| //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Pass to verify generated machine code. The following is checked: |
| // |
| // Operand counts: All explicit operands must be present. |
| // |
| // Register classes: All physical and virtual register operands must be |
| // compatible with the register class required by the instruction descriptor. |
| // |
| // Register live intervals: Registers must be defined only once, and must be |
| // defined before use. |
| // |
| // The machine code verifier is enabled from LLVMTargetMachine.cpp with the |
| // command-line option -verify-machineinstrs, or by defining the environment |
| // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive |
| // the verifier errors. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LiveRangeCalc.h" |
| #include "llvm/CodeGen/LiveStacks.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| struct MachineVerifier { |
| MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} |
| |
| unsigned verify(MachineFunction &MF); |
| |
| Pass *const PASS; |
| const char *Banner; |
| const MachineFunction *MF; |
| const TargetMachine *TM; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const MachineRegisterInfo *MRI; |
| |
| unsigned foundErrors; |
| |
| // Avoid querying the MachineFunctionProperties for each operand. |
| bool isFunctionRegBankSelected; |
| bool isFunctionSelected; |
| |
| using RegVector = SmallVector<unsigned, 16>; |
| using RegMaskVector = SmallVector<const uint32_t *, 4>; |
| using RegSet = DenseSet<unsigned>; |
| using RegMap = DenseMap<unsigned, const MachineInstr *>; |
| using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; |
| |
| const MachineInstr *FirstNonPHI; |
| const MachineInstr *FirstTerminator; |
| BlockSet FunctionBlocks; |
| |
| BitVector regsReserved; |
| RegSet regsLive; |
| RegVector regsDefined, regsDead, regsKilled; |
| RegMaskVector regMasks; |
| |
| SlotIndex lastIndex; |
| |
| // Add Reg and any sub-registers to RV |
| void addRegWithSubRegs(RegVector &RV, unsigned Reg) { |
| RV.push_back(Reg); |
| if (Register::isPhysicalRegister(Reg)) |
| for (const MCPhysReg &SubReg : TRI->subregs(Reg)) |
| RV.push_back(SubReg); |
| } |
| |
| struct BBInfo { |
| // Is this MBB reachable from the MF entry point? |
| bool reachable = false; |
| |
| // Vregs that must be live in because they are used without being |
| // defined. Map value is the user. |
| RegMap vregsLiveIn; |
| |
| // Regs killed in MBB. They may be defined again, and will then be in both |
| // regsKilled and regsLiveOut. |
| RegSet regsKilled; |
| |
| // Regs defined in MBB and live out. Note that vregs passing through may |
| // be live out without being mentioned here. |
| RegSet regsLiveOut; |
| |
| // Vregs that pass through MBB untouched. This set is disjoint from |
| // regsKilled and regsLiveOut. |
| RegSet vregsPassed; |
| |
| // Vregs that must pass through MBB because they are needed by a successor |
| // block. This set is disjoint from regsLiveOut. |
| RegSet vregsRequired; |
| |
| // Set versions of block's predecessor and successor lists. |
| BlockSet Preds, Succs; |
| |
| BBInfo() = default; |
| |
| // Add register to vregsPassed if it belongs there. Return true if |
| // anything changed. |
| bool addPassed(unsigned Reg) { |
| if (!Register::isVirtualRegister(Reg)) |
| return false; |
| if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) |
| return false; |
| return vregsPassed.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addPassed(const RegSet &RS) { |
| bool changed = false; |
| for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) |
| if (addPassed(*I)) |
| changed = true; |
| return changed; |
| } |
| |
| // Add register to vregsRequired if it belongs there. Return true if |
| // anything changed. |
| bool addRequired(unsigned Reg) { |
| if (!Register::isVirtualRegister(Reg)) |
| return false; |
| if (regsLiveOut.count(Reg)) |
| return false; |
| return vregsRequired.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addRequired(const RegSet &RS) { |
| bool changed = false; |
| for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) |
| if (addRequired(*I)) |
| changed = true; |
| return changed; |
| } |
| |
| // Same for a full map. |
| bool addRequired(const RegMap &RM) { |
| bool changed = false; |
| for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) |
| if (addRequired(I->first)) |
| changed = true; |
| return changed; |
| } |
| |
| // Live-out registers are either in regsLiveOut or vregsPassed. |
| bool isLiveOut(unsigned Reg) const { |
| return regsLiveOut.count(Reg) || vregsPassed.count(Reg); |
| } |
| }; |
| |
| // Extra register info per MBB. |
| DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; |
| |
| bool isReserved(unsigned Reg) { |
| return Reg < regsReserved.size() && regsReserved.test(Reg); |
| } |
| |
| bool isAllocatable(unsigned Reg) const { |
| return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && |
| !regsReserved.test(Reg); |
| } |
| |
| // Analysis information if available |
| LiveVariables *LiveVars; |
| LiveIntervals *LiveInts; |
| LiveStacks *LiveStks; |
| SlotIndexes *Indexes; |
| |
| void visitMachineFunctionBefore(); |
| void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
| void visitMachineBundleBefore(const MachineInstr *MI); |
| |
| bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); |
| void verifyPreISelGenericInstruction(const MachineInstr *MI); |
| void visitMachineInstrBefore(const MachineInstr *MI); |
| void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
| void visitMachineInstrAfter(const MachineInstr *MI); |
| void visitMachineBundleAfter(const MachineInstr *MI); |
| void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
| void visitMachineFunctionAfter(); |
| |
| void report(const char *msg, const MachineFunction *MF); |
| void report(const char *msg, const MachineBasicBlock *MBB); |
| void report(const char *msg, const MachineInstr *MI); |
