blob: 90239bb76298953b950d93614e9cea6fd9f844c9 [file] [log] [blame]
//===- LegacyPassManager.cpp - LLVM Pass Infrastructure Implementation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the legacy LLVM Pass Manager infrastructure.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManagers.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassTimingInfo.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <unordered_set>
using namespace llvm;
using namespace llvm::legacy;
// See PassManagers.h for Pass Manager infrastructure overview.
//===----------------------------------------------------------------------===//
// Pass debugging information. Often it is useful to find out what pass is
// running when a crash occurs in a utility. When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//
namespace {
// Different debug levels that can be enabled...
enum PassDebugLevel {
Disabled, Arguments, Structure, Executions, Details
};
}
static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
cl::values(
clEnumVal(Disabled , "disable debug output"),
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
clEnumVal(Structure , "print pass structure before run()"),
clEnumVal(Executions, "print pass name before it is executed"),
clEnumVal(Details , "print pass details when it is executed")));
namespace {
typedef llvm::cl::list<const llvm::PassInfo *, bool, PassNameParser>
PassOptionList;
}
// Print IR out before/after specified passes.
static PassOptionList
PrintBefore("print-before",
llvm::cl::desc("Print IR before specified passes"),
cl::Hidden);
static PassOptionList
PrintAfter("print-after",
llvm::cl::desc("Print IR after specified passes"),
cl::Hidden);
static cl::opt<bool> PrintBeforeAll("print-before-all",
llvm::cl::desc("Print IR before each pass"),
cl::init(false), cl::Hidden);
static cl::opt<bool> PrintAfterAll("print-after-all",
llvm::cl::desc("Print IR after each pass"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
PrintModuleScope("print-module-scope",
cl::desc("When printing IR for print-[before|after]{-all} "
"always print a module IR"),
cl::init(false), cl::Hidden);
static cl::list<std::string>
PrintFuncsList("filter-print-funcs", cl::value_desc("function names"),
cl::desc("Only print IR for functions whose name "
"match this for all print-[before|after][-all] "
"options"),
cl::CommaSeparated, cl::Hidden);
/// This is a helper to determine whether to print IR before or
/// after a pass.
bool llvm::shouldPrintBeforePass() {
return PrintBeforeAll || !PrintBefore.empty();
}
bool llvm::shouldPrintAfterPass() {
return PrintAfterAll || !PrintAfter.empty();
}
static bool ShouldPrintBeforeOrAfterPass(StringRef PassID,
PassOptionList &PassesToPrint) {
for (auto *PassInf : PassesToPrint) {
if (PassInf)
if (PassInf->getPassArgument() == PassID) {
return true;
}
}
return false;
}
bool llvm::shouldPrintBeforePass(StringRef PassID) {
return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PassID, PrintBefore);
}
bool llvm::shouldPrintAfterPass(StringRef PassID) {
return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PassID, PrintAfter);
}
bool llvm::forcePrintModuleIR() { return PrintModuleScope; }
bool llvm::isFunctionInPrintList(StringRef FunctionName) {
static std::unordered_set<std::string> PrintFuncNames(PrintFuncsList.begin(),
PrintFuncsList.end());
return PrintFuncNames.empty() || PrintFuncNames.count(FunctionName);
}
/// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions
/// or higher is specified.
bool PMDataManager::isPassDebuggingExecutionsOrMore() const {
return PassDebugging >= Executions;
}
unsigned PMDataManager::initSizeRemarkInfo(
Module &M, StringMap<std::pair<unsigned, unsigned>> &FunctionToInstrCount) {
// Only calculate getInstructionCount if the size-info remark is requested.
unsigned InstrCount = 0;
// Collect instruction counts for every function. We'll use this to emit
// per-function size remarks later.
for (Function &F : M) {
unsigned FCount = F.getInstructionCount();
// Insert a record into FunctionToInstrCount keeping track of the current
// size of the function as the first member of a pair. Set the second
// member to 0; if the function is deleted by the pass, then when we get
// here, we'll be able to let the user know that F no longer contributes to
// the module.
FunctionToInstrCount[F.getName().str()] =
std::pair<unsigned, unsigned>(FCount, 0);
InstrCount += FCount;
}
return InstrCount;
}
void PMDataManager::emitInstrCountChangedRemark(
Pass *P, Module &M, int64_t Delta, unsigned CountBefore,
StringMap<std::pair<unsigned, unsigned>> &FunctionToInstrCount,
Function *F) {
// If it's a pass manager, don't emit a remark. (This hinges on the assumption
// that the only passes that return non-null with getAsPMDataManager are pass
// managers.) The reason we have to do this is to avoid emitting remarks for
// CGSCC passes.
if (P->getAsPMDataManager())
return;
// Set to true if this isn't a module pass or CGSCC pass.
bool CouldOnlyImpactOneFunction = (F != nullptr);
// Helper lambda that updates the changes to the size of some function.
auto UpdateFunctionChanges =
[&FunctionToInstrCount](Function &MaybeChangedFn) {
// Update the total module count.
unsigned FnSize = MaybeChangedFn.getInstructionCount();
auto It = FunctionToInstrCount.find(MaybeChangedFn.getName());
// If we created a new function, then we need to add it to the map and
// say that it changed from 0 instructions to FnSize.
if (It == FunctionToInstrCount.end()) {
FunctionToInstrCount[MaybeChangedFn.getName()] =
std::pair<unsigned, unsigned>(0, FnSize);
return;
}
// Insert the new function size into the second member of the pair. This
// tells us whether or not this function changed in size.
It->second.second = FnSize;
};
// We need to initially update all of the function sizes.
// If no function was passed in, then we're either a module pass or an
// CGSCC pass.
if (!CouldOnlyImpactOneFunction)
std::for_each(M.begin(), M.end(), UpdateFunctionChanges);
else
UpdateFunctionChanges(*F);
// Do we have a function we can use to emit a remark?
if (!CouldOnlyImpactOneFunction) {
// We need a function containing at least one basic block in order to output
// remarks. Since it's possible that the first function in the module
// doesn't actually contain a basic block, we have to go and find one that's
// suitable for emitting remarks.
auto It = std::find_if(M.begin(), M.end(),
[](const Function &Fn) { return !Fn.empty(); });
// Didn't find a function. Quit.
if (It == M.end())
return;
// We found a function containing at least one basic block.
