| //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// Finalize v8.1-m low-overhead loops by converting the associated pseudo |
| /// instructions into machine operations. |
| /// The expectation is that the loop contains three pseudo instructions: |
| /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop |
| /// form should be in the preheader, whereas the while form should be in the |
| /// preheaders only predecessor. |
| /// - t2LoopDec - placed within in the loop body. |
| /// - t2LoopEnd - the loop latch terminator. |
| /// |
| /// In addition to this, we also look for the presence of the VCTP instruction, |
| /// which determines whether we can generated the tail-predicated low-overhead |
| /// loop form. |
| /// |
| /// Assumptions and Dependencies: |
| /// Low-overhead loops are constructed and executed using a setup instruction: |
| /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. |
| /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range |
| /// but fixed polarity: WLS can only branch forwards and LE can only branch |
| /// backwards. These restrictions mean that this pass is dependent upon block |
| /// layout and block sizes, which is why it's the last pass to run. The same is |
| /// true for ConstantIslands, but this pass does not increase the size of the |
| /// basic blocks, nor does it change the CFG. Instructions are mainly removed |
| /// during the transform and pseudo instructions are replaced by real ones. In |
| /// some cases, when we have to revert to a 'normal' loop, we have to introduce |
| /// multiple instructions for a single pseudo (see RevertWhile and |
| /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd |
| /// are defined to be as large as this maximum sequence of replacement |
| /// instructions. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMBasicBlockInfo.h" |
| #include "ARMSubtarget.h" |
| #include "Thumb2InstrInfo.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineLoopUtils.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/ReachingDefAnalysis.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-low-overhead-loops" |
| #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" |
| |
| namespace { |
| |
| struct PredicatedMI { |
| MachineInstr *MI = nullptr; |
| SetVector<MachineInstr*> Predicates; |
| |
| public: |
| PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : |
| MI(I) { |
| Predicates.insert(Preds.begin(), Preds.end()); |
| } |
| }; |
| |
| // Represent a VPT block, a list of instructions that begins with a VPST and |
| // has a maximum of four proceeding instructions. All instructions within the |
| // block are predicated upon the vpr and we allow instructions to define the |
| // vpr within in the block too. |
| class VPTBlock { |
| std::unique_ptr<PredicatedMI> VPST; |
| PredicatedMI *Divergent = nullptr; |
| SmallVector<PredicatedMI, 4> Insts; |
| |
| public: |
| VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { |
| VPST = std::make_unique<PredicatedMI>(MI, Preds); |
| } |
| |
| void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); |
| if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { |
| Divergent = &Insts.back(); |
| LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); |
| } |
| Insts.emplace_back(MI, Preds); |
| assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); |
| } |
| |
| // Have we found an instruction within the block which defines the vpr? If |
| // so, not all the instructions in the block will have the same predicate. |
| bool HasNonUniformPredicate() const { |
| return Divergent != nullptr; |
| } |
| |
| // Is the given instruction part of the predicate set controlling the entry |
| // to the block. |
| bool IsPredicatedOn(MachineInstr *MI) const { |
| return VPST->Predicates.count(MI); |
| } |
| |
| // Is the given instruction the only predicate which controls the entry to |
| // the block. |
| bool IsOnlyPredicatedOn(MachineInstr *MI) const { |
| return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; |
| } |
| |
| unsigned size() const { return Insts.size(); } |
| SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } |
| MachineInstr *getVPST() const { return VPST->MI; } |
| PredicatedMI *getDivergent() const { return Divergent; } |
| }; |
| |
| struct LowOverheadLoop { |
| |
| MachineLoop *ML = nullptr; |
| MachineFunction *MF = nullptr; |
| MachineInstr *InsertPt = nullptr; |
| MachineInstr *Start = nullptr; |
| MachineInstr *Dec = nullptr; |
| MachineInstr *End = nullptr; |
| MachineInstr *VCTP = nullptr; |