| void report(const char *msg, const MachineOperand *MO, unsigned MONum, |
| LLT MOVRegType = LLT{}); |
| |
| void report_context(const LiveInterval &LI) const; |
| void report_context(const LiveRange &LR, unsigned VRegUnit, |
| LaneBitmask LaneMask) const; |
| void report_context(const LiveRange::Segment &S) const; |
| void report_context(const VNInfo &VNI) const; |
| void report_context(SlotIndex Pos) const; |
| void report_context(MCPhysReg PhysReg) const; |
| void report_context_liverange(const LiveRange &LR) const; |
| void report_context_lanemask(LaneBitmask LaneMask) const; |
| void report_context_vreg(unsigned VReg) const; |
| void report_context_vreg_regunit(unsigned VRegOrUnit) const; |
| |
| void verifyInlineAsm(const MachineInstr *MI); |
| |
| void checkLiveness(const MachineOperand *MO, unsigned MONum); |
| void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, |
| SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, |
| LaneBitmask LaneMask = LaneBitmask::getNone()); |
| void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, |
| SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, |
| bool SubRangeCheck = false, |
| LaneBitmask LaneMask = LaneBitmask::getNone()); |
| |
| void markReachable(const MachineBasicBlock *MBB); |
| void calcRegsPassed(); |
| void checkPHIOps(const MachineBasicBlock &MBB); |
| |
| void calcRegsRequired(); |
| void verifyLiveVariables(); |
| void verifyLiveIntervals(); |
| void verifyLiveInterval(const LiveInterval&); |
| void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, |
| LaneBitmask); |
| void verifyLiveRangeSegment(const LiveRange&, |
| const LiveRange::const_iterator I, unsigned, |
| LaneBitmask); |
| void verifyLiveRange(const LiveRange&, unsigned, |
| LaneBitmask LaneMask = LaneBitmask::getNone()); |
| |
| void verifyStackFrame(); |
| |
| void verifySlotIndexes() const; |
| void verifyProperties(const MachineFunction &MF); |
| }; |
| |
| struct MachineVerifierPass : public MachineFunctionPass { |
| static char ID; // Pass ID, replacement for typeid |
| |
| const std::string Banner; |
| |
| MachineVerifierPass(std::string banner = std::string()) |
| : MachineFunctionPass(ID), Banner(std::move(banner)) { |
| initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); |
| if (FoundErrors) |
| report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); |
| return false; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char MachineVerifierPass::ID = 0; |
| |
| INITIALIZE_PASS(MachineVerifierPass, "machineverifier", |
| "Verify generated machine code", false, false) |
| |
| FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { |
| return new MachineVerifierPass(Banner); |
| } |
| |
| bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) |
| const { |
| MachineFunction &MF = const_cast<MachineFunction&>(*this); |
| unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); |
| if (AbortOnErrors && FoundErrors) |
| report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); |
| return FoundErrors == 0; |
| } |
| |
| void MachineVerifier::verifySlotIndexes() const { |
| if (Indexes == nullptr) |
| return; |
| |
| // Ensure the IdxMBB list is sorted by slot indexes. |
| SlotIndex Last; |
| for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), |
| E = Indexes->MBBIndexEnd(); I != E; ++I) { |
| assert(!Last.isValid() || I->first > Last); |
| Last = I->first; |
| } |
| } |
| |
| void MachineVerifier::verifyProperties(const MachineFunction &MF) { |
| // If a pass has introduced virtual registers without clearing the |
| // NoVRegs property (or set it without allocating the vregs) |
| // then report an error. |
| if (MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoVRegs) && |
| MRI->getNumVirtRegs()) |
| report("Function has NoVRegs property but there are VReg operands", &MF); |
| } |
| |
| unsigned MachineVerifier::verify(MachineFunction &MF) { |
| foundErrors = 0; |
| |
| this->MF = &MF; |
| TM = &MF.getTarget(); |
| TII = MF.getSubtarget().getInstrInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| |
| const bool isFunctionFailedISel = MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::FailedISel); |
| |
| // If we're mid-GlobalISel and we already triggered the fallback path then |
| // it's expected that the MIR is somewhat broken but that's ok since we'll |
| // reset it and clear the FailedISel attribute in ResetMachineFunctions. |
| if (isFunctionFailedISel) |
| return foundErrors; |
| |
| isFunctionRegBankSelected = |
| !isFunctionFailedISel && |
| MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::RegBankSelected); |
| isFunctionSelected = !isFunctionFailedISel && |
| MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::Selected); |
| LiveVars = nullptr; |
| LiveInts = nullptr; |
| LiveStks = nullptr; |
| Indexes = nullptr; |
| if (PASS) { |
| LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); |
| // We don't want to verify LiveVariables if LiveIntervals is available. |
| if (!LiveInts) |
| LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); |
| LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); |
| Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); |
| } |
| |
| verifySlotIndexes(); |
| |
| verifyProperties(MF); |
| |
| visitMachineFunctionBefore(); |
| for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); |
| MFI!=MFE; ++MFI) { |
| visitMachineBasicBlockBefore(&*MFI); |
| // Keep track of the current bundle header. |
| const MachineInstr *CurBundle = nullptr; |
| // Do we expect the next instruction to be part of the same bundle? |
| bool InBundle = false; |
| |
| for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), |
| MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { |
| if (MBBI->getParent() != &*MFI) { |
| report("Bad instruction parent pointer", &*MFI); |
| errs() << "Instruction: " << *MBBI; |
| continue; |
| } |
| |
| // Check for consistent bundle flags. |
