| //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Armv6 introduced instructions to perform 32-bit SIMD operations. The |
| /// purpose of this pass is do some IR pattern matching to create ACLE |
| /// DSP intrinsics, which map on these 32-bit SIMD operations. |
| /// This pass runs only when unaligned accesses is supported/enabled. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMSubtarget.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/OrderedBasicBlock.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassRegistry.h" |
| #include "llvm/PassSupport.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "arm-parallel-dsp" |
| |
| STATISTIC(NumSMLAD , "Number of smlad instructions generated"); |
| |
| static cl::opt<bool> |
| DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), |
| cl::desc("Disable the ARM Parallel DSP pass")); |
| |
| static cl::opt<unsigned> |
| NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), |
| cl::desc("Limit the number of loads analysed")); |
| |
| namespace { |
| struct MulCandidate; |
| class Reduction; |
| |
| using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; |
| using MemInstList = SmallVectorImpl<LoadInst*>; |
| using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; |
| |
| // 'MulCandidate' holds the multiplication instructions that are candidates |
| // for parallel execution. |
| struct MulCandidate { |
| Instruction *Root; |
| Value* LHS; |
| Value* RHS; |
| bool Exchange = false; |
| bool ReadOnly = true; |
| bool Paired = false; |
| SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. |
| |
| MulCandidate(Instruction *I, Value *lhs, Value *rhs) : |
| Root(I), LHS(lhs), RHS(rhs) { } |
| |
| bool HasTwoLoadInputs() const { |
| return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); |
| } |
| |
| LoadInst *getBaseLoad() const { |
| return VecLd.front(); |
| } |
| }; |
| |
| /// Represent a sequence of multiply-accumulate operations with the aim to |
| /// perform the multiplications in parallel. |
| class Reduction { |
| Instruction *Root = nullptr; |
| Value *Acc = nullptr; |
| MulCandList Muls; |
| MulPairList MulPairs; |
| SetVector<Instruction*> Adds; |
| |
| public: |
| Reduction() = delete; |
| |
| Reduction (Instruction *Add) : Root(Add) { } |
| |
| /// Record an Add instruction that is a part of the this reduction. |
| void InsertAdd(Instruction *I) { Adds.insert(I); } |
| |
| /// Create MulCandidates, each rooted at a Mul instruction, that is a part |
| /// of this reduction. |
| void InsertMuls() { |
| auto GetMulOperand = [](Value *V) -> Instruction* { |
| if (auto *SExt = dyn_cast<SExtInst>(V)) { |
| if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) |
| if (I->getOpcode() == Instruction::Mul) |
| return I; |
| } else if (auto *I = dyn_cast<Instruction>(V)) { |
| if (I->getOpcode() == Instruction::Mul) |
| return I; |
| } |
| return nullptr; |
| }; |
| |
| auto InsertMul = [this](Instruction *I) { |
| Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); |
| Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); |
| Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); |
| }; |
| |
| for (auto *Add : Adds) { |
| if (Add == Acc) |
| continue; |
| if (auto *Mul = GetMulOperand(Add->getOperand(0))) |
| InsertMul(Mul); |
| if (auto *Mul = GetMulOperand(Add->getOperand(1))) |
| InsertMul(Mul); |
| } |
| } |
| |
| /// Add the incoming accumulator value, returns true if a value had not |
| /// already been added. Returning false signals to the user that this |
| /// reduction already has a value to initialise the accumulator. |
| bool InsertAcc(Value *V) { |
| if (Acc) |
| return false; |
| Acc = V; |
| return true; |
| } |
| |
| /// Set two MulCandidates, rooted at muls, that can be executed as a single |
| /// parallel operation. |
| void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, |
| bool Exchange = false) { |
| LLVM_DEBUG(dbgs() << "Pairing:\n" |
| << *Mul0->Root << "\n" |
| << *Mul1->Root << "\n"); |
| Mul0->Paired = true; |
| Mul1->Paired = true; |
| if (Exchange) |
| Mul1->Exchange = true; |
| MulPairs.push_back(std::make_pair(Mul0, Mul1)); |
| } |
| |
