| //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AArch64PromoteConstant pass which promotes constants |
| // to global variables when this is likely to be more efficient. Currently only |
| // types related to constant vector (i.e., constant vector, array of constant |
| // vectors, constant structure with a constant vector field, etc.) are promoted |
| // to global variables. Constant vectors are likely to be lowered in target |
| // constant pool during instruction selection already; therefore, the access |
| // will remain the same (memory load), but the structure types are not split |
| // into different constant pool accesses for each field. A bonus side effect is |
| // that created globals may be merged by the global merge pass. |
| // |
| // FIXME: This pass may be useful for other targets too. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-promote-const" |
| |
| // Stress testing mode - disable heuristics. |
| static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, |
| cl::desc("Promote all vector constants")); |
| |
| STATISTIC(NumPromoted, "Number of promoted constants"); |
| STATISTIC(NumPromotedUses, "Number of promoted constants uses"); |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64PromoteConstant |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Promotes interesting constant into global variables. |
| /// The motivating example is: |
| /// static const uint16_t TableA[32] = { |
| /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, |
| /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, |
| /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, |
| /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, |
| /// }; |
| /// |
| /// uint8x16x4_t LoadStatic(void) { |
| /// uint8x16x4_t ret; |
| /// ret.val[0] = vld1q_u16(TableA + 0); |
| /// ret.val[1] = vld1q_u16(TableA + 8); |
| /// ret.val[2] = vld1q_u16(TableA + 16); |
| /// ret.val[3] = vld1q_u16(TableA + 24); |
| /// return ret; |
| /// } |
| /// |
| /// The constants in this example are folded into the uses. Thus, 4 different |
| /// constants are created. |
| /// |
| /// As their type is vector the cheapest way to create them is to load them |
| /// for the memory. |
| /// |
| /// Therefore the final assembly final has 4 different loads. With this pass |
| /// enabled, only one load is issued for the constants. |
| class AArch64PromoteConstant : public ModulePass { |
| public: |
| struct PromotedConstant { |
| bool ShouldConvert = false; |
| GlobalVariable *GV = nullptr; |
| }; |
| using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>; |
| |
| struct UpdateRecord { |
| Constant *C; |
| Instruction *User; |
| unsigned Op; |
| |
| UpdateRecord(Constant *C, Instruction *User, unsigned Op) |
| : C(C), User(User), Op(Op) {} |
| }; |
| |
| static char ID; |
| |
| AArch64PromoteConstant() : ModulePass(ID) { |
| initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "AArch64 Promote Constant"; } |
| |
| /// Iterate over the functions and promote the interesting constants into |
| /// global variables with module scope. |
| bool runOnModule(Module &M) override { |
| LLVM_DEBUG(dbgs() << getPassName() << '\n'); |
| if (skipModule(M)) |
| return false; |
| bool Changed = false; |
| PromotionCacheTy PromotionCache; |
| for (auto &MF : M) { |
| Changed |= runOnFunction(MF, PromotionCache); |
| } |
| return Changed; |
| } |
| |
| private: |
| /// Look for interesting constants used within the given function. |
| /// Promote them into global variables, load these global variables within |
| /// the related function, so that the number of inserted load is minimal. |
| bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); |
| |
| // This transformation requires dominator info |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| } |
| |
| /// Type to store a list of Uses. |
| using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>; |
| /// Map an insertion point to all the uses it dominates. |
| using InsertionPoints = DenseMap<Instruction *, Uses>; |
| |
| /// Find the closest point that dominates the given Use. |
| Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); |
| |
| /// Check if the given insertion point is dominated by an existing |
| /// insertion point. |
| /// If true, the given use is added to the list of dominated uses for |
| /// the related existing point. |
| /// \param NewPt the insertion point to be checked |
| /// \param User the user of the constant |
| /// \param OpNo the operand number of the use |
| /// \param InsertPts existing insertion points |
| /// \pre NewPt and all instruction in InsertPts belong to the same function |
| /// \return true if one of the insertion point in InsertPts dominates NewPt, |
| /// false otherwise |
| bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, |
| InsertionPoints &InsertPts); |
| |
| /// Check if the given insertion point can be merged with an existing |
| /// insertion point in a common dominator. |
| /// If true, the given use is added to the list of the created insertion |