| if (InBundle && !MBBI->isBundledWithPred()) |
| report("Missing BundledPred flag, " |
| "BundledSucc was set on predecessor", |
| &*MBBI); |
| if (!InBundle && MBBI->isBundledWithPred()) |
| report("BundledPred flag is set, " |
| "but BundledSucc not set on predecessor", |
| &*MBBI); |
| |
| // Is this a bundle header? |
| if (!MBBI->isInsideBundle()) { |
| if (CurBundle) |
| visitMachineBundleAfter(CurBundle); |
| CurBundle = &*MBBI; |
| visitMachineBundleBefore(CurBundle); |
| } else if (!CurBundle) |
| report("No bundle header", &*MBBI); |
| visitMachineInstrBefore(&*MBBI); |
| for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { |
| const MachineInstr &MI = *MBBI; |
| const MachineOperand &Op = MI.getOperand(I); |
| if (Op.getParent() != &MI) { |
| // Make sure to use correct addOperand / RemoveOperand / ChangeTo |
| // functions when replacing operands of a MachineInstr. |
| report("Instruction has operand with wrong parent set", &MI); |
| } |
| |
| visitMachineOperand(&Op, I); |
| } |
| |
| visitMachineInstrAfter(&*MBBI); |
| |
| // Was this the last bundled instruction? |
| InBundle = MBBI->isBundledWithSucc(); |
| } |
| if (CurBundle) |
| visitMachineBundleAfter(CurBundle); |
| if (InBundle) |
| report("BundledSucc flag set on last instruction in block", &MFI->back()); |
| visitMachineBasicBlockAfter(&*MFI); |
| } |
| visitMachineFunctionAfter(); |
| |
| // Clean up. |
| regsLive.clear(); |
| regsDefined.clear(); |
| regsDead.clear(); |
| regsKilled.clear(); |
| regMasks.clear(); |
| MBBInfoMap.clear(); |
| |
| return foundErrors; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
| assert(MF); |
| errs() << '\n'; |
| if (!foundErrors++) { |
| if (Banner) |
| errs() << "# " << Banner << '\n'; |
| if (LiveInts != nullptr) |
| LiveInts->print(errs()); |
| else |
| MF->print(errs(), Indexes); |
| } |
| errs() << "*** Bad machine code: " << msg << " ***\n" |
| << "- function: " << MF->getName() << "\n"; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
| assert(MBB); |
| report(msg, MBB->getParent()); |
| errs() << "- basic block: " << printMBBReference(*MBB) << ' ' |
| << MBB->getName() << " (" << (const void *)MBB << ')'; |
| if (Indexes) |
| errs() << " [" << Indexes->getMBBStartIdx(MBB) |
| << ';' << Indexes->getMBBEndIdx(MBB) << ')'; |
| errs() << '\n'; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
| assert(MI); |
| report(msg, MI->getParent()); |
| errs() << "- instruction: "; |
| if (Indexes && Indexes->hasIndex(*MI)) |
| errs() << Indexes->getInstructionIndex(*MI) << '\t'; |
| MI->print(errs(), /*SkipOpers=*/true); |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineOperand *MO, |
| unsigned MONum, LLT MOVRegType) { |
| assert(MO); |
| report(msg, MO->getParent()); |
| errs() << "- operand " << MONum << ": "; |
| MO->print(errs(), MOVRegType, TRI); |
| errs() << "\n"; |
| } |
| |
| void MachineVerifier::report_context(SlotIndex Pos) const { |
| errs() << "- at: " << Pos << '\n'; |
| } |
| |
| void MachineVerifier::report_context(const LiveInterval &LI) const { |
| errs() << "- interval: " << LI << '\n'; |
| } |
| |
| void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, |
| LaneBitmask LaneMask) const { |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| } |
| |
| void MachineVerifier::report_context(const LiveRange::Segment &S) const { |
| errs() << "- segment: " << S << '\n'; |
| } |
| |
| void MachineVerifier::report_context(const VNInfo &VNI) const { |
| errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; |
| } |
| |
| void MachineVerifier::report_context_liverange(const LiveRange &LR) const { |
| errs() << "- liverange: " << LR << '\n'; |
| } |
| |
| void MachineVerifier::report_context(MCPhysReg PReg) const { |
| errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; |
| } |
| |
| void MachineVerifier::report_context_vreg(unsigned VReg) const { |
| errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; |
| } |
| |
| void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { |
| if (Register::isVirtualRegister(VRegOrUnit)) { |
| report_context_vreg(VRegOrUnit); |
| } else { |
| errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; |
| } |
| } |
| |
| void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { |
| errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; |
| } |
| |
| void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| if (!MInfo.reachable) { |
| MInfo.reachable = true; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), |
| SuE = MBB->succ_end(); SuI != SuE; ++SuI) |
| markReachable(*SuI); |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionBefore() { |
| lastIndex = SlotIndex(); |
| regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() |
| : TRI->getReservedRegs(*MF); |
| |
| if (!MF->empty()) |
| markReachable(&MF->front()); |
| |
| // Build a set of the basic blocks in the function. |
| FunctionBlocks.clear(); |
| for (const auto &MBB : *MF) { |
| FunctionBlocks.insert(&MBB); |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| |
| MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); |
| if (MInfo.Preds.size() != MBB.pred_size()) |
| report("MBB has duplicate entries in its predecessor list.", &MBB); |
| |
| MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); |
| if (MInfo.Succs.size() != MBB.succ_size()) |
| report("MBB has duplicate entries in its successor list.", &MBB); |
| } |
| |
| // Check that the register use lists are sane. |
| MRI->verifyUseLists(); |
| |
| if (!MF->empty()) |
| verifyStackFrame(); |
| } |
| |
| // Does iterator point to a and b as the first two elements? |
| static bool matchPair(MachineBasicBlock::const_succ_iterator i, |
| const MachineBasicBlock *a, const MachineBasicBlock *b) { |
| if (*i == a) |
| return *++i == b; |
| if (*i == b) |
| return *++i == a; |
| return false; |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
| FirstTerminator = nullptr; |
| FirstNonPHI = nullptr; |
| |
