| //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the function verifier interface, that can be used for some |
| // sanity checking of input to the system. |
| // |
| // Note that this does not provide full `Java style' security and verifications, |
| // instead it just tries to ensure that code is well-formed. |
| // |
| // * Both of a binary operator's parameters are of the same type |
| // * Verify that the indices of mem access instructions match other operands |
| // * Verify that arithmetic and other things are only performed on first-class |
| // types. Verify that shifts & logicals only happen on integrals f.e. |
| // * All of the constants in a switch statement are of the correct type |
| // * The code is in valid SSA form |
| // * It should be illegal to put a label into any other type (like a structure) |
| // or to return one. [except constant arrays!] |
| // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad |
| // * PHI nodes must have an entry for each predecessor, with no extras. |
| // * PHI nodes must be the first thing in a basic block, all grouped together |
| // * PHI nodes must have at least one entry |
| // * All basic blocks should only end with terminator insts, not contain them |
| // * The entry node to a function must not have predecessors |
| // * All Instructions must be embedded into a basic block |
| // * Functions cannot take a void-typed parameter |
| // * Verify that a function's argument list agrees with it's declared type. |
| // * It is illegal to specify a name for a void value. |
| // * It is illegal to have a internal global value with no initializer |
| // * It is illegal to have a ret instruction that returns a value that does not |
| // agree with the function return value type. |
| // * Function call argument types match the function prototype |
| // * A landing pad is defined by a landingpad instruction, and can be jumped to |
| // only by the unwind edge of an invoke instruction. |
| // * A landingpad instruction must be the first non-PHI instruction in the |
| // block. |
| // * Landingpad instructions must be in a function with a personality function. |
| // * All other things that are tested by asserts spread about the code... |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| |
| struct VerifierSupport { |
| raw_ostream *OS; |
| const Module &M; |
| ModuleSlotTracker MST; |
| Triple TT; |
| const DataLayout &DL; |
| LLVMContext &Context; |
| |
| /// Track the brokenness of the module while recursively visiting. |
| bool Broken = false; |
| /// Broken debug info can be "recovered" from by stripping the debug info. |
| bool BrokenDebugInfo = false; |
| /// Whether to treat broken debug info as an error. |
| bool TreatBrokenDebugInfoAsError = true; |
| |
| explicit VerifierSupport(raw_ostream *OS, const Module &M) |
| : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), |
| Context(M.getContext()) {} |
| |
| private: |
| void Write(const Module *M) { |
| *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; |
| } |
| |
| void Write(const Value *V) { |
| if (V) |
| Write(*V); |
| } |
| |
| void Write(const Value &V) { |
| if (isa<Instruction>(V)) { |
| V.print(*OS, MST); |
| *OS << '\n'; |
| } else { |
| V.printAsOperand(*OS, true, MST); |
| *OS << '\n'; |
| } |
| } |
| |
| void Write(const Metadata *MD) { |
| if (!MD) |
| return; |
| MD->print(*OS, MST, &M); |
| *OS << '\n'; |
| } |
| |
| template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { |
| Write(MD.get()); |
| } |
| |
| void Write(const NamedMDNode *NMD) { |
| if (!NMD) |
| return; |
| NMD->print(*OS, MST); |
| *OS << '\n'; |
| } |
| |
| void Write(Type *T) { |
| if (!T) |
| return; |
| *OS << ' ' << *T; |
| } |
| |
| void Write(const Comdat *C) { |
| if (!C) |
| return; |
| *OS << *C; |
| } |
| |
| void Write(const APInt *AI) { |
| if (!AI) |
| return; |
| *OS << *AI << '\n'; |
| } |
| |
| void Write(const unsigned i) { *OS << i << '\n'; } |
| |
| template <typename T> void Write(ArrayRef<T> Vs) { |
| for (const T &V : Vs) |
| Write(V); |
| } |
| |
| template <typename T1, typename... Ts> |
| void WriteTs(const T1 &V1, const Ts &... Vs) { |
| Write(V1); |
| WriteTs(Vs...); |
| } |
| |
| template <typename... Ts> void WriteTs() {} |
| |
| public: |
| /// A check failed, so printout out the condition and the message. |
| /// |
| /// This provides a nice place to put a breakpoint if you want to see why |
| /// something is not correct. |
| void CheckFailed(const Twine &Message) { |
| if (OS) |
| *OS << Message << '\n'; |
| Broken = true; |
| } |
| |
| /// A check failed (with values to print). |
| /// |
| /// This calls the Message-only version so that the above is easier to set a |
| /// breakpoint on. |
| template <typename T1, typename... Ts> |
| void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { |
| CheckFailed(Message); |
| if (OS) |
| WriteTs(V1, Vs...); |
| } |
| |
| /// A debug info check failed. |
| void DebugInfoCheckFailed(const Twine &Message) { |
| if (OS) |
| *OS << Message << '\n'; |
| Broken |= TreatBrokenDebugInfoAsError; |
| BrokenDebugInfo = true; |
| } |
| |
| /// A debug info check failed (with values to print). |
| template <typename T1, typename... Ts> |
| void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, |
| const Ts &... Vs) { |
| DebugInfoCheckFailed(Message); |
| if (OS) |
| WriteTs(V1, Vs...); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| namespace { |
| |
| class Verifier : public InstVisitor<Verifier>, VerifierSupport { |
| friend class InstVisitor<Verifier>; |
| |
| DominatorTree DT; |
| |
| /// When verifying a basic block, keep track of all of the |
| /// instructions we have seen so far. |
| /// |
| /// This allows us to do efficient dominance checks for the case when an |
| /// instruction has an operand that is an instruction in the same block. |
| SmallPtrSet<Instruction *, 16> InstsInThisBlock; |
| |
| /// Keep track of the metadata nodes that have been checked already. |
| SmallPtrSet<const Metadata *, 32> MDNodes; |
| |
| /// Keep track which DISubprogram is attached to which function. |
| DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; |
| |
| /// Track all DICompileUnits visited. |
| SmallPtrSet<const Metadata *, 2> CUVisited; |
| |
| /// The result type for a landingpad. |
| Type *LandingPadResultTy; |
| |
| /// Whether we've seen a call to @llvm.localescape in this function |
| /// already. |
| bool SawFrameEscape; |
| |
| /// Whether the current function has a DISubprogram attached to it. |
| bool HasDebugInfo = false; |
| |
| /// Whether source was present on the first DIFile encountered in each CU. |
| DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; |
| |
| /// Stores the count of how many objects were passed to llvm.localescape for a |
| /// given function and the largest index passed to llvm.localrecover. |
| DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; |
| |
| // Maps catchswitches and cleanuppads that unwind to siblings to the |
| // terminators that indicate the unwind, used to detect cycles therein. |
| MapVector<Instruction *, Instruction *> SiblingFuncletInfo; |
| |
| /// Cache of constants visited in search of ConstantExprs. |
| SmallPtrSet<const Constant *, 32> ConstantExprVisited; |
| |
| /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. |
| SmallVector<const Function *, 4> DeoptimizeDeclarations; |
| |
| // Verify that this GlobalValue is only used in this module. |
| // This map is used to avoid visiting uses twice. We can arrive at a user |
| // twice, if they have multiple operands. In particular for very large |
| // constant expressions, we can arrive at a particular user many times. |
| SmallPtrSet<const Value *, 32> GlobalValueVisited; |
| |
| // Keeps track of duplicate function argument debug info. |
| SmallVector<const DILocalVariable *, 16> DebugFnArgs; |
| |
| TBAAVerifier TBAAVerifyHelper; |
| |
| void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); |
| |
| public: |
| explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, |
| const Module &M) |
| : VerifierSupport(OS, M), LandingPadResultTy(nullptr), |
| SawFrameEscape(false), TBAAVerifyHelper(this) { |
| TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; |
| } |
| |
| bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } |
| |
| bool verify(const Function &F) { |
| assert(F.getParent() == &M && |
| "An instance of this class only works with a specific module!"); |
| |
| // First ensure the function is well-enough formed to compute dominance |
| // information, and directly compute a dominance tree. We don't rely on the |
| // pass manager to provide this as it isolates us from a potentially |
| // out-of-date dominator tree and makes it significantly more complex to run |
| // this code outside of a pass manager. |
| // FIXME: It's really gross that we have to cast away constness here. |
| if (!F.empty()) |
| DT.recalculate(const_cast<Function &>(F)); |
| |
| for (const BasicBlock &BB : F) { |
| if (!BB.empty() && BB.back().isTerminator()) |
| continue; |
| |
| if (OS) { |
| *OS << "Basic Block in function '" << F.getName() |
| << "' does not have terminator!\n"; |
| BB.printAsOperand(*OS, true, MST); |
| *OS << "\n"; |
| } |
| return false; |
| } |
| |
| Broken = false; |
| // FIXME: We strip const here because the inst visitor strips const. |
| visit(const_cast<Function &>(F)); |
| verifySiblingFuncletUnwinds(); |
| InstsInThisBlock.clear(); |
| DebugFnArgs.clear(); |
| LandingPadResultTy = nullptr; |
| SawFrameEscape = false; |
| SiblingFuncletInfo.clear(); |
| |
| return !Broken; |
| } |
| |
| /// Verify the module that this instance of \c Verifier was initialized with. |
| bool verify() { |
| Broken = false; |
| |
| // Collect all declarations of the llvm.experimental.deoptimize intrinsic. |
| for (const Function &F : M) |
| if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) |
| DeoptimizeDeclarations.push_back(&F); |
| |
| // Now that we've visited every function, verify that we never asked to |
| // recover a frame index that wasn't escaped. |
| verifyFrameRecoverIndices(); |
| for (const GlobalVariable &GV : M.globals()) |
| visitGlobalVariable(GV); |
| |
| for (const GlobalAlias &GA : M.aliases()) |
| visitGlobalAlias(GA); |
| |
| for (const NamedMDNode &NMD : M.named_metadata()) |
| visitNamedMDNode(NMD); |
| |
| for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) |
| visitComdat(SMEC.getValue()); |
| |
| visitModuleFlags(M); |
| visitModuleIdents(M); |
| visitModuleCommandLines(M); |
| |
| verifyCompileUnits(); |
| |
| verifyDeoptimizeCallingConvs(); |
| DISubprogramAttachments.clear(); |
| return !Broken; |
| } |
| |
| private: |
| // Verification methods... |
| void visitGlobalValue(const GlobalValue &GV); |
| void visitGlobalVariable(const GlobalVariable &GV); |
| void visitGlobalAlias(const GlobalAlias &GA); |
| void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); |
| void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, |
| const GlobalAlias &A, const Constant &C); |
| void visitNamedMDNode(const NamedMDNode &NMD); |
| void visitMDNode(const MDNode &MD); |
| void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); |
| void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); |
| void visitComdat(const Comdat &C); |
| void visitModuleIdents(const Module &M); |
| void visitModuleCommandLines(const Module &M); |
| void visitModuleFlags(const Module &M); |
| void visitModuleFlag(const MDNode *Op, |
| DenseMap<const MDString *, const MDNode *> &SeenIDs, |
| SmallVectorImpl<const MDNode *> &Requirements); |
| void visitModuleFlagCGProfileEntry(const MDOperand &MDO); |
| void visitFunction(const Function &F); |
| void visitBasicBlock(BasicBlock &BB); |
| void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); |
| void visitDereferenceableMetadata(Instruction &I, MDNode *MD); |
| void visitProfMetadata(Instruction &I, MDNode *MD); |
| |
| template <class Ty> bool isValidMetadataArray(const MDTuple &N); |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); |
| #include "llvm/IR/Metadata.def" |
| void visitDIScope(const DIScope &N); |
| void visitDIVariable(const DIVariable &N); |
| void visitDILexicalBlockBase(const DILexicalBlockBase &N); |
| void visitDITemplateParameter(const DITemplateParameter &N); |
| |
| void visitTemplateParams(const MDNode &N, const Metadata &RawParams); |
| |
| // InstVisitor overrides... |
| using InstVisitor<Verifier>::visit; |
| void visit(Instruction &I); |
| |
| void visitTruncInst(TruncInst &I); |
| void visitZExtInst(ZExtInst &I); |
| void visitSExtInst(SExtInst &I); |
| void visitFPTruncInst(FPTruncInst &I); |
| void visitFPExtInst(FPExtInst &I); |
| void visitFPToUIInst(FPToUIInst &I); |
| void visitFPToSIInst(FPToSIInst &I); |
| void visitUIToFPInst(UIToFPInst &I); |
| void visitSIToFPInst(SIToFPInst &I); |
| void visitIntToPtrInst(IntToPtrInst &I); |
| void visitPtrToIntInst(PtrToIntInst &I); |
| void visitBitCastInst(BitCastInst &I); |
| void visitAddrSpaceCastInst(AddrSpaceCastInst &I); |
| void visitPHINode(PHINode &PN); |
| void visitCallBase(CallBase &Call); |
| void visitUnaryOperator(UnaryOperator &U); |
| void visitBinaryOperator(BinaryOperator &B); |
| void visitICmpInst(ICmpInst &IC); |
| void visitFCmpInst(FCmpInst &FC); |
| void visitExtractElementInst(ExtractElementInst &EI); |
| void visitInsertElementInst(InsertElementInst &EI); |
| void visitShuffleVectorInst(ShuffleVectorInst &EI); |
| void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } |
| void visitCallInst(CallInst &CI); |
| void visitInvokeInst(InvokeInst &II); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void verifyDominatesUse(Instruction &I, unsigned i); |
| void visitInstruction(Instruction &I); |
| void visitTerminator(Instruction &I); |
| void visitBranchInst(BranchInst &BI); |
| void visitReturnInst(ReturnInst &RI); |
| void visitSwitchInst(SwitchInst &SI); |
| void visitIndirectBrInst(IndirectBrInst &BI); |
| void visitCallBrInst(CallBrInst &CBI); |
| void visitSelectInst(SelectInst &SI); |
| void visitUserOp1(Instruction &I); |
| void visitUserOp2(Instruction &I) { visitUserOp1(I); } |
| void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); |
| void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); |
| void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); |
| void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); |
| void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); |
| void visitAtomicRMWInst(AtomicRMWInst &RMWI); |
| void visitFenceInst(FenceInst &FI); |
| void visitAllocaInst(AllocaInst &AI); |
| void visitExtractValueInst(ExtractValueInst &EVI); |
| void visitInsertValueInst(InsertValueInst &IVI); |
| void visitEHPadPredecessors(Instruction &I); |
| void visitLandingPadInst(LandingPadInst &LPI); |
| void visitResumeInst(ResumeInst &RI); |
| void visitCatchPadInst(CatchPadInst &CPI); |
| void visitCatchReturnInst(CatchReturnInst &CatchReturn); |
| void visitCleanupPadInst(CleanupPadInst &CPI); |
| void visitFuncletPadInst(FuncletPadInst &FPI); |
| void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); |
| void visitCleanupReturnInst(CleanupReturnInst &CRI); |
| |
| void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); |
| void verifySwiftErrorValue(const Value *SwiftErrorVal); |
| void verifyMustTailCall(CallInst &CI); |
| bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, |
| unsigned ArgNo, std::string &Suffix); |
| bool verifyAttributeCount(AttributeList Attrs, unsigned Params); |
| void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, |
| const Value *V); |
| void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); |
| void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, |
| const Value *V, bool IsIntrinsic); |
| void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); |
| |
| void visitConstantExprsRecursively(const Constant *EntryC); |
| void visitConstantExpr(const ConstantExpr *CE); |
| void verifyStatepoint(const CallBase &Call); |
| void verifyFrameRecoverIndices(); |
| void verifySiblingFuncletUnwinds(); |
| |
| void verifyFragmentExpression(const DbgVariableIntrinsic &I); |
| template <typename ValueOrMetadata> |
| void verifyFragmentExpression(const DIVariable &V, |
| DIExpression::FragmentInfo Fragment, |
| ValueOrMetadata *Desc); |
| void verifyFnArgs(const DbgVariableIntrinsic &I); |
| void verifyNotEntryValue(const DbgVariableIntrinsic &I); |
| |
| /// Module-level debug info verification... |
| void verifyCompileUnits(); |
| |
| /// Module-level verification that all @llvm.experimental.deoptimize |
| /// declarations share the same calling convention. |
| void verifyDeoptimizeCallingConvs(); |
| |
| /// Verify all-or-nothing property of DIFile source attribute within a CU. |
| void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); |
| }; |
| |
| } // end anonymous namespace |
| |
| /// We know that cond should be true, if not print an error message. |
| #define Assert(C, ...) \ |
| do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) |
| |
| /// We know that a debug info condition should be true, if not print |
| /// an error message. |
| #define AssertDI(C, ...) \ |
| do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) |
| |
| void Verifier::visit(Instruction &I) { |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| Assert(I.getOperand(i) != nullptr, "Operand is null", &I); |
| InstVisitor<Verifier>::visit(I); |
| } |
| |
| // Helper to recursively iterate over indirect users. By |
| // returning false, the callback can ask to stop recursing |
| // further. |
| static void forEachUser(const Value *User, |
| SmallPtrSet<const Value *, 32> &Visited, |
| llvm::function_ref<bool(const Value *)> Callback) { |
| if (!Visited.insert(User).second) |
| return; |
| for (const Value *TheNextUser : User->materialized_users()) |
| if (Callback(TheNextUser)) |
| forEachUser(TheNextUser, Visited, Callback); |
| } |
| |
| void Verifier::visitGlobalValue(const GlobalValue &GV) { |
| Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), |
| "Global is external, but doesn't have external or weak linkage!", &GV); |
| |
| Assert(GV.getAlignment() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &GV); |
| Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), |
| "Only global variables can have appending linkage!", &GV); |
| |
| if (GV.hasAppendingLinkage()) { |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); |
| Assert(GVar && GVar->getValueType()->isArrayTy(), |
| "Only global arrays can have appending linkage!", GVar); |
| } |
| |
| if (GV.isDeclarationForLinker()) |
| Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); |
| |
| if (GV.hasDLLImportStorageClass()) { |
| Assert(!GV.isDSOLocal(), |
| "GlobalValue with DLLImport Storage is dso_local!", &GV); |
| |
| Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || |
| GV.hasAvailableExternallyLinkage(), |
| "Global is marked as dllimport, but not external", &GV); |
| } |
| |
| if (GV.hasLocalLinkage()) |
| Assert(GV.isDSOLocal(), |
| "GlobalValue with private or internal linkage must be dso_local!", |
| &GV); |
| |
| if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) |
| Assert(GV.isDSOLocal(), |
| "GlobalValue with non default visibility must be dso_local!", &GV); |
| |
| forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| if (!I->getParent() || !I->getParent()->getParent()) |
| CheckFailed("Global is referenced by parentless instruction!", &GV, &M, |
| I); |
| else if (I->getParent()->getParent()->getParent() != &M) |
| CheckFailed("Global is referenced in a different module!", &GV, &M, I, |
| I->getParent()->getParent(), |
| I->getParent()->getParent()->getParent()); |
| return false; |
| } else if (const Function *F = dyn_cast<Function>(V)) { |
| if (F->getParent() != &M) |
| CheckFailed("Global is used by function in a different module", &GV, &M, |
| F, F->getParent()); |
| return false; |
| } |
| return true; |
| }); |
| } |
| |
| void Verifier::visitGlobalVariable(const GlobalVariable &GV) { |
| if (GV.hasInitializer()) { |
| Assert(GV.getInitializer()->getType() == GV.getValueType(), |
| "Global variable initializer type does not match global " |
| "variable type!", |
| &GV); |
| // If the global has common linkage, it must have a zero initializer and |
| // cannot be constant. |
| if (GV.hasCommonLinkage()) { |
| Assert(GV.getInitializer()->isNullValue(), |
| "'common' global must have a zero initializer!", &GV); |
| Assert(!GV.isConstant(), "'common' global may not be marked constant!", |
| &GV); |
| Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); |
| } |
| } |
| |
| if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || |
| GV.getName() == "llvm.global_dtors")) { |
| Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), |
| "invalid linkage for intrinsic global variable", &GV); |
| // Don't worry about emitting an error for it not being an array, |
| // visitGlobalValue will complain on appending non-array. |
| if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { |
| StructType *STy = dyn_cast<StructType>(ATy->getElementType()); |
| PointerType *FuncPtrTy = |
| FunctionType::get(Type::getVoidTy(Context), false)-> |
| getPointerTo(DL.getProgramAddressSpace()); |
| Assert(STy && |
| (STy->getNumElements() == 2 || STy->getNumElements() == 3) && |
| STy->getTypeAtIndex(0u)->isIntegerTy(32) && |
| STy->getTypeAtIndex(1) == FuncPtrTy, |
| "wrong type for intrinsic global variable", &GV); |
| Assert(STy->getNumElements() == 3, |
| "the third field of the element type is mandatory, " |
| "specify i8* null to migrate from the obsoleted 2-field form"); |
| Type *ETy = STy->getTypeAtIndex(2); |
| Assert(ETy->isPointerTy() && |
| cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), |
| "wrong type for intrinsic global variable", &GV); |
| } |
| } |
| |
| if (GV.hasName() && (GV.getName() == "llvm.used" || |
| GV.getName() == "llvm.compiler.used")) { |
| Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), |
| "invalid linkage for intrinsic global variable", &GV); |
| Type *GVType = GV.getValueType(); |
| if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { |
| PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); |
| Assert(PTy, "wrong type for intrinsic global variable", &GV); |
| if (GV.hasInitializer()) { |
| const Constant *Init = GV.getInitializer(); |
| const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); |
| Assert(InitArray, "wrong initalizer for intrinsic global variable", |
| Init); |
| for (Value *Op : InitArray->operands()) { |
| Value *V = Op->stripPointerCasts(); |
| Assert(isa<GlobalVariable>(V) || isa<Function>(V) || |
| isa<GlobalAlias>(V), |
| "invalid llvm.used member", V); |
| Assert(V->hasName(), "members of llvm.used must be named", V); |
| } |
| } |
| } |
| } |
| |
| // Visit any debug info attachments. |
| SmallVector<MDNode *, 1> MDs; |
| GV.getMetadata(LLVMContext::MD_dbg, MDs); |
| for (auto *MD : MDs) { |
| if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) |
| visitDIGlobalVariableExpression(*GVE); |
| else |
| AssertDI(false, "!dbg attachment of global variable must be a " |
| "DIGlobalVariableExpression"); |
| } |
| |
| // Scalable vectors cannot be global variables, since we don't know |
| // the runtime size. If the global is a struct or an array containing |
| // scalable vectors, that will be caught by the isValidElementType methods |
| // in StructType or ArrayType instead. |
| if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) |
| Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); |
| |
| if (!GV.hasInitializer()) { |
| visitGlobalValue(GV); |
| return; |
| } |
| |
| // Walk any aggregate initializers looking for bitcasts between address spaces |
| visitConstantExprsRecursively(GV.getInitializer()); |
| |
| visitGlobalValue(GV); |
| } |
| |
| void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { |
| SmallPtrSet<const GlobalAlias*, 4> Visited; |
| Visited.insert(&GA); |
| visitAliaseeSubExpr(Visited, GA, C); |
| } |
| |
| void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, |
| const GlobalAlias &GA, const Constant &C) { |
| if (const auto *GV = dyn_cast<GlobalValue>(&C)) { |
| Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", |
| &GA); |
| |