| VPTBlock *CurrentBlock = nullptr; |
| SetVector<MachineInstr*> CurrentPredicate; |
| SmallVector<VPTBlock, 4> VPTBlocks; |
| bool Revert = false; |
| bool CannotTailPredicate = false; |
| |
| LowOverheadLoop(MachineLoop *ML) : ML(ML) { |
| MF = ML->getHeader()->getParent(); |
| } |
| |
| // If this is an MVE instruction, check that we know how to use tail |
| // predication with it. Record VPT blocks and return whether the |
| // instruction is valid for tail predication. |
| bool ValidateMVEInst(MachineInstr *MI); |
| |
| void AnalyseMVEInst(MachineInstr *MI) { |
| CannotTailPredicate = !ValidateMVEInst(MI); |
| } |
| |
| bool IsTailPredicationLegal() const { |
| // For now, let's keep things really simple and only support a single |
| // block for tail predication. |
| return !Revert && FoundAllComponents() && VCTP && |
| !CannotTailPredicate && ML->getNumBlocks() == 1; |
| } |
| |
| bool ValidateTailPredicate(MachineInstr *StartInsertPt, |
| ReachingDefAnalysis *RDA, |
| MachineLoopInfo *MLI); |
| |
| // Is it safe to define LR with DLS/WLS? |
| // LR can be defined if it is the operand to start, because it's the same |
| // value, or if it's going to be equivalent to the operand to Start. |
| MachineInstr *IsSafeToDefineLR(ReachingDefAnalysis *RDA); |
| |
| // Check the branch targets are within range and we satisfy our |
| // restrictions. |
| void CheckLegality(ARMBasicBlockUtils *BBUtils, ReachingDefAnalysis *RDA, |
| MachineLoopInfo *MLI); |
| |
| bool FoundAllComponents() const { |
| return Start && Dec && End; |
| } |
| |
| SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } |
| |
| // Return the loop iteration count, or the number of elements if we're tail |
| // predicating. |
| MachineOperand &getCount() { |
| return IsTailPredicationLegal() ? |
| VCTP->getOperand(1) : Start->getOperand(0); |
| } |
| |
| unsigned getStartOpcode() const { |
| bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; |
| if (!IsTailPredicationLegal()) |
| return IsDo ? ARM::t2DLS : ARM::t2WLS; |
| |
| return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); |
| } |
| |
| void dump() const { |
| if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; |
| if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; |
| if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; |
| if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; |
| if (!FoundAllComponents()) |
| dbgs() << "ARM Loops: Not a low-overhead loop.\n"; |
| else if (!(Start && Dec && End)) |
| dbgs() << "ARM Loops: Failed to find all loop components.\n"; |
| } |
| }; |
| |
| class ARMLowOverheadLoops : public MachineFunctionPass { |
| MachineFunction *MF = nullptr; |
| MachineLoopInfo *MLI = nullptr; |
| ReachingDefAnalysis *RDA = nullptr; |
| const ARMBaseInstrInfo *TII = nullptr; |
| MachineRegisterInfo *MRI = nullptr; |
| const TargetRegisterInfo *TRI = nullptr; |
| std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; |
| |
| public: |
| static char ID; |
| |
| ARMLowOverheadLoops() : MachineFunctionPass(ID) { } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<ReachingDefAnalysis>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs).set( |
| MachineFunctionProperties::Property::TracksLiveness); |
| } |
| |
| StringRef getPassName() const override { |
| return ARM_LOW_OVERHEAD_LOOPS_NAME; |
| } |
| |
| private: |
| bool ProcessLoop(MachineLoop *ML); |
| |
| bool RevertNonLoops(); |
| |
| void RevertWhile(MachineInstr *MI) const; |
| |
| bool RevertLoopDec(MachineInstr *MI, bool AllowFlags = false) const; |
| |
| void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; |
| |
| void RemoveLoopUpdate(LowOverheadLoop &LoLoop); |
| |
| void ConvertVPTBlocks(LowOverheadLoop &LoLoop); |
| |
| MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); |
| |
| void Expand(LowOverheadLoop &LoLoop); |
| |
| }; |
| } |
| |
| char ARMLowOverheadLoops::ID = 0; |
| |
| INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, |
| false, false) |
| |
| MachineInstr *LowOverheadLoop::IsSafeToDefineLR(ReachingDefAnalysis *RDA) { |
| // We can define LR because LR already contains the same value. |
| if (Start->getOperand(0).getReg() == ARM::LR) |
| return Start; |
| |
| unsigned CountReg = Start->getOperand(0).getReg(); |
| auto IsMoveLR = [&CountReg](MachineInstr *MI) { |
| return MI->getOpcode() == ARM::tMOVr && |
| MI->getOperand(0).getReg() == ARM::LR && |
| MI->getOperand(1).getReg() == CountReg && |
| MI->getOperand(2).getImm() == ARMCC::AL; |
| }; |
| |
