| //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // For best-case performance on Cortex-A57, we should try to use a balanced |
| // mix of odd and even D-registers when performing a critical sequence of |
| // independent, non-quadword FP/ASIMD floating-point multiply or |
| // multiply-accumulate operations. |
| // |
| // This pass attempts to detect situations where the register allocation may |
| // adversely affect this load balancing and to change the registers used so as |
| // to better utilize the CPU. |
| // |
| // Ideally we'd just take each multiply or multiply-accumulate in turn and |
| // allocate it alternating even or odd registers. However, multiply-accumulates |
| // are most efficiently performed in the same functional unit as their |
| // accumulation operand. Therefore this pass tries to find maximal sequences |
| // ("Chains") of multiply-accumulates linked via their accumulation operand, |
| // and assign them all the same "color" (oddness/evenness). |
| // |
| // This optimization affects S-register and D-register floating point |
| // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and |
| // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are |
| // not affected. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64.h" |
| #include "AArch64InstrInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-a57-fp-load-balancing" |
| |
| // Enforce the algorithm to use the scavenged register even when the original |
| // destination register is the correct color. Used for testing. |
| static cl::opt<bool> |
| TransformAll("aarch64-a57-fp-load-balancing-force-all", |
| cl::desc("Always modify dest registers regardless of color"), |
| cl::init(false), cl::Hidden); |
| |
| // Never use the balance information obtained from chains - return a specific |
| // color always. Used for testing. |
| static cl::opt<unsigned> |
| OverrideBalance("aarch64-a57-fp-load-balancing-override", |
| cl::desc("Ignore balance information, always return " |
| "(1: Even, 2: Odd)."), |
| cl::init(0), cl::Hidden); |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| |
| // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? |
| static bool isMul(MachineInstr *MI) { |
| switch (MI->getOpcode()) { |
| case AArch64::FMULSrr: |
| case AArch64::FNMULSrr: |
| case AArch64::FMULDrr: |
| case AArch64::FNMULDrr: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? |
| static bool isMla(MachineInstr *MI) { |
| switch (MI->getOpcode()) { |
| case AArch64::FMSUBSrrr: |
| case AArch64::FMADDSrrr: |
| case AArch64::FNMSUBSrrr: |
| case AArch64::FNMADDSrrr: |
| case AArch64::FMSUBDrrr: |
| case AArch64::FMADDDrrr: |
| case AArch64::FNMSUBDrrr: |
| case AArch64::FNMADDDrrr: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// A "color", which is either even or odd. Yes, these aren't really colors |
| /// but the algorithm is conceptually doing two-color graph coloring. |
| enum class Color { Even, Odd }; |
| #ifndef NDEBUG |
| static const char *ColorNames[2] = { "Even", "Odd" }; |
| #endif |
| |
| class Chain; |
| |
| class AArch64A57FPLoadBalancing : public MachineFunctionPass { |
| MachineRegisterInfo *MRI; |
| const TargetRegisterInfo *TRI; |
| RegisterClassInfo RCI; |
| |
| public: |
| static char ID; |
| explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) { |
| initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &F) override; |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| StringRef getPassName() const override { |
| return "A57 FP Anti-dependency breaker"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| bool runOnBasicBlock(MachineBasicBlock &MBB); |
| bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB, |
| int &Balance); |
| bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); |
| int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); |
| void scanInstruction(MachineInstr *MI, unsigned Idx, |
| std::map<unsigned, Chain*> &Active, |
| std::vector<std::unique_ptr<Chain>> &AllChains); |
| void maybeKillChain(MachineOperand &MO, unsigned Idx, |