| if (!MF->getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { |
| // If this block has allocatable physical registers live-in, check that |
| // it is an entry block or landing pad. |
| for (const auto &LI : MBB->liveins()) { |
| if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && |
| MBB->getIterator() != MBB->getParent()->begin()) { |
| report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); |
| report_context(LI.PhysReg); |
| } |
| } |
| } |
| |
| // Count the number of landing pad successors. |
| SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; |
| for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) { |
| if ((*I)->isEHPad()) |
| LandingPadSuccs.insert(*I); |
| if (!FunctionBlocks.count(*I)) |
| report("MBB has successor that isn't part of the function.", MBB); |
| if (!MBBInfoMap[*I].Preds.count(MBB)) { |
| report("Inconsistent CFG", MBB); |
| errs() << "MBB is not in the predecessor list of the successor " |
| << printMBBReference(*(*I)) << ".\n"; |
| } |
| } |
| |
| // Check the predecessor list. |
| for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), |
| E = MBB->pred_end(); I != E; ++I) { |
| if (!FunctionBlocks.count(*I)) |
| report("MBB has predecessor that isn't part of the function.", MBB); |
| if (!MBBInfoMap[*I].Succs.count(MBB)) { |
| report("Inconsistent CFG", MBB); |
| errs() << "MBB is not in the successor list of the predecessor " |
| << printMBBReference(*(*I)) << ".\n"; |
| } |
| } |
| |
| const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| const Function &F = MF->getFunction(); |
| if (LandingPadSuccs.size() > 1 && |
| !(AsmInfo && |
| AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && |
| BB && isa<SwitchInst>(BB->getTerminator())) && |
| !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) |
| report("MBB has more than one landing pad successor", MBB); |
| |
| // Call AnalyzeBranch. If it succeeds, there several more conditions to check. |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, |
| Cond)) { |
| // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's |
| // check whether its answers match up with reality. |
| if (!TBB && !FBB) { |
| // Block falls through to its successor. |
| MachineFunction::const_iterator MBBI = MBB->getIterator(); |
| ++MBBI; |
| if (MBBI == MF->end()) { |
| // It's possible that the block legitimately ends with a noreturn |
| // call or an unreachable, in which case it won't actually fall |
| // out the bottom of the function. |
| } else if (MBB->succ_size() == LandingPadSuccs.size()) { |
| // It's possible that the block legitimately ends with a noreturn |
| // call or an unreachable, in which case it won't actually fall |
| // out of the block. |
| } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { |
| report("MBB exits via unconditional fall-through but doesn't have " |
| "exactly one CFG successor!", MBB); |
| } else if (!MBB->isSuccessor(&*MBBI)) { |
| report("MBB exits via unconditional fall-through but its successor " |
| "differs from its CFG successor!", MBB); |
| } |
| if (!MBB->empty() && MBB->back().isBarrier() && |
| !TII->isPredicated(MBB->back())) { |
| report("MBB exits via unconditional fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } |
| if (!Cond.empty()) { |
| report("MBB exits via unconditional fall-through but has a condition!", |
| MBB); |
| } |
| } else if (TBB && !FBB && Cond.empty()) { |
| // Block unconditionally branches somewhere. |
| // If the block has exactly one successor, that happens to be a |
| // landingpad, accept it as valid control flow. |
| if (MBB->succ_size() != 1+LandingPadSuccs.size() && |
| (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || |
| *MBB->succ_begin() != *LandingPadSuccs.begin())) { |
| report("MBB exits via unconditional branch but doesn't have " |
| "exactly one CFG successor!", MBB); |
| } else if (!MBB->isSuccessor(TBB)) { |
| report("MBB exits via unconditional branch but the CFG " |
| "successor doesn't match the actual successor!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via unconditional branch but doesn't contain " |
| "any instructions!", MBB); |
| } else if (!MBB->back().isBarrier()) { |
| report("MBB exits via unconditional branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via unconditional branch but the branch isn't a " |
| "terminator instruction!", MBB); |
| } |
| } else if (TBB && !FBB && !Cond.empty()) { |
| // Block conditionally branches somewhere, otherwise falls through. |
| MachineFunction::const_iterator MBBI = MBB->getIterator(); |
| ++MBBI; |
| if (MBBI == MF->end()) { |
| report("MBB conditionally falls through out of function!", MBB); |
| } else if (MBB->succ_size() == 1) { |
| // A conditional branch with only one successor is weird, but allowed. |
| if (&*MBBI != TBB) |
| report("MBB exits via conditional branch/fall-through but only has " |
| "one CFG successor!", MBB); |
| else if (TBB != *MBB->succ_begin()) |
| report("MBB exits via conditional branch/fall-through but the CFG " |
| "successor don't match the actual successor!", MBB); |
| } else if (MBB->succ_size() != 2) { |
| report("MBB exits via conditional branch/fall-through but doesn't have " |
| "exactly two CFG successors!", MBB); |
| } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { |
| report("MBB exits via conditional branch/fall-through but the CFG " |
| "successors don't match the actual successors!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/fall-through but doesn't " |
| "contain any instructions!", MBB); |
| } else if (MBB->back().isBarrier()) { |
| report("MBB exits via conditional branch/fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via conditional branch/fall-through but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| } else if (TBB && FBB) { |
| // Block conditionally branches somewhere, otherwise branches |
| // somewhere else. |
| if (MBB->succ_size() == 1) { |
| // A conditional branch with only one successor is weird, but allowed. |