| MachineBasicBlock *MBB = Start->getParent(); |
| |
| // Find an insertion point: |
| // - Is there a (mov lr, Count) before Start? If so, and nothing else writes |
| // to Count before Start, we can insert at that mov. |
| if (auto *LRDef = RDA->getReachingMIDef(Start, ARM::LR)) |
| if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) |
| return LRDef; |
| |
| // - Is there a (mov lr, Count) after Start? If so, and nothing else writes |
| // to Count after Start, we can insert at that mov. |
| if (auto *LRDef = RDA->getLocalLiveOutMIDef(MBB, ARM::LR)) |
| if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) |
| return LRDef; |
| |
| // We've found no suitable LR def and Start doesn't use LR directly. Can we |
| // just define LR anyway? |
| if (!RDA->isRegUsedAfter(Start, ARM::LR)) |
| return Start; |
| |
| return nullptr; |
| } |
| |
| // Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must |
| // not define a register that is used by any instructions, after and including, |
| // 'To'. These instructions also must not redefine any of Froms operands. |
| template<typename Iterator> |
| static bool IsSafeToMove(MachineInstr *From, MachineInstr *To, ReachingDefAnalysis *RDA) { |
| SmallSet<int, 2> Defs; |
| // First check that From would compute the same value if moved. |
| for (auto &MO : From->operands()) { |
| if (!MO.isReg() || MO.isUndef() || !MO.getReg()) |
| continue; |
| if (MO.isDef()) |
| Defs.insert(MO.getReg()); |
| else if (!RDA->hasSameReachingDef(From, To, MO.getReg())) |
| return false; |
| } |
| |
| // Now walk checking that the rest of the instructions will compute the same |
| // value. |
| for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) { |
| for (auto &MO : I->operands()) |
| if (MO.isReg() && MO.getReg() && MO.isUse() && Defs.count(MO.getReg())) |
| return false; |
| } |
| return true; |
| } |
| |
| bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt, |
| ReachingDefAnalysis *RDA, MachineLoopInfo *MLI) { |
| assert(VCTP && "VCTP instruction expected but is not set"); |
| // All predication within the loop should be based on vctp. If the block |
| // isn't predicated on entry, check whether the vctp is within the block |
| // and that all other instructions are then predicated on it. |
| for (auto &Block : VPTBlocks) { |
| if (Block.IsPredicatedOn(VCTP)) |
| continue; |
| if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " |
| << *Block.getDivergent()->MI); |
| return false; |
| } |
| SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); |
| for (auto &PredMI : Insts) { |
| if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) |
| continue; |
| LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI |
| << " - which is predicated on:\n"; |
| for (auto *MI : PredMI.Predicates) |
| dbgs() << " - " << *MI; |
| ); |
| return false; |
| } |
| } |
| |
| // For tail predication, we need to provide the number of elements, instead |
| // of the iteration count, to the loop start instruction. The number of |
| // elements is provided to the vctp instruction, so we need to check that |
| // we can use this register at InsertPt. |
| Register NumElements = VCTP->getOperand(1).getReg(); |
| |
| // If the register is defined within loop, then we can't perform TP. |
| // TODO: Check whether this is just a mov of a register that would be |
| // available. |
| if (RDA->getReachingDef(VCTP, NumElements) >= 0) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); |
| return false; |
| } |
| |
| // The element count register maybe defined after InsertPt, in which case we |
| // need to try to move either InsertPt or the def so that the [w|d]lstp can |
| // use the value. |
| MachineBasicBlock *InsertBB = InsertPt->getParent(); |
| if (!RDA->isReachingDefLiveOut(InsertPt, NumElements)) { |
| if (auto *ElemDef = RDA->getLocalLiveOutMIDef(InsertBB, NumElements)) { |
| if (IsSafeToMove<MachineBasicBlock::reverse_iterator>(ElemDef, InsertPt, RDA)) { |
| ElemDef->removeFromParent(); |
| InsertBB->insert(MachineBasicBlock::iterator(InsertPt), ElemDef); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " |
| << *ElemDef); |
| } else if (IsSafeToMove<MachineBasicBlock::iterator>(InsertPt, ElemDef, RDA)) { |
| InsertPt->removeFromParent(); |
| InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), InsertPt); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); |
| } else { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " |
| << "start instruction.\n"); |
| return false; |
| } |
| } |
| } |
| |
| // Especially in the case of while loops, InsertBB may not be the |