| std::map<unsigned, Chain*> &RegChains); |
| Color getColor(unsigned Register); |
| Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L); |
| }; |
| } |
| |
| char AArch64A57FPLoadBalancing::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE, |
| "AArch64 A57 FP Load-Balancing", false, false) |
| INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE, |
| "AArch64 A57 FP Load-Balancing", false, false) |
| |
| namespace { |
| /// A Chain is a sequence of instructions that are linked together by |
| /// an accumulation operand. For example: |
| /// |
| /// fmul def d0, ? |
| /// fmla def d1, ?, ?, killed d0 |
| /// fmla def d2, ?, ?, killed d1 |
| /// |
| /// There may be other instructions interleaved in the sequence that |
| /// do not belong to the chain. These other instructions must not use |
| /// the "chain" register at any point. |
| /// |
| /// We currently only support chains where the "chain" operand is killed |
| /// at each link in the chain for simplicity. |
| /// A chain has three important instructions - Start, Last and Kill. |
| /// * The start instruction is the first instruction in the chain. |
| /// * Last is the final instruction in the chain. |
| /// * Kill may or may not be defined. If defined, Kill is the instruction |
| /// where the outgoing value of the Last instruction is killed. |
| /// This information is important as if we know the outgoing value is |
| /// killed with no intervening uses, we can safely change its register. |
| /// |
| /// Without a kill instruction, we must assume the outgoing value escapes |
| /// beyond our model and either must not change its register or must |
| /// create a fixup FMOV to keep the old register value consistent. |
| /// |
| class Chain { |
| public: |
| /// The important (marker) instructions. |
| MachineInstr *StartInst, *LastInst, *KillInst; |
| /// The index, from the start of the basic block, that each marker |
| /// appears. These are stored so we can do quick interval tests. |
| unsigned StartInstIdx, LastInstIdx, KillInstIdx; |
| /// All instructions in the chain. |
| std::set<MachineInstr*> Insts; |
| /// True if KillInst cannot be modified. If this is true, |
| /// we cannot change LastInst's outgoing register. |
| /// This will be true for tied values and regmasks. |
| bool KillIsImmutable; |
| /// The "color" of LastInst. This will be the preferred chain color, |
| /// as changing intermediate nodes is easy but changing the last |
| /// instruction can be more tricky. |
| Color LastColor; |
| |
| Chain(MachineInstr *MI, unsigned Idx, Color C) |
| : StartInst(MI), LastInst(MI), KillInst(nullptr), |
| StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), |
| LastColor(C) { |
| Insts.insert(MI); |
| } |
| |
| /// Add a new instruction into the chain. The instruction's dest operand |
| /// has the given color. |
| void add(MachineInstr *MI, unsigned Idx, Color C) { |
| LastInst = MI; |
| LastInstIdx = Idx; |
| LastColor = C; |
| assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && |
| "Chain: broken invariant. A Chain can only be killed after its last " |
| "def"); |
| |
| Insts.insert(MI); |
| } |
| |
| /// Return true if MI is a member of the chain. |
| bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; } |
| |
| /// Return the number of instructions in the chain. |
| unsigned size() const { |
| return Insts.size(); |
| } |
| |
| /// Inform the chain that its last active register (the dest register of |
| /// LastInst) is killed by MI with no intervening uses or defs. |
| void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { |
| KillInst = MI; |
| KillInstIdx = Idx; |
| KillIsImmutable = Immutable; |
| assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && |
| "Chain: broken invariant. A Chain can only be killed after its last " |
| "def"); |
| } |
| |
| /// Return the first instruction in the chain. |
| MachineInstr *getStart() const { return StartInst; } |
| /// Return the last instruction in the chain. |
| MachineInstr *getLast() const { return LastInst; } |