| if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { |
| Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); |
| |
| Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", |
| &GA); |
| } else { |
| // Only continue verifying subexpressions of GlobalAliases. |
| // Do not recurse into global initializers. |
| return; |
| } |
| } |
| |
| if (const auto *CE = dyn_cast<ConstantExpr>(&C)) |
| visitConstantExprsRecursively(CE); |
| |
| for (const Use &U : C.operands()) { |
| Value *V = &*U; |
| if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) |
| visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); |
| else if (const auto *C2 = dyn_cast<Constant>(V)) |
| visitAliaseeSubExpr(Visited, GA, *C2); |
| } |
| } |
| |
| void Verifier::visitGlobalAlias(const GlobalAlias &GA) { |
| Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), |
| "Alias should have private, internal, linkonce, weak, linkonce_odr, " |
| "weak_odr, or external linkage!", |
| &GA); |
| const Constant *Aliasee = GA.getAliasee(); |
| Assert(Aliasee, "Aliasee cannot be NULL!", &GA); |
| Assert(GA.getType() == Aliasee->getType(), |
| "Alias and aliasee types should match!", &GA); |
| |
| Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), |
| "Aliasee should be either GlobalValue or ConstantExpr", &GA); |
| |
| visitAliaseeSubExpr(GA, *Aliasee); |
| |
| visitGlobalValue(GA); |
| } |
| |
| void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { |
| // There used to be various other llvm.dbg.* nodes, but we don't support |
| // upgrading them and we want to reserve the namespace for future uses. |
| if (NMD.getName().startswith("llvm.dbg.")) |
| AssertDI(NMD.getName() == "llvm.dbg.cu", |
| "unrecognized named metadata node in the llvm.dbg namespace", |
| &NMD); |
| for (const MDNode *MD : NMD.operands()) { |
| if (NMD.getName() == "llvm.dbg.cu") |
| AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); |
| |
| if (!MD) |
| continue; |
| |
| visitMDNode(*MD); |
| } |
| } |
| |
| void Verifier::visitMDNode(const MDNode &MD) { |
| // Only visit each node once. Metadata can be mutually recursive, so this |
| // avoids infinite recursion here, as well as being an optimization. |
| if (!MDNodes.insert(&MD).second) |
| return; |
| |
| switch (MD.getMetadataID()) { |
| default: |
| llvm_unreachable("Invalid MDNode subclass"); |
| case Metadata::MDTupleKind: |
| break; |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ |
| case Metadata::CLASS##Kind: \ |
| visit##CLASS(cast<CLASS>(MD)); \ |
| break; |
| #include "llvm/IR/Metadata.def" |
| } |
| |
| for (const Metadata *Op : MD.operands()) { |
| if (!Op) |
| continue; |
| Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", |
| &MD, Op); |
| if (auto *N = dyn_cast<MDNode>(Op)) { |
| visitMDNode(*N); |
| continue; |
| } |
| if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { |
| visitValueAsMetadata(*V, nullptr); |
| continue; |
| } |
| } |
| |
| // Check these last, so we diagnose problems in operands first. |
| Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); |
| Assert(MD.isResolved(), "All nodes should be resolved!", &MD); |
| } |
| |
| void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { |
| Assert(MD.getValue(), "Expected valid value", &MD); |
| Assert(!MD.getValue()->getType()->isMetadataTy(), |
| "Unexpected metadata round-trip through values", &MD, MD.getValue()); |
| |
| auto *L = dyn_cast<LocalAsMetadata>(&MD); |
| if (!L) |
| return; |
| |
| Assert(F, "function-local metadata used outside a function", L); |
| |
| // If this was an instruction, bb, or argument, verify that it is in the |
| // function that we expect. |
| Function *ActualF = nullptr; |
| if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { |
| Assert(I->getParent(), "function-local metadata not in basic block", L, I); |
| ActualF = I->getParent()->getParent(); |
| } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) |
| ActualF = BB->getParent(); |
| else if (Argument *A = dyn_cast<Argument>(L->getValue())) |
| ActualF = A->getParent(); |
| assert(ActualF && "Unimplemented function local metadata case!"); |
| |
| Assert(ActualF == F, "function-local metadata used in wrong function", L); |
| } |
| |
| void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { |
| Metadata *MD = MDV.getMetadata(); |
| if (auto *N = dyn_cast<MDNode>(MD)) { |
| visitMDNode(*N); |
| return; |
| } |
| |
| // Only visit each node once. Metadata can be mutually recursive, so this |
| // avoids infinite recursion here, as well as being an optimization. |
| if (!MDNodes.insert(MD).second) |
| return; |
| |
| if (auto *V = dyn_cast<ValueAsMetadata>(MD)) |
| visitValueAsMetadata(*V, F); |
| } |
| |
| static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } |
| static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } |
| static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } |
| |
| void Verifier::visitDILocation(const DILocation &N) { |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "location requires a valid scope", &N, N.getRawScope()); |
| if (auto *IA = N.getRawInlinedAt()) |
| AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); |
| if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) |
| AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); |
| } |
| |
| void Verifier::visitGenericDINode(const GenericDINode &N) { |
| AssertDI(N.getTag(), "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIScope(const DIScope &N) { |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDISubrange(const DISubrange &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); |
| auto Count = N.getCount(); |
| AssertDI(Count, "Count must either be a signed constant or a DIVariable", |
| &N); |
| AssertDI(!Count.is<ConstantInt*>() || |
| Count.get<ConstantInt*>()->getSExtValue() >= -1, |
| "invalid subrange count", &N); |
| } |
| |
| void Verifier::visitDIEnumerator(const DIEnumerator &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIBasicType(const DIBasicType &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_base_type || |
| N.getTag() == dwarf::DW_TAG_unspecified_type, |
| "invalid tag", &N); |
| AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , |
| "has conflicting flags", &N); |
| } |
| |
| void Verifier::visitDIDerivedType(const DIDerivedType &N) { |
| // Common scope checks. |
| visitDIScope(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_typedef || |
| N.getTag() == dwarf::DW_TAG_pointer_type || |
| N.getTag() == dwarf::DW_TAG_ptr_to_member_type || |
| N.getTag() == dwarf::DW_TAG_reference_type || |
| N.getTag() == dwarf::DW_TAG_rvalue_reference_type || |
| N.getTag() == dwarf::DW_TAG_const_type || |
| N.getTag() == dwarf::DW_TAG_volatile_type || |
| N.getTag() == dwarf::DW_TAG_restrict_type || |
| N.getTag() == dwarf::DW_TAG_atomic_type || |
| N.getTag() == dwarf::DW_TAG_member || |
| N.getTag() == dwarf::DW_TAG_inheritance || |
| N.getTag() == dwarf::DW_TAG_friend, |
| "invalid tag", &N); |
| if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { |
| AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, |
| N.getRawExtraData()); |
| } |
| |
| AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, |
| N.getRawBaseType()); |
| |
| if (N.getDWARFAddressSpace()) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || |
| N.getTag() == dwarf::DW_TAG_reference_type || |
| N.getTag() == dwarf::DW_TAG_rvalue_reference_type, |
| "DWARF address space only applies to pointer or reference types", |
| &N); |
| } |
| } |
| |
| /// Detect mutually exclusive flags. |
| static bool hasConflictingReferenceFlags(unsigned Flags) { |
| return ((Flags & DINode::FlagLValueReference) && |
| (Flags & DINode::FlagRValueReference)) || |
| ((Flags & DINode::FlagTypePassByValue) && |
| (Flags & DINode::FlagTypePassByReference)); |
| } |
| |
| void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { |
| auto *Params = dyn_cast<MDTuple>(&RawParams); |
| AssertDI(Params, "invalid template params", &N, &RawParams); |
| for (Metadata *Op : Params->operands()) { |
| AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", |
| &N, Params, Op); |
| } |
| } |
| |
| void Verifier::visitDICompositeType(const DICompositeType &N) { |
| // Common scope checks. |
| visitDIScope(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_array_type || |
| N.getTag() == dwarf::DW_TAG_structure_type || |
| N.getTag() == dwarf::DW_TAG_union_type || |
| N.getTag() == dwarf::DW_TAG_enumeration_type || |
| N.getTag() == dwarf::DW_TAG_class_type || |
| N.getTag() == dwarf::DW_TAG_variant_part, |
| "invalid tag", &N); |
| |
| AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, |
| N.getRawBaseType()); |
| |
| AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), |
| "invalid composite elements", &N, N.getRawElements()); |
| AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, |
| N.getRawVTableHolder()); |
| AssertDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| unsigned DIBlockByRefStruct = 1 << 4; |
| AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, |
| "DIBlockByRefStruct on DICompositeType is no longer supported", &N); |
| |
| if (N.isVector()) { |
| const DINodeArray Elements = N.getElements(); |
| AssertDI(Elements.size() == 1 && |
| Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, |
| "invalid vector, expected one element of type subrange", &N); |
| } |
| |
| if (auto *Params = N.getRawTemplateParams()) |
| visitTemplateParams(N, *Params); |
| |
| if (N.getTag() == dwarf::DW_TAG_class_type || |
| N.getTag() == dwarf::DW_TAG_union_type) { |
| AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), |
| "class/union requires a filename", &N, N.getFile()); |
| } |
| |
| if (auto *D = N.getRawDiscriminator()) { |
| AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, |
| "discriminator can only appear on variant part"); |
| } |
| } |
| |
| void Verifier::visitDISubroutineType(const DISubroutineType &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); |
| if (auto *Types = N.getRawTypeArray()) { |
| AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); |
| for (Metadata *Ty : N.getTypeArray()->operands()) { |
| AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); |
| } |
| } |
| AssertDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| } |
| |
| void Verifier::visitDIFile(const DIFile &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); |
| Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); |
| if (Checksum) { |
| AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, |
| "invalid checksum kind", &N); |
| size_t Size; |
| switch (Checksum->Kind) { |
| case DIFile::CSK_MD5: |
| Size = 32; |
| break; |
| case DIFile::CSK_SHA1: |
| Size = 40; |
| break; |
| } |
| AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); |
| AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, |
| "invalid checksum", &N); |
| } |
| } |
| |
| void Verifier::visitDICompileUnit(const DICompileUnit &N) { |
| AssertDI(N.isDistinct(), "compile units must be distinct", &N); |
| AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); |
| |
| // Don't bother verifying the compilation directory or producer string |
| // as those could be empty. |
| AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, |
| N.getRawFile()); |
| AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, |
| N.getFile()); |
| |
| verifySourceDebugInfo(N, *N.getFile()); |
| |
| AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), |
| "invalid emission kind", &N); |
| |
| if (auto *Array = N.getRawEnumTypes()) { |
| AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); |
| for (Metadata *Op : N.getEnumTypes()->operands()) { |
| auto *Enum = dyn_cast_or_null<DICompositeType>(Op); |
| AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, |
| "invalid enum type", &N, N.getEnumTypes(), Op); |
| } |
| } |
| if (auto *Array = N.getRawRetainedTypes()) { |
| AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); |
| for (Metadata *Op : N.getRetainedTypes()->operands()) { |
| AssertDI(Op && (isa<DIType>(Op) || |
| (isa<DISubprogram>(Op) && |
| !cast<DISubprogram>(Op)->isDefinition())), |
| "invalid retained type", &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawGlobalVariables()) { |
| AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); |
| for (Metadata *Op : N.getGlobalVariables()->operands()) { |
| AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), |
| "invalid global variable ref", &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawImportedEntities()) { |
| AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); |
| for (Metadata *Op : N.getImportedEntities()->operands()) { |
| AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", |
| &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawMacros()) { |
| AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); |
| for (Metadata *Op : N.getMacros()->operands()) { |
| AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); |
| } |
| } |
| CUVisited.insert(&N); |
| } |
| |
| void Verifier::visitDISubprogram(const DISubprogram &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); |
| AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| else |
| AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); |
| if (auto *T = N.getRawType()) |
| AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); |
| AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, |
| N.getRawContainingType()); |
| if (auto *Params = N.getRawTemplateParams()) |
| visitTemplateParams(N, *Params); |
| if (auto *S = N.getRawDeclaration()) |
| AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), |
| "invalid subprogram declaration", &N, S); |
| if (auto *RawNode = N.getRawRetainedNodes()) { |
| auto *Node = dyn_cast<MDTuple>(RawNode); |
| AssertDI(Node, "invalid retained nodes list", &N, RawNode); |
| for (Metadata *Op : Node->operands()) { |
| AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), |
| "invalid retained nodes, expected DILocalVariable or DILabel", |
| &N, Node, Op); |
| } |
| } |
| AssertDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| |
| auto *Unit = N.getRawUnit(); |
| if (N.isDefinition()) { |
| // Subprogram definitions (not part of the type hierarchy). |
| AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); |
| AssertDI(Unit, "subprogram definitions must have a compile unit", &N); |
| AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); |
| if (N.getFile()) |
| verifySourceDebugInfo(*N.getUnit(), *N.getFile()); |
| } else { |
| // Subprogram declarations (part of the type hierarchy). |
| AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); |
| } |
| |
| if (auto *RawThrownTypes = N.getRawThrownTypes()) { |
| auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); |
| AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); |
| for (Metadata *Op : ThrownTypes->operands()) |
| AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, |
| Op); |
| } |
| |
| if (N.areAllCallsDescribed()) |
| AssertDI(N.isDefinition(), |
| "DIFlagAllCallsDescribed must be attached to a definition"); |
| } |
| |
| void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "invalid local scope", &N, N.getRawScope()); |
| if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) |
| AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); |
| } |
| |
| void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { |
| visitDILexicalBlockBase(N); |
| |
| AssertDI(N.getLine() || !N.getColumn(), |
| "cannot have column info without line info", &N); |
| } |
| |
| void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { |
| visitDILexicalBlockBase(N); |
| } |
| |
| void Verifier::visitDICommonBlock(const DICommonBlock &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); |
| if (auto *S = N.getRawDecl()) |
| AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); |
| } |
| |
| void Verifier::visitDINamespace(const DINamespace &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); |
| } |
| |
| void Verifier::visitDIMacro(const DIMacro &N) { |
| AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || |
| N.getMacinfoType() == dwarf::DW_MACINFO_undef, |
| "invalid macinfo type", &N); |
| AssertDI(!N.getName().empty(), "anonymous macro", &N); |
| if (!N.getValue().empty()) { |
| assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); |
| } |
| } |
| |
| void Verifier::visitDIMacroFile(const DIMacroFile &N) { |
| AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, |
| "invalid macinfo type", &N); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| |
| if (auto *Array = N.getRawElements()) { |
| AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); |
| for (Metadata *Op : N.getElements()->operands()) { |
| AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); |
| } |
| } |
| } |
| |
| void Verifier::visitDIModule(const DIModule &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); |
| AssertDI(!N.getName().empty(), "anonymous module", &N); |
| } |
| |
| void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { |
| AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| } |
| |
| void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { |
| visitDITemplateParameter(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", |
| &N); |
| } |
| |
| void Verifier::visitDITemplateValueParameter( |
| const DITemplateValueParameter &N) { |
| visitDITemplateParameter(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || |
| N.getTag() == dwarf::DW_TAG_GNU_template_template_param || |
| N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, |
| "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIVariable(const DIVariable &N) { |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope", &N, S); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { |
| // Checks common to all variables. |
| visitDIVariable(N); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); |
| AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| AssertDI(N.getType(), "missing global variable type", &N); |
| if (auto *Member = N.getRawStaticDataMemberDeclaration()) { |
| AssertDI(isa<DIDerivedType>(Member), |
| "invalid static data member declaration", &N, Member); |
| } |
| } |
| |
| void Verifier::visitDILocalVariable(const DILocalVariable &N) { |
| // Checks common to all variables. |
| visitDIVariable(N); |
| |
| AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "local variable requires a valid scope", &N, N.getRawScope()); |
| if (auto Ty = N.getType()) |
| AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); |
| } |
| |
| void Verifier::visitDILabel(const DILabel &N) { |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope", &N, S); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| |
| AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); |
| AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "label requires a valid scope", &N, N.getRawScope()); |
| } |
| |
| void Verifier::visitDIExpression(const DIExpression &N) { |
| AssertDI(N.isValid(), "invalid expression", &N); |
| } |
| |
| void Verifier::visitDIGlobalVariableExpression( |
| const DIGlobalVariableExpression &GVE) { |
| AssertDI(GVE.getVariable(), "missing variable"); |
| if (auto *Var = GVE.getVariable()) |
| visitDIGlobalVariable(*Var); |
| if (auto *Expr = GVE.getExpression()) { |
| visitDIExpression(*Expr); |
| if (auto Fragment = Expr->getFragmentInfo()) |
| verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); |
| } |
| } |
| |
| void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); |
| if (auto *T = N.getRawType()) |
| AssertDI(isType(T), "invalid type ref", &N, T); |
| if (auto *F = N.getRawFile()) |
| AssertDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { |
| AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || |
| N.getTag() == dwarf::DW_TAG_imported_declaration, |
| "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); |
| AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, |
| N.getRawEntity()); |
| } |
| |
| void Verifier::visitComdat(const Comdat &C) { |
| // In COFF the Module is invalid if the GlobalValue has private linkage. |
| // Entities with private linkage don't have entries in the symbol table. |
| if (TT.isOSBinFormatCOFF()) |
| if (const GlobalValue *GV = M.getNamedValue(C.getName())) |
| Assert(!GV->hasPrivateLinkage(), |
| "comdat global value has private linkage", GV); |
| } |
| |
| void Verifier::visitModuleIdents(const Module &M) { |
| const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); |
| if (!Idents) |
| return; |
| |
| // llvm.ident takes a list of metadata entry. Each entry has only one string. |
| // Scan each llvm.ident entry and make sure that this requirement is met. |
| for (const MDNode *N : Idents->operands()) { |
| Assert(N->getNumOperands() == 1, |
| "incorrect number of operands in llvm.ident metadata", N); |
| Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), |
| ("invalid value for llvm.ident metadata entry operand" |
| "(the operand should be a string)"), |
| N->getOperand(0)); |
| } |
| } |
| |
| void Verifier::visitModuleCommandLines(const Module &M) { |
| const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); |
| if (!CommandLines) |
| return; |
| |
| // llvm.commandline takes a list of metadata entry. Each entry has only one |
| // string. Scan each llvm.commandline entry and make sure that this |
| // requirement is met. |
| for (const MDNode *N : CommandLines->operands()) { |
| Assert(N->getNumOperands() == 1, |
| "incorrect number of operands in llvm.commandline metadata", N); |
| Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), |
| ("invalid value for llvm.commandline metadata entry operand" |
| "(the operand should be a string)"), |
| N->getOperand(0)); |
| } |
| } |
| |
| void Verifier::visitModuleFlags(const Module &M) { |
| const NamedMDNode *Flags = M.getModuleFlagsMetadata(); |
| if (!Flags) return; |
| |
| // Scan each flag, and track the flags and requirements. |
| DenseMap<const MDString*, const MDNode*> SeenIDs; |
| SmallVector<const MDNode*, 16> Requirements; |
| for (const MDNode *MDN : Flags->operands()) |
| visitModuleFlag(MDN, SeenIDs, Requirements); |
| |
| // Validate that the requirements in the module are valid. |
| for (const MDNode *Requirement : Requirements) { |
| const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); |
| const Metadata *ReqValue = Requirement->getOperand(1); |
| |
| const MDNode *Op = SeenIDs.lookup(Flag); |
| if (!Op) { |
| CheckFailed("invalid requirement on flag, flag is not present in module", |
| Flag); |
| continue; |
| } |
| |
| if (Op->getOperand(2) != ReqValue) { |
| CheckFailed(("invalid requirement on flag, " |
| "flag does not have the required value"), |
| Flag); |
| continue; |
| } |
| } |
| } |
| |
| void |
| Verifier::visitModuleFlag(const MDNode *Op, |
| DenseMap<const MDString *, const MDNode *> &SeenIDs, |
| SmallVectorImpl<const MDNode *> &Requirements) { |
| // Each module flag should have three arguments, the merge behavior (a |
| // constant int), the flag ID (an MDString), and the value. |
| Assert(Op->getNumOperands() == 3, |
| "incorrect number of operands in module flag", Op); |
| Module::ModFlagBehavior MFB; |
| if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { |
| Assert( |
| mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), |
| "invalid behavior operand in module flag (expected constant integer)", |
| Op->getOperand(0)); |
| Assert(false, |
| "invalid behavior operand in module flag (unexpected constant)", |
| Op->getOperand(0)); |
| } |
| MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); |
| Assert(ID, "invalid ID operand in module flag (expected metadata string)", |
| Op->getOperand(1)); |
| |
| // Sanity check the values for behaviors with additional requirements. |
| switch (MFB) { |
| case Module::Error: |
| case Module::Warning: |
| case Module::Override: |
| // These behavior types accept any value. |
| break; |
| |
| case Module::Max: { |
| Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), |
| "invalid value for 'max' module flag (expected constant integer)", |
| Op->getOperand(2)); |
| break; |
| } |
| |
| case Module::Require: { |
| // The value should itself be an MDNode with two operands, a flag ID (an |
| // MDString), and a value. |
| MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); |
| Assert(Value && Value->getNumOperands() == 2, |
| "invalid value for 'require' module flag (expected metadata pair)", |
| Op->getOperand(2)); |
| Assert(isa<MDString>(Value->getOperand(0)), |
| ("invalid value for 'require' module flag " |
| "(first value operand should be a string)"), |
| Value->getOperand(0)); |
| |
| // Append it to the list of requirements, to check once all module flags are |
| // scanned. |
| Requirements.push_back(Value); |
| break; |
| } |
| |
| case Module::Append: |
| case Module::AppendUnique: { |
| // These behavior types require the operand be an MDNode. |
| Assert(isa<MDNode>(Op->getOperand(2)), |
| "invalid value for 'append'-type module flag " |
| "(expected a metadata node)", |
| Op->getOperand(2)); |
| break; |
| } |
| } |
| |
| // Unless this is a "requires" flag, check the ID is unique. |
| if (MFB != Module::Require) { |
| bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; |
| Assert(Inserted, |
| "module flag identifiers must be unique (or of 'require' type)", ID); |
| } |
| |
| if (ID->getString() == "wchar_size") { |
| ConstantInt *Value |
| = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); |
| Assert(Value, "wchar_size metadata requires constant integer argument"); |
| } |
| |
| if (ID->getString() == "Linker Options") { |
| // If the llvm.linker.options named metadata exists, we assume that the |
| // bitcode reader has upgraded the module flag. Otherwise the flag might |
| // have been created by a client directly. |
| Assert(M.getNamedMetadata("llvm.linker.options"), |
| "'Linker Options' named metadata no longer supported"); |
| } |
| |
| if (ID->getString() == "CG Profile") { |
| for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) |
| visitModuleFlagCGProfileEntry(MDO); |
| } |
| } |
| |
| void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { |
| auto CheckFunction = [&](const MDOperand &FuncMDO) { |
| if (!FuncMDO) |
| return; |
| auto F = dyn_cast<ValueAsMetadata>(FuncMDO); |
| Assert(F && isa<Function>(F->getValue()), "expected a Function or null", |
| FuncMDO); |
| }; |
| auto Node = dyn_cast_or_null<MDNode>(MDO); |
| Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); |
| CheckFunction(Node->getOperand(0)); |
| CheckFunction(Node->getOperand(1)); |
| auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); |
| Assert(Count && Count->getType()->isIntegerTy(), |
| "expected an integer constant", Node->getOperand(2)); |
| } |
| |
| /// Return true if this attribute kind only applies to functions. |
| static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { |
| switch (Kind) { |
| case Attribute::NoReturn: |
| case Attribute::NoSync: |
| case Attribute::WillReturn: |
| case Attribute::NoCfCheck: |
| case Attribute::NoUnwind: |
| case Attribute::NoInline: |
| case Attribute::AlwaysInline: |
| case Attribute::OptimizeForSize: |
| case Attribute::StackProtect: |
| case Attribute::StackProtectReq: |
| case Attribute::StackProtectStrong: |
| case Attribute::SafeStack: |
| case Attribute::ShadowCallStack: |
| case Attribute::NoRedZone: |
| case Attribute::NoImplicitFloat: |
| case Attribute::Naked: |
| case Attribute::InlineHint: |
| case Attribute::StackAlignment: |
| case Attribute::UWTable: |
| case Attribute::NonLazyBind: |
| case Attribute::ReturnsTwice: |
| case Attribute::SanitizeAddress: |
| case Attribute::SanitizeHWAddress: |
| case Attribute::SanitizeMemTag: |
| case Attribute::SanitizeThread: |
| case Attribute::SanitizeMemory: |
| case Attribute::MinSize: |
| case Attribute::NoDuplicate: |
| case Attribute::Builtin: |
| case Attribute::NoBuiltin: |
| case Attribute::Cold: |
| case Attribute::OptForFuzzing: |
| case Attribute::OptimizeNone: |
| case Attribute::JumpTable: |
| case Attribute::Convergent: |
| case Attribute::ArgMemOnly: |
| case Attribute::NoRecurse: |
| case Attribute::InaccessibleMemOnly: |
| case Attribute::InaccessibleMemOrArgMemOnly: |
| case Attribute::AllocSize: |
| case Attribute::SpeculativeLoadHardening: |
| case Attribute::Speculatable: |
| case Attribute::StrictFP: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /// Return true if this is a function attribute that can also appear on |
| /// arguments. |
| static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { |
| return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || |
| Kind == Attribute::ReadNone || Kind == Attribute::NoFree; |
| } |
| |
| void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, |
| const Value *V) { |
| for (Attribute A : Attrs) { |
| if (A.isStringAttribute()) |
| continue; |
| |
| if (isFuncOnlyAttr(A.getKindAsEnum())) { |
| if (!IsFunction) { |
| CheckFailed("Attribute '" + A.getAsString() + |
| "' only applies to functions!", |
| V); |
| return; |
| } |
| } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { |
| CheckFailed("Attribute '" + A.getAsString() + |
| "' does not apply to functions!", |
| V); |
| return; |
| } |
| } |
| } |
| |
| // VerifyParameterAttrs - Check the given attributes for an argument or return |
| // value of the specified type. The value V is printed in error messages. |
| void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, |
| const Value *V) { |
| if (!Attrs.hasAttributes()) |
| return; |
| |
| verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); |
| |
| if (Attrs.hasAttribute(Attribute::ImmArg)) { |
| Assert(Attrs.getNumAttributes() == 1, |
| "Attribute 'immarg' is incompatible with other attributes", V); |
| } |
| |
| // Check for mutually incompatible attributes. Only inreg is compatible with |
| // sret. |
| unsigned AttrCount = 0; |
| AttrCount += Attrs.hasAttribute(Attribute::ByVal); |
| AttrCount += Attrs.hasAttribute(Attribute::InAlloca); |
| AttrCount += Attrs.hasAttribute(Attribute::StructRet) || |
| Attrs.hasAttribute(Attribute::InReg); |
| AttrCount += Attrs.hasAttribute(Attribute::Nest); |
| Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " |
| "and 'sret' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && |
| Attrs.hasAttribute(Attribute::ReadOnly)), |
| "Attributes " |
| "'inalloca and readonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::StructRet) && |
| Attrs.hasAttribute(Attribute::Returned)), |
| "Attributes " |
| "'sret and returned' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ZExt) && |
| Attrs.hasAttribute(Attribute::SExt)), |
| "Attributes " |
| "'zeroext and signext' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && |
| Attrs.hasAttribute(Attribute::ReadOnly)), |
| "Attributes " |
| "'readnone and readonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && |
| Attrs.hasAttribute(Attribute::WriteOnly)), |
| "Attributes " |
| "'readnone and writeonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && |
| Attrs.hasAttribute(Attribute::WriteOnly)), |
| "Attributes " |
| "'readonly and writeonly' are incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasAttribute(Attribute::NoInline) && |
| Attrs.hasAttribute(Attribute::AlwaysInline)), |
| "Attributes " |
| "'noinline and alwaysinline' are incompatible!", |
| V); |
| |
| if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { |
| Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), |
| "Attribute 'byval' type does not match parameter!", V); |
| } |
| |
| AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); |
| Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), |
| "Wrong types for attribute: " + |
| AttributeSet::get(Context, IncompatibleAttrs).getAsString(), |
| V); |
| |
| if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { |
| SmallPtrSet<Type*, 4> Visited; |
| if (!PTy->getElementType()->isSized(&Visited)) { |
| Assert(!Attrs.hasAttribute(Attribute::ByVal) && |
| !Attrs.hasAttribute(Attribute::InAlloca), |
| "Attributes 'byval' and 'inalloca' do not support unsized types!", |
| V); |
| } |
| if (!isa<PointerType>(PTy->getElementType())) |
| Assert(!Attrs.hasAttribute(Attribute::SwiftError), |
| "Attribute 'swifterror' only applies to parameters " |
| "with pointer to pointer type!", |
| V); |
| } else { |
| Assert(!Attrs.hasAttribute(Attribute::ByVal), |
| "Attribute 'byval' only applies to parameters with pointer type!", |
| V); |
| Assert(!Attrs.hasAttribute(Attribute::SwiftError), |
| "Attribute 'swifterror' only applies to parameters " |
| "with pointer type!", |
| V); |
| } |
| } |
| |
| // Check parameter attributes against a function type. |
| // The value V is printed in error messages. |
| void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, |
| const Value *V, bool IsIntrinsic) { |
| if (Attrs.isEmpty()) |
| return; |
| |
| bool SawNest = false; |
| bool SawReturned = false; |
| bool SawSRet = false; |
| bool SawSwiftSelf = false; |
| bool SawSwiftError = false; |
| |
| // Verify return value attributes. |
| AttributeSet RetAttrs = Attrs.getRetAttributes(); |
| Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && |
| !RetAttrs.hasAttribute(Attribute::Nest) && |
| !RetAttrs.hasAttribute(Attribute::StructRet) && |
| !RetAttrs.hasAttribute(Attribute::NoCapture) && |
| !RetAttrs.hasAttribute(Attribute::NoFree) && |
| !RetAttrs.hasAttribute(Attribute::Returned) && |
| !RetAttrs.hasAttribute(Attribute::InAlloca) && |
| !RetAttrs.hasAttribute(Attribute::SwiftSelf) && |
| !RetAttrs.hasAttribute(Attribute::SwiftError)), |
| "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'" |
| "'returned', 'swiftself', and 'swifterror' do not apply to return " |
| "values!", |
| V); |
| Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && |
| !RetAttrs.hasAttribute(Attribute::WriteOnly) && |
| !RetAttrs.hasAttribute(Attribute::ReadNone)), |
| "Attribute '" + RetAttrs.getAsString() + |
| "' does not apply to function returns", |
| V); |
| verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); |
| |
| // Verify parameter attributes. |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| Type *Ty = FT->getParamType(i); |
| AttributeSet ArgAttrs = Attrs.getParamAttributes(i); |
| |
| if (!IsIntrinsic) { |
| Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), |
| "immarg attribute only applies to intrinsics",V); |
| } |
| |
| verifyParameterAttrs(ArgAttrs, Ty, V); |
| |
| if (ArgAttrs.hasAttribute(Attribute::Nest)) { |
| Assert(!SawNest, "More than one parameter has attribute nest!", V); |
| SawNest = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::Returned)) { |
| Assert(!SawReturned, "More than one parameter has attribute returned!", |
| V); |
| Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), |
| "Incompatible argument and return types for 'returned' attribute", |
| V); |
| SawReturned = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::StructRet)) { |
| Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); |
| Assert(i == 0 || i == 1, |
| "Attribute 'sret' is not on first or second parameter!", V); |
| SawSRet = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { |
| Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); |
| SawSwiftSelf = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { |
| Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", |
| V); |
| SawSwiftError = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { |
| Assert(i == FT->getNumParams() - 1, |
| "inalloca isn't on the last parameter!", V); |
| } |
| } |
| |
| if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) |
| return; |
| |
| verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::ReadOnly)), |
| "Attributes 'readnone and readonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::WriteOnly)), |
| "Attributes 'readnone and writeonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && |
| Attrs.hasFnAttribute(Attribute::WriteOnly)), |
| "Attributes 'readonly and writeonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), |
| "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " |
| "incompatible!", |
| V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && |
| Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), |
| "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); |
| |
| Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && |
| Attrs.hasFnAttribute(Attribute::AlwaysInline)), |
| "Attributes 'noinline and alwaysinline' are incompatible!", V); |
| |
| if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { |
| Assert(Attrs.hasFnAttribute(Attribute::NoInline), |
| "Attribute 'optnone' requires 'noinline'!", V); |
| |
| Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), |
| "Attributes 'optsize and optnone' are incompatible!", V); |
| |
| Assert(!Attrs.hasFnAttribute(Attribute::MinSize), |
| "Attributes 'minsize and optnone' are incompatible!", V); |
| } |
| |
| if (Attrs.hasFnAttribute(Attribute::JumpTable)) { |
| const GlobalValue *GV = cast<GlobalValue>(V); |
| Assert(GV->hasGlobalUnnamedAddr(), |
| "Attribute 'jumptable' requires 'unnamed_addr'", V); |
| } |
| |
| if (Attrs.hasFnAttribute(Attribute::AllocSize)) { |
| std::pair<unsigned, Optional<unsigned>> Args = |
| Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); |
| |
| auto CheckParam = [&](StringRef Name, unsigned ParamNo) { |
| if (ParamNo >= FT->getNumParams()) { |
| CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); |
| return false; |
| } |
| |
| if (!FT->getParamType(ParamNo)->isIntegerTy()) { |
| CheckFailed("'allocsize' " + Name + |
| " argument must refer to an integer parameter", |
| V); |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| if (!CheckParam("element size", Args.first)) |
| return; |
| |
| if (Args.second && !CheckParam("number of elements", *Args.second)) |
| return; |
| } |
| |
| if (Attrs.hasFnAttribute("frame-pointer")) { |
| StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, |
| "frame-pointer").getValueAsString(); |
| if (FP != "all" && FP != "non-leaf" && FP != "none") |
| CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); |
| } |
| |
| if (Attrs.hasFnAttribute("patchable-function-prefix")) { |
| StringRef S = Attrs |
| .getAttribute(AttributeList::FunctionIndex, |
| "patchable-function-prefix") |
| .getValueAsString(); |
| unsigned N; |
| if (S.getAsInteger(10, N)) |
| CheckFailed( |
| "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); |
| } |
| if (Attrs.hasFnAttribute("patchable-function-entry")) { |
| StringRef S = Attrs |
| .getAttribute(AttributeList::FunctionIndex, |
| "patchable-function-entry") |
| .getValueAsString(); |
| unsigned N; |
| if (S.getAsInteger(10, N)) |
| CheckFailed( |
| "\"patchable-function-entry\" takes an unsigned integer: " + S, V); |
| } |
| } |
| |
| void Verifier::verifyFunctionMetadata( |
| ArrayRef<std::pair<unsigned, MDNode *>> MDs) { |
| for (const auto &Pair : MDs) { |
| if (Pair.first == LLVMContext::MD_prof) { |
| MDNode *MD = Pair.second; |
| Assert(MD->getNumOperands() >= 2, |
| "!prof annotations should have no less than 2 operands", MD); |
| |
| // Check first operand. |
| Assert(MD->getOperand(0) != nullptr, "first operand should not be null", |
| MD); |
| Assert(isa<MDString>(MD->getOperand(0)), |
| "expected string with name of the !prof annotation", MD); |
| MDString *MDS = cast<MDString>(MD->getOperand(0)); |
| StringRef ProfName = MDS->getString(); |
| Assert(ProfName.equals("function_entry_count") || |
| ProfName.equals("synthetic_function_entry_count"), |
| "first operand should be 'function_entry_count'" |
| " or 'synthetic_function_entry_count'", |
| MD); |
| |
| // Check second operand. |
| Assert(MD->getOperand(1) != nullptr, "second operand should not be null", |
| MD); |
| Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), |
| "expected integer argument to function_entry_count", MD); |
| } |
| } |
| } |
| |
| void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { |
| if (!ConstantExprVisited.insert(EntryC).second) |
| return; |
| |
| SmallVector<const Constant *, 16> Stack; |
| Stack.push_back(EntryC); |
| |
| while (!Stack.empty()) { |
| const Constant *C = Stack.pop_back_val(); |
| |
| // Check this constant expression. |
| if (const auto *CE = dyn_cast<ConstantExpr>(C)) |
| visitConstantExpr(CE); |
| |
| if (const auto *GV = dyn_cast<GlobalValue>(C)) { |
| // Global Values get visited separately, but we do need to make sure |
| // that the global value is in the correct module |
| Assert(GV->getParent() == &M, "Referencing global in another module!", |
| EntryC, &M, GV, GV->getParent()); |
| continue; |
| } |
| |
| // Visit all sub-expressions. |
| for (const Use &U : C->operands()) { |
| const auto *OpC = dyn_cast<Constant>(U); |
| if (!OpC) |
| continue; |
| if (!ConstantExprVisited.insert(OpC).second) |
| continue; |
| Stack.push_back(OpC); |
| } |
| } |
| } |
| |
| void Verifier::visitConstantExpr(const ConstantExpr *CE) { |
| if (CE->getOpcode() == Instruction::BitCast) |
| Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), |
| CE->getType()), |
| "Invalid bitcast", CE); |
| |
| if (CE->getOpcode() == Instruction::IntToPtr || |
| CE->getOpcode() == Instruction::PtrToInt) { |
| auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr |
| ? CE->getType() |
| : CE->getOperand(0)->getType(); |
| StringRef Msg = CE->getOpcode() == Instruction::IntToPtr |
| ? "inttoptr not supported for non-integral pointers" |
| : "ptrtoint not supported for non-integral pointers"; |
| Assert( |
| !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), |
| Msg); |
| } |
| } |
| |
| bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { |
| // There shouldn't be more attribute sets than there are parameters plus the |
| // function and return value. |
| return Attrs.getNumAttrSets() <= Params + 2; |
| } |
| |
| /// Verify that statepoint intrinsic is well formed. |
| void Verifier::verifyStatepoint(const CallBase &Call) { |
| assert(Call.getCalledFunction() && |
| Call.getCalledFunction()->getIntrinsicID() == |
| Intrinsic::experimental_gc_statepoint); |
| |
| Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && |
| !Call.onlyAccessesArgMemory(), |
| "gc.statepoint must read and write all memory to preserve " |
| "reordering restrictions required by safepoint semantics", |
| Call); |
| |
| const int64_t NumPatchBytes = |
| cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); |
| assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); |
| Assert(NumPatchBytes >= 0, |
| "gc.statepoint number of patchable bytes must be " |
| "positive", |
| Call); |
| |
| const Value *Target = Call.getArgOperand(2); |
| auto *PT = dyn_cast<PointerType>(Target->getType()); |
| Assert(PT && PT->getElementType()->isFunctionTy(), |
| "gc.statepoint callee must be of function pointer type", Call, Target); |
| FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); |
| |
| const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); |
| Assert(NumCallArgs >= 0, |
| "gc.statepoint number of arguments to underlying call " |
| "must be positive", |
| Call); |
| const int NumParams = (int)TargetFuncType->getNumParams(); |
| if (TargetFuncType->isVarArg()) { |
| Assert(NumCallArgs >= NumParams, |
| "gc.statepoint mismatch in number of vararg call args", Call); |
| |
| // TODO: Remove this limitation |
| Assert(TargetFuncType->getReturnType()->isVoidTy(), |
| "gc.statepoint doesn't support wrapping non-void " |
| "vararg functions yet", |
| Call); |
| } else |
| Assert(NumCallArgs == NumParams, |
| "gc.statepoint mismatch in number of call args", Call); |
| |
| const uint64_t Flags |
| = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); |
| Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, |
| "unknown flag used in gc.statepoint flags argument", Call); |
| |
| // Verify that the types of the call parameter arguments match |
| // the type of the wrapped callee. |
| AttributeList Attrs = Call.getAttributes(); |
| for (int i = 0; i < NumParams; i++) { |
| Type *ParamType = TargetFuncType->getParamType(i); |
| Type *ArgType = Call.getArgOperand(5 + i)->getType(); |
| Assert(ArgType == ParamType, |
| "gc.statepoint call argument does not match wrapped " |
| "function type", |
| Call); |
| |
| if (TargetFuncType->isVarArg()) { |
| AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); |
| Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), |
| "Attribute 'sret' cannot be used for vararg call arguments!", |
| Call); |
| } |
| } |
| |
| const int EndCallArgsInx = 4 + NumCallArgs; |
| |
| const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); |
| Assert(isa<ConstantInt>(NumTransitionArgsV), |
| "gc.statepoint number of transition arguments " |
| "must be constant integer", |
| Call); |
| const int NumTransitionArgs = |
| cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); |
| Assert(NumTransitionArgs >= 0, |
| "gc.statepoint number of transition arguments must be positive", Call); |
| const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; |
| |
| const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); |
| Assert(isa<ConstantInt>(NumDeoptArgsV), |
| "gc.statepoint number of deoptimization arguments " |
| "must be constant integer", |
| Call); |
| const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); |
| Assert(NumDeoptArgs >= 0, |
| "gc.statepoint number of deoptimization arguments " |
| "must be positive", |
| Call); |
| |
| const int ExpectedNumArgs = |
| 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; |
| Assert(ExpectedNumArgs <= (int)Call.arg_size(), |
| "gc.statepoint too few arguments according to length fields", Call); |
| |
| // Check that the only uses of this gc.statepoint are gc.result or |
| // gc.relocate calls which are tied to this statepoint and thus part |
| // of the same statepoint sequence |
| for (const User *U : Call.users()) { |
| const CallInst *UserCall = dyn_cast<const CallInst>(U); |
| Assert(UserCall, "illegal use of statepoint token", Call, U); |
| if (!UserCall) |
| continue; |
| Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), |
| "gc.result or gc.relocate are the only value uses " |
| "of a gc.statepoint", |
| Call, U); |
| if (isa<GCResultInst>(UserCall)) { |
| Assert(UserCall->getArgOperand(0) == &Call, |
| "gc.result connected to wrong gc.statepoint", Call, UserCall); |
| } else if (isa<GCRelocateInst>(Call)) { |
| Assert(UserCall->getArgOperand(0) == &Call, |
| "gc.relocate connected to wrong gc.statepoint", Call, UserCall); |
| } |
| } |
| |
| // Note: It is legal for a single derived pointer to be listed multiple |
| // times. It's non-optimal, but it is legal. It can also happen after |
| // insertion if we strip a bitcast away. |
| // Note: It is really tempting to check that each base is relocated and |
| // that a derived pointer is never reused as a base pointer. This turns |
| // out to be problematic since optimizations run after safepoint insertion |
| // can recognize equality properties that the insertion logic doesn't know |
| // about. See example statepoint.ll in the verifier subdirectory |
| } |
| |
| void Verifier::verifyFrameRecoverIndices() { |
| for (auto &Counts : FrameEscapeInfo) { |
| Function *F = Counts.first; |
| unsigned EscapedObjectCount = Counts.second.first; |
| unsigned MaxRecoveredIndex = Counts.second.second; |
| Assert(MaxRecoveredIndex <= EscapedObjectCount, |
| "all indices passed to llvm.localrecover must be less than the " |
| "number of arguments passed to llvm.localescape in the parent " |
| "function", |
| F); |
| } |
| } |
| |
| static Instruction *getSuccPad(Instruction *Terminator) { |
| BasicBlock *UnwindDest; |
| if (auto *II = dyn_cast<InvokeInst>(Terminator)) |
| UnwindDest = II->getUnwindDest(); |
| else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) |
| UnwindDest = CSI->getUnwindDest(); |
| else |
| UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); |
| return UnwindDest->getFirstNonPHI(); |
| } |
| |
| void Verifier::verifySiblingFuncletUnwinds() { |
| SmallPtrSet<Instruction *, 8> Visited; |
| SmallPtrSet<Instruction *, 8> Active; |
| for (const auto &Pair : SiblingFuncletInfo) { |
| Instruction *PredPad = Pair.first; |
| if (Visited.count(PredPad)) |
| continue; |
| Active.insert(PredPad); |
| Instruction *Terminator = Pair.second; |
| do { |
| Instruction *SuccPad = getSuccPad(Terminator); |
| if (Active.count(SuccPad)) { |
| // Found a cycle; report error |
| Instruction *CyclePad = SuccPad; |
| SmallVector<Instruction *, 8> CycleNodes; |
| do { |