| // preheader, so we need to check that the register isn't redefined |
| // before entering the loop. |
| auto CannotProvideElements = [&RDA](MachineBasicBlock *MBB, |
| Register NumElements) { |
| // NumElements is redefined in this block. |
| if (RDA->getReachingDef(&MBB->back(), NumElements) >= 0) |
| return true; |
| |
| // Don't continue searching up through multiple predecessors. |
| if (MBB->pred_size() > 1) |
| return true; |
| |
| return false; |
| }; |
| |
| // First, find the block that looks like the preheader. |
| MachineBasicBlock *MBB = MLI->findLoopPreheader(ML, true); |
| if (!MBB) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); |
| return false; |
| } |
| |
| // Then search backwards for a def, until we get to InsertBB. |
| while (MBB != InsertBB) { |
| if (CannotProvideElements(MBB, NumElements)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); |
| return false; |
| } |
| MBB = *MBB->pred_begin(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM Loops: Will use tail predication.\n"); |
| return true; |
| } |
| |
| void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils, |
| ReachingDefAnalysis *RDA, |
| MachineLoopInfo *MLI) { |
| if (Revert) |
| return; |
| |
| if (!End->getOperand(1).isMBB()) |
| report_fatal_error("Expected LoopEnd to target basic block"); |
| |
| // TODO Maybe there's cases where the target doesn't have to be the header, |
| // but for now be safe and revert. |
| if (End->getOperand(1).getMBB() != ML->getHeader()) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); |
| Revert = true; |
| return; |
| } |
| |
| // The WLS and LE instructions have 12-bits for the label offset. WLS |
| // requires a positive offset, while LE uses negative. |
| if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML->getHeader()) || |
| !BBUtils->isBBInRange(End, ML->getHeader(), 4094)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); |
| Revert = true; |
| return; |
| } |
| |
| if (Start->getOpcode() == ARM::t2WhileLoopStart && |
| (BBUtils->getOffsetOf(Start) > |
| BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || |
| !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); |
| Revert = true; |
| return; |
| } |
| |
| InsertPt = Revert ? nullptr : IsSafeToDefineLR(RDA); |
| if (!InsertPt) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); |
| Revert = true; |
| return; |
| } else |
| LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); |
| |
| if (!IsTailPredicationLegal()) { |
| LLVM_DEBUG(if (!VCTP) |
| dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; |
| dbgs() << "ARM Loops: Tail-predication is not valid.\n"); |
| return; |
| } |
| |
| assert(ML->getBlocks().size() == 1 && |
| "Shouldn't be processing a loop with more than one block"); |
| CannotTailPredicate = !ValidateTailPredicate(InsertPt, RDA, MLI); |
| LLVM_DEBUG(if (CannotTailPredicate) |
| dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); |
| } |
| |
| bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { |
| if (CannotTailPredicate) |
| return false; |
| |
| // Only support a single vctp. |
| if (isVCTP(MI) && VCTP) |
| return false; |
| |
| // Start a new vpt block when we discover a vpt. |
| if (MI->getOpcode() == ARM::MVE_VPST) { |
| VPTBlocks.emplace_back(MI, CurrentPredicate); |
| CurrentBlock = &VPTBlocks.back(); |
| return true; |
| } else if (isVCTP(MI)) |
| VCTP = MI; |
| else if (MI->getOpcode() == ARM::MVE_VPSEL || |
| MI->getOpcode() == ARM::MVE_VPNOT) |
| return false; |
| |
| // TODO: Allow VPSEL and VPNOT, we currently cannot because: |
| // 1) It will use the VPR as a predicate operand, but doesn't have to be |
| // instead a VPT block, which means we can assert while building up |
| // the VPT block because we don't find another VPST to being a new |
| // one. |
| // 2) VPSEL still requires a VPR operand even after tail predicating, |
| // which means we can't remove it unless there is another |
| // instruction, such as vcmp, that can provide the VPR def. |
| |
| bool IsUse = false; |
| bool IsDef = false; |
| const MCInstrDesc &MCID = MI->getDesc(); |
| for (int i = MI->getNumOperands() - 1; i >= 0; --i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || MO.getReg() != ARM::VPR) |
| continue; |
| |
| if (MO.isDef()) { |
| CurrentPredicate.insert(MI); |
| IsDef = true; |
| } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { |
| CurrentBlock->addInst(MI, CurrentPredicate); |
| IsUse = true; |
| } else { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); |