| if (FBB != TBB) |
| report("MBB exits via conditional branch/branch through but only has " |
| "one CFG successor!", MBB); |
| else if (TBB != *MBB->succ_begin()) |
| report("MBB exits via conditional branch/branch through but the CFG " |
| "successor don't match the actual successor!", MBB); |
| } else if (MBB->succ_size() != 2) { |
| report("MBB exits via conditional branch/branch but doesn't have " |
| "exactly two CFG successors!", MBB); |
| } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { |
| report("MBB exits via conditional branch/branch but the CFG " |
| "successors don't match the actual successors!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/branch but doesn't " |
| "contain any instructions!", MBB); |
| } else if (!MBB->back().isBarrier()) { |
| report("MBB exits via conditional branch/branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via conditional branch/branch but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| if (Cond.empty()) { |
| report("MBB exits via conditional branch/branch but there's no " |
| "condition!", MBB); |
| } |
| } else { |
| report("AnalyzeBranch returned invalid data!", MBB); |
| } |
| } |
| |
| regsLive.clear(); |
| if (MRI->tracksLiveness()) { |
| for (const auto &LI : MBB->liveins()) { |
| if (!Register::isPhysicalRegister(LI.PhysReg)) { |
| report("MBB live-in list contains non-physical register", MBB); |
| continue; |
| } |
| for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) |
| regsLive.insert(SubReg); |
| } |
| } |
| |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| BitVector PR = MFI.getPristineRegs(*MF); |
| for (unsigned I : PR.set_bits()) { |
| for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) |
| regsLive.insert(SubReg); |
| } |
| |
| regsKilled.clear(); |
| regsDefined.clear(); |
| |
| if (Indexes) |
| lastIndex = Indexes->getMBBStartIdx(MBB); |
| } |
| |
| // This function gets called for all bundle headers, including normal |
| // stand-alone unbundled instructions. |
| void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { |
| if (Indexes && Indexes->hasIndex(*MI)) { |
| SlotIndex idx = Indexes->getInstructionIndex(*MI); |
| if (!(idx > lastIndex)) { |
| report("Instruction index out of order", MI); |
| errs() << "Last instruction was at " << lastIndex << '\n'; |
| } |
| lastIndex = idx; |
| } |
| |
| // Ensure non-terminators don't follow terminators. |
| // Ignore predicated terminators formed by if conversion. |
| // FIXME: If conversion shouldn't need to violate this rule. |
| if (MI->isTerminator() && !TII->isPredicated(*MI)) { |
| if (!FirstTerminator) |
| FirstTerminator = MI; |
| } else if (FirstTerminator && !MI->isDebugEntryValue()) { |
| report("Non-terminator instruction after the first terminator", MI); |
| errs() << "First terminator was:\t" << *FirstTerminator; |
| } |
| } |
| |
| // The operands on an INLINEASM instruction must follow a template. |
| // Verify that the flag operands make sense. |
| void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { |
| // The first two operands on INLINEASM are the asm string and global flags. |
| if (MI->getNumOperands() < 2) { |
| report("Too few operands on inline asm", MI); |
| return; |
| } |
| if (!MI->getOperand(0).isSymbol()) |
| report("Asm string must be an external symbol", MI); |
| if (!MI->getOperand(1).isImm()) |
| report("Asm flags must be an immediate", MI); |
| // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, |
| // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, |
| // and Extra_IsConvergent = 32. |
| if (!isUInt<6>(MI->getOperand(1).getImm())) |
| report("Unknown asm flags", &MI->getOperand(1), 1); |
| |
| static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); |
| |
| unsigned OpNo = InlineAsm::MIOp_FirstOperand; |
| unsigned NumOps; |
| for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { |
| const MachineOperand &MO = MI->getOperand(OpNo); |
| // There may be implicit ops after the fixed operands. |
| if (!MO.isImm()) |
| break; |
| NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); |
| } |
| |
| if (OpNo > MI->getNumOperands()) |
| report("Missing operands in last group", MI); |
| |
| // An optional MDNode follows the groups. |
| if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) |
| ++OpNo; |
| |
| // All trailing operands must be implicit registers. |
| for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { |
| const MachineOperand &MO = MI->getOperand(OpNo); |
| if (!MO.isReg() || !MO.isImplicit()) |
| report("Expected implicit register after groups", &MO, OpNo); |
| } |
| } |
| |
| /// Check that types are consistent when two operands need to have the same |
| /// number of vector elements. |
| /// \return true if the types are valid. |
| bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, |
| const MachineInstr *MI) { |
| if (Ty0.isVector() != Ty1.isVector()) { |
| report("operand types must be all-vector or all-scalar", MI); |
| // Generally we try to report as many issues as possible at once, but in |
| // this case it's not clear what should we be comparing the size of the |
| // scalar with: the size of the whole vector or its lane. Instead of |
| // making an arbitrary choice and emitting not so helpful message, let's |
| // avoid the extra noise and stop here. |
| return false; |
| } |
| |
| if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { |
| report("operand types must preserve number of vector elements", MI); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { |
| if (isFunctionSelected) |
| report("Unexpected generic instruction in a Selected function", MI); |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MI->getNumOperands(); |
| |
| // Check types. |
| SmallVector<LLT, 4> Types; |
| for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); |
| I != E; ++I) { |
| if (!MCID.OpInfo[I].isGenericType()) |
| continue; |