| CycleNodes.push_back(CyclePad); |
| Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; |
| if (CycleTerminator != CyclePad) |
| CycleNodes.push_back(CycleTerminator); |
| CyclePad = getSuccPad(CycleTerminator); |
| } while (CyclePad != SuccPad); |
| Assert(false, "EH pads can't handle each other's exceptions", |
| ArrayRef<Instruction *>(CycleNodes)); |
| } |
| // Don't re-walk a node we've already checked |
| if (!Visited.insert(SuccPad).second) |
| break; |
| // Walk to this successor if it has a map entry. |
| PredPad = SuccPad; |
| auto TermI = SiblingFuncletInfo.find(PredPad); |
| if (TermI == SiblingFuncletInfo.end()) |
| break; |
| Terminator = TermI->second; |
| Active.insert(PredPad); |
| } while (true); |
| // Each node only has one successor, so we've walked all the active |
| // nodes' successors. |
| Active.clear(); |
| } |
| } |
| |
| // visitFunction - Verify that a function is ok. |
| // |
| void Verifier::visitFunction(const Function &F) { |
| visitGlobalValue(F); |
| |
| // Check function arguments. |
| FunctionType *FT = F.getFunctionType(); |
| unsigned NumArgs = F.arg_size(); |
| |
| Assert(&Context == &F.getContext(), |
| "Function context does not match Module context!", &F); |
| |
| Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); |
| Assert(FT->getNumParams() == NumArgs, |
| "# formal arguments must match # of arguments for function type!", &F, |
| FT); |
| Assert(F.getReturnType()->isFirstClassType() || |
| F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), |
| "Functions cannot return aggregate values!", &F); |
| |
| Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), |
| "Invalid struct return type!", &F); |
| |
| AttributeList Attrs = F.getAttributes(); |
| |
| Assert(verifyAttributeCount(Attrs, FT->getNumParams()), |
| "Attribute after last parameter!", &F); |
| |
| bool isLLVMdotName = F.getName().size() >= 5 && |
| F.getName().substr(0, 5) == "llvm."; |
| |
| // Check function attributes. |
| verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); |
| |
| // On function declarations/definitions, we do not support the builtin |
| // attribute. We do not check this in VerifyFunctionAttrs since that is |
| // checking for Attributes that can/can not ever be on functions. |
| Assert(!Attrs.hasFnAttribute(Attribute::Builtin), |
| "Attribute 'builtin' can only be applied to a callsite.", &F); |
| |
| // Check that this function meets the restrictions on this calling convention. |
| // Sometimes varargs is used for perfectly forwarding thunks, so some of these |
| // restrictions can be lifted. |
| switch (F.getCallingConv()) { |
| default: |
| case CallingConv::C: |
| break; |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| Assert(F.getReturnType()->isVoidTy(), |
| "Calling convention requires void return type", &F); |
| LLVM_FALLTHROUGH; |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| Assert(!F.hasStructRetAttr(), |
| "Calling convention does not allow sret", &F); |
| LLVM_FALLTHROUGH; |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| case CallingConv::Intel_OCL_BI: |
| case CallingConv::PTX_Kernel: |
| case CallingConv::PTX_Device: |
| Assert(!F.isVarArg(), "Calling convention does not support varargs or " |
| "perfect forwarding!", |
| &F); |
| break; |
| } |
| |
| // Check that the argument values match the function type for this function... |
| unsigned i = 0; |
| for (const Argument &Arg : F.args()) { |
| Assert(Arg.getType() == FT->getParamType(i), |
| "Argument value does not match function argument type!", &Arg, |
| FT->getParamType(i)); |
| Assert(Arg.getType()->isFirstClassType(), |
| "Function arguments must have first-class types!", &Arg); |
| if (!isLLVMdotName) { |
| Assert(!Arg.getType()->isMetadataTy(), |
| "Function takes metadata but isn't an intrinsic", &Arg, &F); |
| Assert(!Arg.getType()->isTokenTy(), |
| "Function takes token but isn't an intrinsic", &Arg, &F); |
| } |
| |
| // Check that swifterror argument is only used by loads and stores. |
| if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { |
| verifySwiftErrorValue(&Arg); |
| } |
| ++i; |
| } |
| |
| if (!isLLVMdotName) |
| Assert(!F.getReturnType()->isTokenTy(), |
| "Functions returns a token but isn't an intrinsic", &F); |
| |
| // Get the function metadata attachments. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| F.getAllMetadata(MDs); |
| assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); |
| verifyFunctionMetadata(MDs); |
| |
| // Check validity of the personality function |
| if (F.hasPersonalityFn()) { |
| auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); |
| if (Per) |
| Assert(Per->getParent() == F.getParent(), |
| "Referencing personality function in another module!", |
| &F, F.getParent(), Per, Per->getParent()); |
| } |
| |
| if (F.isMaterializable()) { |
| // Function has a body somewhere we can't see. |
| Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, |
| MDs.empty() ? nullptr : MDs.front().second); |
| } else if (F.isDeclaration()) { |
| for (const auto &I : MDs) { |
| // This is used for call site debug information. |
| AssertDI(I.first != LLVMContext::MD_dbg || |
| !cast<DISubprogram>(I.second)->isDistinct(), |
| "function declaration may only have a unique !dbg attachment", |
| &F); |
| Assert(I.first != LLVMContext::MD_prof, |
| "function declaration may not have a !prof attachment", &F); |
| |
| // Verify the metadata itself. |
| visitMDNode(*I.second); |
| } |
| Assert(!F.hasPersonalityFn(), |
| "Function declaration shouldn't have a personality routine", &F); |
| } else { |
| // Verify that this function (which has a body) is not named "llvm.*". It |
| // is not legal to define intrinsics. |
| Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); |
| |
| // Check the entry node |
| const BasicBlock *Entry = &F.getEntryBlock(); |
| Assert(pred_empty(Entry), |
| "Entry block to function must not have predecessors!", Entry); |
| |
| // The address of the entry block cannot be taken, unless it is dead. |
| if (Entry->hasAddressTaken()) { |
| Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), |
| "blockaddress may not be used with the entry block!", Entry); |
| } |
| |
| unsigned NumDebugAttachments = 0, NumProfAttachments = 0; |
| // Visit metadata attachments. |
| for (const auto &I : MDs) { |
| // Verify that the attachment is legal. |
| switch (I.first) { |
| default: |
| break; |
| case LLVMContext::MD_dbg: { |
| ++NumDebugAttachments; |
| AssertDI(NumDebugAttachments == 1, |
| "function must have a single !dbg attachment", &F, I.second); |
| AssertDI(isa<DISubprogram>(I.second), |
| "function !dbg attachment must be a subprogram", &F, I.second); |
| auto *SP = cast<DISubprogram>(I.second); |
| const Function *&AttachedTo = DISubprogramAttachments[SP]; |
| AssertDI(!AttachedTo || AttachedTo == &F, |
| "DISubprogram attached to more than one function", SP, &F); |
| AttachedTo = &F; |
| break; |
| } |
| case LLVMContext::MD_prof: |
| ++NumProfAttachments; |
| Assert(NumProfAttachments == 1, |
| "function must have a single !prof attachment", &F, I.second); |
| break; |
| } |
| |
| // Verify the metadata itself. |
| visitMDNode(*I.second); |
| } |
| } |
| |
| // If this function is actually an intrinsic, verify that it is only used in |
| // direct call/invokes, never having its "address taken". |
| // Only do this if the module is materialized, otherwise we don't have all the |
| // uses. |
| if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { |
| const User *U; |
| if (F.hasAddressTaken(&U)) |
| Assert(false, "Invalid user of intrinsic instruction!", U); |
| } |
| |
| auto *N = F.getSubprogram(); |
| HasDebugInfo = (N != nullptr); |
| if (!HasDebugInfo) |
| return; |
| |
| // Check that all !dbg attachments lead to back to N (or, at least, another |
| // subprogram that describes the same function). |
| // |
| // FIXME: Check this incrementally while visiting !dbg attachments. |
| // FIXME: Only check when N is the canonical subprogram for F. |
| SmallPtrSet<const MDNode *, 32> Seen; |
| auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { |
| // Be careful about using DILocation here since we might be dealing with |
| // broken code (this is the Verifier after all). |
| const DILocation *DL = dyn_cast_or_null<DILocation>(Node); |
| if (!DL) |
| return; |
| if (!Seen.insert(DL).second) |
| return; |
| |
| Metadata *Parent = DL->getRawScope(); |
| AssertDI(Parent && isa<DILocalScope>(Parent), |
| "DILocation's scope must be a DILocalScope", N, &F, &I, DL, |
| Parent); |
| DILocalScope *Scope = DL->getInlinedAtScope(); |
| if (Scope && !Seen.insert(Scope).second) |
| return; |
| |
| DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; |
| |
| // Scope and SP could be the same MDNode and we don't want to skip |
| // validation in that case |
| if (SP && ((Scope != SP) && !Seen.insert(SP).second)) |
| return; |
| |
| // FIXME: Once N is canonical, check "SP == &N". |
| AssertDI(SP->describes(&F), |
| "!dbg attachment points at wrong subprogram for function", N, &F, |
| &I, DL, Scope, SP); |
| }; |
| for (auto &BB : F) |
| for (auto &I : BB) { |
| VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); |
| // The llvm.loop annotations also contain two DILocations. |
| if (auto MD = I.getMetadata(LLVMContext::MD_loop)) |
| for (unsigned i = 1; i < MD->getNumOperands(); ++i) |
| VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); |
| if (BrokenDebugInfo) |
| return; |
| } |
| } |
| |
| // verifyBasicBlock - Verify that a basic block is well formed... |
| // |
| void Verifier::visitBasicBlock(BasicBlock &BB) { |
| InstsInThisBlock.clear(); |
| |
| // Ensure that basic blocks have terminators! |
| Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); |
| |
| // Check constraints that this basic block imposes on all of the PHI nodes in |
| // it. |
| if (isa<PHINode>(BB.front())) { |
| SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; |
| llvm::sort(Preds); |
| for (const PHINode &PN : BB.phis()) { |
| // Ensure that PHI nodes have at least one entry! |
| Assert(PN.getNumIncomingValues() != 0, |
| "PHI nodes must have at least one entry. If the block is dead, " |
| "the PHI should be removed!", |
| &PN); |
| Assert(PN.getNumIncomingValues() == Preds.size(), |
| "PHINode should have one entry for each predecessor of its " |
| "parent basic block!", |
| &PN); |
| |
| // Get and sort all incoming values in the PHI node... |
| Values.clear(); |
| Values.reserve(PN.getNumIncomingValues()); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| Values.push_back( |
| std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); |
| llvm::sort(Values); |
| |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) { |
| // Check to make sure that if there is more than one entry for a |
| // particular basic block in this PHI node, that the incoming values are |
| // all identical. |
| // |
| Assert(i == 0 || Values[i].first != Values[i - 1].first || |
| Values[i].second == Values[i - 1].second, |
| "PHI node has multiple entries for the same basic block with " |
| "different incoming values!", |
| &PN, Values[i].first, Values[i].second, Values[i - 1].second); |
| |
| // Check to make sure that the predecessors and PHI node entries are |
| // matched up. |
| Assert(Values[i].first == Preds[i], |
| "PHI node entries do not match predecessors!", &PN, |
| Values[i].first, Preds[i]); |
| } |
| } |
| } |
| |
| // Check that all instructions have their parent pointers set up correctly. |
| for (auto &I : BB) |
| { |
| Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); |
| } |
| } |
| |
| void Verifier::visitTerminator(Instruction &I) { |
| // Ensure that terminators only exist at the end of the basic block. |
| Assert(&I == I.getParent()->getTerminator(), |
| "Terminator found in the middle of a basic block!", I.getParent()); |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitBranchInst(BranchInst &BI) { |
| if (BI.isConditional()) { |
| Assert(BI.getCondition()->getType()->isIntegerTy(1), |
| "Branch condition is not 'i1' type!", &BI, BI.getCondition()); |
| } |
| visitTerminator(BI); |
| } |
| |
| void Verifier::visitReturnInst(ReturnInst &RI) { |
| Function *F = RI.getParent()->getParent(); |
| unsigned N = RI.getNumOperands(); |
| if (F->getReturnType()->isVoidTy()) |
| Assert(N == 0, |
| "Found return instr that returns non-void in Function of void " |
| "return type!", |
| &RI, F->getReturnType()); |
| else |
| Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), |
| "Function return type does not match operand " |
| "type of return inst!", |
| &RI, F->getReturnType()); |
| |
| // Check to make sure that the return value has necessary properties for |
| // terminators... |
| visitTerminator(RI); |
| } |
| |
| void Verifier::visitSwitchInst(SwitchInst &SI) { |
| // Check to make sure that all of the constants in the switch instruction |
| // have the same type as the switched-on value. |
| Type *SwitchTy = SI.getCondition()->getType(); |
| SmallPtrSet<ConstantInt*, 32> Constants; |
| for (auto &Case : SI.cases()) { |
| Assert(Case.getCaseValue()->getType() == SwitchTy, |
| "Switch constants must all be same type as switch value!", &SI); |
| Assert(Constants.insert(Case.getCaseValue()).second, |
| "Duplicate integer as switch case", &SI, Case.getCaseValue()); |
| } |
| |
| visitTerminator(SI); |
| } |
| |
| void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { |
| Assert(BI.getAddress()->getType()->isPointerTy(), |
| "Indirectbr operand must have pointer type!", &BI); |
| for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) |
| Assert(BI.getDestination(i)->getType()->isLabelTy(), |
| "Indirectbr destinations must all have pointer type!", &BI); |
| |
| visitTerminator(BI); |
| } |
| |
| void Verifier::visitCallBrInst(CallBrInst &CBI) { |
| Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", |
| &CBI); |
| Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", |
| &CBI); |
| for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) |
| Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), |
| "Callbr successors must all have pointer type!", &CBI); |
| for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { |
| Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), |
| "Using an unescaped label as a callbr argument!", &CBI); |
| if (isa<BasicBlock>(CBI.getOperand(i))) |
| for (unsigned j = i + 1; j != e; ++j) |
| Assert(CBI.getOperand(i) != CBI.getOperand(j), |
| "Duplicate callbr destination!", &CBI); |
| } |
| { |
| SmallPtrSet<BasicBlock *, 4> ArgBBs; |
| for (Value *V : CBI.args()) |
| if (auto *BA = dyn_cast<BlockAddress>(V)) |
| ArgBBs.insert(BA->getBasicBlock()); |
| for (BasicBlock *BB : CBI.getIndirectDests()) |
| Assert(ArgBBs.find(BB) != ArgBBs.end(), |
| "Indirect label missing from arglist.", &CBI); |
| } |
| |
| visitTerminator(CBI); |
| } |
| |
| void Verifier::visitSelectInst(SelectInst &SI) { |
| Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), |
| SI.getOperand(2)), |
| "Invalid operands for select instruction!", &SI); |
| |
| Assert(SI.getTrueValue()->getType() == SI.getType(), |
| "Select values must have same type as select instruction!", &SI); |
| visitInstruction(SI); |
| } |
| |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of |
| /// a pass, if any exist, it's an error. |
| /// |
| void Verifier::visitUserOp1(Instruction &I) { |
| Assert(false, "User-defined operators should not live outside of a pass!", &I); |
| } |
| |
| void Verifier::visitTruncInst(TruncInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); |
| Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "trunc source and destination must both be a vector or neither", &I); |
| Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitZExtInst(ZExtInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); |
| Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "zext source and destination must both be a vector or neither", &I); |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitSExtInst(SExtInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); |
| Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "sext source and destination must both be a vector or neither", &I); |
| Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPTruncInst(FPTruncInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); |
| Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "fptrunc source and destination must both be a vector or neither", &I); |
| Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPExtInst(FPExtInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); |
| Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "fpext source and destination must both be a vector or neither", &I); |
| Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitUIToFPInst(UIToFPInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Assert(SrcVec == DstVec, |
| "UIToFP source and dest must both be vector or scalar", &I); |
| Assert(SrcTy->isIntOrIntVectorTy(), |
| "UIToFP source must be integer or integer vector", &I); |
| Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", |
| &I); |
| |
| if (SrcVec && DstVec) |
| Assert(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "UIToFP source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitSIToFPInst(SIToFPInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Assert(SrcVec == DstVec, |
| "SIToFP source and dest must both be vector or scalar", &I); |
| Assert(SrcTy->isIntOrIntVectorTy(), |
| "SIToFP source must be integer or integer vector", &I); |
| Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", |
| &I); |
| |
| if (SrcVec && DstVec) |
| Assert(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "SIToFP source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPToUIInst(FPToUIInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Assert(SrcVec == DstVec, |
| "FPToUI source and dest must both be vector or scalar", &I); |
| Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", |
| &I); |
| Assert(DestTy->isIntOrIntVectorTy(), |
| "FPToUI result must be integer or integer vector", &I); |
| |
| if (SrcVec && DstVec) |
| Assert(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "FPToUI source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPToSIInst(FPToSIInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Assert(SrcVec == DstVec, |
| "FPToSI source and dest must both be vector or scalar", &I); |
| Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", |
| &I); |
| Assert(DestTy->isIntOrIntVectorTy(), |
| "FPToSI result must be integer or integer vector", &I); |
| |
| if (SrcVec && DstVec) |
| Assert(cast<VectorType>(SrcTy)->getNumElements() == |
| cast<VectorType>(DestTy)->getNumElements(), |
| "FPToSI source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); |
| |
| if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) |
| Assert(!DL.isNonIntegralPointerType(PTy), |
| "ptrtoint not supported for non-integral pointers"); |
| |
| Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", |
| &I); |
| |
| if (SrcTy->isVectorTy()) { |
| VectorType *VSrc = cast<VectorType>(SrcTy); |
| VectorType *VDest = cast<VectorType>(DestTy); |
| Assert(VSrc->getNumElements() == VDest->getNumElements(), |
| "PtrToInt Vector width mismatch", &I); |
| } |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| Assert(SrcTy->isIntOrIntVectorTy(), |
| "IntToPtr source must be an integral", &I); |
| Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); |
| |
| if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) |
| Assert(!DL.isNonIntegralPointerType(PTy), |
| "inttoptr not supported for non-integral pointers"); |
| |
| Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", |
| &I); |
| if (SrcTy->isVectorTy()) { |
| VectorType *VSrc = cast<VectorType>(SrcTy); |
| VectorType *VDest = cast<VectorType>(DestTy); |
| Assert(VSrc->getNumElements() == VDest->getNumElements(), |
| "IntToPtr Vector width mismatch", &I); |
| } |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitBitCastInst(BitCastInst &I) { |
| Assert( |
| CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), |
| "Invalid bitcast", &I); |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", |
| &I); |
| Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", |
| &I); |
| Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), |
| "AddrSpaceCast must be between different address spaces", &I); |
| if (SrcTy->isVectorTy()) |
| Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), |
| "AddrSpaceCast vector pointer number of elements mismatch", &I); |
| visitInstruction(I); |
| } |
| |
| /// visitPHINode - Ensure that a PHI node is well formed. |
| /// |
| void Verifier::visitPHINode(PHINode &PN) { |
| // Ensure that the PHI nodes are all grouped together at the top of the block. |
| // This can be tested by checking whether the instruction before this is |
| // either nonexistent (because this is begin()) or is a PHI node. If not, |
| // then there is some other instruction before a PHI. |
| Assert(&PN == &PN.getParent()->front() || |
| isa<PHINode>(--BasicBlock::iterator(&PN)), |
| "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); |
| |
| // Check that a PHI doesn't yield a Token. |
| Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); |
| |
| // Check that all of the values of the PHI node have the same type as the |
| // result, and that the incoming blocks are really basic blocks. |
| for (Value *IncValue : PN.incoming_values()) { |
| Assert(PN.getType() == IncValue->getType(), |
| "PHI node operands are not the same type as the result!", &PN); |
| } |
| |
| // All other PHI node constraints are checked in the visitBasicBlock method. |
| |
| visitInstruction(PN); |
| } |
| |
| void Verifier::visitCallBase(CallBase &Call) { |
| Assert(Call.getCalledValue()->getType()->isPointerTy(), |
| "Called function must be a pointer!", Call); |
| PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); |
| |
| Assert(FPTy->getElementType()->isFunctionTy(), |
| "Called function is not pointer to function type!", Call); |
| |
| Assert(FPTy->getElementType() == Call.getFunctionType(), |
| "Called function is not the same type as the call!", Call); |
| |
| FunctionType *FTy = Call.getFunctionType(); |
| |
| // Verify that the correct number of arguments are being passed |
| if (FTy->isVarArg()) |
| Assert(Call.arg_size() >= FTy->getNumParams(), |
| "Called function requires more parameters than were provided!", |
| Call); |
| else |
| Assert(Call.arg_size() == FTy->getNumParams(), |
| "Incorrect number of arguments passed to called function!", Call); |
| |
| // Verify that all arguments to the call match the function type. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), |
| "Call parameter type does not match function signature!", |
| Call.getArgOperand(i), FTy->getParamType(i), Call); |
| |
| AttributeList Attrs = Call.getAttributes(); |
| |
| Assert(verifyAttributeCount(Attrs, Call.arg_size()), |
| "Attribute after last parameter!", Call); |
| |
| bool IsIntrinsic = Call.getCalledFunction() && |
| Call.getCalledFunction()->getName().startswith("llvm."); |
| |
| Function *Callee |
| = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); |
| |
| if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { |
| // Don't allow speculatable on call sites, unless the underlying function |
| // declaration is also speculatable. |
| Assert(Callee && Callee->isSpeculatable(), |
| "speculatable attribute may not apply to call sites", Call); |
| } |
| |
| // Verify call attributes. |
| verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); |
| |
| // Conservatively check the inalloca argument. |
| // We have a bug if we can find that there is an underlying alloca without |
| // inalloca. |
| if (Call.hasInAllocaArgument()) { |
| Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); |
| if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) |
| Assert(AI->isUsedWithInAlloca(), |
| "inalloca argument for call has mismatched alloca", AI, Call); |
| } |
| |
| // For each argument of the callsite, if it has the swifterror argument, |
| // make sure the underlying alloca/parameter it comes from has a swifterror as |
| // well. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { |
| if (Call.paramHasAttr(i, Attribute::SwiftError)) { |