| return false; |
| } |
| } |
| |
| // If we find a vpr def that is not already predicated on the vctp, we've |
| // got disjoint predicates that may not be equivalent when we do the |
| // conversion. |
| if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); |
| return false; |
| } |
| |
| uint64_t Flags = MCID.TSFlags; |
| if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) |
| return true; |
| |
| // If we find an instruction that has been marked as not valid for tail |
| // predication, only allow the instruction if it's contained within a valid |
| // VPT block. |
| if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { |
| const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); |
| if (!ST.hasLOB()) |
| return false; |
| |
| MF = &mf; |
| LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); |
| |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| RDA = &getAnalysis<ReachingDefAnalysis>(); |
| MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); |
| MRI = &MF->getRegInfo(); |
| TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); |
| TRI = ST.getRegisterInfo(); |
| BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); |
| BBUtils->computeAllBlockSizes(); |
| BBUtils->adjustBBOffsetsAfter(&MF->front()); |
| |
| bool Changed = false; |
| for (auto ML : *MLI) { |
| if (!ML->getParentLoop()) |
| Changed |= ProcessLoop(ML); |
| } |
| Changed |= RevertNonLoops(); |
| return Changed; |
| } |
| |
| bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { |
| |
| bool Changed = false; |
| |
| // Process inner loops first. |
| for (auto I = ML->begin(), E = ML->end(); I != E; ++I) |
| Changed |= ProcessLoop(*I); |
| |
| LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; |
| if (auto *Preheader = ML->getLoopPreheader()) |
| dbgs() << " - " << Preheader->getName() << "\n"; |
| else if (auto *Preheader = MLI->findLoopPreheader(ML)) |
| dbgs() << " - " << Preheader->getName() << "\n"; |
| for (auto *MBB : ML->getBlocks()) |
| dbgs() << " - " << MBB->getName() << "\n"; |
| ); |
| |
| // Search the given block for a loop start instruction. If one isn't found, |
| // and there's only one predecessor block, search that one too. |
| std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = |
| [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { |
| for (auto &MI : *MBB) { |
| if (isLoopStart(MI)) |
| return &MI; |
| } |
| if (MBB->pred_size() == 1) |
| return SearchForStart(*MBB->pred_begin()); |
| return nullptr; |
| }; |
| |
| LowOverheadLoop LoLoop(ML); |
| // Search the preheader for the start intrinsic. |
| // FIXME: I don't see why we shouldn't be supporting multiple predecessors |
| // with potentially multiple set.loop.iterations, so we need to enable this. |
| if (auto *Preheader = ML->getLoopPreheader()) |
| LoLoop.Start = SearchForStart(Preheader); |
| else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) |
| LoLoop.Start = SearchForStart(Preheader); |
| else |
| return false; |
| |
| // Find the low-overhead loop components and decide whether or not to fall |
| // back to a normal loop. Also look for a vctp instructions and decide |
| // whether we can convert that predicate using tail predication. |
| for (auto *MBB : reverse(ML->getBlocks())) { |
| for (auto &MI : *MBB) { |
| if (MI.getOpcode() == ARM::t2LoopDec) |
| LoLoop.Dec = &MI; |
| else if (MI.getOpcode() == ARM::t2LoopEnd) |
| LoLoop.End = &MI; |
| else if (isLoopStart(MI)) |
| LoLoop.Start = &MI; |
| else if (MI.getDesc().isCall()) { |
| // TODO: Though the call will require LE to execute again, does this |
| // mean we should revert? Always executing LE hopefully should be |
| // faster than performing a sub,cmp,br or even subs,br. |
| LoLoop.Revert = true; |
| LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); |
| } else { |
| // Record VPR defs and build up their corresponding vpt blocks. |
| // Check we know how to tail predicate any mve instructions. |
| LoLoop.AnalyseMVEInst(&MI); |
| } |
| |
| // We need to ensure that LR is not used or defined inbetween LoopDec and |
| // LoopEnd. |
| if (!LoLoop.Dec || LoLoop.End || LoLoop.Revert) |
| continue; |
| |
| // If we find that LR has been written or read between LoopDec and |
| // LoopEnd, expect that the decremented value is being used else where. |
| // Because this value isn't actually going to be produced until the |
| // latch, by LE, we would need to generate a real sub. The value is also |
| // likely to be copied/reloaded for use of LoopEnd - in which in case |