| // Generic instructions specify type equality constraints between some of |
| // their operands. Make sure these are consistent. |
| size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); |
| Types.resize(std::max(TypeIdx + 1, Types.size())); |
| |
| const MachineOperand *MO = &MI->getOperand(I); |
| if (!MO->isReg()) { |
| report("generic instruction must use register operands", MI); |
| continue; |
| } |
| |
| LLT OpTy = MRI->getType(MO->getReg()); |
| // Don't report a type mismatch if there is no actual mismatch, only a |
| // type missing, to reduce noise: |
| if (OpTy.isValid()) { |
| // Only the first valid type for a type index will be printed: don't |
| // overwrite it later so it's always clear which type was expected: |
| if (!Types[TypeIdx].isValid()) |
| Types[TypeIdx] = OpTy; |
| else if (Types[TypeIdx] != OpTy) |
| report("Type mismatch in generic instruction", MO, I, OpTy); |
| } else { |
| // Generic instructions must have types attached to their operands. |
| report("Generic instruction is missing a virtual register type", MO, I); |
| } |
| } |
| |
| // Generic opcodes must not have physical register operands. |
| for (unsigned I = 0; I < MI->getNumOperands(); ++I) { |
| const MachineOperand *MO = &MI->getOperand(I); |
| if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) |
| report("Generic instruction cannot have physical register", MO, I); |
| } |
| |
| // Avoid out of bounds in checks below. This was already reported earlier. |
| if (MI->getNumOperands() < MCID.getNumOperands()) |
| return; |
| |
| StringRef ErrorInfo; |
| if (!TII->verifyInstruction(*MI, ErrorInfo)) |
| report(ErrorInfo.data(), MI); |
| |
| // Verify properties of various specific instruction types |
| switch (MI->getOpcode()) { |
| case TargetOpcode::G_CONSTANT: |
| case TargetOpcode::G_FCONSTANT: { |
| if (MI->getNumOperands() < MCID.getNumOperands()) |
| break; |
| |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (DstTy.isVector()) |
| report("Instruction cannot use a vector result type", MI); |
| |
| if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { |
| if (!MI->getOperand(1).isCImm()) { |
| report("G_CONSTANT operand must be cimm", MI); |
| break; |
| } |
| |
| const ConstantInt *CI = MI->getOperand(1).getCImm(); |
| if (CI->getBitWidth() != DstTy.getSizeInBits()) |
| report("inconsistent constant size", MI); |
| } else { |
| if (!MI->getOperand(1).isFPImm()) { |
| report("G_FCONSTANT operand must be fpimm", MI); |
| break; |
| } |
| const ConstantFP *CF = MI->getOperand(1).getFPImm(); |
| |
| if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != |
| DstTy.getSizeInBits()) { |
| report("inconsistent constant size", MI); |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_STORE: |
| case TargetOpcode::G_ZEXTLOAD: |
| case TargetOpcode::G_SEXTLOAD: { |
| LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!PtrTy.isPointer()) |
| report("Generic memory instruction must access a pointer", MI); |
| |
| // Generic loads and stores must have a single MachineMemOperand |
| // describing that access. |
| if (!MI->hasOneMemOperand()) { |
| report("Generic instruction accessing memory must have one mem operand", |
| MI); |
| } else { |
| const MachineMemOperand &MMO = **MI->memoperands_begin(); |
| if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || |
| MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { |
| if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) |
| report("Generic extload must have a narrower memory type", MI); |
| } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { |
| if (MMO.getSize() > ValTy.getSizeInBytes()) |
| report("load memory size cannot exceed result size", MI); |
| } else if (MI->getOpcode() == TargetOpcode::G_STORE) { |
| if (ValTy.getSizeInBytes() < MMO.getSize()) |
| report("store memory size cannot exceed value size", MI); |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_PHI: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (!DstTy.isValid() || |
| !std::all_of(MI->operands_begin() + 1, MI->operands_end(), |
| [this, &DstTy](const MachineOperand &MO) { |
| if (!MO.isReg()) |
| return true; |
| LLT Ty = MRI->getType(MO.getReg()); |
| if (!Ty.isValid() || (Ty != DstTy)) |
| return false; |
| return true; |
| })) |
| report("Generic Instruction G_PHI has operands with incompatible/missing " |
| "types", |
| MI); |
| break; |
| } |
| case TargetOpcode::G_BITCAST: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid()) |
| break; |
| |
| if (SrcTy.isPointer() != DstTy.isPointer()) |
| report("bitcast cannot convert between pointers and other types", MI); |
| |
| if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| report("bitcast sizes must match", MI); |
| break; |
| } |
| case TargetOpcode::G_INTTOPTR: |
| case TargetOpcode::G_PTRTOINT: |
| case TargetOpcode::G_ADDRSPACE_CAST: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid()) |
| break; |
| |
| verifyVectorElementMatch(DstTy, SrcTy, MI); |
| |
| DstTy = DstTy.getScalarType(); |
| SrcTy = SrcTy.getScalarType(); |
| |
| if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { |
| if (!DstTy.isPointer()) |
| report("inttoptr result type must be a pointer", MI); |
| if (SrcTy.isPointer()) |
| report("inttoptr source type must not be a pointer", MI); |
| } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { |
| if (!SrcTy.isPointer()) |
| report("ptrtoint source type must be a pointer", MI); |
| if (DstTy.isPointer()) |
| report("ptrtoint result type must not be a pointer", MI); |
| } else { |
| assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); |
| if (!SrcTy.isPointer() || !DstTy.isPointer()) |
| report("addrspacecast types must be pointers", MI); |
| else { |
| if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) |
| report("addrspacecast must convert different address spaces", MI); |
| } |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_PTR_ADD: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); |
| LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); |
| if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) |
| break; |
| |
| if (!PtrTy.getScalarType().isPointer()) |
| report("gep first operand must be a pointer", MI); |
| |
| if (OffsetTy.getScalarType().isPointer()) |
| report("gep offset operand must not be a pointer", MI); |
| |
| // TODO: Is the offset allowed to be a scalar with a vector? |
| break; |
| } |
| case TargetOpcode::G_SEXT: |
| case TargetOpcode::G_ZEXT: |
| case TargetOpcode::G_ANYEXT: |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_FPEXT: |
| case TargetOpcode::G_FPTRUNC: { |
| // Number of operands and presense of types is already checked (and |
| // reported in case of any issues), so no need to report them again. As |
| // we're trying to report as many issues as possible at once, however, the |
| // instructions aren't guaranteed to have the right number of operands or |
| // types attached to them at this point |
| assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isValid() || !SrcTy.isValid()) |
| break; |
| |
| LLT DstElTy = DstTy.getScalarType(); |
| LLT SrcElTy = SrcTy.getScalarType(); |
| if (DstElTy.isPointer() || SrcElTy.isPointer()) |
| report("Generic extend/truncate can not operate on pointers", MI); |
| |
| verifyVectorElementMatch(DstTy, SrcTy, MI); |
| |
| unsigned DstSize = DstElTy.getSizeInBits(); |
| unsigned SrcSize = SrcElTy.getSizeInBits(); |
| switch (MI->getOpcode()) { |
| default: |
| if (DstSize <= SrcSize) |
| report("Generic extend has destination type no larger than source", MI); |
| break; |
| case TargetOpcode::G_TRUNC: |
| case TargetOpcode::G_FPTRUNC: |
| if (DstSize >= SrcSize) |
| report("Generic truncate has destination type no smaller than source", |
| MI); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_SELECT: { |
| LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!SelTy.isValid() || !CondTy.isValid()) |
| break; |
| |
| // Scalar condition select on a vector is valid. |
| if (CondTy.isVector()) |
| verifyVectorElementMatch(SelTy, CondTy, MI); |
| break; |
| } |
| case TargetOpcode::G_MERGE_VALUES: { |
| // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, |
| // e.g. s2N = MERGE sN, sN |
| // Merging multiple scalars into a vector is not allowed, should use |
| // G_BUILD_VECTOR for that. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (DstTy.isVector() || SrcTy.isVector()) |
| report("G_MERGE_VALUES cannot operate on vectors", MI); |
| |
| const unsigned NumOps = MI->getNumOperands(); |
| if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) |
| report("G_MERGE_VALUES result size is inconsistent", MI); |
| |
| for (unsigned I = 2; I != NumOps; ++I) { |
| if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) |
| report("G_MERGE_VALUES source types do not match", MI); |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_UNMERGE_VALUES: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); |
| // For now G_UNMERGE can split vectors. |
| for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { |
| if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) |
| report("G_UNMERGE_VALUES destination types do not match", MI); |
| } |
| if (SrcTy.getSizeInBits() != |
| (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { |
| report("G_UNMERGE_VALUES source operand does not cover dest operands", |
| MI); |
| } |
| break; |
| } |
| case TargetOpcode::G_BUILD_VECTOR: { |
| // Source types must be scalars, dest type a vector. Total size of scalars |
| // must match the dest vector size. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isVector() || SrcEltTy.isVector()) { |
| report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); |
| break; |
| } |
| |
| if (DstTy.getElementType() != SrcEltTy) |
| report("G_BUILD_VECTOR result element type must match source type", MI); |
| |
| if (DstTy.getNumElements() != MI->getNumOperands() - 1) |
| report("G_BUILD_VECTOR must have an operand for each elemement", MI); |
| |
| for (unsigned i = 2; i < MI->getNumOperands(); ++i) { |
| if (MRI->getType(MI->getOperand(1).getReg()) != |
| MRI->getType(MI->getOperand(i).getReg())) |
| report("G_BUILD_VECTOR source operand types are not homogeneous", MI); |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_BUILD_VECTOR_TRUNC: { |
| // Source types must be scalars, dest type a vector. Scalar types must be |
| // larger than the dest vector elt type, as this is a truncating operation. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isVector() || SrcEltTy.isVector()) |
| report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", |
| MI); |
| for (unsigned i = 2; i < MI->getNumOperands(); ++i) { |
| if (MRI->getType(MI->getOperand(1).getReg()) != |
| MRI->getType(MI->getOperand(i).getReg())) |
| report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", |
| MI); |
| } |
| if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) |
| report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " |
| "dest elt type", |
| MI); |
| break; |
| } |
| case TargetOpcode::G_CONCAT_VECTORS: { |
| // Source types should be vectors, and total size should match the dest |
| // vector size. |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| if (!DstTy.isVector() || !SrcTy.isVector()) |
| report("G_CONCAT_VECTOR requires vector source and destination operands", |
| MI); |
| for (unsigned i = 2; i < MI->getNumOperands(); ++i) { |
| if (MRI->getType(MI->getOperand(1).getReg()) != |
| MRI->getType(MI->getOperand(i).getReg())) |
| report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); |
| } |
| if (DstTy.getNumElements() != |
| SrcTy.getNumElements() * (MI->getNumOperands() - 1)) |
| report("G_CONCAT_VECTOR num dest and source elements should match", MI); |
| break; |
| } |
| case TargetOpcode::G_ICMP: |
| case TargetOpcode::G_FCMP: { |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); |
| |
| if ((DstTy.isVector() != SrcTy.isVector()) || |