| Value *SwiftErrorArg = Call.getArgOperand(i); |
| if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { |
| Assert(AI->isSwiftError(), |
| "swifterror argument for call has mismatched alloca", AI, Call); |
| continue; |
| } |
| auto ArgI = dyn_cast<Argument>(SwiftErrorArg); |
| Assert(ArgI, |
| "swifterror argument should come from an alloca or parameter", |
| SwiftErrorArg, Call); |
| Assert(ArgI->hasSwiftErrorAttr(), |
| "swifterror argument for call has mismatched parameter", ArgI, |
| Call); |
| } |
| |
| if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { |
| // Don't allow immarg on call sites, unless the underlying declaration |
| // also has the matching immarg. |
| Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), |
| "immarg may not apply only to call sites", |
| Call.getArgOperand(i), Call); |
| } |
| |
| if (Call.paramHasAttr(i, Attribute::ImmArg)) { |
| Value *ArgVal = Call.getArgOperand(i); |
| Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), |
| "immarg operand has non-immediate parameter", ArgVal, Call); |
| } |
| } |
| |
| if (FTy->isVarArg()) { |
| // FIXME? is 'nest' even legal here? |
| bool SawNest = false; |
| bool SawReturned = false; |
| |
| for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { |
| if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) |
| SawNest = true; |
| if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) |
| SawReturned = true; |
| } |
| |
| // Check attributes on the varargs part. |
| for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { |
| Type *Ty = Call.getArgOperand(Idx)->getType(); |
| AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); |
| verifyParameterAttrs(ArgAttrs, Ty, &Call); |
| |
| if (ArgAttrs.hasAttribute(Attribute::Nest)) { |
| Assert(!SawNest, "More than one parameter has attribute nest!", Call); |
| SawNest = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::Returned)) { |
| Assert(!SawReturned, "More than one parameter has attribute returned!", |
| Call); |
| Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), |
| "Incompatible argument and return types for 'returned' " |
| "attribute", |
| Call); |
| SawReturned = true; |
| } |
| |
| // Statepoint intrinsic is vararg but the wrapped function may be not. |
| // Allow sret here and check the wrapped function in verifyStatepoint. |
| if (!Call.getCalledFunction() || |
| Call.getCalledFunction()->getIntrinsicID() != |
| Intrinsic::experimental_gc_statepoint) |
| Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), |
| "Attribute 'sret' cannot be used for vararg call arguments!", |
| Call); |
| |
| if (ArgAttrs.hasAttribute(Attribute::InAlloca)) |
| Assert(Idx == Call.arg_size() - 1, |
| "inalloca isn't on the last argument!", Call); |
| } |
| } |
| |
| // Verify that there's no metadata unless it's a direct call to an intrinsic. |
| if (!IsIntrinsic) { |
| for (Type *ParamTy : FTy->params()) { |
| Assert(!ParamTy->isMetadataTy(), |
| "Function has metadata parameter but isn't an intrinsic", Call); |
| Assert(!ParamTy->isTokenTy(), |
| "Function has token parameter but isn't an intrinsic", Call); |
| } |
| } |
| |
| // Verify that indirect calls don't return tokens. |
| if (!Call.getCalledFunction()) |
| Assert(!FTy->getReturnType()->isTokenTy(), |
| "Return type cannot be token for indirect call!"); |
| |
| if (Function *F = Call.getCalledFunction()) |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) |
| visitIntrinsicCall(ID, Call); |
| |
| // Verify that a callsite has at most one "deopt", at most one "funclet", at |
| // most one "gc-transition", and at most one "cfguardtarget" operand bundle. |
| bool FoundDeoptBundle = false, FoundFuncletBundle = false, |
| FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false; |
| for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { |
| OperandBundleUse BU = Call.getOperandBundleAt(i); |
| uint32_t Tag = BU.getTagID(); |
| if (Tag == LLVMContext::OB_deopt) { |
| Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); |
| FoundDeoptBundle = true; |
| } else if (Tag == LLVMContext::OB_gc_transition) { |
| Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", |
| Call); |
| FoundGCTransitionBundle = true; |
| } else if (Tag == LLVMContext::OB_funclet) { |
| Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); |
| FoundFuncletBundle = true; |
| Assert(BU.Inputs.size() == 1, |
| "Expected exactly one funclet bundle operand", Call); |
| Assert(isa<FuncletPadInst>(BU.Inputs.front()), |
| "Funclet bundle operands should correspond to a FuncletPadInst", |
| Call); |
| } else if (Tag == LLVMContext::OB_cfguardtarget) { |
| Assert(!FoundCFGuardTargetBundle, |
| "Multiple CFGuardTarget operand bundles", Call); |
| FoundCFGuardTargetBundle = true; |
| Assert(BU.Inputs.size() == 1, |
| "Expected exactly one cfguardtarget bundle operand", Call); |
| } |
| } |
| |
| // Verify that each inlinable callsite of a debug-info-bearing function in a |
| // debug-info-bearing function has a debug location attached to it. Failure to |
| // do so causes assertion failures when the inliner sets up inline scope info. |
| if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && |
| Call.getCalledFunction()->getSubprogram()) |
| AssertDI(Call.getDebugLoc(), |
| "inlinable function call in a function with " |
| "debug info must have a !dbg location", |
| Call); |
| |
| visitInstruction(Call); |
| } |
| |
| /// Two types are "congruent" if they are identical, or if they are both pointer |
| /// types with different pointee types and the same address space. |
| static bool isTypeCongruent(Type *L, Type *R) { |
| if (L == R) |
| return true; |
| PointerType *PL = dyn_cast<PointerType>(L); |
| PointerType *PR = dyn_cast<PointerType>(R); |
| if (!PL || !PR) |
| return false; |
| return PL->getAddressSpace() == PR->getAddressSpace(); |
| } |
| |
| static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { |
| static const Attribute::AttrKind ABIAttrs[] = { |
| Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, |
| Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, |
| Attribute::SwiftError}; |
| AttrBuilder Copy; |
| for (auto AK : ABIAttrs) { |
| if (Attrs.hasParamAttribute(I, AK)) |
| Copy.addAttribute(AK); |
| } |
| if (Attrs.hasParamAttribute(I, Attribute::Alignment)) |
| Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); |
| return Copy; |
| } |
| |
| void Verifier::verifyMustTailCall(CallInst &CI) { |
| Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); |
| |
| // - The caller and callee prototypes must match. Pointer types of |
| // parameters or return types may differ in pointee type, but not |
| // address space. |
| Function *F = CI.getParent()->getParent(); |
| FunctionType *CallerTy = F->getFunctionType(); |
| FunctionType *CalleeTy = CI.getFunctionType(); |
| if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { |
| Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), |
| "cannot guarantee tail call due to mismatched parameter counts", |
| &CI); |
| for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { |
| Assert( |
| isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), |
| "cannot guarantee tail call due to mismatched parameter types", &CI); |
| } |
| } |
| Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), |
| "cannot guarantee tail call due to mismatched varargs", &CI); |
| Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), |
| "cannot guarantee tail call due to mismatched return types", &CI); |
| |
| // - The calling conventions of the caller and callee must match. |
| Assert(F->getCallingConv() == CI.getCallingConv(), |
| "cannot guarantee tail call due to mismatched calling conv", &CI); |
| |
| // - All ABI-impacting function attributes, such as sret, byval, inreg, |
| // returned, and inalloca, must match. |
| AttributeList CallerAttrs = F->getAttributes(); |
| AttributeList CalleeAttrs = CI.getAttributes(); |
| for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { |
| AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); |
| AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); |
| Assert(CallerABIAttrs == CalleeABIAttrs, |
| "cannot guarantee tail call due to mismatched ABI impacting " |
| "function attributes", |
| &CI, CI.getOperand(I)); |
| } |
| |
| // - The call must immediately precede a :ref:`ret <i_ret>` instruction, |
| // or a pointer bitcast followed by a ret instruction. |
| // - The ret instruction must return the (possibly bitcasted) value |
| // produced by the call or void. |
| Value *RetVal = &CI; |
| Instruction *Next = CI.getNextNode(); |
| |
| // Handle the optional bitcast. |
| if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { |
| Assert(BI->getOperand(0) == RetVal, |
| "bitcast following musttail call must use the call", BI); |
| RetVal = BI; |
| Next = BI->getNextNode(); |
| } |
| |
| // Check the return. |
| ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); |
| Assert(Ret, "musttail call must precede a ret with an optional bitcast", |
| &CI); |
| Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, |
| "musttail call result must be returned", Ret); |
| } |
| |
| void Verifier::visitCallInst(CallInst &CI) { |
| visitCallBase(CI); |
| |
| if (CI.isMustTailCall()) |
| verifyMustTailCall(CI); |
| } |
| |
| void Verifier::visitInvokeInst(InvokeInst &II) { |
| visitCallBase(II); |
| |
| // Verify that the first non-PHI instruction of the unwind destination is an |
| // exception handling instruction. |
| Assert( |
| II.getUnwindDest()->isEHPad(), |
| "The unwind destination does not have an exception handling instruction!", |
| &II); |
| |
| visitTerminator(II); |
| } |
| |
| /// visitUnaryOperator - Check the argument to the unary operator. |
| /// |
| void Verifier::visitUnaryOperator(UnaryOperator &U) { |
| Assert(U.getType() == U.getOperand(0)->getType(), |
| "Unary operators must have same type for" |
| "operands and result!", |
| &U); |
| |
| switch (U.getOpcode()) { |
| // Check that floating-point arithmetic operators are only used with |
| // floating-point operands. |
| case Instruction::FNeg: |
| Assert(U.getType()->isFPOrFPVectorTy(), |
| "FNeg operator only works with float types!", &U); |
| break; |
| default: |
| llvm_unreachable("Unknown UnaryOperator opcode!"); |
| } |
| |
| visitInstruction(U); |
| } |
| |
| /// visitBinaryOperator - Check that both arguments to the binary operator are |
| /// of the same type! |
| /// |
| void Verifier::visitBinaryOperator(BinaryOperator &B) { |
| Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), |
| "Both operands to a binary operator are not of the same type!", &B); |
| |
| switch (B.getOpcode()) { |
| // Check that integer arithmetic operators are only used with |
| // integral operands. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| Assert(B.getType()->isIntOrIntVectorTy(), |
| "Integer arithmetic operators only work with integral types!", &B); |
| Assert(B.getType() == B.getOperand(0)->getType(), |
| "Integer arithmetic operators must have same type " |
| "for operands and result!", |
| &B); |
| break; |
| // Check that floating-point arithmetic operators are only used with |
| // floating-point operands. |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| Assert(B.getType()->isFPOrFPVectorTy(), |
| "Floating-point arithmetic operators only work with " |
| "floating-point types!", |
| &B); |
| Assert(B.getType() == B.getOperand(0)->getType(), |
| "Floating-point arithmetic operators must have same type " |
| "for operands and result!", |
| &B); |
| break; |
| // Check that logical operators are only used with integral operands. |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| Assert(B.getType()->isIntOrIntVectorTy(), |
| "Logical operators only work with integral types!", &B); |
| Assert(B.getType() == B.getOperand(0)->getType(), |
| "Logical operators must have same type for operands and result!", |
| &B); |
| break; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| Assert(B.getType()->isIntOrIntVectorTy(), |
| "Shifts only work with integral types!", &B); |
| Assert(B.getType() == B.getOperand(0)->getType(), |
| "Shift return type must be same as operands!", &B); |
| break; |
| default: |
| llvm_unreachable("Unknown BinaryOperator opcode!"); |
| } |
| |
| visitInstruction(B); |
| } |
| |
| void Verifier::visitICmpInst(ICmpInst &IC) { |
| // Check that the operands are the same type |
| Type *Op0Ty = IC.getOperand(0)->getType(); |
| Type *Op1Ty = IC.getOperand(1)->getType(); |
| Assert(Op0Ty == Op1Ty, |
| "Both operands to ICmp instruction are not of the same type!", &IC); |
| // Check that the operands are the right type |
| Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), |
| "Invalid operand types for ICmp instruction", &IC); |
| // Check that the predicate is valid. |
| Assert(IC.isIntPredicate(), |
| "Invalid predicate in ICmp instruction!", &IC); |
| |
| visitInstruction(IC); |
| } |
| |
| void Verifier::visitFCmpInst(FCmpInst &FC) { |
| // Check that the operands are the same type |
| Type *Op0Ty = FC.getOperand(0)->getType(); |
| Type *Op1Ty = FC.getOperand(1)->getType(); |
| Assert(Op0Ty == Op1Ty, |
| "Both operands to FCmp instruction are not of the same type!", &FC); |
| // Check that the operands are the right type |
| Assert(Op0Ty->isFPOrFPVectorTy(), |
| "Invalid operand types for FCmp instruction", &FC); |
| // Check that the predicate is valid. |
| Assert(FC.isFPPredicate(), |
| "Invalid predicate in FCmp instruction!", &FC); |
| |
| visitInstruction(FC); |
| } |
| |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) { |
| Assert( |
| ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), |
| "Invalid extractelement operands!", &EI); |
| visitInstruction(EI); |
| } |
| |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) { |
| Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), |
| IE.getOperand(2)), |
| "Invalid insertelement operands!", &IE); |
| visitInstruction(IE); |
| } |
| |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { |
| Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), |
| SV.getOperand(2)), |
| "Invalid shufflevector operands!", &SV); |
| visitInstruction(SV); |
| } |
| |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); |
| |
| Assert(isa<PointerType>(TargetTy), |
| "GEP base pointer is not a vector or a vector of pointers", &GEP); |
| Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); |
| |
| SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); |
| Assert(all_of( |
| Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), |
| "GEP indexes must be integers", &GEP); |
| Type *ElTy = |
| GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); |
| Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); |
| |
| Assert(GEP.getType()->isPtrOrPtrVectorTy() && |
| GEP.getResultElementType() == ElTy, |
| "GEP is not of right type for indices!", &GEP, ElTy); |
| |
| if (GEP.getType()->isVectorTy()) { |
| // Additional checks for vector GEPs. |
| unsigned GEPWidth = GEP.getType()->getVectorNumElements(); |
| if (GEP.getPointerOperandType()->isVectorTy()) |
| Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), |
| "Vector GEP result width doesn't match operand's", &GEP); |
| for (Value *Idx : Idxs) { |
| Type *IndexTy = Idx->getType(); |
| if (IndexTy->isVectorTy()) { |
| unsigned IndexWidth = IndexTy->getVectorNumElements(); |
| Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); |
| } |
| Assert(IndexTy->isIntOrIntVectorTy(), |
| "All GEP indices should be of integer type"); |
| } |
| } |
| |
| if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { |
| Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), |
| "GEP address space doesn't match type", &GEP); |
| } |
| |
| visitInstruction(GEP); |
| } |
| |
| static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { |
| return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); |
| } |
| |
| void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { |
| assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && |
| "precondition violation"); |
| |
| unsigned NumOperands = Range->getNumOperands(); |
| Assert(NumOperands % 2 == 0, "Unfinished range!", Range); |
| unsigned NumRanges = NumOperands / 2; |
| Assert(NumRanges >= 1, "It should have at least one range!", Range); |
| |
| ConstantRange LastRange(1, true); // Dummy initial value |
| for (unsigned i = 0; i < NumRanges; ++i) { |
| ConstantInt *Low = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); |
| Assert(Low, "The lower limit must be an integer!", Low); |
| ConstantInt *High = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); |
| Assert(High, "The upper limit must be an integer!", High); |
| Assert(High->getType() == Low->getType() && High->getType() == Ty, |
| "Range types must match instruction type!", &I); |
| |
| APInt HighV = High->getValue(); |
| APInt LowV = Low->getValue(); |
| ConstantRange CurRange(LowV, HighV); |
| Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), |
| "Range must not be empty!", Range); |
| if (i != 0) { |
| Assert(CurRange.intersectWith(LastRange).isEmptySet(), |
| "Intervals are overlapping", Range); |
| Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", |
| Range); |
| Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", |
| Range); |
| } |
| LastRange = ConstantRange(LowV, HighV); |
| } |
| if (NumRanges > 2) { |
| APInt FirstLow = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); |
| APInt FirstHigh = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); |
| ConstantRange FirstRange(FirstLow, FirstHigh); |
| Assert(FirstRange.intersectWith(LastRange).isEmptySet(), |
| "Intervals are overlapping", Range); |
| Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", |
| Range); |
| } |
| } |
| |
| void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { |
| unsigned Size = DL.getTypeSizeInBits(Ty); |
| Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); |
| Assert(!(Size & (Size - 1)), |
| "atomic memory access' operand must have a power-of-two size", Ty, I); |
| } |
| |
| void Verifier::visitLoadInst(LoadInst &LI) { |
| PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); |
| Assert(PTy, "Load operand must be a pointer.", &LI); |
| Type *ElTy = LI.getType(); |
| Assert(LI.getAlignment() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &LI); |
| Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); |
| if (LI.isAtomic()) { |
| Assert(LI.getOrdering() != AtomicOrdering::Release && |
| LI.getOrdering() != AtomicOrdering::AcquireRelease, |
| "Load cannot have Release ordering", &LI); |
| Assert(LI.getAlignment() != 0, |
| "Atomic load must specify explicit alignment", &LI); |
| Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), |
| "atomic load operand must have integer, pointer, or floating point " |
| "type!", |
| ElTy, &LI); |
| checkAtomicMemAccessSize(ElTy, &LI); |
| } else { |
| Assert(LI.getSyncScopeID() == SyncScope::System, |
| "Non-atomic load cannot have SynchronizationScope specified", &LI); |
| } |
| |
| visitInstruction(LI); |
| } |
| |
| void Verifier::visitStoreInst(StoreInst &SI) { |
| PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); |
| Assert(PTy, "Store operand must be a pointer.", &SI); |
| Type *ElTy = PTy->getElementType(); |
| Assert(ElTy == SI.getOperand(0)->getType(), |
| "Stored value type does not match pointer operand type!", &SI, ElTy); |
| Assert(SI.getAlignment() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &SI); |
| Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); |
| if (SI.isAtomic()) { |
| Assert(SI.getOrdering() != AtomicOrdering::Acquire && |
| SI.getOrdering() != AtomicOrdering::AcquireRelease, |
| "Store cannot have Acquire ordering", &SI); |
| Assert(SI.getAlignment() != 0, |
| "Atomic store must specify explicit alignment", &SI); |
| Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), |
| "atomic store operand must have integer, pointer, or floating point " |
| "type!", |
| ElTy, &SI); |
| checkAtomicMemAccessSize(ElTy, &SI); |
| } else { |
| Assert(SI.getSyncScopeID() == SyncScope::System, |
| "Non-atomic store cannot have SynchronizationScope specified", &SI); |
| } |
| visitInstruction(SI); |
| } |
| |
| /// Check that SwiftErrorVal is used as a swifterror argument in CS. |
| void Verifier::verifySwiftErrorCall(CallBase &Call, |
| const Value *SwiftErrorVal) { |
| unsigned Idx = 0; |
| for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { |
| if (*I == SwiftErrorVal) { |
| Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), |
| "swifterror value when used in a callsite should be marked " |
| "with swifterror attribute", |
| SwiftErrorVal, Call); |
| } |
| } |
| } |
| |
| void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { |
| // Check that swifterror value is only used by loads, stores, or as |
| // a swifterror argument. |
| for (const User *U : SwiftErrorVal->users()) { |
| Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || |
| isa<InvokeInst>(U), |
| "swifterror value can only be loaded and stored from, or " |
| "as a swifterror argument!", |
| SwiftErrorVal, U); |
| // If it is used by a store, check it is the second operand. |
| if (auto StoreI = dyn_cast<StoreInst>(U)) |
| Assert(StoreI->getOperand(1) == SwiftErrorVal, |
| "swifterror value should be the second operand when used " |
| "by stores", SwiftErrorVal, U); |
| if (auto *Call = dyn_cast<CallBase>(U)) |
| verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); |
| } |
| } |
| |
| void Verifier::visitAllocaInst(AllocaInst &AI) { |
| SmallPtrSet<Type*, 4> Visited; |
| PointerType *PTy = AI.getType(); |
| // TODO: Relax this restriction? |
| Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), |
| "Allocation instruction pointer not in the stack address space!", |
| &AI); |
| Assert(AI.getAllocatedType()->isSized(&Visited), |
| "Cannot allocate unsized type", &AI); |
| Assert(AI.getArraySize()->getType()->isIntegerTy(), |
| "Alloca array size must have integer type", &AI); |
| Assert(AI.getAlignment() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &AI); |
| |
| if (AI.isSwiftError()) { |
| verifySwiftErrorValue(&AI); |
| } |
| |
| visitInstruction(AI); |
| } |
| |
| void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { |
| |
| // FIXME: more conditions??? |
| Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, |
| "cmpxchg instructions must be atomic.", &CXI); |
| Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, |
| "cmpxchg instructions must be atomic.", &CXI); |
| Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, |
| "cmpxchg instructions cannot be unordered.", &CXI); |
| Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, |
| "cmpxchg instructions cannot be unordered.", &CXI); |
| Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), |
| "cmpxchg instructions failure argument shall be no stronger than the " |
| "success argument", |
| &CXI); |
| Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && |
| CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, |
| "cmpxchg failure ordering cannot include release semantics", &CXI); |
| |
| PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); |
| Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); |
| Type *ElTy = PTy->getElementType(); |
| Assert(ElTy->isIntOrPtrTy(), |
| "cmpxchg operand must have integer or pointer type", ElTy, &CXI); |
| checkAtomicMemAccessSize(ElTy, &CXI); |
| Assert(ElTy == CXI.getOperand(1)->getType(), |
| "Expected value type does not match pointer operand type!", &CXI, |
| ElTy); |
| Assert(ElTy == CXI.getOperand(2)->getType(), |
| "Stored value type does not match pointer operand type!", &CXI, ElTy); |
| visitInstruction(CXI); |
| } |
| |
| void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { |
| Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, |
| "atomicrmw instructions must be atomic.", &RMWI); |
| Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, |
| "atomicrmw instructions cannot be unordered.", &RMWI); |
| auto Op = RMWI.getOperation(); |
| PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); |
| Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); |
| Type *ElTy = PTy->getElementType(); |
| if (Op == AtomicRMWInst::Xchg) { |
| Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + |
| AtomicRMWInst::getOperationName(Op) + |
| " operand must have integer or floating point type!", |
| &RMWI, ElTy); |
| } else if (AtomicRMWInst::isFPOperation(Op)) { |
| Assert(ElTy->isFloatingPointTy(), "atomicrmw " + |
| AtomicRMWInst::getOperationName(Op) + |
| " operand must have floating point type!", |
| &RMWI, ElTy); |
| } else { |
| Assert(ElTy->isIntegerTy(), "atomicrmw " + |
| AtomicRMWInst::getOperationName(Op) + |
| " operand must have integer type!", |
| &RMWI, ElTy); |
| } |
| checkAtomicMemAccessSize(ElTy, &RMWI); |
| Assert(ElTy == RMWI.getOperand(1)->getType(), |
| "Argument value type does not match pointer operand type!", &RMWI, |
| ElTy); |
| Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, |
| "Invalid binary operation!", &RMWI); |
| visitInstruction(RMWI); |
| } |
| |
| void Verifier::visitFenceInst(FenceInst &FI) { |
| const AtomicOrdering Ordering = FI.getOrdering(); |
| Assert(Ordering == AtomicOrdering::Acquire || |
| Ordering == AtomicOrdering::Release || |
| Ordering == AtomicOrdering::AcquireRelease || |
| Ordering == AtomicOrdering::SequentiallyConsistent, |
| "fence instructions may only have acquire, release, acq_rel, or " |
| "seq_cst ordering.", |
| &FI); |
| visitInstruction(FI); |
| } |
| |
| void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { |
| Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), |
| EVI.getIndices()) == EVI.getType(), |
| "Invalid ExtractValueInst operands!", &EVI); |
| |
| visitInstruction(EVI); |
| } |
| |
| void Verifier::visitInsertValueInst(InsertValueInst &IVI) { |
| Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), |
| IVI.getIndices()) == |
| IVI.getOperand(1)->getType(), |
| "Invalid InsertValueInst operands!", &IVI); |
| |
| visitInstruction(IVI); |
| } |
| |
| static Value *getParentPad(Value *EHPad) { |
| if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) |
| return FPI->getParentPad(); |
| |
| return cast<CatchSwitchInst>(EHPad)->getParentPad(); |
| } |
| |
| void Verifier::visitEHPadPredecessors(Instruction &I) { |
| assert(I.isEHPad()); |
| |
| BasicBlock *BB = I.getParent(); |
| Function *F = BB->getParent(); |
| |
| Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); |
| |
| if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { |
| // The landingpad instruction defines its parent as a landing pad block. The |
| // landing pad block may be branched to only by the unwind edge of an |
| // invoke. |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); |
| Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, |
| "Block containing LandingPadInst must be jumped to " |
| "only by the unwind edge of an invoke.", |
| LPI); |
| } |
| return; |
| } |
| if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { |
| if (!pred_empty(BB)) |
| Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), |
| "Block containg CatchPadInst must be jumped to " |
| "only by its catchswitch.", |
| CPI); |
| Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), |
| "Catchswitch cannot unwind to one of its catchpads", |
| CPI->getCatchSwitch(), CPI); |
| return; |
| } |
| |
| // Verify that each pred has a legal terminator with a legal to/from EH |
| // pad relationship. |
| Instruction *ToPad = &I; |
| Value *ToPadParent = getParentPad(ToPad); |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| Instruction *TI = PredBB->getTerminator(); |
| Value *FromPad; |
| if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, |
| "EH pad must be jumped to via an unwind edge", ToPad, II); |
| if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) |
| FromPad = Bundle->Inputs[0]; |
| else |
| FromPad = ConstantTokenNone::get(II->getContext()); |
| } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { |
| FromPad = CRI->getOperand(0); |
| Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); |
| } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { |
| FromPad = CSI; |
| } else { |
| Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); |
| } |
| |
| // The edge may exit from zero or more nested pads. |
| SmallSet<Value *, 8> Seen; |
| for (;; FromPad = getParentPad(FromPad)) { |
| Assert(FromPad != ToPad, |
| "EH pad cannot handle exceptions raised within it", FromPad, TI); |
| if (FromPad == ToPadParent) { |
| // This is a legal unwind edge. |
| break; |
| } |
| Assert(!isa<ConstantTokenNone>(FromPad), |
| "A single unwind edge may only enter one EH pad", TI); |
| Assert(Seen.insert(FromPad).second, |
| "EH pad jumps through a cycle of pads", FromPad); |
| } |
| } |
| } |
| |
| void Verifier::visitLandingPadInst(LandingPadInst &LPI) { |
| // The landingpad instruction is ill-formed if it doesn't have any clauses and |
| // isn't a cleanup. |
| Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), |
| "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); |
| |
| visitEHPadPredecessors(LPI); |
| |
| if (!LandingPadResultTy) |
| LandingPadResultTy = LPI.getType(); |
| else |
| Assert(LandingPadResultTy == LPI.getType(), |
| "The landingpad instruction should have a consistent result type " |
| "inside a function.", |
| &LPI); |
| |
| Function *F = LPI.getParent()->getParent(); |
| Assert(F->hasPersonalityFn(), |
| "LandingPadInst needs to be in a function with a personality.", &LPI); |
| |
| // The landingpad instruction must be the first non-PHI instruction in the |
| // block. |
| Assert(LPI.getParent()->getLandingPadInst() == &LPI, |
| "LandingPadInst not the first non-PHI instruction in the block.", |
| &LPI); |
| |
| for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { |
| Constant *Clause = LPI.getClause(i); |
| if (LPI.isCatch(i)) { |
| Assert(isa<PointerType>(Clause->getType()), |
| "Catch operand does not have pointer type!", &LPI); |
| } else { |
| Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); |
| Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), |
| "Filter operand is not an array of constants!", &LPI); |
| } |
| } |
| |
| visitInstruction(LPI); |
| } |
| |
| void Verifier::visitResumeInst(ResumeInst &RI) { |
| Assert(RI.getFunction()->hasPersonalityFn(), |
| "ResumeInst needs to be in a function with a personality.", &RI); |
| |
| if (!LandingPadResultTy) |
| LandingPadResultTy = RI.getValue()->getType(); |
| else |
| Assert(LandingPadResultTy == RI.getValue()->getType(), |
| "The resume instruction should have a consistent result type " |
| "inside a function.", |
| &RI); |
| |
| visitTerminator(RI); |
| } |
| |
| void Verifier::visitCatchPadInst(CatchPadInst &CPI) { |
| BasicBlock *BB = CPI.getParent(); |
| |
| Function *F = BB->getParent(); |
| Assert(F->hasPersonalityFn(), |
| "CatchPadInst needs to be in a function with a personality.", &CPI); |
| |
| Assert(isa<CatchSwitchInst>(CPI.getParentPad()), |
| "CatchPadInst needs to be directly nested in a CatchSwitchInst.", |
| CPI.getParentPad()); |
| |
| // The catchpad instruction must be the first non-PHI instruction in the |
| // block. |
| Assert(BB->getFirstNonPHI() == &CPI, |
| "CatchPadInst not the first non-PHI instruction in the block.", &CPI); |
| |
| visitEHPadPredecessors(CPI); |
| visitFuncletPadInst(CPI); |
| } |
| |
| void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { |
| Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), |
| "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, |
| CatchReturn.getOperand(0)); |
| |
| visitTerminator(CatchReturn); |
| } |
| |
| void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { |
| BasicBlock *BB = CPI.getParent(); |
| |
| Function *F = BB->getParent(); |
| Assert(F->hasPersonalityFn(), |
| "CleanupPadInst needs to be in a function with a personality.", &CPI); |
| |
| // The cleanuppad instruction must be the first non-PHI instruction in the |
| // block. |
| Assert(BB->getFirstNonPHI() == &CPI, |
| "CleanupPadInst not the first non-PHI instruction in the block.", |
| &CPI); |
| |
| auto *ParentPad = CPI.getParentPad(); |
| Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), |
| "CleanupPadInst has an invalid parent.", &CPI); |
| |
| visitEHPadPredecessors(CPI); |
| visitFuncletPadInst(CPI); |
| } |
| |
| void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { |
| User *FirstUser = nullptr; |
| Value *FirstUnwindPad = nullptr; |
| SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); |
| SmallSet<FuncletPadInst *, 8> Seen; |
| |
| while (!Worklist.empty()) { |
| FuncletPadInst *CurrentPad = Worklist.pop_back_val(); |
| Assert(Seen.insert(CurrentPad).second, |
| "FuncletPadInst must not be nested within itself", CurrentPad); |
| Value *UnresolvedAncestorPad = nullptr; |
| for (User *U : CurrentPad->users()) { |
| BasicBlock *UnwindDest; |
| if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { |
| UnwindDest = CRI->getUnwindDest(); |
| } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { |
| // We allow catchswitch unwind to caller to nest |
| // within an outer pad that unwinds somewhere else, |
| // because catchswitch doesn't have a nounwind variant. |
| // See e.g. SimplifyCFGOpt::SimplifyUnreachable. |
| if (CSI->unwindsToCaller()) |
| continue; |
| UnwindDest = CSI->getUnwindDest(); |
| } else if (auto *II = dyn_cast<InvokeInst>(U)) { |
| UnwindDest = II->getUnwindDest(); |
| } else if (isa<CallInst>(U)) { |
| // Calls which don't unwind may be found inside funclet |
| // pads that unwind somewhere else. We don't *require* |
| // such calls to be annotated nounwind. |
| continue; |
| } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { |
| // The unwind dest for a cleanup can only be found by |
| // recursive search. Add it to the worklist, and we'll |
| // search for its first use that determines where it unwinds. |
| Worklist.push_back(CPI); |
| continue; |
| } else { |
| Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); |
| continue; |
| } |
| |
| Value *UnwindPad; |
| bool ExitsFPI; |
| if (UnwindDest) { |
| UnwindPad = UnwindDest->getFirstNonPHI(); |
| if (!cast<Instruction>(UnwindPad)->isEHPad()) |
| continue; |
| Value *UnwindParent = getParentPad(UnwindPad); |
| // Ignore unwind edges that don't exit CurrentPad. |
| if (UnwindParent == CurrentPad) |
| continue; |
| // Determine whether the original funclet pad is exited, |
| // and if we are scanning nested pads determine how many |
| // of them are exited so we can stop searching their |
| // children. |
| Value *ExitedPad = CurrentPad; |
| ExitsFPI = false; |
| do { |
| if (ExitedPad == &FPI) { |
| ExitsFPI = true; |
| // Now we can resolve any ancestors of CurrentPad up to |
| // FPI, but not including FPI since we need to make sure |
| // to check all direct users of FPI for consistency. |
| UnresolvedAncestorPad = &FPI; |
| break; |
| } |
| Value *ExitedParent = getParentPad(ExitedPad); |
| if (ExitedParent == UnwindParent) { |
| // ExitedPad is the ancestor-most pad which this unwind |
| // edge exits, so we can resolve up to it, meaning that |
| // ExitedParent is the first ancestor still unresolved. |
| UnresolvedAncestorPad = ExitedParent; |
| break; |
| } |
| ExitedPad = ExitedParent; |
| } while (!isa<ConstantTokenNone>(ExitedPad)); |
| } else { |
| // Unwinding to caller exits all pads. |
| UnwindPad = ConstantTokenNone::get(FPI.getContext()); |
| ExitsFPI = true; |
| UnresolvedAncestorPad = &FPI; |
| } |
| |
| if (ExitsFPI) { |
| // This unwind edge exits FPI. Make sure it agrees with other |
| // such edges. |
| if (FirstUser) { |
| Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " |
| "pad must have the same unwind " |
| "dest", |
| &FPI, U, FirstUser); |
| } else { |
| FirstUser = U; |
| FirstUnwindPad = UnwindPad; |
| // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds |
| if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && |
| getParentPad(UnwindPad) == getParentPad(&FPI)) |
| SiblingFuncletInfo[&FPI] = cast<Instruction>(U); |
| } |
| } |
| // Make sure we visit all uses of FPI, but for nested pads stop as |
| // soon as we know where they unwind to. |
| if (CurrentPad != &FPI) |
| break; |
| } |
| if (UnresolvedAncestorPad) { |
| if (CurrentPad == UnresolvedAncestorPad) { |
| // When CurrentPad is FPI itself, we don't mark it as resolved even if |
| // we've found an unwind edge that exits it, because we need to verify |
| // all direct uses of FPI. |
| assert(CurrentPad == &FPI); |
| continue; |
| } |
| // Pop off the worklist any nested pads that we've found an unwind |
| // destination for. The pads on the worklist are the uncles, |
| // great-uncles, etc. of CurrentPad. We've found an unwind destination |
| // for all ancestors of CurrentPad up to but not including |
| // UnresolvedAncestorPad. |
| Value *ResolvedPad = CurrentPad; |
| while (!Worklist.empty()) { |
| Value *UnclePad = Worklist.back(); |
| Value *AncestorPad = getParentPad(UnclePad); |
| // Walk ResolvedPad up the ancestor list until we either find the |
| // uncle's parent or the last resolved ancestor. |
| while (ResolvedPad != AncestorPad) { |
| Value *ResolvedParent = getParentPad(ResolvedPad); |
| if (ResolvedParent == UnresolvedAncestorPad) { |
| break; |
| } |
| ResolvedPad = ResolvedParent; |
| } |
| // If the resolved ancestor search didn't find the uncle's parent, |
| // then the uncle is not yet resolved. |
| if (ResolvedPad != AncestorPad) |
| break; |
| // This uncle is resolved, so pop it from the worklist. |
| Worklist.pop_back(); |
| } |
| } |
| } |
| |
| if (FirstUnwindPad) { |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { |
| BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); |
| Value *SwitchUnwindPad; |
| if (SwitchUnwindDest) |
| SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); |
| else |
| SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); |
| Assert(SwitchUnwindPad == FirstUnwindPad, |
| "Unwind edges out of a catch must have the same unwind dest as " |
| "the parent catchswitch", |
| &FPI, FirstUser, CatchSwitch); |
| } |
| } |
| |
| visitInstruction(FPI); |
| } |
| |
| void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { |
| BasicBlock *BB = CatchSwitch.getParent(); |
| |
| Function *F = BB->getParent(); |
| Assert(F->hasPersonalityFn(), |
| "CatchSwitchInst needs to be in a function with a personality.", |
| &CatchSwitch); |
| |
| // The catchswitch instruction must be the first non-PHI instruction in the |
| // block. |
| Assert(BB->getFirstNonPHI() == &CatchSwitch, |
| "CatchSwitchInst not the first non-PHI instruction in the block.", |
| &CatchSwitch); |
| |
| auto *ParentPad = CatchSwitch.getParentPad(); |
| Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), |
| "CatchSwitchInst has an invalid parent.", ParentPad); |
| |
| if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { |
| Instruction *I = UnwindDest->getFirstNonPHI(); |
| Assert(I->isEHPad() && !isa<LandingPadInst>(I), |
| "CatchSwitchInst must unwind to an EH block which is not a " |
| "landingpad.", |
| &CatchSwitch); |
| |
| // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds |
| if (getParentPad(I) == ParentPad) |
| SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; |
| } |
| |
| Assert(CatchSwitch.getNumHandlers() != 0, |
| "CatchSwitchInst cannot have empty handler list", &CatchSwitch); |
| |
| for (BasicBlock *Handler : CatchSwitch.handlers()) { |
| Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), |
| "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); |
| } |
| |
| visitEHPadPredecessors(CatchSwitch); |
| visitTerminator(CatchSwitch); |
| } |
| |
| void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { |
| Assert(isa<CleanupPadInst>(CRI.getOperand(0)), |
| "CleanupReturnInst needs to be provided a CleanupPad", &CRI, |
| CRI.getOperand(0)); |
| |
| if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { |
| Instruction *I = UnwindDest->getFirstNonPHI(); |
| Assert(I->isEHPad() && !isa<LandingPadInst>(I), |
| "CleanupReturnInst must unwind to an EH block which is not a " |
| "landingpad.", |
| &CRI); |
| } |
| |
| visitTerminator(CRI); |
| } |
| |
| void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { |
| Instruction *Op = cast<Instruction>(I.getOperand(i)); |
| // If the we have an invalid invoke, don't try to compute the dominance. |
| // We already reject it in the invoke specific checks and the dominance |
| // computation doesn't handle multiple edges. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { |
| if (II->getNormalDest() == II->getUnwindDest()) |
| return; |
| } |
| |
| // Quick check whether the def has already been encountered in the same block. |
| // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI |
| // uses are defined to happen on the incoming edge, not at the instruction. |
| // |
| // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) |
| // wrapping an SSA value, assert that we've already encountered it. See |
| // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. |
| if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) |
| return; |
| |
| const Use &U = I.getOperandUse(i); |
| Assert(DT.dominates(Op, U), |
| "Instruction does not dominate all uses!", Op, &I); |
| } |
| |
| void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { |
| Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " |
| "apply only to pointer types", &I); |
| Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), |
| "dereferenceable, dereferenceable_or_null apply only to load" |
| " and inttoptr instructions, use attributes for calls or invokes", &I); |
| Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " |
| "take one operand!", &I); |
| ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); |
| Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " |
| "dereferenceable_or_null metadata value must be an i64!", &I); |
| } |
| |
| void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { |
| Assert(MD->getNumOperands() >= 2, |
| "!prof annotations should have no less than 2 operands", MD); |
| |
| // Check first operand. |
| Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); |
| Assert(isa<MDString>(MD->getOperand(0)), |
| "expected string with name of the !prof annotation", MD); |
| MDString *MDS = cast<MDString>(MD->getOperand(0)); |
| StringRef ProfName = MDS->getString(); |
| |
| // Check consistency of !prof branch_weights metadata. |
| if (ProfName.equals("branch_weights")) { |
| unsigned ExpectedNumOperands = 0; |
| if (BranchInst *BI = dyn_cast<BranchInst>(&I)) |
| ExpectedNumOperands = BI->getNumSuccessors(); |
| else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) |
| ExpectedNumOperands = SI->getNumSuccessors(); |
| else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) |
| ExpectedNumOperands = 1; |
| else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) |
| ExpectedNumOperands = IBI->getNumDestinations(); |
| else if (isa<SelectInst>(&I)) |
| ExpectedNumOperands = 2; |
| else |
| CheckFailed("!prof branch_weights are not allowed for this instruction", |
| MD); |
| |
| Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, |
| "Wrong number of operands", MD); |
| for (unsigned i = 1; i < MD->getNumOperands(); ++i) { |
| auto &MDO = MD->getOperand(i); |
| Assert(MDO, "second operand should not be null", MD); |
| Assert(mdconst::dyn_extract<ConstantInt>(MDO), |
| "!prof brunch_weights operand is not a const int"); |
| } |
| } |
| } |
| |
| /// verifyInstruction - Verify that an instruction is well formed. |
| /// |
| void Verifier::visitInstruction(Instruction &I) { |
| BasicBlock *BB = I.getParent(); |
| Assert(BB, "Instruction not embedded in basic block!", &I); |
| |
| if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential |
| for (User *U : I.users()) { |
| Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), |
| "Only PHI nodes may reference their own value!", &I); |
| } |
| } |
| |
| // Check that void typed values don't have names |
| Assert(!I.getType()->isVoidTy() || !I.hasName(), |
| "Instruction has a name, but provides a void value!", &I); |
| |
| // Check that the return value of the instruction is either void or a legal |
| // value type. |
| Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), |
| "Instruction returns a non-scalar type!", &I); |
| |
| // Check that the instruction doesn't produce metadata. Calls are already |
| // checked against the callee type. |
| Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), |
| "Invalid use of metadata!", &I); |
| |
| // Check that all uses of the instruction, if they are instructions |
| // themselves, actually have parent basic blocks. If the use is not an |
| // instruction, it is an error! |
| for (Use &U : I.uses()) { |
| if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) |
| Assert(Used->getParent() != nullptr, |
| "Instruction referencing" |
| " instruction not embedded in a basic block!", |
| &I, Used); |
| else { |
| CheckFailed("Use of instruction is not an instruction!", U); |
| return; |
| } |
| } |
| |
| // Get a pointer to the call base of the instruction if it is some form of |
| // call. |
| const CallBase *CBI = dyn_cast<CallBase>(&I); |
| |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); |
| |
| // Check to make sure that only first-class-values are operands to |
| // instructions. |
| if (!I.getOperand(i)->getType()->isFirstClassType()) { |
| Assert(false, "Instruction operands must be first-class values!", &I); |
| } |
| |
| if (Function *F = dyn_cast<Function>(I.getOperand(i))) { |
| // Check to make sure that the "address of" an intrinsic function is never |
| // taken. |
| Assert(!F->isIntrinsic() || |
| (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), |
| "Cannot take the address of an intrinsic!", &I); |
| Assert( |
| !F->isIntrinsic() || isa<CallInst>(I) || |
| F->getIntrinsicID() == Intrinsic::donothing || |
| F->getIntrinsicID() == Intrinsic::coro_resume || |
| F->getIntrinsicID() == Intrinsic::coro_destroy || |
| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || |
| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || |
| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || |
| F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, |
| "Cannot invoke an intrinsic other than donothing, patchpoint, " |
| "statepoint, coro_resume or coro_destroy", |
| &I); |
| Assert(F->getParent() == &M, "Referencing function in another module!", |
| &I, &M, F, F->getParent()); |
| } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { |
| Assert(OpBB->getParent() == BB->getParent(), |
| "Referring to a basic block in another function!", &I); |
| } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { |
| Assert(OpArg->getParent() == BB->getParent(), |
| "Referring to an argument in another function!", &I); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { |
| Assert(GV->getParent() == &M, "Referencing global in another module!", &I, |
| &M, GV, GV->getParent()); |
| } else if (isa<Instruction>(I.getOperand(i))) { |
| verifyDominatesUse(I, i); |
| } else if (isa<InlineAsm>(I.getOperand(i))) { |
| Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), |
| "Cannot take the address of an inline asm!", &I); |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { |
| if (CE->getType()->isPtrOrPtrVectorTy() || |
| !DL.getNonIntegralAddressSpaces().empty()) { |
| // If we have a ConstantExpr pointer, we need to see if it came from an |
| // illegal bitcast. If the datalayout string specifies non-integral |
| // address spaces then we also need to check for illegal ptrtoint and |
| // inttoptr expressions. |
| visitConstantExprsRecursively(CE); |
| } |
| } |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { |
| Assert(I.getType()->isFPOrFPVectorTy(), |
| "fpmath requires a floating point result!", &I); |
| Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); |
| if (ConstantFP *CFP0 = |
| mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { |
| const APFloat &Accuracy = CFP0->getValueAPF(); |
| Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), |
| "fpmath accuracy must have float type", &I); |
| Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), |
| "fpmath accuracy not a positive number!", &I); |
| } else { |
| Assert(false, "invalid fpmath accuracy!", &I); |
| } |
| } |
| |
| if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { |
| Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), |
| "Ranges are only for loads, calls and invokes!", &I); |