| // we'd need to perform an add because it gets subtracted again by LE! |
| // The other option is to then generate the other form of LE which doesn't |
| // perform the sub. |
| for (auto &MO : MI.operands()) { |
| if (MI.getOpcode() != ARM::t2LoopDec && MO.isReg() && |
| MO.getReg() == ARM::LR) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Found LR Use/Def: " << MI); |
| LoLoop.Revert = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| LLVM_DEBUG(LoLoop.dump()); |
| if (!LoLoop.FoundAllComponents()) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); |
| return false; |
| } |
| |
| LoLoop.CheckLegality(BBUtils.get(), RDA, MLI); |
| Expand(LoLoop); |
| return true; |
| } |
| |
| // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a |
| // beq that branches to the exit branch. |
| // TODO: We could also try to generate a cbz if the value in LR is also in |
| // another low register. |
| void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), |
| TII->get(ARM::t2CMPri)); |
| MIB.add(MI->getOperand(0)); |
| MIB.addImm(0); |
| MIB.addImm(ARMCC::AL); |
| MIB.addReg(ARM::NoRegister); |
| |
| MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); |
| unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? |
| ARM::tBcc : ARM::t2Bcc; |
| |
| MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); |
| MIB.add(MI->getOperand(1)); // branch target |
| MIB.addImm(ARMCC::EQ); // condition code |
| MIB.addReg(ARM::CPSR); |
| MI->eraseFromParent(); |
| } |
| |
| bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI, |
| bool SetFlags) const { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); |
| MachineBasicBlock *MBB = MI->getParent(); |
| |
| // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. |
| if (SetFlags && |
| (RDA->isRegUsedAfter(MI, ARM::CPSR) || |
| !RDA->hasSameReachingDef(MI, &MBB->back(), ARM::CPSR))) |
| SetFlags = false; |
| |
| MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), |
| TII->get(ARM::t2SUBri)); |
| MIB.addDef(ARM::LR); |
| MIB.add(MI->getOperand(1)); |
| MIB.add(MI->getOperand(2)); |
| MIB.addImm(ARMCC::AL); |
| MIB.addReg(0); |
| |
| if (SetFlags) { |
| MIB.addReg(ARM::CPSR); |
| MIB->getOperand(5).setIsDef(true); |
| } else |
| MIB.addReg(0); |
| |
| MI->eraseFromParent(); |
| return SetFlags; |
| } |
| |
| // Generate a subs, or sub and cmp, and a branch instead of an LE. |
| void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); |
| |
| MachineBasicBlock *MBB = MI->getParent(); |
| // Create cmp |
| if (!SkipCmp) { |
| MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), |
| TII->get(ARM::t2CMPri)); |
| MIB.addReg(ARM::LR); |
| MIB.addImm(0); |
| MIB.addImm(ARMCC::AL); |
| MIB.addReg(ARM::NoRegister); |
| } |
| |
| MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); |
| unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? |
| ARM::tBcc : ARM::t2Bcc; |
| |
| // Create bne |
| MachineInstrBuilder MIB = |
| BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); |
| MIB.add(MI->getOperand(1)); // branch target |
| MIB.addImm(ARMCC::NE); // condition code |
| MIB.addReg(ARM::CPSR); |
| MI->eraseFromParent(); |
| } |
| |
| MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { |
| MachineInstr *InsertPt = LoLoop.InsertPt; |
| MachineInstr *Start = LoLoop.Start; |
| MachineBasicBlock *MBB = InsertPt->getParent(); |
| bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; |
| unsigned Opc = LoLoop.getStartOpcode(); |
| MachineOperand &Count = LoLoop.getCount(); |
| |
| MachineInstrBuilder MIB = |
| BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); |
| |
| MIB.addDef(ARM::LR); |
| MIB.add(Count); |
| if (!IsDo) |
| MIB.add(Start->getOperand(1)); |
| |
| // When using tail-predication, try to delete the dead code that was used to |
| // calculate the number of loop iterations. |
| if (LoLoop.IsTailPredicationLegal()) { |
| SmallVector<MachineInstr*, 4> Killed; |
| SmallVector<MachineInstr*, 4> Dead; |
| if (auto *Def = RDA->getReachingMIDef(Start, |
| Start->getOperand(0).getReg())) { |
| Killed.push_back(Def); |
| |
| while (!Killed.empty()) { |
| MachineInstr *Def = Killed.back(); |
| Killed.pop_back(); |
| Dead.push_back(Def); |
| for (auto &MO : Def->operands()) { |
| if (!MO.isReg() || !MO.isKill()) |
| continue; |
| |
| MachineInstr *Kill = RDA->getReachingMIDef(Def, MO.getReg()); |
| if (Kill && RDA->getNumUses(Kill, MO.getReg()) == 1) |
| Killed.push_back(Kill); |
| } |
| } |
| for (auto *MI : Dead) |
| MI->eraseFromParent(); |
| } |
| } |
| |
