }
bool hasV6Ops() const { return HasV6Ops; }
bool hasV6MOps() const { return HasV6MOps; }
bool hasV6KOps() const { return HasV6KOps; }
bool hasV6T2Ops() const { return HasV6T2Ops; }
bool hasV7Ops() const { return HasV7Ops; }
bool hasV8Ops() const { return HasV8Ops; }
bool hasV8_1aOps() const { return HasV8_1aOps; }
bool hasV8_2aOps() const { return HasV8_2aOps; }
bool hasV8_3aOps() const { return HasV8_3aOps; }
bool hasV8_4aOps() const { return HasV8_4aOps; }
bool hasV8_5aOps() const { return HasV8_5aOps; }
bool hasV8MBaselineOps() const { return HasV8MBaselineOps; }
bool hasV8MMainlineOps() const { return HasV8MMainlineOps; }
bool hasV8_1MMainlineOps() const { return HasV8_1MMainlineOps; }
bool hasMVEIntegerOps() const { return HasMVEIntegerOps; }
bool hasMVEFloatOps() const { return HasMVEFloatOps; }
bool hasFPRegs() const { return HasFPRegs; }
bool hasFPRegs16() const { return HasFPRegs16; }
bool hasFPRegs64() const { return HasFPRegs64; }
/// @{
/// These functions are obsolete, please consider adding subtarget features
/// or properties instead of calling them.
bool isCortexA5() const { return ARMProcFamily == CortexA5; }
bool isCortexA7() const { return ARMProcFamily == CortexA7; }
bool isCortexA8() const { return ARMProcFamily == CortexA8; }
bool isCortexA9() const { return ARMProcFamily == CortexA9; }
bool isCortexA15() const { return ARMProcFamily == CortexA15; }
bool isSwift() const { return ARMProcFamily == Swift; }
bool isCortexM3() const { return ARMProcFamily == CortexM3; }
bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
bool isCortexR5() const { return ARMProcFamily == CortexR5; }
bool isKrait() const { return ARMProcFamily == Krait; }
/// @}
bool hasARMOps() const { return !NoARM; }
bool hasVFP2Base() const { return HasVFPv2SP; }
bool hasVFP3Base() const { return HasVFPv3D16SP; }
bool hasVFP4Base() const { return HasVFPv4D16SP; }
bool hasFPARMv8Base() const { return HasFPARMv8D16SP; }
bool hasNEON() const { return HasNEON; }
bool hasSHA2() const { return HasSHA2; }
bool hasAES() const { return HasAES; }
bool hasCrypto() const { return HasCrypto; }
bool hasDotProd() const { return HasDotProd; }
bool hasCRC() const { return HasCRC; }
bool hasRAS() const { return HasRAS; }
bool hasLOB() const { return HasLOB; }
bool hasVirtualization() const { return HasVirtualization; }
bool useNEONForSinglePrecisionFP() const {
return hasNEON() && UseNEONForSinglePrecisionFP;
}
bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; }
bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
bool hasDataBarrier() const { return HasDataBarrier; }
bool hasFullDataBarrier() const { return HasFullDataBarrier; }
bool hasV7Clrex() const { return HasV7Clrex; }
bool hasAcquireRelease() const { return HasAcquireRelease; }
bool hasAnyDataBarrier() const {
return HasDataBarrier || (hasV6Ops() && !isThumb());
}
bool useMulOps() const { return UseMulOps; }
bool useFPVMLx() const { return !SlowFPVMLx; }
bool useFPVFMx() const {
return !isTargetDarwin() && hasVFP4Base() && !SlowFPVFMx;
}
bool useFPVFMx16() const { return useFPVFMx() && hasFullFP16(); }
bool useFPVFMx64() const { return useFPVFMx() && hasFP64(); }
bool hasVMLxForwarding() const { return HasVMLxForwarding; }
bool isFPBrccSlow() const { return SlowFPBrcc; }
bool hasFP64() const { return HasFP64; }
bool hasPerfMon() const { return HasPerfMon; }
bool hasTrustZone() const { return HasTrustZone; }