F = &*It;
}
int64_t CountAfter = static_cast<int64_t>(CountBefore) + Delta;
BasicBlock &BB = *F->begin();
OptimizationRemarkAnalysis R("size-info", "IRSizeChange",
DiagnosticLocation(), &BB);
// FIXME: Move ore namespace to DiagnosticInfo so that we can use it. This
// would let us use NV instead of DiagnosticInfoOptimizationBase::Argument.
R << DiagnosticInfoOptimizationBase::Argument("Pass", P->getPassName())
<< ": IR instruction count changed from "
<< DiagnosticInfoOptimizationBase::Argument("IRInstrsBefore", CountBefore)
<< " to "
<< DiagnosticInfoOptimizationBase::Argument("IRInstrsAfter", CountAfter)
<< "; Delta: "
<< DiagnosticInfoOptimizationBase::Argument("DeltaInstrCount", Delta);
F->getContext().diagnose(R); // Not using ORE for layering reasons.
// Emit per-function size change remarks separately.
std::string PassName = P->getPassName().str();
// Helper lambda that emits a remark when the size of a function has changed.
auto EmitFunctionSizeChangedRemark = [&FunctionToInstrCount, &F, &BB,
&PassName](const std::string &Fname) {
unsigned FnCountBefore, FnCountAfter;
std::pair<unsigned, unsigned> &Change = FunctionToInstrCount[Fname];
std::tie(FnCountBefore, FnCountAfter) = Change;
int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
static_cast<int64_t>(FnCountBefore);
if (FnDelta == 0)
return;
// FIXME: We shouldn't use BB for the location here. Unfortunately, because
// the function that we're looking at could have been deleted, we can't use
// it for the source location. We *want* remarks when a function is deleted
// though, so we're kind of stuck here as is. (This remark, along with the
// whole-module size change remarks really ought not to have source
// locations at all.)
OptimizationRemarkAnalysis FR("size-info", "FunctionIRSizeChange",
DiagnosticLocation(), &BB);
FR << DiagnosticInfoOptimizationBase::Argument("Pass", PassName)
<< ": Function: "
<< DiagnosticInfoOptimizationBase::Argument("Function", Fname)
<< ": IR instruction count changed from "
<< DiagnosticInfoOptimizationBase::Argument("IRInstrsBefore",
FnCountBefore)
<< " to "
<< DiagnosticInfoOptimizationBase::Argument("IRInstrsAfter",
FnCountAfter)
<< "; Delta: "
<< DiagnosticInfoOptimizationBase::Argument("DeltaInstrCount", FnDelta);
F->getContext().diagnose(FR);
// Update the function size.
Change.first = FnCountAfter;
};
// Are we looking at more than one function? If so, emit remarks for all of
// the functions in the module. Otherwise, only emit one remark.
if (!CouldOnlyImpactOneFunction)
std::for_each(FunctionToInstrCount.keys().begin(),
FunctionToInstrCount.keys().end(),
EmitFunctionSizeChangedRemark);
else
EmitFunctionSizeChangedRemark(F->getName().str());
}
void PassManagerPrettyStackEntry::print(raw_ostream &OS) const {
if (!V && !M)
OS << "Releasing pass '";
else
OS << "Running pass '";
OS << P->getPassName() << "'";
if (M) {
OS << " on module '" << M->getModuleIdentifier() << "'.\n";
return;
}
if (!V) {
OS << '\n';
return;
}
OS << " on ";
if (isa<Function>(V))
OS << "function";
else if (isa<BasicBlock>(V))
OS << "basic block";
else
OS << "value";
OS << " '";
V->printAsOperand(OS, /*PrintType=*/false, M);
OS << "'\n";
}
namespace llvm {
namespace legacy {
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl
//
/// FunctionPassManagerImpl manages FPPassManagers
class FunctionPassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
virtual void anchor();
private:
bool wasRun;
public:
static char ID;
explicit FunctionPassManagerImpl() :
Pass(PT_PassManager, ID), PMDataManager(),
PMTopLevelManager(new FPPassManager()), wasRun(false) {}
/// \copydoc FunctionPassManager::add()
void add(Pass *P) {
schedulePass(P);
}
/// createPrinterPass - Get a function printer pass.
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createPrintFunctionPass(O, Banner);
}
// Prepare for running an on the fly pass, freeing memory if needed
// from a previous run.
void releaseMemoryOnTheFly();
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Function &F);
/// doInitialization - Run all of the initializers for the function passes.
///
bool doInitialization(Module &M) override;
/// doFinalization - Run all of the finalizers for the function passes.
///
bool doFinalization(Module &M) override;
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
PassManagerType getTopLevelPassManagerType() override {
return PMT_FunctionPassManager;
}
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
FPPassManager *getContainedManager(unsigned N) {
assert(N < PassManagers.size() && "Pass number out of range!");
FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
return FP;
}
void dumpPassStructure(unsigned Offset) override {
for (unsigned I = 0; I < getNumContainedManagers(); ++I)
getContainedManager(I)->dumpPassStructure(Offset);
}
};
void FunctionPassManagerImpl::anchor() {}
char FunctionPassManagerImpl::ID = 0;
} // End of legacy namespace
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
// MPPassManager
//
/// MPPassManager manages ModulePasses and function pass managers.
/// It batches all Module passes and function pass managers together and
/// sequences them to process one module.
class MPPassManager : public Pass, public PMDataManager {
public:
static char ID;
explicit MPPassManager() :
Pass(PT_PassManager, ID), PMDataManager() { }
// Delete on the fly managers.
~MPPassManager() override {
for (auto &OnTheFlyManager : OnTheFlyManagers) {
FunctionPassManagerImpl *FPP = OnTheFlyManager.second;
delete FPP;
}
}
/// createPrinterPass - Get a module printer pass.
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createPrintModulePass(O, Banner);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool runOnModule(Module &M);
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) override;
/// Return function pass corresponding to PassInfo PI, that is
/// required by module pass MP. Instantiate analysis pass, by using
/// its runOnFunction() for function F.
Pass* getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F) override;
StringRef getPassName() const override { return "Module Pass Manager"; }
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) override {
dbgs().indent(Offset*2) << "ModulePass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
MP->dumpPassStructure(Offset + 1);
MapVector<Pass *, FunctionPassManagerImpl *>::const_iterator I =
OnTheFlyManagers.find(MP);
if (I != OnTheFlyManagers.end())
I->second->dumpPassStructure(Offset + 2);
dumpLastUses(MP, Offset+1);
}
}
ModulePass *getContainedPass(unsigned N) {
assert(N < PassVector.size() && "Pass number out of range!");
return static_cast<ModulePass *>(PassVector[N]);
}
PassManagerType getPassManagerType() const override {
return PMT_ModulePassManager;
}
private:
/// Collection of on the fly FPPassManagers. These managers manage
/// function passes that are required by module passes.