| // If we're inserting at a mov lr, then remove it as it's redundant. |
| if (InsertPt != Start) |
| InsertPt->eraseFromParent(); |
| Start->eraseFromParent(); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); |
| return &*MIB; |
| } |
| |
| // Goal is to optimise and clean-up these loops: |
| // |
| // vector.body: |
| // renamable $vpr = MVE_VCTP32 renamable $r3, 0, $noreg |
| // renamable $r3, dead $cpsr = tSUBi8 killed renamable $r3(tied-def 0), 4 |
| // .. |
| // $lr = MVE_DLSTP_32 renamable $r3 |
| // |
| // The SUB is the old update of the loop iteration count expression, which |
| // is no longer needed. This sub is removed when the element count, which is in |
| // r3 in this example, is defined by an instruction in the loop, and it has |
| // no uses. |
| // |
| void ARMLowOverheadLoops::RemoveLoopUpdate(LowOverheadLoop &LoLoop) { |
| Register ElemCount = LoLoop.VCTP->getOperand(1).getReg(); |
| MachineInstr *LastInstrInBlock = &LoLoop.VCTP->getParent()->back(); |
| |
| LLVM_DEBUG(dbgs() << "ARM Loops: Trying to remove loop update stmt\n"); |
| |
| if (LoLoop.ML->getNumBlocks() != 1) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Single block loop expected\n"); |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM Loops: Analyzing elemcount in operand: "; |
| LoLoop.VCTP->getOperand(1).dump()); |
| |
| // Find the definition we are interested in removing, if there is one. |
| MachineInstr *Def = RDA->getReachingMIDef(LastInstrInBlock, ElemCount); |
| if (!Def) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Can't find a def, nothing to do.\n"); |
| return; |
| } |
| |
| // Bail if we define CPSR and it is not dead |
| if (!Def->registerDefIsDead(ARM::CPSR, TRI)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: CPSR is not dead\n"); |
| return; |
| } |
| |
| // Bail if elemcount is used in exit blocks, i.e. if it is live-in. |
| if (isRegLiveInExitBlocks(LoLoop.ML, ElemCount)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Elemcount is live-out, can't remove stmt\n"); |
| return; |
| } |
| |
| // Bail if there are uses after this Def in the block. |
| SmallVector<MachineInstr*, 4> Uses; |
| RDA->getReachingLocalUses(Def, ElemCount, Uses); |
| if (Uses.size()) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Local uses in block, can't remove stmt\n"); |
| return; |
| } |
| |
| Uses.clear(); |
| RDA->getAllInstWithUseBefore(Def, ElemCount, Uses); |
| |
| // Remove Def if there are no uses, or if the only use is the VCTP |
| // instruction. |
| if (!Uses.size() || (Uses.size() == 1 && Uses[0] == LoLoop.VCTP)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Removing loop update instruction: "; |
| Def->dump()); |
| Def->eraseFromParent(); |
| return; |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM Loops: Can't remove loop update, it's used by:\n"; |
| for (auto U : Uses) U->dump()); |
| } |
| |
| void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { |
| auto RemovePredicate = [](MachineInstr *MI) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); |
| if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { |
| assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && |
| "Expected Then predicate!"); |
| MI->getOperand(PIdx).setImm(ARMVCC::None); |
| MI->getOperand(PIdx+1).setReg(0); |
| } else |
| llvm_unreachable("trying to unpredicate a non-predicated instruction"); |
| }; |
| |
| // There are a few scenarios which we have to fix up: |
| // 1) A VPT block with is only predicated by the vctp and has no internal vpr |
| // defs. |
| // 2) A VPT block which is only predicated by the vctp but has an internal |
| // vpr def. |
| // 3) A VPT block which is predicated upon the vctp as well as another vpr |
| // def. |
| // 4) A VPT block which is not predicated upon a vctp, but contains it and |
| // all instructions within the block are predicated upon in. |
| |
| for (auto &Block : LoLoop.getVPTBlocks()) { |
| SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); |
| if (Block.HasNonUniformPredicate()) { |
| PredicatedMI *Divergent = Block.getDivergent(); |
| if (isVCTP(Divergent->MI)) { |
| // The vctp will be removed, so the size of the vpt block needs to be |
| // modified. |
| uint64_t Size = getARMVPTBlockMask(Block.size() - 1); |
| Block.getVPST()->getOperand(0).setImm(Size); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); |
| } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { |
| // The VPT block has a non-uniform predicate but it's entry is guarded |
| // only by a vctp, which means we: |