| /// Return the "kill" instruction (as set with setKill()) or NULL. |
| MachineInstr *getKill() const { return KillInst; } |
| /// Return an instruction that can be used as an iterator for the end |
| /// of the chain. This is the maximum of KillInst (if set) and LastInst. |
| MachineBasicBlock::iterator end() const { |
| return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); |
| } |
| MachineBasicBlock::iterator begin() const { return getStart(); } |
| |
| /// Can the Kill instruction (assuming one exists) be modified? |
| bool isKillImmutable() const { return KillIsImmutable; } |
| |
| /// Return the preferred color of this chain. |
| Color getPreferredColor() { |
| if (OverrideBalance != 0) |
| return OverrideBalance == 1 ? Color::Even : Color::Odd; |
| return LastColor; |
| } |
| |
| /// Return true if this chain (StartInst..KillInst) overlaps with Other. |
| bool rangeOverlapsWith(const Chain &Other) const { |
| unsigned End = KillInst ? KillInstIdx : LastInstIdx; |
| unsigned OtherEnd = Other.KillInst ? |
| Other.KillInstIdx : Other.LastInstIdx; |
| |
| return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End; |
| } |
| |
| /// Return true if this chain starts before Other. |
| bool startsBefore(const Chain *Other) const { |
| return StartInstIdx < Other->StartInstIdx; |
| } |
| |
| /// Return true if the group will require a fixup MOV at the end. |
| bool requiresFixup() const { |
| return (getKill() && isKillImmutable()) || !getKill(); |
| } |
| |
| /// Return a simple string representation of the chain. |
| std::string str() const { |
| std::string S; |
| raw_string_ostream OS(S); |
| |
| OS << "{"; |
| StartInst->print(OS, /* SkipOpers= */true); |
| OS << " -> "; |
| LastInst->print(OS, /* SkipOpers= */true); |
| if (KillInst) { |
| OS << " (kill @ "; |
| KillInst->print(OS, /* SkipOpers= */true); |
| OS << ")"; |
| } |
| OS << "}"; |
| |
| return OS.str(); |
| } |
| |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| |
| bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { |
| if (skipFunction(F.getFunction())) |
| return false; |
| |
| if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps()) |
| return false; |
| |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); |
| |
| MRI = &F.getRegInfo(); |
| TRI = F.getRegInfo().getTargetRegisterInfo(); |
| RCI.runOnMachineFunction(F); |
| |
| for (auto &MBB : F) { |
| Changed |= runOnBasicBlock(MBB); |
| } |
| |
| return Changed; |
| } |
| |
| bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB |
| << " - scanning instructions...\n"); |
| |
| // First, scan the basic block producing a set of chains. |
| |
| // The currently "active" chains - chains that can be added to and haven't |
| // been killed yet. This is keyed by register - all chains can only have one |
| // "link" register between each inst in the chain. |
| std::map<unsigned, Chain*> ActiveChains; |
| std::vector<std::unique_ptr<Chain>> AllChains; |
| unsigned Idx = 0; |
| for (auto &MI : MBB) |
| scanInstruction(&MI, Idx++, ActiveChains, AllChains); |
| |
| LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size() |
| << " chains created.\n"); |
| |
| // Group the chains into disjoint sets based on their liveness range. This is |
| // a poor-man's version of graph coloring. Ideally we'd create an interference |
| // graph and perform full-on graph coloring on that, but; |
| // (a) That's rather heavyweight for only two colors. |
| // (b) We expect multiple disjoint interference regions - in practice the live |
| // range of chains is quite small and they are clustered between loads |
| // and stores. |
| EquivalenceClasses<Chain*> EC; |
| for (auto &I : AllChains) |
| EC.insert(I.get()); |
| |
| for (auto &I : AllChains) |
| for (auto &J : AllChains) |
| if (I != J && I->rangeOverlapsWith(*J)) |
| EC.unionSets(I.get(), J.get()); |
| LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); |
| |
| // Now we assume that every member of an equivalence class interferes |
| // with every other member of that class, and with no members of other classes. |
| |