MapVector<Pass *, FunctionPassManagerImpl *> OnTheFlyManagers;
};
char MPPassManager::ID = 0;
} // End anonymous namespace
namespace llvm {
namespace legacy {
//===----------------------------------------------------------------------===//
// PassManagerImpl
//
/// PassManagerImpl manages MPPassManagers
class PassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
virtual void anchor();
public:
static char ID;
explicit PassManagerImpl() :
Pass(PT_PassManager, ID), PMDataManager(),
PMTopLevelManager(new MPPassManager()) {}
/// \copydoc PassManager::add()
void add(Pass *P) {
schedulePass(P);
}
/// createPrinterPass - Get a module printer pass.
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createPrintModulePass(O, Banner);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Module &M);
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
PassManagerType getTopLevelPassManagerType() override {
return PMT_ModulePassManager;
}
MPPassManager *getContainedManager(unsigned N) {
assert(N < PassManagers.size() && "Pass number out of range!");
MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]);
return MP;
}
};
void PassManagerImpl::anchor() {}
char PassManagerImpl::ID = 0;
} // End of legacy namespace
} // End of llvm namespace
//===----------------------------------------------------------------------===//
// PMTopLevelManager implementation
/// Initialize top level manager. Create first pass manager.
PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) {
PMDM->setTopLevelManager(this);
addPassManager(PMDM);
activeStack.push(PMDM);
}
/// Set pass P as the last user of the given analysis passes.
void
PMTopLevelManager::setLastUser(ArrayRef<Pass*> AnalysisPasses, Pass *P) {
unsigned PDepth = 0;
if (P->getResolver())
PDepth = P->getResolver()->getPMDataManager().getDepth();
for (Pass *AP : AnalysisPasses) {
LastUser[AP] = P;
if (P == AP)
continue;
// Update the last users of passes that are required transitive by AP.
AnalysisUsage *AnUsage = findAnalysisUsage(AP);
const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet();
SmallVector<Pass *, 12> LastUses;
SmallVector<Pass *, 12> LastPMUses;
for (AnalysisID ID : IDs) {
Pass *AnalysisPass = findAnalysisPass(ID);
assert(AnalysisPass && "Expected analysis pass to exist.");
AnalysisResolver *AR = AnalysisPass->getResolver();
assert(AR && "Expected analysis resolver to exist.");
unsigned APDepth = AR->getPMDataManager().getDepth();
if (PDepth == APDepth)
LastUses.push_back(AnalysisPass);
else if (PDepth > APDepth)
LastPMUses.push_back(AnalysisPass);
}
setLastUser(LastUses, P);
// If this pass has a corresponding pass manager, push higher level
// analysis to this pass manager.
if (P->getResolver())
setLastUser(LastPMUses, P->getResolver()->getPMDataManager().getAsPass());
// If AP is the last user of other passes then make P last user of
// such passes.
for (auto LU : LastUser) {
if (LU.second == AP)
// DenseMap iterator is not invalidated here because
// this is just updating existing entries.
LastUser[LU.first] = P;
}
}
}
/// Collect passes whose last user is P
void PMTopLevelManager::collectLastUses(SmallVectorImpl<Pass *> &LastUses,
Pass *P) {
DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator DMI =
InversedLastUser.find(P);
if (DMI == InversedLastUser.end())
return;
SmallPtrSet<Pass *, 8> &LU = DMI->second;
for (Pass *LUP : LU) {
LastUses.push_back(LUP);
}
}
AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) {
AnalysisUsage *AnUsage = nullptr;
auto DMI = AnUsageMap.find(P);
if (DMI != AnUsageMap.end())
AnUsage = DMI->second;
else {
// Look up the analysis usage from the pass instance (different instances
// of the same pass can produce different results), but unique the
// resulting object to reduce memory usage. This helps to greatly reduce
// memory usage when we have many instances of only a few pass types
// (e.g. instcombine, simplifycfg, etc...) which tend to share a fixed set
// of dependencies.
AnalysisUsage AU;
P->getAnalysisUsage(AU);
AUFoldingSetNode* Node = nullptr;
FoldingSetNodeID ID;
AUFoldingSetNode::Profile(ID, AU);
void *IP = nullptr;
if (auto *N = UniqueAnalysisUsages.FindNodeOrInsertPos(ID, IP))
Node = N;
else {
Node = new (AUFoldingSetNodeAllocator.Allocate()) AUFoldingSetNode(AU);
UniqueAnalysisUsages.InsertNode(Node, IP);
}
assert(Node && "cached analysis usage must be non null");
AnUsageMap[P] = &Node->AU;
AnUsage = &Node->AU;
}
return AnUsage;
}
/// Schedule pass P for execution. Make sure that passes required by
/// P are run before P is run. Update analysis info maintained by
/// the manager. Remove dead passes. This is a recursive function.
void PMTopLevelManager::schedulePass(Pass *P) {
// TODO : Allocate function manager for this pass, other wise required set
// may be inserted into previous function manager
// Give pass a chance to prepare the stage.
P->preparePassManager(activeStack);
// If P is an analysis pass and it is available then do not
// generate the analysis again. Stale analysis info should not be
// available at this point.
const PassInfo *PI = findAnalysisPassInfo(P->getPassID());
if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) {
// Remove any cached AnalysisUsage information.