| visitRangeMetadata(I, Range, I.getType()); |
| } |
| |
| if (I.getMetadata(LLVMContext::MD_nonnull)) { |
| Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", |
| &I); |
| Assert(isa<LoadInst>(I), |
| "nonnull applies only to load instructions, use attributes" |
| " for calls or invokes", |
| &I); |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) |
| visitDereferenceableMetadata(I, MD); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) |
| visitDereferenceableMetadata(I, MD); |
| |
| if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) |
| TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); |
| |
| if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { |
| Assert(I.getType()->isPointerTy(), "align applies only to pointer types", |
| &I); |
| Assert(isa<LoadInst>(I), "align applies only to load instructions, " |
| "use attributes for calls or invokes", &I); |
| Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); |
| ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); |
| Assert(CI && CI->getType()->isIntegerTy(64), |
| "align metadata value must be an i64!", &I); |
| uint64_t Align = CI->getZExtValue(); |
| Assert(isPowerOf2_64(Align), |
| "align metadata value must be a power of 2!", &I); |
| Assert(Align <= Value::MaximumAlignment, |
| "alignment is larger that implementation defined limit", &I); |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) |
| visitProfMetadata(I, MD); |
| |
| if (MDNode *N = I.getDebugLoc().getAsMDNode()) { |
| AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); |
| visitMDNode(*N); |
| } |
| |
| if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { |
| verifyFragmentExpression(*DII); |
| verifyNotEntryValue(*DII); |
| } |
| |
| InstsInThisBlock.insert(&I); |
| } |
| |
| /// Allow intrinsics to be verified in different ways. |
| void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { |
| Function *IF = Call.getCalledFunction(); |
| Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", |
| IF); |
| |
| // Verify that the intrinsic prototype lines up with what the .td files |
| // describe. |
| FunctionType *IFTy = IF->getFunctionType(); |
| bool IsVarArg = IFTy->isVarArg(); |
| |
| SmallVector<Intrinsic::IITDescriptor, 8> Table; |
| getIntrinsicInfoTableEntries(ID, Table); |
| ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; |
| |
| // Walk the descriptors to extract overloaded types. |
| SmallVector<Type *, 4> ArgTys; |
| Intrinsic::MatchIntrinsicTypesResult Res = |
| Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); |
| Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, |
| "Intrinsic has incorrect return type!", IF); |
| Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, |
| "Intrinsic has incorrect argument type!", IF); |
| |
| // Verify if the intrinsic call matches the vararg property. |
| if (IsVarArg) |
| Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), |
| "Intrinsic was not defined with variable arguments!", IF); |
| else |
| Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), |
| "Callsite was not defined with variable arguments!", IF); |
| |
| // All descriptors should be absorbed by now. |
| Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); |
| |
| // Now that we have the intrinsic ID and the actual argument types (and we |
| // know they are legal for the intrinsic!) get the intrinsic name through the |
| // usual means. This allows us to verify the mangling of argument types into |
| // the name. |
| const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); |
| Assert(ExpectedName == IF->getName(), |
| "Intrinsic name not mangled correctly for type arguments! " |
| "Should be: " + |
| ExpectedName, |
| IF); |
| |
| // If the intrinsic takes MDNode arguments, verify that they are either global |
| // or are local to *this* function. |
| for (Value *V : Call.args()) |
| if (auto *MD = dyn_cast<MetadataAsValue>(V)) |
| visitMetadataAsValue(*MD, Call.getCaller()); |
| |
| switch (ID) { |
| default: |
| break; |
| case Intrinsic::coro_id: { |
| auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); |
| if (isa<ConstantPointerNull>(InfoArg)) |
| break; |
| auto *GV = dyn_cast<GlobalVariable>(InfoArg); |
| Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), |
| "info argument of llvm.coro.begin must refer to an initialized " |
| "constant"); |
| Constant *Init = GV->getInitializer(); |
| Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), |
| "info argument of llvm.coro.begin must refer to either a struct or " |
| "an array"); |
| break; |
| } |
| #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC, DAGN) \ |
| case Intrinsic::INTRINSIC: |
| #include "llvm/IR/ConstrainedOps.def" |
| visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_declare: // llvm.dbg.declare |
| Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), |
| "invalid llvm.dbg.declare intrinsic call 1", Call); |
| visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_addr: // llvm.dbg.addr |
| visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_value: // llvm.dbg.value |
| visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_label: // llvm.dbg.label |
| visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); |
| break; |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| case Intrinsic::memset: { |
| const auto *MI = cast<MemIntrinsic>(&Call); |
| auto IsValidAlignment = [&](unsigned Alignment) -> bool { |
| return Alignment == 0 || isPowerOf2_32(Alignment); |
| }; |
| Assert(IsValidAlignment(MI->getDestAlignment()), |
| "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", |
| Call); |
| if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { |
| Assert(IsValidAlignment(MTI->getSourceAlignment()), |
| "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", |
| Call); |
| } |
| |
| break; |
| } |
| case Intrinsic::memcpy_element_unordered_atomic: |
| case Intrinsic::memmove_element_unordered_atomic: |
| case Intrinsic::memset_element_unordered_atomic: { |
| const auto *AMI = cast<AtomicMemIntrinsic>(&Call); |
| |
| ConstantInt *ElementSizeCI = |
| cast<ConstantInt>(AMI->getRawElementSizeInBytes()); |
| const APInt &ElementSizeVal = ElementSizeCI->getValue(); |
| Assert(ElementSizeVal.isPowerOf2(), |
| "element size of the element-wise atomic memory intrinsic " |
| "must be a power of 2", |
| Call); |
| |
| if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { |
| uint64_t Length = LengthCI->getZExtValue(); |
| uint64_t ElementSize = AMI->getElementSizeInBytes(); |
| Assert((Length % ElementSize) == 0, |
| "constant length must be a multiple of the element size in the " |
| "element-wise atomic memory intrinsic", |
| Call); |
| } |
| |
| auto IsValidAlignment = [&](uint64_t Alignment) { |
| return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); |
| }; |
| uint64_t DstAlignment = AMI->getDestAlignment(); |
| Assert(IsValidAlignment(DstAlignment), |
| "incorrect alignment of the destination argument", Call); |
| if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { |
| uint64_t SrcAlignment = AMT->getSourceAlignment(); |
| Assert(IsValidAlignment(SrcAlignment), |
| "incorrect alignment of the source argument", Call); |
| } |
| break; |
| } |
| case Intrinsic::gcroot: |
| case Intrinsic::gcwrite: |
| case Intrinsic::gcread: |
| if (ID == Intrinsic::gcroot) { |
| AllocaInst *AI = |
| dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); |
| Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); |
| Assert(isa<Constant>(Call.getArgOperand(1)), |
| "llvm.gcroot parameter #2 must be a constant.", Call); |
| if (!AI->getAllocatedType()->isPointerTy()) { |
| Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), |
| "llvm.gcroot parameter #1 must either be a pointer alloca, " |
| "or argument #2 must be a non-null constant.", |
| Call); |
| } |
| } |
| |
| Assert(Call.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", Call); |
| break; |
| case Intrinsic::init_trampoline: |
| Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), |
| "llvm.init_trampoline parameter #2 must resolve to a function.", |
| Call); |
| break; |
| case Intrinsic::prefetch: |
| Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && |
| cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, |
| "invalid arguments to llvm.prefetch", Call); |
| break; |
| case Intrinsic::stackprotector: |
| Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), |
| "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); |
| break; |
| case Intrinsic::localescape: { |
| BasicBlock *BB = Call.getParent(); |
| Assert(BB == &BB->getParent()->front(), |
| "llvm.localescape used outside of entry block", Call); |
| Assert(!SawFrameEscape, |
| "multiple calls to llvm.localescape in one function", Call); |
| for (Value *Arg : Call.args()) { |
| if (isa<ConstantPointerNull>(Arg)) |
| continue; // Null values are allowed as placeholders. |
| auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); |
| Assert(AI && AI->isStaticAlloca(), |
| "llvm.localescape only accepts static allocas", Call); |
| } |
| FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); |
| SawFrameEscape = true; |
| break; |
| } |
| case Intrinsic::localrecover: { |
| Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); |
| Function *Fn = dyn_cast<Function>(FnArg); |
| Assert(Fn && !Fn->isDeclaration(), |
| "llvm.localrecover first " |
| "argument must be function defined in this module", |
| Call); |
| auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); |
| auto &Entry = FrameEscapeInfo[Fn]; |
| Entry.second = unsigned( |
| std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); |
| break; |
| } |
| |
| case Intrinsic::experimental_gc_statepoint: |
| if (auto *CI = dyn_cast<CallInst>(&Call)) |
| Assert(!CI->isInlineAsm(), |
| "gc.statepoint support for inline assembly unimplemented", CI); |
| Assert(Call.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", Call); |
| |
| verifyStatepoint(Call); |
| break; |
| case Intrinsic::experimental_gc_result: { |
| Assert(Call.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", Call); |
| // Are we tied to a statepoint properly? |
| const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); |
| const Function *StatepointFn = |
| StatepointCall ? StatepointCall->getCalledFunction() : nullptr; |
| Assert(StatepointFn && StatepointFn->isDeclaration() && |
| StatepointFn->getIntrinsicID() == |
| Intrinsic::experimental_gc_statepoint, |
| "gc.result operand #1 must be from a statepoint", Call, |
| Call.getArgOperand(0)); |
| |
| // Assert that result type matches wrapped callee. |
| const Value *Target = StatepointCall->getArgOperand(2); |
| auto *PT = cast<PointerType>(Target->getType()); |
| auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); |
| Assert(Call.getType() == TargetFuncType->getReturnType(), |
| "gc.result result type does not match wrapped callee", Call); |
| break; |
| } |
| case Intrinsic::experimental_gc_relocate: { |
| Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); |
| |
| Assert(isa<PointerType>(Call.getType()->getScalarType()), |
| "gc.relocate must return a pointer or a vector of pointers", Call); |
| |
| // Check that this relocate is correctly tied to the statepoint |
| |
| // This is case for relocate on the unwinding path of an invoke statepoint |
| if (LandingPadInst *LandingPad = |
| dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { |
| |
| const BasicBlock *InvokeBB = |
| LandingPad->getParent()->getUniquePredecessor(); |
| |
| // Landingpad relocates should have only one predecessor with invoke |
| // statepoint terminator |
| Assert(InvokeBB, "safepoints should have unique landingpads", |
| LandingPad->getParent()); |
| Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", |
| InvokeBB); |
| Assert(isStatepoint(InvokeBB->getTerminator()), |
| "gc relocate should be linked to a statepoint", InvokeBB); |
| } else { |
| // In all other cases relocate should be tied to the statepoint directly. |
| // This covers relocates on a normal return path of invoke statepoint and |
| // relocates of a call statepoint. |
| auto Token = Call.getArgOperand(0); |
| Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), |
| "gc relocate is incorrectly tied to the statepoint", Call, Token); |
| } |
| |
| // Verify rest of the relocate arguments. |
| const CallBase &StatepointCall = |
| *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); |
| |
| // Both the base and derived must be piped through the safepoint. |
| Value *Base = Call.getArgOperand(1); |
| Assert(isa<ConstantInt>(Base), |
| "gc.relocate operand #2 must be integer offset", Call); |
| |
| Value *Derived = Call.getArgOperand(2); |
| Assert(isa<ConstantInt>(Derived), |
| "gc.relocate operand #3 must be integer offset", Call); |
| |
| const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); |
| const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); |
| // Check the bounds |
| Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), |
| "gc.relocate: statepoint base index out of bounds", Call); |
| Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), |
| "gc.relocate: statepoint derived index out of bounds", Call); |
| |
| // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' |
| // section of the statepoint's argument. |
| Assert(StatepointCall.arg_size() > 0, |
| "gc.statepoint: insufficient arguments"); |
| Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), |
| "gc.statement: number of call arguments must be constant integer"); |
| const unsigned NumCallArgs = |
| cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); |
| Assert(StatepointCall.arg_size() > NumCallArgs + 5, |
| "gc.statepoint: mismatch in number of call arguments"); |
| Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), |
| "gc.statepoint: number of transition arguments must be " |
| "a constant integer"); |
| const int NumTransitionArgs = |
| cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) |
| ->getZExtValue(); |
| const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; |
| Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), |
| "gc.statepoint: number of deoptimization arguments must be " |
| "a constant integer"); |
| const int NumDeoptArgs = |
| cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) |
| ->getZExtValue(); |
| const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; |
| const int GCParamArgsEnd = StatepointCall.arg_size(); |
| Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, |
| "gc.relocate: statepoint base index doesn't fall within the " |
| "'gc parameters' section of the statepoint call", |
| Call); |
| Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, |
| "gc.relocate: statepoint derived index doesn't fall within the " |
| "'gc parameters' section of the statepoint call", |
| Call); |
| |
| // Relocated value must be either a pointer type or vector-of-pointer type, |
| // but gc_relocate does not need to return the same pointer type as the |
| // relocated pointer. It can be casted to the correct type later if it's |
| // desired. However, they must have the same address space and 'vectorness' |
| GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); |
| Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), |
| "gc.relocate: relocated value must be a gc pointer", Call); |
| |
| auto ResultType = Call.getType(); |
| auto DerivedType = Relocate.getDerivedPtr()->getType(); |
| Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), |
| "gc.relocate: vector relocates to vector and pointer to pointer", |
| Call); |
| Assert( |
| ResultType->getPointerAddressSpace() == |
| DerivedType->getPointerAddressSpace(), |
| "gc.relocate: relocating a pointer shouldn't change its address space", |
| Call); |
| break; |
| } |
| case Intrinsic::eh_exceptioncode: |
| case Intrinsic::eh_exceptionpointer: { |
| Assert(isa<CatchPadInst>(Call.getArgOperand(0)), |
| "eh.exceptionpointer argument must be a catchpad", Call); |
| break; |
| } |
| case Intrinsic::masked_load: { |
| Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", |
| Call); |
| |
| Value *Ptr = Call.getArgOperand(0); |
| ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); |
| Value *Mask = Call.getArgOperand(2); |
| Value *PassThru = Call.getArgOperand(3); |
| Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", |
| Call); |
| Assert(Alignment->getValue().isPowerOf2(), |
| "masked_load: alignment must be a power of 2", Call); |
| |
| // DataTy is the overloaded type |
| Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); |
| Assert(DataTy == Call.getType(), |
| "masked_load: return must match pointer type", Call); |
| Assert(PassThru->getType() == DataTy, |
| "masked_load: pass through and data type must match", Call); |
| Assert(Mask->getType()->getVectorNumElements() == |
| DataTy->getVectorNumElements(), |
| "masked_load: vector mask must be same length as data", Call); |
| break; |
| } |
| case Intrinsic::masked_store: { |
| Value *Val = Call.getArgOperand(0); |
| Value *Ptr = Call.getArgOperand(1); |
| ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); |
| Value *Mask = Call.getArgOperand(3); |
| Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", |
| Call); |
| Assert(Alignment->getValue().isPowerOf2(), |
| "masked_store: alignment must be a power of 2", Call); |
| |
| // DataTy is the overloaded type |
| Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); |
| Assert(DataTy == Val->getType(), |
| "masked_store: storee must match pointer type", Call); |
| Assert(Mask->getType()->getVectorNumElements() == |
| DataTy->getVectorNumElements(), |
| "masked_store: vector mask must be same length as data", Call); |
| break; |
| } |
| |
| case Intrinsic::experimental_guard: { |
| Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); |
| Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, |
| "experimental_guard must have exactly one " |
| "\"deopt\" operand bundle"); |
| break; |
| } |
| |
| case Intrinsic::experimental_deoptimize: { |
| Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", |
| Call); |
| Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, |
| "experimental_deoptimize must have exactly one " |
| "\"deopt\" operand bundle"); |
| Assert(Call.getType() == Call.getFunction()->getReturnType(), |
| "experimental_deoptimize return type must match caller return type"); |
| |
| if (isa<CallInst>(Call)) { |
| auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); |
| Assert(RI, |
| "calls to experimental_deoptimize must be followed by a return"); |
| |
| if (!Call.getType()->isVoidTy() && RI) |
| Assert(RI->getReturnValue() == &Call, |
| "calls to experimental_deoptimize must be followed by a return " |
| "of the value computed by experimental_deoptimize"); |
| } |
| |
| break; |
| } |
| case Intrinsic::sadd_sat: |
| case Intrinsic::uadd_sat: |
| case Intrinsic::ssub_sat: |
| case Intrinsic::usub_sat: { |
| Value *Op1 = Call.getArgOperand(0); |
| Value *Op2 = Call.getArgOperand(1); |
| Assert(Op1->getType()->isIntOrIntVectorTy(), |
| "first operand of [us][add|sub]_sat must be an int type or vector " |
| "of ints"); |
| Assert(Op2->getType()->isIntOrIntVectorTy(), |
| "second operand of [us][add|sub]_sat must be an int type or vector " |
| "of ints"); |
| break; |
| } |
| case Intrinsic::smul_fix: |
| case Intrinsic::smul_fix_sat: |
| case Intrinsic::umul_fix: |
| case Intrinsic::umul_fix_sat: |
| case Intrinsic::sdiv_fix: |
| case Intrinsic::udiv_fix: { |
| Value *Op1 = Call.getArgOperand(0); |
| Value *Op2 = Call.getArgOperand(1); |
| Assert(Op1->getType()->isIntOrIntVectorTy(), |
| "first operand of [us][mul|div]_fix[_sat] must be an int type or " |
| "vector of ints"); |
| Assert(Op2->getType()->isIntOrIntVectorTy(), |
| "second operand of [us][mul|div]_fix[_sat] must be an int type or " |
| "vector of ints"); |
| |
| auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); |
| Assert(Op3->getType()->getBitWidth() <= 32, |
| "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); |
| |
| if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || |
| ID == Intrinsic::sdiv_fix) { |
| Assert( |
| Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), |
| "the scale of s[mul|div]_fix[_sat] must be less than the width of " |
| "the operands"); |
| } else { |
| Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), |
| "the scale of u[mul|div]_fix[_sat] must be less than or equal " |
| "to the width of the operands"); |
| } |
| break; |
| } |
| case Intrinsic::lround: |
| case Intrinsic::llround: |
| case Intrinsic::lrint: |
| case Intrinsic::llrint: { |
| Type *ValTy = Call.getArgOperand(0)->getType(); |
| Type *ResultTy = Call.getType(); |
| Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), |
| "Intrinsic does not support vectors", &Call); |
| break; |
| } |
| }; |
| } |
| |
| /// Carefully grab the subprogram from a local scope. |
| /// |
| /// This carefully grabs the subprogram from a local scope, avoiding the |
| /// built-in assertions that would typically fire. |
| static DISubprogram *getSubprogram(Metadata *LocalScope) { |
| if (!LocalScope) |
| return nullptr; |
| |
| if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) |
| return SP; |
| |
| if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) |
| return getSubprogram(LB->getRawScope()); |
| |
| // Just return null; broken scope chains are checked elsewhere. |
| assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); |
| return nullptr; |
| } |
| |
| void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { |
| unsigned NumOperands; |
| bool HasRoundingMD; |
| switch (FPI.getIntrinsicID()) { |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| case Intrinsic::INTRINSIC: \ |
| NumOperands = NARG; \ |
| HasRoundingMD = ROUND_MODE; \ |
| break; |
| #include "llvm/IR/ConstrainedOps.def" |
| default: |
| llvm_unreachable("Invalid constrained FP intrinsic!"); |
| } |
| NumOperands += (1 + HasRoundingMD); |
| // Compare intrinsics carry an extra predicate metadata operand. |
| if (isa<ConstrainedFPCmpIntrinsic>(FPI)) |
| NumOperands += 1; |
| Assert((FPI.getNumArgOperands() == NumOperands), |
| "invalid arguments for constrained FP intrinsic", &FPI); |
| |
| switch (FPI.getIntrinsicID()) { |
| case Intrinsic::experimental_constrained_lrint: |
| case Intrinsic::experimental_constrained_llrint: { |
| Type *ValTy = FPI.getArgOperand(0)->getType(); |
| Type *ResultTy = FPI.getType(); |
| Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), |
| "Intrinsic does not support vectors", &FPI); |
| } |
| break; |
| |
| case Intrinsic::experimental_constrained_lround: |
| case Intrinsic::experimental_constrained_llround: { |
| Type *ValTy = FPI.getArgOperand(0)->getType(); |
| Type *ResultTy = FPI.getType(); |
| Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), |
| "Intrinsic does not support vectors", &FPI); |
| break; |
| } |
| |
| case Intrinsic::experimental_constrained_fcmp: |
| case Intrinsic::experimental_constrained_fcmps: { |
| auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); |
| Assert(CmpInst::isFPPredicate(Pred), |
| "invalid predicate for constrained FP comparison intrinsic", &FPI); |
| break; |
| } |
| |
| case Intrinsic::experimental_constrained_fptosi: |
| case Intrinsic::experimental_constrained_fptoui: { |
| Value *Operand = FPI.getArgOperand(0); |
| uint64_t NumSrcElem = 0; |
| Assert(Operand->getType()->isFPOrFPVectorTy(), |
| "Intrinsic first argument must be floating point", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| NumSrcElem = OperandT->getNumElements(); |
| } |
| |
| Operand = &FPI; |
| Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), |
| "Intrinsic first argument and result disagree on vector use", &FPI); |
| Assert(Operand->getType()->isIntOrIntVectorTy(), |
| "Intrinsic result must be an integer", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| Assert(NumSrcElem == OperandT->getNumElements(), |
| "Intrinsic first argument and result vector lengths must be equal", |
| &FPI); |
| } |
| } |
| break; |
| |
| case Intrinsic::experimental_constrained_sitofp: |
| case Intrinsic::experimental_constrained_uitofp: { |
| Value *Operand = FPI.getArgOperand(0); |
| uint64_t NumSrcElem = 0; |
| Assert(Operand->getType()->isIntOrIntVectorTy(), |