bool has8MSecExt() const { return Has8MSecExt; }
bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
bool hasFPAO() const { return HasFPAO; }
bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; }
bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; }
bool hasSlowVDUP32() const { return HasSlowVDUP32; }
bool preferVMOVSR() const { return PreferVMOVSR; }
bool preferISHSTBarriers() const { return PreferISHST; }
bool expandMLx() const { return ExpandMLx; }
bool hasVMLxHazards() const { return HasVMLxHazards; }
bool hasSlowOddRegister() const { return SlowOddRegister; }
bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; }
bool useWideStrideVFP() const { return UseWideStrideVFP; }
bool hasMuxedUnits() const { return HasMuxedUnits; }
bool dontWidenVMOVS() const { return DontWidenVMOVS; }
bool useSplatVFPToNeon() const { return SplatVFPToNeon; }
bool useNEONForFPMovs() const { return UseNEONForFPMovs; }
bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; }
bool nonpipelinedVFP() const { return NonpipelinedVFP; }
bool prefers32BitThumb() const { return Pref32BitThumb; }
bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; }
bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
bool hasRetAddrStack() const { return HasRetAddrStack; }
bool hasBranchPredictor() const { return HasBranchPredictor; }
bool hasMPExtension() const { return HasMPExtension; }
bool hasDSP() const { return HasDSP; }
bool useNaClTrap() const { return UseNaClTrap; }
bool useSjLjEH() const { return UseSjLjEH; }
bool hasSB() const { return HasSB; }
bool genLongCalls() const { return GenLongCalls; }
bool genExecuteOnly() const { return GenExecuteOnly; }
bool hasBaseDSP() const {
if (isThumb())
return hasDSP();
else
return hasV5TEOps();
}
bool hasFP16() const { return HasFP16; }
bool hasD32() const { return HasD32; }
bool hasFullFP16() const { return HasFullFP16; }
bool hasFP16FML() const { return HasFP16FML; }
bool hasFuseAES() const { return HasFuseAES; }
bool hasFuseLiterals() const { return HasFuseLiterals; }
/// Return true if the CPU supports any kind of instruction fusion.
bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); }
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
bool isTargetIOS() const { return TargetTriple.isiOS(); }
bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
// ARM EABI is the bare-metal EABI described in ARM ABI documents and
// can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
// FIXME: Add a flag for bare-metal for that target and set Triple::EABI
// even for GNUEABI, so we can make a distinction here and still conform to
// the EABI on GNU (and Android) mode. This requires change in Clang, too.
// FIXME: The Darwin exception is temporary, while we move users to
// "*-*-*-macho" triples as quickly as possible.
bool isTargetAEABI() const {
return (TargetTriple.getEnvironment() == Triple::EABI ||
TargetTriple.getEnvironment() == Triple::EABIHF) &&
!isTargetDarwin() && !isTargetWindows();
}
bool isTargetGNUAEABI() const {
return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
!isTargetDarwin() && !isTargetWindows();
}
bool isTargetMuslAEABI() const {
return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
!isTargetDarwin() && !isTargetWindows();
}
// ARM Targets that support EHABI exception handling standard
// Darwin uses SjLj. Other targets might need more checks.