| /// point. |
| /// \param NewPt the insertion point to be checked |
| /// \param User the user of the constant |
| /// \param OpNo the operand number of the use |
| /// \param InsertPts existing insertion points |
| /// \pre NewPt and all instruction in InsertPts belong to the same function |
| /// \pre isDominated returns false for the exact same parameters. |
| /// \return true if it exists an insertion point in InsertPts that could |
| /// have been merged with NewPt in a common dominator, |
| /// false otherwise |
| bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, |
| InsertionPoints &InsertPts); |
| |
| /// Compute the minimal insertion points to dominates all the interesting |
| /// uses of value. |
| /// Insertion points are group per function and each insertion point |
| /// contains a list of all the uses it dominates within the related function |
| /// \param User the user of the constant |
| /// \param OpNo the operand number of the constant |
| /// \param[out] InsertPts output storage of the analysis |
| void computeInsertionPoint(Instruction *User, unsigned OpNo, |
| InsertionPoints &InsertPts); |
| |
| /// Insert a definition of a new global variable at each point contained in |
| /// InsPtsPerFunc and update the related uses (also contained in |
| /// InsPtsPerFunc). |
| void insertDefinitions(Function &F, GlobalVariable &GV, |
| InsertionPoints &InsertPts); |
| |
| /// Do the constant promotion indicated by the Updates records, keeping track |
| /// of globals in PromotionCache. |
| void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, |
| PromotionCacheTy &PromotionCache); |
| |
| /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. |
| /// Append Use to this list and delete the entry of IPI in InsertPts. |
| static void appendAndTransferDominatedUses(Instruction *NewPt, |
| Instruction *User, unsigned OpNo, |
| InsertionPoints::iterator &IPI, |
| InsertionPoints &InsertPts) { |
| // Record the dominated use. |
| IPI->second.emplace_back(User, OpNo); |
| // Transfer the dominated uses of IPI to NewPt |
| // Inserting into the DenseMap may invalidate existing iterator. |
| // Keep a copy of the key to find the iterator to erase. Keep a copy of the |
| // value so that we don't have to dereference IPI->second. |
| Instruction *OldInstr = IPI->first; |
| Uses OldUses = std::move(IPI->second); |
| InsertPts[NewPt] = std::move(OldUses); |
| // Erase IPI. |
| InsertPts.erase(OldInstr); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char AArch64PromoteConstant::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", |
| "AArch64 Promote Constant Pass", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", |
| "AArch64 Promote Constant Pass", false, false) |
| |
| ModulePass *llvm::createAArch64PromoteConstantPass() { |
| return new AArch64PromoteConstant(); |
| } |
| |
| /// Check if the given type uses a vector type. |
| static bool isConstantUsingVectorTy(const Type *CstTy) { |
| if (CstTy->isVectorTy()) |
| return true; |
| if (CstTy->isStructTy()) { |
| for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); |
| EltIdx < EndEltIdx; ++EltIdx) |
| if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) |
| return true; |
| } else if (CstTy->isArrayTy()) |
| return isConstantUsingVectorTy(CstTy->getArrayElementType()); |
| return false; |
| } |
| |
| /// Check if the given use (Instruction + OpIdx) of Cst should be converted into |
| /// a load of a global variable initialized with Cst. |
| /// A use should be converted if it is legal to do so. |
| /// For instance, it is not legal to turn the mask operand of a shuffle vector |
| /// into a load of a global variable. |
| static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, |
| unsigned OpIdx) { |
| // shufflevector instruction expects a const for the mask argument, i.e., the |
| // third argument. Do not promote this use in that case. |
| if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) |
| return false; |
| |
| // extractvalue instruction expects a const idx. |
| if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // extractvalue instruction expects a const idx. |
| if (isa<const InsertValueInst>(Instr) && OpIdx > 1) |
| return false; |
| |
| if (isa<const AllocaInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // Alignment argument must be constant. |
| if (isa<const LoadInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // Alignment argument must be constant. |
| if (isa<const StoreInst>(Instr) && OpIdx > 1) |
| return false; |
| |
| // Index must be constant. |
| if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // Personality function and filters must be constant. |
| // Give up on that instruction. |
| if (isa<const LandingPadInst>(Instr)) |
| return false; |
| |
| // Switch instruction expects constants to compare to. |
| if (isa<const SwitchInst>(Instr)) |
| return false; |
| |
| // Expected address must be a constant. |
| if (isa<const IndirectBrInst>(Instr)) |
| return false; |
| |
| // Do not mess with intrinsics. |