AnUsageMap.erase(P);
delete P;
return;
}
AnalysisUsage *AnUsage = findAnalysisUsage(P);
bool checkAnalysis = true;
while (checkAnalysis) {
checkAnalysis = false;
const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet();
for (const AnalysisID ID : RequiredSet) {
Pass *AnalysisPass = findAnalysisPass(ID);
if (!AnalysisPass) {
const PassInfo *PI = findAnalysisPassInfo(ID);
if (!PI) {
// Pass P is not in the global PassRegistry
dbgs() << "Pass '" << P->getPassName() << "' is not initialized." << "\n";
dbgs() << "Verify if there is a pass dependency cycle." << "\n";
dbgs() << "Required Passes:" << "\n";
for (const AnalysisID ID2 : RequiredSet) {
if (ID == ID2)
break;
Pass *AnalysisPass2 = findAnalysisPass(ID2);
if (AnalysisPass2) {
dbgs() << "\t" << AnalysisPass2->getPassName() << "\n";
} else {
dbgs() << "\t" << "Error: Required pass not found! Possible causes:" << "\n";
dbgs() << "\t\t" << "- Pass misconfiguration (e.g.: missing macros)" << "\n";
dbgs() << "\t\t" << "- Corruption of the global PassRegistry" << "\n";
}
}
}
assert(PI && "Expected required passes to be initialized");
AnalysisPass = PI->createPass();
if (P->getPotentialPassManagerType () ==
AnalysisPass->getPotentialPassManagerType())
// Schedule analysis pass that is managed by the same pass manager.
schedulePass(AnalysisPass);
else if (P->getPotentialPassManagerType () >
AnalysisPass->getPotentialPassManagerType()) {
// Schedule analysis pass that is managed by a new manager.
schedulePass(AnalysisPass);
// Recheck analysis passes to ensure that required analyses that
// are already checked are still available.
checkAnalysis = true;
} else
// Do not schedule this analysis. Lower level analysis
// passes are run on the fly.
delete AnalysisPass;
}
}
}
// Now all required passes are available.
if (ImmutablePass *IP = P->getAsImmutablePass()) {
// P is a immutable pass and it will be managed by this
// top level manager. Set up analysis resolver to connect them.
PMDataManager *DM = getAsPMDataManager();
AnalysisResolver *AR = new AnalysisResolver(*DM);
P->setResolver(AR);
DM->initializeAnalysisImpl(P);
addImmutablePass(IP);
DM->recordAvailableAnalysis(IP);
return;
}
if (PI && !PI->isAnalysis() && shouldPrintBeforePass(PI->getPassArgument())) {
Pass *PP = P->createPrinterPass(
dbgs(), ("*** IR Dump Before " + P->getPassName() + " ***").str());
PP->assignPassManager(activeStack, getTopLevelPassManagerType());
}
// Add the requested pass to the best available pass manager.
P->assignPassManager(activeStack, getTopLevelPassManagerType());
if (PI && !PI->isAnalysis() && shouldPrintAfterPass(PI->getPassArgument())) {
Pass *PP = P->createPrinterPass(
dbgs(), ("*** IR Dump After " + P->getPassName() + " ***").str());
PP->assignPassManager(activeStack, getTopLevelPassManagerType());
}
}
/// Find the pass that implements Analysis AID. Search immutable
/// passes and all pass managers. If desired pass is not found
/// then return NULL.
Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
// For immutable passes we have a direct mapping from ID to pass, so check
// that first.
if (Pass *P = ImmutablePassMap.lookup(AID))
return P;
// Check pass managers
for (PMDataManager *PassManager : PassManagers)
if (Pass *P = PassManager->findAnalysisPass(AID, false))
return P;
// Check other pass managers
for (PMDataManager *IndirectPassManager : IndirectPassManagers)
if (Pass *P = IndirectPassManager->findAnalysisPass(AID, false))
return P;
return nullptr;
}
const PassInfo *PMTopLevelManager::findAnalysisPassInfo(AnalysisID AID) const {
const PassInfo *&PI = AnalysisPassInfos[AID];
if (!PI)
PI = PassRegistry::getPassRegistry()->getPassInfo(AID);
else
assert(PI == PassRegistry::getPassRegistry()->getPassInfo(AID) &&
"The pass info pointer changed for an analysis ID!");
return PI;
}
void PMTopLevelManager::addImmutablePass(ImmutablePass *P) {
P->initializePass();
ImmutablePasses.push_back(P);
// Add this pass to the map from its analysis ID. We clobber any prior runs
// of the pass in the map so that the last one added is the one found when
// doing lookups.
AnalysisID AID = P->getPassID();
ImmutablePassMap[AID] = P;
// Also add any interfaces implemented by the immutable pass to the map for
// fast lookup.
const PassInfo *PassInf = findAnalysisPassInfo(AID);
assert(PassInf && "Expected all immutable passes to be initialized");
for (const PassInfo *ImmPI : PassInf->getInterfacesImplemented())
ImmutablePassMap[ImmPI->getTypeInfo()] = P;
}
// Print passes managed by this top level manager.
void PMTopLevelManager::dumpPasses() const {
if (PassDebugging < Structure)
return;
// Print out the immutable passes
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
ImmutablePasses[i]->dumpPassStructure(0);
}
// Every class that derives from PMDataManager also derives from Pass
// (sometimes indirectly), but there's no inheritance relationship
// between PMDataManager and Pass, so we have to getAsPass to get
// from a PMDataManager* to a Pass*.
for (PMDataManager *Manager : PassManagers)
Manager->getAsPass()->dumpPassStructure(1);
}
void PMTopLevelManager::dumpArguments() const {
if (PassDebugging < Arguments)
return;
dbgs() << "Pass Arguments: ";
for (ImmutablePass *P : ImmutablePasses)
if (const PassInfo *PI = findAnalysisPassInfo(P->getPassID())) {
assert(PI && "Expected all immutable passes to be initialized");
if (!PI->isAnalysisGroup())
dbgs() << " -" << PI->getPassArgument();
}
for (PMDataManager *PM : PassManagers)
PM->dumpPassArguments();
dbgs() << "\n";
}
void PMTopLevelManager::initializeAllAnalysisInfo() {
for (PMDataManager *PM : PassManagers)
PM->initializeAnalysisInfo();
// Initailize other pass managers
for (PMDataManager *IPM : IndirectPassManagers)
IPM->initializeAnalysisInfo();
for (auto LU : LastUser) {
SmallPtrSet<Pass *, 8> &L = InversedLastUser[LU.second];
L.insert(LU.first);
}
}
/// Destructor
PMTopLevelManager::~PMTopLevelManager() {
for (PMDataManager *PM : PassManagers)
delete PM;
for (ImmutablePass *P : ImmutablePasses)
delete P;
}
//===----------------------------------------------------------------------===//
// PMDataManager implementation
/// Augement AvailableAnalysis by adding analysis made available by pass P.
void PMDataManager::recordAvailableAnalysis(Pass *P) {
AnalysisID PI = P->getPassID();
AvailableAnalysis[PI] = P;
assert(!AvailableAnalysis.empty());
// This pass is the current implementation of all of the interfaces it
// implements as well.
const PassInfo *PInf = TPM->findAnalysisPassInfo(PI);
if (!PInf) return;
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
AvailableAnalysis[II[i]->getTypeInfo()] = P;
}
// Return true if P preserves high level analysis used by other
// passes managed by this manager
bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
if (AnUsage->getPreservesAll())
return true;
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
for (Pass *P1 : HigherLevelAnalysis) {
if (P1->getAsImmutablePass() == nullptr &&
!is_contained(PreservedSet, P1->getPassID()))
return false;
}
return true;
}
/// verifyPreservedAnalysis -- Verify analysis preserved by pass P.
void PMDataManager::verifyPreservedAnalysis(Pass *P) {
// Don't do this unless assertions are enabled.