| /// Return true if enough mul operations are found that can be executed in |
| /// parallel. |
| bool CreateParallelPairs(); |
| |
| /// Return the add instruction which is the root of the reduction. |
| Instruction *getRoot() { return Root; } |
| |
| bool is64Bit() const { return Root->getType()->isIntegerTy(64); } |
| |
| Type *getType() const { return Root->getType(); } |
| |
| /// Return the incoming value to be accumulated. This maybe null. |
| Value *getAccumulator() { return Acc; } |
| |
| /// Return the set of adds that comprise the reduction. |
| SetVector<Instruction*> &getAdds() { return Adds; } |
| |
| /// Return the MulCandidate, rooted at mul instruction, that comprise the |
| /// the reduction. |
| MulCandList &getMuls() { return Muls; } |
| |
| /// Return the MulCandidate, rooted at mul instructions, that have been |
| /// paired for parallel execution. |
| MulPairList &getMulPairs() { return MulPairs; } |
| |
| /// To finalise, replace the uses of the root with the intrinsic call. |
| void UpdateRoot(Instruction *SMLAD) { |
| Root->replaceAllUsesWith(SMLAD); |
| } |
| |
| void dump() { |
| LLVM_DEBUG(dbgs() << "Reduction:\n"; |
| for (auto *Add : Adds) |
| LLVM_DEBUG(dbgs() << *Add << "\n"); |
| for (auto &Mul : Muls) |
| LLVM_DEBUG(dbgs() << *Mul->Root << "\n" |
| << " " << *Mul->LHS << "\n" |
| << " " << *Mul->RHS << "\n"); |
| LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") |
| ); |
| } |
| }; |
| |
| class WidenedLoad { |
| LoadInst *NewLd = nullptr; |
| SmallVector<LoadInst*, 4> Loads; |
| |
| public: |
| WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) |
| : NewLd(Wide) { |
| for (auto *I : Lds) |
| Loads.push_back(I); |
| } |
| LoadInst *getLoad() { |
| return NewLd; |
| } |
| }; |
| |
| class ARMParallelDSP : public FunctionPass { |
| ScalarEvolution *SE; |
| AliasAnalysis *AA; |
| TargetLibraryInfo *TLI; |
| DominatorTree *DT; |
| const DataLayout *DL; |
| Module *M; |
| std::map<LoadInst*, LoadInst*> LoadPairs; |
| SmallPtrSet<LoadInst*, 4> OffsetLoads; |
| std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; |
| |
| template<unsigned> |
| bool IsNarrowSequence(Value *V); |
| bool Search(Value *V, BasicBlock *BB, Reduction &R); |
| bool RecordMemoryOps(BasicBlock *BB); |
| void InsertParallelMACs(Reduction &Reduction); |
| bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); |
| LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); |
| bool CreateParallelPairs(Reduction &R); |
| |
| /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate |
| /// Dual performs two signed 16x16-bit multiplications. It adds the |
| /// products to a 32-bit accumulate operand. Optionally, the instruction can |
| /// exchange the halfwords of the second operand before performing the |
| /// arithmetic. |
| bool MatchSMLAD(Function &F); |
| |
| public: |
| static char ID; |
| |
| ARMParallelDSP() : FunctionPass(ID) { } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| FunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (DisableParallelDSP) |
| return false; |
| if (skipFunction(F)) |
| return false; |
| |
| SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &TPC = getAnalysis<TargetPassConfig>(); |
| |
| M = F.getParent(); |
| DL = &M->getDataLayout(); |
| |
| auto &TM = TPC.getTM<TargetMachine>(); |
| auto *ST = &TM.getSubtarget<ARMSubtarget>(F); |
| |
| if (!ST->allowsUnalignedMem()) { |
| LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " |
| "running pass ARMParallelDSP\n"); |
| return false; |
| } |
| |
| if (!ST->hasDSP()) { |
| LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " |
| "ARMParallelDSP\n"); |
| return false; |
| } |
| |
| if (!ST->isLittle()) { |
| LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " |
| << "ARMParallelDSP\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); |
| LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); |
| |
| bool Changes = MatchSMLAD(F); |
| return Changes; |
| } |
| }; |
| } |
| |
| template<typename MemInst> |
| static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, |
| const DataLayout &DL, ScalarEvolution &SE) { |
| if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) |
| return true; |