| // Convert the EquivalenceClasses to a simpler set of sets. |
| std::vector<std::vector<Chain*> > V; |
| for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { |
| std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end()); |
| if (Cs.empty()) continue; |
| V.push_back(std::move(Cs)); |
| } |
| |
| // Now we have a set of sets, order them by start address so |
| // we can iterate over them sequentially. |
| llvm::sort(V, |
| [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) { |
| return A.front()->startsBefore(B.front()); |
| }); |
| |
| // As we only have two colors, we can track the global (BB-level) balance of |
| // odds versus evens. We aim to keep this near zero to keep both execution |
| // units fed. |
| // Positive means we're even-heavy, negative we're odd-heavy. |
| // |
| // FIXME: If chains have interdependencies, for example: |
| // mul r0, r1, r2 |
| // mul r3, r0, r1 |
| // We do not model this and may color each one differently, assuming we'll |
| // get ILP when we obviously can't. This hasn't been seen to be a problem |
| // in practice so far, so we simplify the algorithm by ignoring it. |
| int Parity = 0; |
| |
| for (auto &I : V) |
| Changed |= colorChainSet(std::move(I), MBB, Parity); |
| |
| return Changed; |
| } |
| |
| Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, |
| std::vector<Chain*> &L) { |
| if (L.empty()) |
| return nullptr; |
| |
| // We try and get the best candidate from L to color next, given that our |
| // preferred color is "PreferredColor". L is ordered from larger to smaller |
| // chains. It is beneficial to color the large chains before the small chains, |
| // but if we can't find a chain of the maximum length with the preferred color, |
| // we fuzz the size and look for slightly smaller chains before giving up and |
| // returning a chain that must be recolored. |
| |
| // FIXME: Does this need to be configurable? |
| const unsigned SizeFuzz = 1; |
| unsigned MinSize = L.front()->size() - SizeFuzz; |
| for (auto I = L.begin(), E = L.end(); I != E; ++I) { |
| if ((*I)->size() <= MinSize) { |
| // We've gone past the size limit. Return the previous item. |
| Chain *Ch = *--I; |
| L.erase(I); |
| return Ch; |
| } |
| |
| if ((*I)->getPreferredColor() == PreferredColor) { |
| Chain *Ch = *I; |
| L.erase(I); |
| return Ch; |
| } |
| } |
| |
| // Bailout case - just return the first item. |
| Chain *Ch = L.front(); |
| L.erase(L.begin()); |
| return Ch; |
| } |
| |
| bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV, |
| MachineBasicBlock &MBB, |
| int &Parity) { |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); |
| |
| // Sort by descending size order so that we allocate the most important |
| // sets first. |
| // Tie-break equivalent sizes by sorting chains requiring fixups before |
| // those without fixups. The logic here is that we should look at the |
| // chains that we cannot change before we look at those we can, |
| // so the parity counter is updated and we know what color we should |
| // change them to! |
| // Final tie-break with instruction order so pass output is stable (i.e. not |
| // dependent on malloc'd pointer values). |
| llvm::sort(GV, [](const Chain *G1, const Chain *G2) { |
| if (G1->size() != G2->size()) |
| return G1->size() > G2->size(); |
| if (G1->requiresFixup() != G2->requiresFixup()) |
| return G1->requiresFixup() > G2->requiresFixup(); |
| // Make sure startsBefore() produces a stable final order. |
| assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) && |
| "Starts before not total order!"); |
| return G1->startsBefore(G2); |
| }); |
| |
| Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; |
| while (Chain *G = getAndEraseNext(PreferredColor, GV)) { |
| // Start off by assuming we'll color to our own preferred color. |
| Color C = PreferredColor; |
| if (Parity == 0) |
| // But if we really don't care, use the chain's preferred color. |
| C = G->getPreferredColor(); |
| |
| LLVM_DEBUG(dbgs() << " - Parity=" << Parity |
| << ", Color=" << ColorNames[(int)C] << "\n"); |
| |