#ifdef NDEBUG
return;
#endif
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
// Verify preserved analysis
for (AnalysisID AID : PreservedSet) {
if (Pass *AP = findAnalysisPass(AID, true)) {
TimeRegion PassTimer(getPassTimer(AP));
AP->verifyAnalysis();
}
}
}
/// Remove Analysis not preserved by Pass P
void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
if (AnUsage->getPreservesAll())
return;
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
for (DenseMap<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
E = AvailableAnalysis.end(); I != E; ) {
DenseMap<AnalysisID, Pass*>::iterator Info = I++;
if (Info->second->getAsImmutablePass() == nullptr &&
!is_contained(PreservedSet, Info->first)) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
dbgs() << S->getPassName() << "'\n";
}
AvailableAnalysis.erase(Info);
}
}
// Check inherited analysis also. If P is not preserving analysis
// provided by parent manager then remove it here.
for (unsigned Index = 0; Index < PMT_Last; ++Index) {
if (!InheritedAnalysis[Index])
continue;
for (DenseMap<AnalysisID, Pass*>::iterator
I = InheritedAnalysis[Index]->begin(),
E = InheritedAnalysis[Index]->end(); I != E; ) {
DenseMap<AnalysisID, Pass *>::iterator Info = I++;
if (Info->second->getAsImmutablePass() == nullptr &&
!is_contained(PreservedSet, Info->first)) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
dbgs() << S->getPassName() << "'\n";
}
InheritedAnalysis[Index]->erase(Info);
}
}
}
}
/// Remove analysis passes that are not used any longer
void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg,
enum PassDebuggingString DBG_STR) {
SmallVector<Pass *, 12> DeadPasses;
// If this is a on the fly manager then it does not have TPM.
if (!TPM)
return;
TPM->collectLastUses(DeadPasses, P);
if (PassDebugging >= Details && !DeadPasses.empty()) {
dbgs() << " -*- '" << P->getPassName();
dbgs() << "' is the last user of following pass instances.";
dbgs() << " Free these instances\n";
}
for (Pass *P : DeadPasses)
freePass(P, Msg, DBG_STR);
}
void PMDataManager::freePass(Pass *P, StringRef Msg,
enum PassDebuggingString DBG_STR) {
dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg);
{
// If the pass crashes releasing memory, remember this.
PassManagerPrettyStackEntry X(P);
TimeRegion PassTimer(getPassTimer(P));
P->releaseMemory();
}
AnalysisID PI = P->getPassID();
if (const PassInfo *PInf = TPM->findAnalysisPassInfo(PI)) {
// Remove the pass itself (if it is not already removed).
AvailableAnalysis.erase(PI);
// Remove all interfaces this pass implements, for which it is also
// listed as the available implementation.
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i) {
DenseMap<AnalysisID, Pass*>::iterator Pos =
AvailableAnalysis.find(II[i]->getTypeInfo());
if (Pos != AvailableAnalysis.end() && Pos->second == P)
AvailableAnalysis.erase(Pos);
}
}
}
/// Add pass P into the PassVector. Update
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
void PMDataManager::add(Pass *P, bool ProcessAnalysis) {
// This manager is going to manage pass P. Set up analysis resolver
// to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
// If a FunctionPass F is the last user of ModulePass info M
// then the F's manager, not F, records itself as a last user of M.
SmallVector<Pass *, 12> TransferLastUses;
if (!ProcessAnalysis) {
// Add pass
PassVector.push_back(P);
return;
}
// At the moment, this pass is the last user of all required passes.
SmallVector<Pass *, 12> LastUses;
SmallVector<Pass *, 8> UsedPasses;
SmallVector<AnalysisID, 8> ReqAnalysisNotAvailable;
unsigned PDepth = this->getDepth();
collectRequiredAndUsedAnalyses(UsedPasses, ReqAnalysisNotAvailable, P);
for (Pass *PUsed : UsedPasses) {
unsigned RDepth = 0;
assert(PUsed->getResolver() && "Analysis Resolver is not set");
PMDataManager &DM = PUsed->getResolver()->getPMDataManager();
RDepth = DM.getDepth();
if (PDepth == RDepth)
LastUses.push_back(PUsed);
else if (PDepth > RDepth) {
// Let the parent claim responsibility of last use
TransferLastUses.push_back(PUsed);
// Keep track of higher level analysis used by this manager.
HigherLevelAnalysis.push_back(PUsed);
} else
llvm_unreachable("Unable to accommodate Used Pass");
}
// Set P as P's last user until someone starts using P.
// However, if P is a Pass Manager then it does not need
// to record its last user.
if (!P->getAsPMDataManager())
LastUses.push_back(P);
TPM->setLastUser(LastUses, P);
if (!TransferLastUses.empty()) {
Pass *My_PM = getAsPass();
TPM->setLastUser(TransferLastUses, My_PM);
TransferLastUses.clear();
}
// Now, take care of required analyses that are not available.
for (AnalysisID ID : ReqAnalysisNotAvailable) {
const PassInfo *PI = TPM->findAnalysisPassInfo(ID);
Pass *AnalysisPass = PI->createPass();
this->addLowerLevelRequiredPass(P, AnalysisPass);
}
// Take a note of analysis required and made available by this pass.