| return false; |
| } |
| |
| bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, |
| MemInstList &VecMem) { |
| if (!Ld0 || !Ld1) |
| return false; |
| |
| if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; |
| dbgs() << "Ld0:"; Ld0->dump(); |
| dbgs() << "Ld1:"; Ld1->dump(); |
| ); |
| |
| VecMem.clear(); |
| VecMem.push_back(Ld0); |
| VecMem.push_back(Ld1); |
| return true; |
| } |
| |
| // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP |
| // instructions, which is set to 16. So here we should collect all i8 and i16 |
| // narrow operations. |
| // TODO: we currently only collect i16, and will support i8 later, so that's |
| // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. |
| template<unsigned MaxBitWidth> |
| bool ARMParallelDSP::IsNarrowSequence(Value *V) { |
| if (auto *SExt = dyn_cast<SExtInst>(V)) { |
| if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) |
| return false; |
| |
| if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { |
| // Check that this load could be paired. |
| return LoadPairs.count(Ld) || OffsetLoads.count(Ld); |
| } |
| } |
| return false; |
| } |
| |
| /// Iterate through the block and record base, offset pairs of loads which can |
| /// be widened into a single load. |
| bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { |
| SmallVector<LoadInst*, 8> Loads; |
| SmallVector<Instruction*, 8> Writes; |
| LoadPairs.clear(); |
| WideLoads.clear(); |
| OrderedBasicBlock OrderedBB(BB); |
| |
| // Collect loads and instruction that may write to memory. For now we only |
| // record loads which are simple, sign-extended and have a single user. |
| // TODO: Allow zero-extended loads. |
| for (auto &I : *BB) { |
| if (I.mayWriteToMemory()) |
| Writes.push_back(&I); |
| auto *Ld = dyn_cast<LoadInst>(&I); |
| if (!Ld || !Ld->isSimple() || |
| !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) |
| continue; |
| Loads.push_back(Ld); |
| } |
| |
| if (Loads.empty() || Loads.size() > NumLoadLimit) |
| return false; |
| |
| using InstSet = std::set<Instruction*>; |
| using DepMap = std::map<Instruction*, InstSet>; |
| DepMap RAWDeps; |
| |
| // Record any writes that may alias a load. |
| const auto Size = LocationSize::unknown(); |
| for (auto Write : Writes) { |
| for (auto Read : Loads) { |
| MemoryLocation ReadLoc = |
| MemoryLocation(Read->getPointerOperand(), Size); |
| |
| if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), |
| ModRefInfo::ModRef))) |
| continue; |
| if (OrderedBB.dominates(Write, Read)) |
| RAWDeps[Read].insert(Write); |
| } |
| } |
| |
| // Check whether there's not a write between the two loads which would |
| // prevent them from being safely merged. |
| auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { |
| LoadInst *Dominator = OrderedBB.dominates(Base, Offset) ? Base : Offset; |
| LoadInst *Dominated = OrderedBB.dominates(Base, Offset) ? Offset : Base; |
| |
| if (RAWDeps.count(Dominated)) { |
| InstSet &WritesBefore = RAWDeps[Dominated]; |
| |
| for (auto Before : WritesBefore) { |
| // We can't move the second load backward, past a write, to merge |
| // with the first load. |
| if (OrderedBB.dominates(Dominator, Before)) |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| // Record base, offset load pairs. |
| for (auto *Base : Loads) { |
| for (auto *Offset : Loads) { |
| if (Base == Offset || OffsetLoads.count(Offset)) |
| continue; |
| |
| if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && |
| SafeToPair(Base, Offset)) { |
| LoadPairs[Base] = Offset; |
| OffsetLoads.insert(Offset); |
| break; |
| } |
| } |
| } |
| |
| LLVM_DEBUG(if (!LoadPairs.empty()) { |
| dbgs() << "Consecutive load pairs:\n"; |
| for (auto &MapIt : LoadPairs) { |
| LLVM_DEBUG(dbgs() << *MapIt.first << ", " |
| << *MapIt.second << "\n"); |
| } |
| }); |
| return LoadPairs.size() > 1; |
| } |
| |
| // Search recursively back through the operands to find a tree of values that |
| // form a multiply-accumulate chain. The search records the Add and Mul |
| // instructions that form the reduction and allows us to find a single value |
| // to be used as the initial input to the accumlator. |
| bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { |
| // If we find a non-instruction, try to use it as the initial accumulator |
| // value. This may have already been found during the search in which case |
| // this function will return false, signaling a search fail. |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return R.InsertAcc(V); |
| |
| if (I->getParent() != BB) |
| return false; |
| |
| switch (I->getOpcode()) { |
| default: |
| break; |
| case Instruction::PHI: |
| // Could be the accumulator value. |
| return R.InsertAcc(V); |
| case Instruction::Add: { |
| // Adds should be adding together two muls, or another add and a mul to |
| // be within the mac chain. One of the operands may also be the |
| // accumulator value at which point we should stop searching. |
| R.InsertAdd(I); |
| Value *LHS = I->getOperand(0); |
| Value *RHS = I->getOperand(1); |
| bool ValidLHS = Search(LHS, BB, R); |
| bool ValidRHS = Search(RHS, BB, R); |
| |
| if (ValidLHS && ValidRHS) |
| return true; |
| |
| return R.InsertAcc(I); |
| } |
| case Instruction::Mul: { |
| Value *MulOp0 = I->getOperand(0); |
| Value *MulOp1 = I->getOperand(1); |
| return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); |
| } |
| case Instruction::SExt: |
| return Search(I->getOperand(0), BB, R); |
| } |
| return false; |
| } |
| |
| // The pass needs to identify integer add/sub reductions of 16-bit vector |
| // multiplications. |
| // To use SMLAD: |
| // 1) we first need to find integer add then look for this pattern: |
| // |
| // acc0 = ... |
| // ld0 = load i16 |
| // sext0 = sext i16 %ld0 to i32 |
| // ld1 = load i16 |
| // sext1 = sext i16 %ld1 to i32 |
| // mul0 = mul %sext0, %sext1 |
| // ld2 = load i16 |
| // sext2 = sext i16 %ld2 to i32 |
| // ld3 = load i16 |
| // sext3 = sext i16 %ld3 to i32 |
| // mul1 = mul i32 %sext2, %sext3 |
| // add0 = add i32 %mul0, %acc0 |
| // acc1 = add i32 %add0, %mul1 |
| // |
| // Which can be selected to: |
| // |
| // ldr r0 |
| // ldr r1 |
| // smlad r2, r0, r1, r2 |
| // |
| // If constants are used instead of loads, these will need to be hoisted |
| // out and into a register. |
| // |
| // If loop invariants are used instead of loads, these need to be packed |
| // before the loop begins. |
| // |
| bool ARMParallelDSP::MatchSMLAD(Function &F) { |
| bool Changed = false; |
| |
| for (auto &BB : F) { |
| SmallPtrSet<Instruction*, 4> AllAdds; |
| if (!RecordMemoryOps(&BB)) |
| continue; |
| |
| for (Instruction &I : reverse(BB)) { |
| if (I.getOpcode() != Instruction::Add) |
| continue; |
| |
| if (AllAdds.count(&I)) |
| continue; |
| |
| const auto *Ty = I.getType(); |
| if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) |
| continue; |
| |
| Reduction R(&I); |
| if (!Search(&I, &BB, R)) |
| continue; |
| |
| R.InsertMuls(); |
| LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); |
| |
| if (!CreateParallelPairs(R)) |
| continue; |
| |
| InsertParallelMACs(R); |
| Changed = true; |
| AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { |
| |
| // Not enough mul operations to make a pair. |
| if (R.getMuls().size() < 2) |
| return false; |
| |
| // Check that the muls operate directly upon sign extended loads. |
| for (auto &MulCand : R.getMuls()) { |
| if (!MulCand->HasTwoLoadInputs()) |
| return false; |
| } |
| |
| auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { |
| // The first elements of each vector should be loads with sexts. If we |
| // find that its two pairs of consecutive loads, then these can be |
| // transformed into two wider loads and the users can be replaced with |
| // DSP intrinsics. |
| auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); |
| auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); |
| auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); |
| auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); |
| |
| if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { |
| if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { |
| LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); |
| R.AddMulPair(PMul0, PMul1); |
| return true; |
| } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { |
| LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); |
| LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); |
| R.AddMulPair(PMul0, PMul1, true); |
| return true; |
| } |
| } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && |
| AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { |
| LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); |
| LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); |
| LLVM_DEBUG(dbgs() << " and swapping muls\n"); |
| // Only the second operand can be exchanged, so swap the muls. |
| R.AddMulPair(PMul1, PMul0, true); |
| return true; |
| } |
| return false; |
| }; |
| |
| MulCandList &Muls = R.getMuls(); |
| const unsigned Elems = Muls.size(); |
| for (unsigned i = 0; i < Elems; ++i) { |
| MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); |
| if (PMul0->Paired) |
| continue; |
| |
| for (unsigned j = 0; j < Elems; ++j) { |
| if (i == j) |
| continue; |
| |
| MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); |
| if (PMul1->Paired) |
| continue; |
| |
| const Instruction *Mul0 = PMul0->Root; |
| const Instruction *Mul1 = PMul1->Root; |
| if (Mul0 == Mul1) |
| continue; |
| |
| assert(PMul0 != PMul1 && "expected different chains"); |
| |
| if (CanPair(R, PMul0, PMul1)) |
| break; |
| } |
| } |
| return !R.getMulPairs().empty(); |
| } |
| |
| void ARMParallelDSP::InsertParallelMACs(Reduction &R) { |
| |
| auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, |
| Value *Acc, bool Exchange, |
| Instruction *InsertAfter) { |
| // Replace the reduction chain with an intrinsic call |
| |
| Value* Args[] = { WideLd0, WideLd1, Acc }; |
| Function *SMLAD = nullptr; |
| if (Exchange) |
| SMLAD = Acc->getType()->isIntegerTy(32) ? |
| Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : |
| Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); |
| else |
| SMLAD = Acc->getType()->isIntegerTy(32) ? |
| Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : |
| Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); |
| |
| IRBuilder<NoFolder> Builder(InsertAfter->getParent(), |
| BasicBlock::iterator(InsertAfter)); |
| Instruction *Call = Builder.CreateCall(SMLAD, Args); |
| NumSMLAD++; |
| return Call; |
| }; |
| |
| // Return the instruction after the dominated instruction. |
| auto GetInsertPoint = [this](Value *A, Value *B) { |
| assert((isa<Instruction>(A) || isa<Instruction>(B)) && |
| "expected at least one instruction"); |
| |
| Value *V = nullptr; |
| if (!isa<Instruction>(A)) |
| V = B; |
| else if (!isa<Instruction>(B)) |
| V = A; |
| else |
| V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; |
| |
| return &*++BasicBlock::iterator(cast<Instruction>(V)); |
| }; |
| |
| Value *Acc = R.getAccumulator(); |
| |
| // For any muls that were discovered but not paired, accumulate their values |
| // as before. |
| IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); |
| MulCandList &MulCands = R.getMuls(); |
| for (auto &MulCand : MulCands) { |
| if (MulCand->Paired) |
| continue; |
| |
| Instruction *Mul = cast<Instruction>(MulCand->Root); |
| LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); |
| |
| if (R.getType() != Mul->getType()) { |
| assert(R.is64Bit() && "expected 64-bit result"); |
| Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); |
| Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); |
| } |
| |
| if (!Acc) { |
| Acc = Mul; |
| continue; |
| } |
| |
| // If Acc is the original incoming value to the reduction, it could be a |
| // phi. But the phi will dominate Mul, meaning that Mul will be the |
| // insertion point. |
| Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); |
| Acc = Builder.CreateAdd(Mul, Acc); |
| } |
| |
| if (!Acc) { |
| Acc = R.is64Bit() ? |
| ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : |
| ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); |
| } else if (Acc->getType() != R.getType()) { |
| Builder.SetInsertPoint(R.getRoot()); |
| Acc = Builder.CreateSExt(Acc, R.getType()); |
| } |
| |
| // Roughly sort the mul pairs in their program order. |
| OrderedBasicBlock OrderedBB(R.getRoot()->getParent()); |
| llvm::sort(R.getMulPairs(), [&OrderedBB](auto &PairA, auto &PairB) { |