| if (isa<const IntrinsicInst>(Instr)) |
| return false; |
| |
| // Do not mess with inline asm. |
| const CallInst *CI = dyn_cast<const CallInst>(Instr); |
| return !(CI && isa<const InlineAsm>(CI->getCalledValue())); |
| } |
| |
| /// Check if the given Cst should be converted into |
| /// a load of a global variable initialized with Cst. |
| /// A constant should be converted if it is likely that the materialization of |
| /// the constant will be tricky. Thus, we give up on zero or undef values. |
| /// |
| /// \todo Currently, accept only vector related types. |
| /// Also we give up on all simple vector type to keep the existing |
| /// behavior. Otherwise, we should push here all the check of the lowering of |
| /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging |
| /// constant via global merge and the fact that the same constant is stored |
| /// only once with this method (versus, as many function that uses the constant |
| /// for the regular approach, even for float). |
| /// Again, the simplest solution would be to promote every |
| /// constant and rematerialize them when they are actually cheap to create. |
| static bool shouldConvertImpl(const Constant *Cst) { |
| if (isa<const UndefValue>(Cst)) |
| return false; |
| |
| // FIXME: In some cases, it may be interesting to promote in memory |
| // a zero initialized constant. |
| // E.g., when the type of Cst require more instructions than the |
| // adrp/add/load sequence or when this sequence can be shared by several |
| // instances of Cst. |
| // Ideally, we could promote this into a global and rematerialize the constant |
| // when it was a bad idea. |
| if (Cst->isZeroValue()) |
| return false; |
| |
| if (Stress) |
| return true; |
| |
| // FIXME: see function \todo |
| if (Cst->getType()->isVectorTy()) |
| return false; |
| return isConstantUsingVectorTy(Cst->getType()); |
| } |
| |
| static bool |
| shouldConvert(Constant &C, |
| AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { |
| auto Converted = PromotionCache.insert( |
| std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); |
| if (Converted.second) |
| Converted.first->second.ShouldConvert = shouldConvertImpl(&C); |
| return Converted.first->second.ShouldConvert; |
| } |
| |
| Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, |
| unsigned OpNo) { |
| // If this user is a phi, the insertion point is in the related |
| // incoming basic block. |
| if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) |
| return PhiInst->getIncomingBlock(OpNo)->getTerminator(); |
| |
| return &User; |
| } |
| |
| bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, |
| unsigned OpNo, |
| InsertionPoints &InsertPts) { |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| *NewPt->getParent()->getParent()).getDomTree(); |
| |
| // Traverse all the existing insertion points and check if one is dominating |
| // NewPt. If it is, remember that. |
| for (auto &IPI : InsertPts) { |
| if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || |
| // When IPI.first is a terminator instruction, DT may think that |
| // the result is defined on the edge. |
| // Here we are testing the insertion point, not the definition. |
| (IPI.first->getParent() != NewPt->getParent() && |
| DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { |
| // No need to insert this point. Just record the dominated use. |
| LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n"); |
| LLVM_DEBUG(IPI.first->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| IPI.second.emplace_back(User, OpNo); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, |
| unsigned OpNo, |
| InsertionPoints &InsertPts) { |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| *NewPt->getParent()->getParent()).getDomTree(); |
| BasicBlock *NewBB = NewPt->getParent(); |
| |
| // Traverse all the existing insertion point and check if one is dominated by |
| // NewPt and thus useless or can be combined with NewPt into a common |
| // dominator. |
| for (InsertionPoints::iterator IPI = InsertPts.begin(), |
| EndIPI = InsertPts.end(); |
| IPI != EndIPI; ++IPI) { |
| BasicBlock *CurBB = IPI->first->getParent(); |
| if (NewBB == CurBB) { |
| // Instructions are in the same block. |
| // By construction, NewPt is dominating the other. |
| // Indeed, isDominated returned false with the exact same arguments. |
| LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); |
| LLVM_DEBUG(IPI->first->print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n"); |
| appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); |
| return true; |
| } |
| |
| // Look for a common dominator |
| BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); |
| // If none exists, we cannot merge these two points. |
| if (!CommonDominator) |
| continue; |
| |
| if (CommonDominator != NewBB) { |
| // By construction, the CommonDominator cannot be CurBB. |
| assert(CommonDominator != CurBB && |
| "Instruction has not been rejected during isDominated check!"); |