// Remove the analysis not preserved by this pass
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
// Add pass
PassVector.push_back(P);
}
/// Populate UP with analysis pass that are used or required by
/// pass P and are available. Populate RP_NotAvail with analysis
/// pass that are required by pass P but are not available.
void PMDataManager::collectRequiredAndUsedAnalyses(
SmallVectorImpl<Pass *> &UP, SmallVectorImpl<AnalysisID> &RP_NotAvail,
Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
for (const auto &UsedID : AnUsage->getUsedSet())
if (Pass *AnalysisPass = findAnalysisPass(UsedID, true))
UP.push_back(AnalysisPass);
for (const auto &RequiredID : AnUsage->getRequiredSet())
if (Pass *AnalysisPass = findAnalysisPass(RequiredID, true))
UP.push_back(AnalysisPass);
else
RP_NotAvail.push_back(RequiredID);
for (const auto &RequiredID : AnUsage->getRequiredTransitiveSet())
if (Pass *AnalysisPass = findAnalysisPass(RequiredID, true))
UP.push_back(AnalysisPass);
else
RP_NotAvail.push_back(RequiredID);
}
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
void PMDataManager::initializeAnalysisImpl(Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
for (const AnalysisID ID : AnUsage->getRequiredSet()) {
Pass *Impl = findAnalysisPass(ID, true);
if (!Impl)
// This may be analysis pass that is initialized on the fly.
// If that is not the case then it will raise an assert when it is used.
continue;
AnalysisResolver *AR = P->getResolver();
assert(AR && "Analysis Resolver is not set");
AR->addAnalysisImplsPair(ID, Impl);
}
}
/// Find the pass that implements Analysis AID. If desired pass is not found
/// then return NULL.
Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) {
// Check if AvailableAnalysis map has one entry.
DenseMap<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID);
if (I != AvailableAnalysis.end())
return I->second;
// Search Parents through TopLevelManager
if (SearchParent)
return TPM->findAnalysisPass(AID);
return nullptr;
}
// Print list of passes that are last used by P.
void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
SmallVector<Pass *, 12> LUses;
// If this is a on the fly manager then it does not have TPM.
if (!TPM)
return;
TPM->collectLastUses(LUses, P);
for (Pass *P : LUses) {
dbgs() << "--" << std::string(Offset*2, ' ');
P->dumpPassStructure(0);
}
}
void PMDataManager::dumpPassArguments() const {
for (Pass *P : PassVector) {
if (PMDataManager *PMD = P->getAsPMDataManager())
PMD->dumpPassArguments();
else
if (const PassInfo *PI =
TPM->findAnalysisPassInfo(P->getPassID()))
if (!PI->isAnalysisGroup())
dbgs() << " -" << PI->getPassArgument();
}
}
void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1,
enum PassDebuggingString S2,
StringRef Msg) {
if (PassDebugging < Executions)
return;
dbgs() << "[" << std::chrono::system_clock::now() << "] " << (void *)this
<< std::string(getDepth() * 2 + 1, ' ');
switch (S1) {
case EXECUTION_MSG:
dbgs() << "Executing Pass '" << P->getPassName();
break;
case MODIFICATION_MSG:
dbgs() << "Made Modification '" << P->getPassName();
break;
case FREEING_MSG:
dbgs() << " Freeing Pass '" << P->getPassName();
break;
default:
break;
}
switch (S2) {
case ON_FUNCTION_MSG:
dbgs() << "' on Function '" << Msg << "'...\n";
break;
case ON_MODULE_MSG:
dbgs() << "' on Module '" << Msg << "'...\n";
break;
case ON_REGION_MSG:
dbgs() << "' on Region '" << Msg << "'...\n";
break;
case ON_LOOP_MSG:
dbgs() << "' on Loop '" << Msg << "'...\n";
break;
case ON_CG_MSG:
dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n";
break;
default:
break;
}
}
void PMDataManager::dumpRequiredSet(const Pass *P) const {
if (PassDebugging < Details)
return;
AnalysisUsage analysisUsage;
P->getAnalysisUsage(analysisUsage);
dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet());
}
void PMDataManager::dumpPreservedSet(const Pass *P) const {
if (PassDebugging < Details)
return;
AnalysisUsage analysisUsage;
P->getAnalysisUsage(analysisUsage);
dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet());
}
void PMDataManager::dumpUsedSet(const Pass *P) const {
if (PassDebugging < Details)
return;
AnalysisUsage analysisUsage;
P->getAnalysisUsage(analysisUsage);
dumpAnalysisUsage("Used", P, analysisUsage.getUsedSet());
}
void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P,
const AnalysisUsage::VectorType &Set) const {
assert(PassDebugging >= Details);
if (Set.empty())
return;
dbgs() << (const void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
if (i) dbgs() << ',';
const PassInfo *PInf = TPM->findAnalysisPassInfo(Set[i]);
if (!PInf) {
// Some preserved passes, such as AliasAnalysis, may not be initialized by
// all drivers.
dbgs() << " Uninitialized Pass";
continue;
}
dbgs() << ' ' << PInf->getPassName();
}
dbgs() << '\n';
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
/// This should be handled by specific pass manager.
void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
if (TPM) {
TPM->dumpArguments();
TPM->dumpPasses();
}
// Module Level pass may required Function Level analysis info
// (e.g. dominator info). Pass manager uses on the fly function pass manager
// to provide this on demand. In that case, in Pass manager terminology,
// module level pass is requiring lower level analysis info managed by
// lower level pass manager.
// When Pass manager is not able to order required analysis info, Pass manager
// checks whether any lower level manager will be able to provide this
// analysis info on demand or not.
#ifndef NDEBUG
dbgs() << "Unable to schedule '" << RequiredPass->getPassName();
dbgs() << "' required by '" << P->getPassName() << "'\n";
#endif
llvm_unreachable("Unable to schedule pass");
}
Pass *PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) {
llvm_unreachable("Unable to find on the fly pass");
}
// Destructor
PMDataManager::~PMDataManager() {
for (Pass *P : PassVector)
delete P;
}
//===----------------------------------------------------------------------===//
// NOTE: Is this the right place to define this method ?
// getAnalysisIfAvailable - Return analysis result or null if it doesn't exist.
Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const {
return PM.findAnalysisPass(ID, dir);
}
Pass *AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI,
Function &F) {
return PM.getOnTheFlyPass(P, AnalysisPI, F);
}
//===----------------------------------------------------------------------===//
// FunctionPassManager implementation
/// Create new Function pass manager
FunctionPassManager::FunctionPassManager(Module *m) : M(m) {
FPM = new FunctionPassManagerImpl();
// FPM is the top level manager.