| // If we'll need a fixup FMOV, don't bother. Testing has shown that this |
| // happens infrequently and when it does it has at least a 50% chance of |
| // slowing code down instead of speeding it up. |
| if (G->requiresFixup() && C != G->getPreferredColor()) { |
| C = G->getPreferredColor(); |
| LLVM_DEBUG(dbgs() << " - " << G->str() |
| << " - not worthwhile changing; " |
| "color remains " |
| << ColorNames[(int)C] << "\n"); |
| } |
| |
| Changed |= colorChain(G, C, MBB); |
| |
| Parity += (C == Color::Even) ? G->size() : -G->size(); |
| PreferredColor = Parity < 0 ? Color::Even : Color::Odd; |
| } |
| |
| return Changed; |
| } |
| |
| int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, |
| MachineBasicBlock &MBB) { |
| // Can we find an appropriate register that is available throughout the life |
| // of the chain? Simulate liveness backwards until the end of the chain. |
| LiveRegUnits Units(*TRI); |
| Units.addLiveOuts(MBB); |
| MachineBasicBlock::iterator I = MBB.end(); |
| MachineBasicBlock::iterator ChainEnd = G->end(); |
| while (I != ChainEnd) { |
| --I; |
| Units.stepBackward(*I); |
| } |
| |
| // Check which register units are alive throughout the chain. |
| MachineBasicBlock::iterator ChainBegin = G->begin(); |
| assert(ChainBegin != ChainEnd && "Chain should contain instructions"); |
| do { |
| --I; |
| Units.accumulate(*I); |
| } while (I != ChainBegin); |
| |
| // Make sure we allocate in-order, to get the cheapest registers first. |
| unsigned RegClassID = ChainBegin->getDesc().OpInfo[0].RegClass; |
| auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); |
| for (auto Reg : Ord) { |
| if (!Units.available(Reg)) |
| continue; |
| if (C == getColor(Reg)) |
| return Reg; |
| } |
| |
| return -1; |
| } |
| |
| bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, |
| MachineBasicBlock &MBB) { |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", " |
| << ColorNames[(int)C] << ")\n"); |
| |
| // Try and obtain a free register of the right class. Without a register |
| // to play with we cannot continue. |
| int Reg = scavengeRegister(G, C, MBB); |
| if (Reg == -1) { |
| LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n"); |
| |
| std::map<unsigned, unsigned> Substs; |
| for (MachineInstr &I : *G) { |
| if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable())) |
| continue; |
| |
| // I is a member of G, or I is a mutable instruction that kills G. |
| |
| std::vector<unsigned> ToErase; |
| for (auto &U : I.operands()) { |
| if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { |
| Register OrigReg = U.getReg(); |
| U.setReg(Substs[OrigReg]); |
| if (U.isKill()) |
| // Don't erase straight away, because there may be other operands |
| // that also reference this substitution! |
| ToErase.push_back(OrigReg); |
| } else if (U.isRegMask()) { |
| for (auto J : Substs) { |
| if (U.clobbersPhysReg(J.first)) |
| ToErase.push_back(J.first); |
| } |
| } |
| } |
| // Now it's safe to remove the substs identified earlier. |
| for (auto J : ToErase) |
| Substs.erase(J); |
| |
| // Only change the def if this isn't the last instruction. |
| if (&I != G->getKill()) { |
| MachineOperand &MO = I.getOperand(0); |
| |
| bool Change = TransformAll || getColor(MO.getReg()) != C; |
| if (G->requiresFixup() && &I == G->getLast()) |
| Change = false; |
| |
| if (Change) { |
| Substs[MO.getReg()] = Reg; |
| MO.setReg(Reg); |
| |
| Changed = true; |
| } |
| } |
| } |
| assert(Substs.size() == 0 && "No substitutions should be left active!"); |
| |
| if (G->getKill()) { |
| LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n"); |
| } else { |
| // We didn't have a kill instruction, but we didn't seem to need to change |
| // the destination register anyway. |
| LLVM_DEBUG(dbgs() << " - Destination register not changed.\n"); |
| } |
| return Changed; |
| } |
| |
| void AArch64A57FPLoadBalancing::scanInstruction( |
| MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains, |
| std::vector<std::unique_ptr<Chain>> &AllChains) { |
| // Inspect "MI", updating ActiveChains and AllChains. |