| // - Need to remove the original vpst. |
| // - Then need to unpredicate any following instructions, until |
| // we come across the divergent vpr def. |
| // - Insert a new vpst to predicate the instruction(s) that following |
| // the divergent vpr def. |
| // TODO: We could be producing more VPT blocks than necessary and could |
| // fold the newly created one into a proceeding one. |
| for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), |
| E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) |
| RemovePredicate(&*I); |
| |
| unsigned Size = 0; |
| auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); |
| auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); |
| MachineInstr *InsertAt = nullptr; |
| while (I != E) { |
| InsertAt = &*I; |
| ++Size; |
| ++I; |
| } |
| MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, |
| InsertAt->getDebugLoc(), |
| TII->get(ARM::MVE_VPST)); |
| MIB.addImm(getARMVPTBlockMask(Size)); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); |
| Block.getVPST()->eraseFromParent(); |
| } |
| } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { |
| // A vpt block which is only predicated upon vctp and has no internal vpr |
| // defs: |
| // - Remove vpst. |
| // - Unpredicate the remaining instructions. |
| LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); |
| Block.getVPST()->eraseFromParent(); |
| for (auto &PredMI : Insts) |
| RemovePredicate(PredMI.MI); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); |
| LoLoop.VCTP->eraseFromParent(); |
| } |
| |
| void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { |
| |
| // Combine the LoopDec and LoopEnd instructions into LE(TP). |
| auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { |
| MachineInstr *End = LoLoop.End; |
| MachineBasicBlock *MBB = End->getParent(); |
| unsigned Opc = LoLoop.IsTailPredicationLegal() ? |
| ARM::MVE_LETP : ARM::t2LEUpdate; |
| MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), |
| TII->get(Opc)); |
| MIB.addDef(ARM::LR); |
| MIB.add(End->getOperand(0)); |
| MIB.add(End->getOperand(1)); |
| LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); |
| |
| LoLoop.End->eraseFromParent(); |
| LoLoop.Dec->eraseFromParent(); |
| return &*MIB; |
| }; |
| |
| // TODO: We should be able to automatically remove these branches before we |
| // get here - probably by teaching analyzeBranch about the pseudo |
| // instructions. |
| // If there is an unconditional branch, after I, that just branches to the |
| // next block, remove it. |
| auto RemoveDeadBranch = [](MachineInstr *I) { |
| MachineBasicBlock *BB = I->getParent(); |
| MachineInstr *Terminator = &BB->instr_back(); |
| if (Terminator->isUnconditionalBranch() && I != Terminator) { |
| MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); |
| if (BB->isLayoutSuccessor(Succ)) { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); |
| Terminator->eraseFromParent(); |
| } |
| } |
| }; |
| |
| if (LoLoop.Revert) { |
| if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) |
| RevertWhile(LoLoop.Start); |
| else |
| LoLoop.Start->eraseFromParent(); |
| bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec, true); |
| RevertLoopEnd(LoLoop.End, FlagsAlreadySet); |
| } else { |
| LoLoop.Start = ExpandLoopStart(LoLoop); |
| RemoveDeadBranch(LoLoop.Start); |
| LoLoop.End = ExpandLoopEnd(LoLoop); |
| RemoveDeadBranch(LoLoop.End); |
| if (LoLoop.IsTailPredicationLegal()) { |
| RemoveLoopUpdate(LoLoop); |
| ConvertVPTBlocks(LoLoop); |
| } |
| } |
| } |
| |
| bool ARMLowOverheadLoops::RevertNonLoops() { |
| LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); |
| bool Changed = false; |
| |
| for (auto &MBB : *MF) { |
| SmallVector<MachineInstr*, 4> Starts; |
| SmallVector<MachineInstr*, 4> Decs; |
| SmallVector<MachineInstr*, 4> Ends; |
| |
| for (auto &I : MBB) { |
| if (isLoopStart(I)) |
| Starts.push_back(&I); |
| else if (I.getOpcode() == ARM::t2LoopDec) |
| Decs.push_back(&I); |
| else if (I.getOpcode() == ARM::t2LoopEnd) |
| Ends.push_back(&I); |
| } |
| |
| if (Starts.empty() && Decs.empty() && Ends.empty()) |
| continue; |
| |
| Changed = true; |
| |
| for (auto *Start : Starts) { |
| if (Start->getOpcode() == ARM::t2WhileLoopStart) |
| RevertWhile(Start); |
| else |
| Start->eraseFromParent(); |
| } |
| for (auto *Dec : Decs) |
| RevertLoopDec(Dec); |
| |
| for (auto *End : Ends) |
| RevertLoopEnd(End); |
| } |
| return Changed; |
| } |
| |
| FunctionPass *llvm::createARMLowOverheadLoopsPass() { |
| return new ARMLowOverheadLoops(); |
| } |