| // Take the last instruction of the CommonDominator as insertion point |
| NewPt = CommonDominator->getTerminator(); |
| } |
| // else, CommonDominator is the block of NewBB, hence NewBB is the last |
| // possible insertion point in that block. |
| LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); |
| LLVM_DEBUG(IPI->first->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| LLVM_DEBUG(NewPt->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); |
| return true; |
| } |
| return false; |
| } |
| |
| void AArch64PromoteConstant::computeInsertionPoint( |
| Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { |
| LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); |
| LLVM_DEBUG(User->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| |
| Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); |
| |
| LLVM_DEBUG(dbgs() << "Considered insertion point:\n"); |
| LLVM_DEBUG(InsertionPoint->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| |
| if (isDominated(InsertionPoint, User, OpNo, InsertPts)) |
| return; |
| // This insertion point is useful, check if we can merge some insertion |
| // point in a common dominator or if NewPt dominates an existing one. |
| if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "Keep considered insertion point\n"); |
| |
| // It is definitely useful by its own |
| InsertPts[InsertionPoint].emplace_back(User, OpNo); |
| } |
| |
| static void ensurePromotedGV(Function &F, Constant &C, |
| AArch64PromoteConstant::PromotedConstant &PC) { |
| assert(PC.ShouldConvert && |
| "Expected that we should convert this to a global"); |
| if (PC.GV) |
| return; |
| PC.GV = new GlobalVariable( |
| *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, |
| "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); |
| PC.GV->setInitializer(&C); |
| LLVM_DEBUG(dbgs() << "Global replacement: "); |
| LLVM_DEBUG(PC.GV->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| ++NumPromoted; |
| } |
| |
| void AArch64PromoteConstant::insertDefinitions(Function &F, |
| GlobalVariable &PromotedGV, |
| InsertionPoints &InsertPts) { |
| #ifndef NDEBUG |
| // Do more checking for debug purposes. |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); |
| #endif |
| assert(!InsertPts.empty() && "Empty uses does not need a definition"); |
| |
| for (const auto &IPI : InsertPts) { |
| // Create the load of the global variable. |
| IRBuilder<> Builder(IPI.first); |
| LoadInst *LoadedCst = |
| Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV); |
| LLVM_DEBUG(dbgs() << "**********\n"); |
| LLVM_DEBUG(dbgs() << "New def: "); |
| LLVM_DEBUG(LoadedCst->print(dbgs())); |
| LLVM_DEBUG(dbgs() << '\n'); |
| |
| // Update the dominated uses. |
| for (auto Use : IPI.second) { |
| #ifndef NDEBUG |
| assert(DT.dominates(LoadedCst, |
| findInsertionPoint(*Use.first, Use.second)) && |
| "Inserted definition does not dominate all its uses!"); |
| #endif |
| LLVM_DEBUG({ |
| dbgs() << "Use to update " << Use.second << ":"; |
| Use.first->print(dbgs()); |
| dbgs() << '\n'; |
| }); |
| Use.first->setOperand(Use.second, LoadedCst); |
| ++NumPromotedUses; |
| } |
| } |
| } |
| |
| void AArch64PromoteConstant::promoteConstants( |
| Function &F, SmallVectorImpl<UpdateRecord> &Updates, |
| PromotionCacheTy &PromotionCache) { |
| // Promote the constants. |
| for (auto U = Updates.begin(), E = Updates.end(); U != E;) { |
| LLVM_DEBUG(dbgs() << "** Compute insertion points **\n"); |
| auto First = U; |
| Constant *C = First->C; |
| InsertionPoints InsertPts; |
| do { |
| computeInsertionPoint(U->User, U->Op, InsertPts); |
| } while (++U != E && U->C == C); |
| |
| auto &Promotion = PromotionCache[C]; |
| ensurePromotedGV(F, *C, Promotion); |
| insertDefinitions(F, *Promotion.GV, InsertPts); |
| } |
| } |
| |
| bool AArch64PromoteConstant::runOnFunction(Function &F, |
| PromotionCacheTy &PromotionCache) { |
| // Look for instructions using constant vector. Promote that constant to a |
| // global variable. Create as few loads of this variable as possible and |
| // update the uses accordingly. |
| SmallVector<UpdateRecord, 64> Updates; |
| for (Instruction &I : instructions(&F)) { |
| // Traverse the operand, looking for constant vectors. Replace them by a |
| // load of a global variable of constant vector type. |
| for (Use &U : I.operands()) { |
| Constant *Cst = dyn_cast<Constant>(U); |
| // There is no point in promoting global values as they are already |
| // global. Do not promote constant expressions either, as they may |
| // require some code expansion. |
| if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst)) |
| continue; |
| |
| // Check if this constant is worth promoting. |
| if (!shouldConvert(*Cst, PromotionCache)) |
| continue; |
| |
| // Check if this use should be promoted. |
| unsigned OpNo = &U - I.op_begin(); |
| if (!shouldConvertUse(Cst, &I, OpNo)) |
| continue; |
| |
| Updates.emplace_back(Cst, &I, OpNo); |
| } |
| } |
| |
| if (Updates.empty()) |
| return false; |
| |
| promoteConstants(F, Updates, PromotionCache); |
| return true; |
| } |