| const Instruction *A = PairA.first->Root; |
| const Instruction *B = PairB.first->Root; |
| return OrderedBB.dominates(A, B); |
| }); |
| |
| IntegerType *Ty = IntegerType::get(M->getContext(), 32); |
| for (auto &Pair : R.getMulPairs()) { |
| MulCandidate *LHSMul = Pair.first; |
| MulCandidate *RHSMul = Pair.second; |
| LoadInst *BaseLHS = LHSMul->getBaseLoad(); |
| LoadInst *BaseRHS = RHSMul->getBaseLoad(); |
| LoadInst *WideLHS = WideLoads.count(BaseLHS) ? |
| WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); |
| LoadInst *WideRHS = WideLoads.count(BaseRHS) ? |
| WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); |
| |
| Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); |
| InsertAfter = GetInsertPoint(InsertAfter, Acc); |
| Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); |
| } |
| R.UpdateRoot(cast<Instruction>(Acc)); |
| } |
| |
| LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, |
| IntegerType *LoadTy) { |
| assert(Loads.size() == 2 && "currently only support widening two loads"); |
| |
| LoadInst *Base = Loads[0]; |
| LoadInst *Offset = Loads[1]; |
| |
| Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); |
| Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); |
| |
| assert((BaseSExt && OffsetSExt) |
| && "Loads should have a single, extending, user"); |
| |
| std::function<void(Value*, Value*)> MoveBefore = |
| [&](Value *A, Value *B) -> void { |
| if (!isa<Instruction>(A) || !isa<Instruction>(B)) |
| return; |
| |
| auto *Source = cast<Instruction>(A); |
| auto *Sink = cast<Instruction>(B); |
| |
| if (DT->dominates(Source, Sink) || |
| Source->getParent() != Sink->getParent() || |
| isa<PHINode>(Source) || isa<PHINode>(Sink)) |
| return; |
| |
| Source->moveBefore(Sink); |
| for (auto &Op : Source->operands()) |
| MoveBefore(Op, Source); |
| }; |
| |
| // Insert the load at the point of the original dominating load. |
| LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; |
| IRBuilder<NoFolder> IRB(DomLoad->getParent(), |
| ++BasicBlock::iterator(DomLoad)); |
| |
| // Bitcast the pointer to a wider type and create the wide load, while making |
| // sure to maintain the original alignment as this prevents ldrd from being |
| // generated when it could be illegal due to memory alignment. |
| const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); |
| Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), |
| LoadTy->getPointerTo(AddrSpace)); |
| LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, |
| Base->getAlignment()); |
| |
| // Make sure everything is in the correct order in the basic block. |
| MoveBefore(Base->getPointerOperand(), VecPtr); |
| MoveBefore(VecPtr, WideLoad); |
| |
| // From the wide load, create two values that equal the original two loads. |
| // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. |
| // TODO: Support big-endian as well. |
| Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); |
| Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); |
| BaseSExt->replaceAllUsesWith(NewBaseSExt); |
| |
| IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); |
| Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); |
| Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); |
| Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); |
| Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); |
| OffsetSExt->replaceAllUsesWith(NewOffsetSExt); |
| |
| LLVM_DEBUG(dbgs() << "From Base and Offset:\n" |
| << *Base << "\n" << *Offset << "\n" |
| << "Created Wide Load:\n" |
| << *WideLoad << "\n" |
| << *Bottom << "\n" |
| << *NewBaseSExt << "\n" |
| << *Top << "\n" |
| << *Trunc << "\n" |
| << *NewOffsetSExt << "\n"); |
| WideLoads.emplace(std::make_pair(Base, |
| std::make_unique<WidenedLoad>(Loads, WideLoad))); |
| return WideLoad; |
| } |
| |
| Pass *llvm::createARMParallelDSPPass() { |
| return new ARMParallelDSP(); |
| } |
| |
| char ARMParallelDSP::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", |
| "Transform functions to use DSP intrinsics", false, false) |
| INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", |
| "Transform functions to use DSP intrinsics", false, false) |