FPM->setTopLevelManager(FPM);
AnalysisResolver *AR = new AnalysisResolver(*FPM);
FPM->setResolver(AR);
}
FunctionPassManager::~FunctionPassManager() {
delete FPM;
}
void FunctionPassManager::add(Pass *P) {
FPM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
///
bool FunctionPassManager::run(Function &F) {
handleAllErrors(F.materialize(), [&](ErrorInfoBase &EIB) {
report_fatal_error("Error reading bitcode file: " + EIB.message());
});
return FPM->run(F);
}
/// doInitialization - Run all of the initializers for the function passes.
///
bool FunctionPassManager::doInitialization() {
return FPM->doInitialization(*M);
}
/// doFinalization - Run all of the finalizers for the function passes.
///
bool FunctionPassManager::doFinalization() {
return FPM->doFinalization(*M);
}
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl implementation
//
bool FunctionPassManagerImpl::doInitialization(Module &M) {
bool Changed = false;
dumpArguments();
dumpPasses();
for (ImmutablePass *ImPass : getImmutablePasses())
Changed |= ImPass->doInitialization(M);
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
Changed |= getContainedManager(Index)->doInitialization(M);
return Changed;
}
bool FunctionPassManagerImpl::doFinalization(Module &M) {
bool Changed = false;
for (int Index = getNumContainedManagers() - 1; Index >= 0; --Index)
Changed |= getContainedManager(Index)->doFinalization(M);
for (ImmutablePass *ImPass : getImmutablePasses())
Changed |= ImPass->doFinalization(M);
return Changed;
}
/// cleanup - After running all passes, clean up pass manager cache.
void FPPassManager::cleanup() {
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
AnalysisResolver *AR = FP->getResolver();
assert(AR && "Analysis Resolver is not set");
AR->clearAnalysisImpls();
}
}
void FunctionPassManagerImpl::releaseMemoryOnTheFly() {
if (!wasRun)
return;
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FPPM = getContainedManager(Index);
for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) {
FPPM->getContainedPass(Index)->releaseMemory();
}
}
wasRun = false;
}
// Execute all the passes managed by this top level manager.
// Return true if any function is modified by a pass.
bool FunctionPassManagerImpl::run(Function &F) {
bool Changed = false;
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
Changed |= getContainedManager(Index)->runOnFunction(F);
F.getContext().yield();
}
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
getContainedManager(Index)->cleanup();
wasRun = true;
return Changed;
}
//===----------------------------------------------------------------------===//
// FPPassManager implementation
char FPPassManager::ID = 0;
/// Print passes managed by this manager
void FPPassManager::dumpPassStructure(unsigned Offset) {
dbgs().indent(Offset*2) << "FunctionPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
FP->dumpPassStructure(Offset + 1);
dumpLastUses(FP, Offset+1);
}
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool FPPassManager::runOnFunction(Function &F) {
if (F.isDeclaration())
return false;
bool Changed = false;
Module &M = *F.getParent();
// Collect inherited analysis from Module level pass manager.
populateInheritedAnalysis(TPM->activeStack);
unsigned InstrCount, FunctionSize = 0;
StringMap<std::pair<unsigned, unsigned>> FunctionToInstrCount;
bool EmitICRemark = M.shouldEmitInstrCountChangedRemark();
// Collect the initial size of the module.
if (EmitICRemark) {
InstrCount = initSizeRemarkInfo(M, FunctionToInstrCount);
FunctionSize = F.getInstructionCount();
}
llvm::TimeTraceScope FunctionScope("OptFunction", F.getName());
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
bool LocalChanged = false;
llvm::TimeTraceScope PassScope("RunPass", FP->getPassName());
dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName());
dumpRequiredSet(FP);
initializeAnalysisImpl(FP);
{
PassManagerPrettyStackEntry X(FP, F);
TimeRegion PassTimer(getPassTimer(FP));
LocalChanged |= FP->runOnFunction(F);
if (EmitICRemark) {
unsigned NewSize = F.getInstructionCount();
// Update the size of the function, emit a remark, and update the size
// of the module.
if (NewSize != FunctionSize) {
int64_t Delta = static_cast<int64_t>(NewSize) -
static_cast<int64_t>(FunctionSize);
emitInstrCountChangedRemark(FP, M, Delta, InstrCount,
FunctionToInstrCount, &F);
InstrCount = static_cast<int64_t>(InstrCount) + Delta;
FunctionSize = NewSize;
}
}
}
Changed |= LocalChanged;
if (LocalChanged)
dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName());
dumpPreservedSet(FP);
dumpUsedSet(FP);
verifyPreservedAnalysis(FP);
removeNotPreservedAnalysis(FP);
recordAvailableAnalysis(FP);
removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG);
}
return Changed;
}
bool FPPassManager::runOnModule(Module &M) {
bool Changed = false;
for (Function &F : M)
Changed |= runOnFunction(F);
return Changed;
}
bool FPPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
Changed |= getContainedPass(Index)->doInitialization(M);
return Changed;
}
bool FPPassManager::doFinalization(Module &M) {
bool Changed = false;
for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index)
Changed |= getContainedPass(Index)->doFinalization(M);
return Changed;
}
//===----------------------------------------------------------------------===//
// MPPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnModule method. Keep track of whether any of the passes modifies
/// the module, and if so, return true.
bool
MPPassManager::runOnModule(Module &M) {
llvm::TimeTraceScope TimeScope("OptModule", M.getName());
bool Changed = false;
// Initialize on-the-fly passes
for (auto &OnTheFlyManager : OnTheFlyManagers) {
FunctionPassManagerImpl *FPP = OnTheFlyManager.second;
Changed |= FPP->doInitialization(M);
}
// Initialize module passes
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
Changed |= getContainedPass(Index)->doInitialization(M);
unsigned InstrCount;
StringMap<std::pair<unsigned, unsigned>> FunctionToInstrCount;
bool EmitICRemark = M.shouldEmitInstrCountChangedRemark();
// Collect the initial size of the module.
if (EmitICRemark)
InstrCount = initSizeRemarkInfo(M, FunctionToInstrCount);
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
bool LocalChanged = false;
dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier());
dumpRequiredSet(MP);
initializeAnalysisImpl(MP);
{
PassManagerPrettyStackEntry X(MP, M);
TimeRegion PassTimer(getPassTimer(MP));
LocalChanged |= MP->runOnModule(M);
if (EmitICRemark) {
// Update the size of the module.