| |
| if (isMul(MI)) { |
| |
| for (auto &I : MI->uses()) |
| maybeKillChain(I, Idx, ActiveChains); |
| for (auto &I : MI->defs()) |
| maybeKillChain(I, Idx, ActiveChains); |
| |
| // Create a new chain. Multiplies don't require forwarding so can go on any |
| // unit. |
| Register DestReg = MI->getOperand(0).getReg(); |
| |
| LLVM_DEBUG(dbgs() << "New chain started for register " |
| << printReg(DestReg, TRI) << " at " << *MI); |
| |
| auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg)); |
| ActiveChains[DestReg] = G.get(); |
| AllChains.push_back(std::move(G)); |
| |
| } else if (isMla(MI)) { |
| |
| // It is beneficial to keep MLAs on the same functional unit as their |
| // accumulator operand. |
| Register DestReg = MI->getOperand(0).getReg(); |
| Register AccumReg = MI->getOperand(3).getReg(); |
| |
| maybeKillChain(MI->getOperand(1), Idx, ActiveChains); |
| maybeKillChain(MI->getOperand(2), Idx, ActiveChains); |
| if (DestReg != AccumReg) |
| maybeKillChain(MI->getOperand(0), Idx, ActiveChains); |
| |
| if (ActiveChains.find(AccumReg) != ActiveChains.end()) { |
| LLVM_DEBUG(dbgs() << "Chain found for accumulator register " |
| << printReg(AccumReg, TRI) << " in MI " << *MI); |
| |
| // For simplicity we only chain together sequences of MULs/MLAs where the |
| // accumulator register is killed on each instruction. This means we don't |
| // need to track other uses of the registers we want to rewrite. |
| // |
| // FIXME: We could extend to handle the non-kill cases for more coverage. |
| if (MI->getOperand(3).isKill()) { |
| // Add to chain. |
| LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); |
| ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); |
| // Handle cases where the destination is not the same as the accumulator. |
| if (DestReg != AccumReg) { |
| ActiveChains[DestReg] = ActiveChains[AccumReg]; |
| ActiveChains.erase(AccumReg); |
| } |
| return; |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "Cannot add to chain because accumulator operand wasn't " |
| << "marked <kill>!\n"); |
| maybeKillChain(MI->getOperand(3), Idx, ActiveChains); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Creating new chain for dest register " |
| << printReg(DestReg, TRI) << "\n"); |
| auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg)); |
| ActiveChains[DestReg] = G.get(); |
| AllChains.push_back(std::move(G)); |
| |
| } else { |
| |
| // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs |
| // lists. |
| for (auto &I : MI->uses()) |
| maybeKillChain(I, Idx, ActiveChains); |
| for (auto &I : MI->defs()) |
| maybeKillChain(I, Idx, ActiveChains); |
| |
| } |
| } |
| |
| void AArch64A57FPLoadBalancing:: |
| maybeKillChain(MachineOperand &MO, unsigned Idx, |
| std::map<unsigned, Chain*> &ActiveChains) { |
| // Given an operand and the set of active chains (keyed by register), |
| // determine if a chain should be ended and remove from ActiveChains. |
| MachineInstr *MI = MO.getParent(); |
| |
| if (MO.isReg()) { |
| |
| // If this is a KILL of a current chain, record it. |
| if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { |
| LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI) |
| << "\n"); |
| ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); |
| } |
| ActiveChains.erase(MO.getReg()); |
| |
| } else if (MO.isRegMask()) { |
| |
| for (auto I = ActiveChains.begin(), E = ActiveChains.end(); |
| I != E;) { |
| if (MO.clobbersPhysReg(I->first)) { |
| LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain " |
| << printReg(I->first, TRI) << "\n"); |
| I->second->setKill(MI, Idx, /*Immutable=*/true); |
| ActiveChains.erase(I++); |
| } else |
| ++I; |
| } |
| |
| } |
| } |
| |
| Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { |
| if ((TRI->getEncodingValue(Reg) % 2) == 0) |
| return Color::Even; |
| else |
| return Color::Odd; |
| } |
| |
| // Factory function used by AArch64TargetMachine to add the pass to the passmanager. |
| FunctionPass *llvm::createAArch64A57FPLoadBalancing() { |
| return new AArch64A57FPLoadBalancing(); |
| } |