bool isTargetEHABICompatible() const {
return (TargetTriple.getEnvironment() == Triple::EABI ||
TargetTriple.getEnvironment() == Triple::GNUEABI ||
TargetTriple.getEnvironment() == Triple::MuslEABI ||
TargetTriple.getEnvironment() == Triple::EABIHF ||
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
isTargetAndroid()) &&
!isTargetDarwin() && !isTargetWindows();
}
bool isTargetHardFloat() const;
bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
bool isXRaySupported() const override;
bool isAPCS_ABI() const;
bool isAAPCS_ABI() const;
bool isAAPCS16_ABI() const;
bool isROPI() const;
bool isRWPI() const;
bool useMachineScheduler() const { return UseMISched; }
bool disablePostRAScheduler() const { return DisablePostRAScheduler; }
bool useSoftFloat() const { return UseSoftFloat; }
bool isThumb() const { return InThumbMode; }
bool hasMinSize() const { return OptMinSize; }
bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
bool isThumb2() const { return InThumbMode && HasThumb2; }
bool hasThumb2() const { return HasThumb2; }
bool isMClass() const { return ARMProcClass == MClass; }
bool isRClass() const { return ARMProcClass == RClass; }
bool isAClass() const { return ARMProcClass == AClass; }
bool isReadTPHard() const { return ReadTPHard; }
bool isR9Reserved() const {
return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
}
bool useR7AsFramePointer() const {
return isTargetDarwin() || (!isTargetWindows() && isThumb());
}
/// Returns true if the frame setup is split into two separate pushes (first
/// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
/// to lr. This is always required on Thumb1-only targets, as the push and
/// pop instructions can't access the high registers.
bool splitFramePushPop(const MachineFunction &MF) const {
return (useR7AsFramePointer() &&
MF.getTarget().Options.DisableFramePointerElim(MF)) ||
isThumb1Only();
}
bool useStride4VFPs() const;
bool useMovt() const;
bool supportsTailCall() const { return SupportsTailCall; }
bool allowsUnalignedMem() const { return !StrictAlign; }
bool restrictIT() const { return RestrictIT; }
const std::string & getCPUString() const { return CPUString; }
bool isLittle() const { return IsLittle; }
unsigned getMispredictionPenalty() const;
/// Returns true if machine scheduler should be enabled.
bool enableMachineScheduler() const override;
/// True for some subtargets at > -O0.
bool enablePostRAScheduler() const override;
/// True for some subtargets at > -O0.
bool enablePostRAMachineScheduler() const override;
/// Check whether this subtarget wants to use subregister liveness.
bool enableSubRegLiveness() const override;
/// Enable use of alias analysis during code generation (during MI
/// scheduling, DAGCombine, etc.).
bool useAA() const override { return true; }
// enableAtomicExpand- True if we need to expand our atomics.
bool enableAtomicExpand() const override;
/// getInstrItins - Return the instruction itineraries based on subtarget
/// selection.
const InstrItineraryData *getInstrItineraryData() const override {
return &InstrItins;
}
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
Align getStackAlignment() const { return stackAlignment; }
unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
ARMLdStMultipleTiming getLdStMultipleTiming() const {
return LdStMultipleTiming;
}
int getPreISelOperandLatencyAdjustment() const {
return PreISelOperandLatencyAdjustment;
}
/// True if the GV will be accessed via an indirect symbol.
bool isGVIndirectSymbol(const GlobalValue *GV) const;
/// Returns the constant pool modifier needed to access the GV.
bool isGVInGOT(const GlobalValue *GV) const;
/// True if fast-isel is used.
bool useFastISel() const;
/// Returns the correct return opcode for the current feature set.
/// Use BX if available to allow mixing thumb/arm code, but fall back
/// to plain mov pc,lr on ARMv4.
unsigned getReturnOpcode() const {
if (isThumb())
return ARM::tBX_RET;
if (hasV4TOps())
return ARM::BX_RET;
return ARM::MOVPCLR;
}
/// Allow movt+movw for PIC global address calculation.
/// ELF does not have GOT relocations for movt+movw.
/// ROPI does not use GOT.
bool allowPositionIndependentMovt() const {
return isROPI() || !isTargetELF();
}
unsigned getPrefLoopLogAlignment() const { return PrefLoopLogAlignment; }
unsigned getMVEVectorCostFactor() const { return MVEVectorCostFactor; }
bool ignoreCSRForAllocationOrder(const MachineFunction &MF,
unsigned PhysReg) const override;
unsigned getGPRAllocationOrder(const MachineFunction &MF) const;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H