unsigned ModuleCount = M.getInstructionCount();
if (ModuleCount != InstrCount) {
int64_t Delta = static_cast<int64_t>(ModuleCount) -
static_cast<int64_t>(InstrCount);
emitInstrCountChangedRemark(MP, M, Delta, InstrCount,
FunctionToInstrCount);
InstrCount = ModuleCount;
}
}
}
Changed |= LocalChanged;
if (LocalChanged)
dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG,
M.getModuleIdentifier());
dumpPreservedSet(MP);
dumpUsedSet(MP);
verifyPreservedAnalysis(MP);
removeNotPreservedAnalysis(MP);
recordAvailableAnalysis(MP);
removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG);
}
// Finalize module passes
for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index)
Changed |= getContainedPass(Index)->doFinalization(M);
// Finalize on-the-fly passes
for (auto &OnTheFlyManager : OnTheFlyManagers) {
FunctionPassManagerImpl *FPP = OnTheFlyManager.second;
// We don't know when is the last time an on-the-fly pass is run,
// so we need to releaseMemory / finalize here
FPP->releaseMemoryOnTheFly();
Changed |= FPP->doFinalization(M);
}
return Changed;
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
assert(RequiredPass && "No required pass?");
assert(P->getPotentialPassManagerType() == PMT_ModulePassManager &&
"Unable to handle Pass that requires lower level Analysis pass");
assert((P->getPotentialPassManagerType() <
RequiredPass->getPotentialPassManagerType()) &&
"Unable to handle Pass that requires lower level Analysis pass");
FunctionPassManagerImpl *FPP = OnTheFlyManagers[P];
if (!FPP) {
FPP = new FunctionPassManagerImpl();
// FPP is the top level manager.
FPP->setTopLevelManager(FPP);
OnTheFlyManagers[P] = FPP;
}
const PassInfo *RequiredPassPI =
TPM->findAnalysisPassInfo(RequiredPass->getPassID());
Pass *FoundPass = nullptr;
if (RequiredPassPI && RequiredPassPI->isAnalysis()) {
FoundPass =
((PMTopLevelManager*)FPP)->findAnalysisPass(RequiredPass->getPassID());
}
if (!FoundPass) {
FoundPass = RequiredPass;
// This should be guaranteed to add RequiredPass to the passmanager given
// that we checked for an available analysis above.
FPP->add(RequiredPass);
}
// Register P as the last user of FoundPass or RequiredPass.
SmallVector<Pass *, 1> LU;
LU.push_back(FoundPass);
FPP->setLastUser(LU, P);
}
/// Return function pass corresponding to PassInfo PI, that is
/// required by module pass MP. Instantiate analysis pass, by using
/// its runOnFunction() for function F.
Pass* MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F){
FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP];
assert(FPP && "Unable to find on the fly pass");
FPP->releaseMemoryOnTheFly();
FPP->run(F);
return ((PMTopLevelManager*)FPP)->findAnalysisPass(PI);
}
//===----------------------------------------------------------------------===//
// PassManagerImpl implementation
//
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManagerImpl::run(Module &M) {
bool Changed = false;
dumpArguments();
dumpPasses();
for (ImmutablePass *ImPass : getImmutablePasses())
Changed |= ImPass->doInitialization(M);
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
Changed |= getContainedManager(Index)->runOnModule(M);
M.getContext().yield();
}
for (ImmutablePass *ImPass : getImmutablePasses())
Changed |= ImPass->doFinalization(M);
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManager implementation
/// Create new pass manager
PassManager::PassManager() {
PM = new PassManagerImpl();
// PM is the top level manager
PM->setTopLevelManager(PM);
}
PassManager::~PassManager() {
delete PM;
}
void PassManager::add(Pass *P) {
PM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManager::run(Module &M) {
return PM->run(M);
}
//===----------------------------------------------------------------------===//
// PMStack implementation
//
// Pop Pass Manager from the stack and clear its analysis info.
void PMStack::pop() {
PMDataManager *Top = this->top();
Top->initializeAnalysisInfo();
S.pop_back();
}
// Push PM on the stack and set its top level manager.
void PMStack::push(PMDataManager *PM) {
assert(PM && "Unable to push. Pass Manager expected");
assert(PM->getDepth()==0 && "Pass Manager depth set too early");
if (!this->empty()) {
assert(PM->getPassManagerType() > this->top()->getPassManagerType()
&& "pushing bad pass manager to PMStack");
PMTopLevelManager *TPM = this->top()->getTopLevelManager();
assert(TPM && "Unable to find top level manager");
TPM->addIndirectPassManager(PM);
PM->setTopLevelManager(TPM);
PM->setDepth(this->top()->getDepth()+1);
} else {
assert((PM->getPassManagerType() == PMT_ModulePassManager
|| PM->getPassManagerType() == PMT_FunctionPassManager)
&& "pushing bad pass manager to PMStack");
PM->setDepth(1);
}
S.push_back(PM);
}
// Dump content of the pass manager stack.
LLVM_DUMP_METHOD void PMStack::dump() const {
for (PMDataManager *Manager : S)
dbgs() << Manager->getAsPass()->getPassName() << ' ';
if (!S.empty())
dbgs() << '\n';
}
/// Find appropriate Module Pass Manager in the PM Stack and
/// add self into that manager.
void ModulePass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Module Pass Manager
PassManagerType T;
while ((T = PMS.top()->getPassManagerType()) > PMT_ModulePassManager &&
T != PreferredType)
PMS.pop();
PMS.top()->add(this);
}
/// Find appropriate Function Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void FunctionPass::assignPassManager(PMStack &PMS,
PassManagerType /*PreferredType*/) {
// Find Function Pass Manager
PMDataManager *PM;
while (PM = PMS.top(), PM->getPassManagerType() > PMT_FunctionPassManager)
PMS.pop();
// Create new Function Pass Manager if needed.
if (PM->getPassManagerType() != PMT_FunctionPassManager) {
// [1] Create new Function Pass Manager
auto *FPP = new FPPassManager;
FPP->populateInheritedAnalysis(PMS);
// [2] Set up new manager's top level manager
PM->getTopLevelManager()->addIndirectPassManager(FPP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
FPP->assignPassManager(PMS, PM->getPassManagerType());
// [4] Push new manager into PMS
PMS.push(FPP);
PM = FPP;
}
// Assign FPP as the manager of this pass.
PM->add(this);
}
PassManagerBase::~PassManagerBase() {}