| "Intrinsic first argument must be integer", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| NumSrcElem = OperandT->getNumElements(); |
| } |
| |
| Operand = &FPI; |
| Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), |
| "Intrinsic first argument and result disagree on vector use", &FPI); |
| Assert(Operand->getType()->isFPOrFPVectorTy(), |
| "Intrinsic result must be a floating point", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| Assert(NumSrcElem == OperandT->getNumElements(), |
| "Intrinsic first argument and result vector lengths must be equal", |
| &FPI); |
| } |
| } break; |
| |
| case Intrinsic::experimental_constrained_fptrunc: |
| case Intrinsic::experimental_constrained_fpext: { |
| Value *Operand = FPI.getArgOperand(0); |
| Type *OperandTy = Operand->getType(); |
| Value *Result = &FPI; |
| Type *ResultTy = Result->getType(); |
| Assert(OperandTy->isFPOrFPVectorTy(), |
| "Intrinsic first argument must be FP or FP vector", &FPI); |
| Assert(ResultTy->isFPOrFPVectorTy(), |
| "Intrinsic result must be FP or FP vector", &FPI); |
| Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), |
| "Intrinsic first argument and result disagree on vector use", &FPI); |
| if (OperandTy->isVectorTy()) { |
| auto *OperandVecTy = cast<VectorType>(OperandTy); |
| auto *ResultVecTy = cast<VectorType>(ResultTy); |
| Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), |
| "Intrinsic first argument and result vector lengths must be equal", |
| &FPI); |
| } |
| if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { |
| Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), |
| "Intrinsic first argument's type must be larger than result type", |
| &FPI); |
| } else { |
| Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), |
| "Intrinsic first argument's type must be smaller than result type", |
| &FPI); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // If a non-metadata argument is passed in a metadata slot then the |
| // error will be caught earlier when the incorrect argument doesn't |
| // match the specification in the intrinsic call table. Thus, no |
| // argument type check is needed here. |
| |
| Assert(FPI.getExceptionBehavior().hasValue(), |
| "invalid exception behavior argument", &FPI); |
| if (HasRoundingMD) { |
| Assert(FPI.getRoundingMode().hasValue(), |
| "invalid rounding mode argument", &FPI); |
| } |
| } |
| |
| void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { |
| auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); |
| AssertDI(isa<ValueAsMetadata>(MD) || |
| (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), |
| "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); |
| AssertDI(isa<DILocalVariable>(DII.getRawVariable()), |
| "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, |
| DII.getRawVariable()); |
| AssertDI(isa<DIExpression>(DII.getRawExpression()), |
| "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, |
| DII.getRawExpression()); |
| |
| // Ignore broken !dbg attachments; they're checked elsewhere. |
| if (MDNode *N = DII.getDebugLoc().getAsMDNode()) |
| if (!isa<DILocation>(N)) |
| return; |
| |
| BasicBlock *BB = DII.getParent(); |
| Function *F = BB ? BB->getParent() : nullptr; |
| |
| // The scopes for variables and !dbg attachments must agree. |
| DILocalVariable *Var = DII.getVariable(); |
| DILocation *Loc = DII.getDebugLoc(); |
| AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", |
| &DII, BB, F); |
| |
| DISubprogram *VarSP = getSubprogram(Var->getRawScope()); |
| DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); |
| if (!VarSP || !LocSP) |
| return; // Broken scope chains are checked elsewhere. |
| |
| AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + |
| " variable and !dbg attachment", |
| &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, |
| Loc->getScope()->getSubprogram()); |
| |
| // This check is redundant with one in visitLocalVariable(). |
| AssertDI(isType(Var->getRawType()), "invalid type ref", Var, |
| Var->getRawType()); |
| verifyFnArgs(DII); |
| } |
| |
| void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { |
| AssertDI(isa<DILabel>(DLI.getRawLabel()), |
| "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, |
| DLI.getRawLabel()); |
| |
| // Ignore broken !dbg attachments; they're checked elsewhere. |
| if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) |
| if (!isa<DILocation>(N)) |
| return; |
| |
| BasicBlock *BB = DLI.getParent(); |
| Function *F = BB ? BB->getParent() : nullptr; |
| |
| // The scopes for variables and !dbg attachments must agree. |
| DILabel *Label = DLI.getLabel(); |
| DILocation *Loc = DLI.getDebugLoc(); |
| Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", |
| &DLI, BB, F); |
| |
| DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); |
| DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); |
| if (!LabelSP || !LocSP) |
| return; |
| |
| AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + |
| " label and !dbg attachment", |
| &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, |
| Loc->getScope()->getSubprogram()); |
| } |
| |
| void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { |
| DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); |
| DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); |
| |
| // We don't know whether this intrinsic verified correctly. |
| if (!V || !E || !E->isValid()) |
| return; |
| |
| // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. |
| auto Fragment = E->getFragmentInfo(); |
| if (!Fragment) |
| return; |
| |
| // The frontend helps out GDB by emitting the members of local anonymous |
| // unions as artificial local variables with shared storage. When SROA splits |
| // the storage for artificial local variables that are smaller than the entire |
| // union, the overhang piece will be outside of the allotted space for the |
| // variable and this check fails. |
| // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. |
| if (V->isArtificial()) |
| return; |
| |
| verifyFragmentExpression(*V, *Fragment, &I); |
| } |
| |
| template <typename ValueOrMetadata> |
| void Verifier::verifyFragmentExpression(const DIVariable &V, |
| DIExpression::FragmentInfo Fragment, |
| ValueOrMetadata *Desc) { |
| // If there's no size, the type is broken, but that should be checked |
| // elsewhere. |
| auto VarSize = V.getSizeInBits(); |
| if (!VarSize) |
| return; |
| |
| unsigned FragSize = Fragment.SizeInBits; |
| unsigned FragOffset = Fragment.OffsetInBits; |
| AssertDI(FragSize + FragOffset <= *VarSize, |
| "fragment is larger than or outside of variable", Desc, &V); |
| AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); |
| } |
| |
| void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { |
| // This function does not take the scope of noninlined function arguments into |
| // account. Don't run it if current function is nodebug, because it may |
| // contain inlined debug intrinsics. |
| if (!HasDebugInfo) |
| return; |
| |
| // For performance reasons only check non-inlined ones. |
| if (I.getDebugLoc()->getInlinedAt()) |
| return; |
| |
| DILocalVariable *Var = I.getVariable(); |
| AssertDI(Var, "dbg intrinsic without variable"); |
| |
| unsigned ArgNo = Var->getArg(); |
| if (!ArgNo) |
| return; |
| |
| // Verify there are no duplicate function argument debug info entries. |
| // These will cause hard-to-debug assertions in the DWARF backend. |
| if (DebugFnArgs.size() < ArgNo) |
| DebugFnArgs.resize(ArgNo, nullptr); |
| |
| auto *Prev = DebugFnArgs[ArgNo - 1]; |
| DebugFnArgs[ArgNo - 1] = Var; |
| AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, |
| Prev, Var); |
| } |
| |
| void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { |
| DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); |
| |
| // We don't know whether this intrinsic verified correctly. |
| if (!E || !E->isValid()) |
| return; |
| |
| AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); |
| } |
| |
| void Verifier::verifyCompileUnits() { |
| // When more than one Module is imported into the same context, such as during |
| // an LTO build before linking the modules, ODR type uniquing may cause types |
| // to point to a different CU. This check does not make sense in this case. |
| if (M.getContext().isODRUniquingDebugTypes()) |
| return; |
| auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); |
| SmallPtrSet<const Metadata *, 2> Listed; |
| if (CUs) |
| Listed.insert(CUs->op_begin(), CUs->op_end()); |
| for (auto *CU : CUVisited) |
| AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); |
| CUVisited.clear(); |
| } |
| |
| void Verifier::verifyDeoptimizeCallingConvs() { |
| if (DeoptimizeDeclarations.empty()) |
| return; |
| |
| const Function *First = DeoptimizeDeclarations[0]; |
| for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { |
| Assert(First->getCallingConv() == F->getCallingConv(), |
| "All llvm.experimental.deoptimize declarations must have the same " |
| "calling convention", |
| First, F); |
| } |
| } |
| |
| void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { |
| bool HasSource = F.getSource().hasValue(); |
| if (!HasSourceDebugInfo.count(&U)) |
| HasSourceDebugInfo[&U] = HasSource; |
| AssertDI(HasSource == HasSourceDebugInfo[&U], |
| "inconsistent use of embedded source"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implement the public interfaces to this file... |
| //===----------------------------------------------------------------------===// |
| |
| bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { |
| Function &F = const_cast<Function &>(f); |
| |
| // Don't use a raw_null_ostream. Printing IR is expensive. |
| Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); |
| |
| // Note that this function's return value is inverted from what you would |
| // expect of a function called "verify". |
| return !V.verify(F); |
| } |
| |
| bool llvm::verifyModule(const Module &M, raw_ostream *OS, |
| bool *BrokenDebugInfo) { |
| // Don't use a raw_null_ostream. Printing IR is expensive. |
| Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); |
| |
| bool Broken = false; |
| for (const Function &F : M) |
| Broken |= !V.verify(F); |
| |
| Broken |= !V.verify(); |
| if (BrokenDebugInfo) |
| *BrokenDebugInfo = V.hasBrokenDebugInfo(); |
| // Note that this function's return value is inverted from what you would |
| // expect of a function called "verify". |
| return Broken; |
| } |
| |
| namespace { |
| |
| struct VerifierLegacyPass : public FunctionPass { |
| static char ID; |
| |
| std::unique_ptr<Verifier> V; |
| bool FatalErrors = true; |
| |
| VerifierLegacyPass() : FunctionPass(ID) { |
| initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| explicit VerifierLegacyPass(bool FatalErrors) |
| : FunctionPass(ID), |
| FatalErrors(FatalErrors) { |
| initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool doInitialization(Module &M) override { |
| V = std::make_unique<Verifier>( |
| &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); |
| return false; |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (!V->verify(F) && FatalErrors) { |
| errs() << "in function " << F.getName() << '\n'; |
| report_fatal_error("Broken function found, compilation aborted!"); |
| } |
| return false; |
| } |
| |
| bool doFinalization(Module &M) override { |
| bool HasErrors = false; |
| for (Function &F : M) |
| if (F.isDeclaration()) |
| HasErrors |= !V->verify(F); |
| |
| HasErrors |= !V->verify(); |
| if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) |
| report_fatal_error("Broken module found, compilation aborted!"); |
| return false; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Helper to issue failure from the TBAA verification |
| template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { |
| if (Diagnostic) |
| return Diagnostic->CheckFailed(Args...); |
| } |
| |
| #define AssertTBAA(C, ...) \ |
| do { \ |
| if (!(C)) { \ |
| CheckFailed(__VA_ARGS__); \ |
| return false; \ |
| } \ |
| } while (false) |
| |
| /// Verify that \p BaseNode can be used as the "base type" in the struct-path |
| /// TBAA scheme. This means \p BaseNode is either a scalar node, or a |
| /// struct-type node describing an aggregate data structure (like a struct). |
| TBAAVerifier::TBAABaseNodeSummary |
| TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, |
| bool IsNewFormat) { |
| if (BaseNode->getNumOperands() < 2) { |
| CheckFailed("Base nodes must have at least two operands", &I, BaseNode); |
| return {true, ~0u}; |
| } |
| |
| auto Itr = TBAABaseNodes.find(BaseNode); |
| if (Itr != TBAABaseNodes.end()) |
| return Itr->second; |
| |
| auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); |
| auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); |
| (void)InsertResult; |
| assert(InsertResult.second && "We just checked!"); |
| return Result; |
| } |
| |
| TBAAVerifier::TBAABaseNodeSummary |
| TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, |
| bool IsNewFormat) { |
| const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; |
| |
| if (BaseNode->getNumOperands() == 2) { |
| // Scalar nodes can only be accessed at offset 0. |
| return isValidScalarTBAANode(BaseNode) |
| ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) |
| : InvalidNode; |
| } |
| |
| if (IsNewFormat) { |
| if (BaseNode->getNumOperands() % 3 != 0) { |
| CheckFailed("Access tag nodes must have the number of operands that is a " |
| "multiple of 3!", BaseNode); |
| return InvalidNode; |
| } |
| } else { |
| if (BaseNode->getNumOperands() % 2 != 1) { |
| CheckFailed("Struct tag nodes must have an odd number of operands!", |
| BaseNode); |
| return InvalidNode; |
| } |
| } |
| |
| // Check the type size field. |
| if (IsNewFormat) { |
| auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( |
| BaseNode->getOperand(1)); |
| if (!TypeSizeNode) { |
| CheckFailed("Type size nodes must be constants!", &I, BaseNode); |
| return InvalidNode; |
| } |
| } |
| |
| // Check the type name field. In the new format it can be anything. |
| if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { |
| CheckFailed("Struct tag nodes have a string as their first operand", |
| BaseNode); |
| return InvalidNode; |
| } |
| |
| bool Failed = false; |
| |
| Optional<APInt> PrevOffset; |
| unsigned BitWidth = ~0u; |
| |
| // We've already checked that BaseNode is not a degenerate root node with one |
| // operand in \c verifyTBAABaseNode, so this loop should run at least once. |
| unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; |
| unsigned NumOpsPerField = IsNewFormat ? 3 : 2; |
| for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); |
| Idx += NumOpsPerField) { |
| const MDOperand &FieldTy = BaseNode->getOperand(Idx); |
| const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); |
| if (!isa<MDNode>(FieldTy)) { |
| CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); |
| Failed = true; |
| continue; |
| } |
| |
| auto *OffsetEntryCI = |
| mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); |
| if (!OffsetEntryCI) { |
| CheckFailed("Offset entries must be constants!", &I, BaseNode); |
| Failed = true; |
| continue; |
| } |
| |
| if (BitWidth == ~0u) |
| BitWidth = OffsetEntryCI->getBitWidth(); |
| |
| if (OffsetEntryCI->getBitWidth() != BitWidth) { |
| CheckFailed( |
| "Bitwidth between the offsets and struct type entries must match", &I, |
| BaseNode); |
| Failed = true; |
| continue; |
| } |
| |
| // NB! As far as I can tell, we generate a non-strictly increasing offset |
| // sequence only from structs that have zero size bit fields. When |
| // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we |
| // pick the field lexically the latest in struct type metadata node. This |
| // mirrors the actual behavior of the alias analysis implementation. |
| bool IsAscending = |
| !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); |
| |
| if (!IsAscending) { |
| CheckFailed("Offsets must be increasing!", &I, BaseNode); |
| Failed = true; |
| } |
| |
| PrevOffset = OffsetEntryCI->getValue(); |
| |
| if (IsNewFormat) { |
| auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( |
| BaseNode->getOperand(Idx + 2)); |
| if (!MemberSizeNode) { |
| CheckFailed("Member size entries must be constants!", &I, BaseNode); |
| Failed = true; |
| continue; |
| } |
| } |
| } |
| |
| return Failed ? InvalidNode |
| : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); |
| } |
| |
| static bool IsRootTBAANode(const MDNode *MD) { |
| return MD->getNumOperands() < 2; |
| } |
| |
| static bool IsScalarTBAANodeImpl(const MDNode *MD, |
| SmallPtrSetImpl<const MDNode *> &Visited) { |
| if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) |
| return false; |
| |
| if (!isa<MDString>(MD->getOperand(0))) |
| return false; |
| |
| if (MD->getNumOperands() == 3) { |
| auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); |
| if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) |
| return false; |
| } |
| |
| auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); |
| return Parent && Visited.insert(Parent).second && |
| (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); |
| } |
| |
| bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { |
| auto ResultIt = TBAAScalarNodes.find(MD); |
| if (ResultIt != TBAAScalarNodes.end()) |
| return ResultIt->second; |
| |
| SmallPtrSet<const MDNode *, 4> Visited; |
| bool Result = IsScalarTBAANodeImpl(MD, Visited); |
| auto InsertResult = TBAAScalarNodes.insert({MD, Result}); |
| (void)InsertResult; |
| assert(InsertResult.second && "Just checked!"); |
| |
| return Result; |
| } |
| |
| /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p |
| /// Offset in place to be the offset within the field node returned. |
| /// |
| /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. |
| MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, |
| const MDNode *BaseNode, |
| APInt &Offset, |
| bool IsNewFormat) { |
| assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); |
| |
| // Scalar nodes have only one possible "field" -- their parent in the access |
| // hierarchy. Offset must be zero at this point, but our caller is supposed |
| // to Assert that. |
| if (BaseNode->getNumOperands() == 2) |
| return cast<MDNode>(BaseNode->getOperand(1)); |
| |
| unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; |
| unsigned NumOpsPerField = IsNewFormat ? 3 : 2; |
| for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); |
| Idx += NumOpsPerField) { |
| auto *OffsetEntryCI = |
| mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); |
| if (OffsetEntryCI->getValue().ugt(Offset)) { |
| if (Idx == FirstFieldOpNo) { |
| CheckFailed("Could not find TBAA parent in struct type node", &I, |
| BaseNode, &Offset); |
| return nullptr; |
| } |
| |
| unsigned PrevIdx = Idx - NumOpsPerField; |
| auto *PrevOffsetEntryCI = |
| mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); |
| Offset -= PrevOffsetEntryCI->getValue(); |
| return cast<MDNode>(BaseNode->getOperand(PrevIdx)); |
| } |
| } |
| |
| unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; |
| auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( |
| BaseNode->getOperand(LastIdx + 1)); |
| Offset -= LastOffsetEntryCI->getValue(); |
| return cast<MDNode>(BaseNode->getOperand(LastIdx)); |
| } |
| |
| static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { |
| if (!Type || Type->getNumOperands() < 3) |
| return false; |
| |
| // In the new format type nodes shall have a reference to the parent type as |
| // its first operand. |
| MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); |
| if (!Parent) |
| return false; |
| |
| return true; |
| } |
| |
| bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { |
| AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || |
| isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || |
| isa<AtomicCmpXchgInst>(I), |
| "This instruction shall not have a TBAA access tag!", &I); |
| |
| bool IsStructPathTBAA = |
| isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; |
| |
| AssertTBAA( |
| IsStructPathTBAA, |
| "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); |
| |
| MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); |
| MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); |
| |
| bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); |
| |
| if (IsNewFormat) { |
| AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, |
| "Access tag metadata must have either 4 or 5 operands", &I, MD); |
| } else { |
| AssertTBAA(MD->getNumOperands() < 5, |
| "Struct tag metadata must have either 3 or 4 operands", &I, MD); |
| } |
| |
| // Check the access size field. |
| if (IsNewFormat) { |
| auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( |
| MD->getOperand(3)); |
| AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); |
| } |
| |
| // Check the immutability flag. |
| unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; |
| if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { |
| auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( |
| MD->getOperand(ImmutabilityFlagOpNo)); |
| AssertTBAA(IsImmutableCI, |
| "Immutability tag on struct tag metadata must be a constant", |
| &I, MD); |
| AssertTBAA( |
| IsImmutableCI->isZero() || IsImmutableCI->isOne(), |
| "Immutability part of the struct tag metadata must be either 0 or 1", |
| &I, MD); |
| } |
| |
| AssertTBAA(BaseNode && AccessType, |
| "Malformed struct tag metadata: base and access-type " |
| "should be non-null and point to Metadata nodes", |
| &I, MD, BaseNode, AccessType); |
| |
| if (!IsNewFormat) { |
| AssertTBAA(isValidScalarTBAANode(AccessType), |
| "Access type node must be a valid scalar type", &I, MD, |
| AccessType); |
| } |
| |
| auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); |
| AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); |
| |
| APInt Offset = OffsetCI->getValue(); |
| bool SeenAccessTypeInPath = false; |
| |
| SmallPtrSet<MDNode *, 4> StructPath; |
| |
| for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); |
| BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, |
| IsNewFormat)) { |
| if (!StructPath.insert(BaseNode).second) { |
| CheckFailed("Cycle detected in struct path", &I, MD); |
| return false; |
| } |
| |
| bool Invalid; |
| unsigned BaseNodeBitWidth; |
| std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, |
| IsNewFormat); |
| |
| // If the base node is invalid in itself, then we've already printed all the |
| // errors we wanted to print. |
| if (Invalid) |
| return false; |
| |
| SeenAccessTypeInPath |= BaseNode == AccessType; |
| |
| if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) |
| AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", |
| &I, MD, &Offset); |
| |
| AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || |
| (BaseNodeBitWidth == 0 && Offset == 0) || |
| (IsNewFormat && BaseNodeBitWidth == ~0u), |
| "Access bit-width not the same as description bit-width", &I, MD, |
| BaseNodeBitWidth, Offset.getBitWidth()); |
| |
| if (IsNewFormat && SeenAccessTypeInPath) |
| break; |
| } |
| |
| AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", |
| &I, MD); |
| return true; |
| } |
| |
| char VerifierLegacyPass::ID = 0; |
| INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) |
| |
| FunctionPass *llvm::createVerifierPass(bool FatalErrors) { |
| return new VerifierLegacyPass(FatalErrors); |
| } |
| |
| AnalysisKey VerifierAnalysis::Key; |
| VerifierAnalysis::Result VerifierAnalysis::run(Module &M, |
| ModuleAnalysisManager &) { |
| Result Res; |
| Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); |
| return Res; |
| } |
| |
| VerifierAnalysis::Result VerifierAnalysis::run(Function &F, |
| FunctionAnalysisManager &) { |
| return { llvm::verifyFunction(F, &dbgs()), false }; |
| } |
| |
| PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { |
| auto Res = AM.getResult<VerifierAnalysis>(M); |
| if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) |
| report_fatal_error("Broken module found, compilation aborted!"); |
| |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto res = AM.getResult<VerifierAnalysis>(F); |
| if (res.IRBroken && FatalErrors) |
| report_fatal_error("Broken function found, compilation aborted!"); |
| |
| return PreservedAnalyses::all(); |
| } |