| (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) |
| report("Generic vector icmp/fcmp must preserve number of lanes", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_EXTRACT: { |
| const MachineOperand &SrcOp = MI->getOperand(1); |
| if (!SrcOp.isReg()) { |
| report("extract source must be a register", MI); |
| break; |
| } |
| |
| const MachineOperand &OffsetOp = MI->getOperand(2); |
| if (!OffsetOp.isImm()) { |
| report("extract offset must be a constant", MI); |
| break; |
| } |
| |
| unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); |
| if (SrcSize == DstSize) |
| report("extract source must be larger than result", MI); |
| |
| if (DstSize + OffsetOp.getImm() > SrcSize) |
| report("extract reads past end of register", MI); |
| break; |
| } |
| case TargetOpcode::G_INSERT: { |
| const MachineOperand &SrcOp = MI->getOperand(2); |
| if (!SrcOp.isReg()) { |
| report("insert source must be a register", MI); |
| break; |
| } |
| |
| const MachineOperand &OffsetOp = MI->getOperand(3); |
| if (!OffsetOp.isImm()) { |
| report("insert offset must be a constant", MI); |
| break; |
| } |
| |
| unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); |
| |
| if (DstSize <= SrcSize) |
| report("inserted size must be smaller than total register", MI); |
| |
| if (SrcSize + OffsetOp.getImm() > DstSize) |
| report("insert writes past end of register", MI); |
| |
| break; |
| } |
| case TargetOpcode::G_JUMP_TABLE: { |
| if (!MI->getOperand(1).isJTI()) |
| report("G_JUMP_TABLE source operand must be a jump table index", MI); |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| if (!DstTy.isPointer()) |
| report("G_JUMP_TABLE dest operand must have a pointer type", MI); |
| break; |
| } |
| case TargetOpcode::G_BRJT: { |
| if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) |
| report("G_BRJT src operand 0 must be a pointer type", MI); |
| |
| if (!MI->getOperand(1).isJTI()) |
| report("G_BRJT src operand 1 must be a jump table index", MI); |
| |
| const auto &IdxOp = MI->getOperand(2); |
| if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) |
| report("G_BRJT src operand 2 must be a scalar reg type", MI); |
| break; |
| } |
| case TargetOpcode::G_INTRINSIC: |
| case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { |
| // TODO: Should verify number of def and use operands, but the current |
| // interface requires passing in IR types for mangling. |
| const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); |
| if (!IntrIDOp.isIntrinsicID()) { |
| report("G_INTRINSIC first src operand must be an intrinsic ID", MI); |
| break; |
| } |
| |
| bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; |
| unsigned IntrID = IntrIDOp.getIntrinsicID(); |
| if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
| AttributeList Attrs |
| = Intrinsic::getAttributes(MF->getFunction().getContext(), |
| static_cast<Intrinsic::ID>(IntrID)); |
| bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); |
| if (NoSideEffects && DeclHasSideEffects) { |
| report("G_INTRINSIC used with intrinsic that accesses memory", MI); |
| break; |
| } |
| if (!NoSideEffects && !DeclHasSideEffects) { |
| report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); |
| break; |
| } |
| } |
| switch (IntrID) { |
| case Intrinsic::memcpy: |
| if (MI->getNumOperands() != 5) |
| report("Expected memcpy intrinsic to have 5 operands", MI); |
| break; |
| case Intrinsic::memmove: |
| if (MI->getNumOperands() != 5) |
| report("Expected memmove intrinsic to have 5 operands", MI); |
| break; |
| case Intrinsic::memset: |
| if (MI->getNumOperands() != 5) |
| report("Expected memset intrinsic to have 5 operands", MI); |
| break; |
| } |
| break; |
| } |
| case TargetOpcode::G_SEXT_INREG: { |
| if (!MI->getOperand(2).isImm()) { |
| report("G_SEXT_INREG expects an immediate operand #2", MI); |
| break; |
| } |
| |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); |
| verifyVectorElementMatch(DstTy, SrcTy, MI); |
| |
| int64_t Imm = MI->getOperand(2).getImm(); |
| if (Imm <= 0) |
| report("G_SEXT_INREG size must be >= 1", MI); |
| if (Imm >= SrcTy.getScalarSizeInBits()) |
| report("G_SEXT_INREG size must be less than source bit width", MI); |
| break; |
| } |
| case TargetOpcode::G_SHUFFLE_VECTOR: { |
| const MachineOperand &MaskOp = MI->getOperand(3); |
| if (!MaskOp.isShuffleMask()) { |
| report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); |
| break; |
| } |
| |
| LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); |
| LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); |
| LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); |
| |
| if (Src0Ty != Src1Ty) |
| report("Source operands must be the same type", MI); |
| |
| if (Src0Ty.getScalarType() != DstTy.getScalarType()) |
| report("G_SHUFFLE_VECTOR cannot change element type", MI); |
| |
| // Don't check that all operands are vector because scalars are used in |
| // place of 1 element vectors. |
| int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; |
| int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; |
| |
| ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); |
| |
| if (static_cast<int>(MaskIdxes.size()) != DstNumElts) |
| report("Wrong result type for shufflemask", MI); |
| |
| for (int Idx : MaskIdxes) { |
| if (Idx < 0) |
| continue; |
| |
| if (Idx >= 2 * SrcNumElts) |
| report("Out of bounds shuffle index", MI); |
| } |
| |
| break; |
| } |
| case TargetOpcode::G_DYN_STACKALLOC: { |
| const MachineOperand &DstOp = MI->getOperand(0); |
| const MachineOperand &AllocOp = MI->getOperand(1); |
| const MachineOperand &AlignOp = MI->getOperand(2); |
| |
| if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { |
| report("dst operand 0 must be a pointer type", MI); |
| break; |
| } |
| |
| if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { |
| report("src operand 1 must be a scalar reg type", MI); |
| break; |
| } |
| |
| if (!AlignOp.isImm()) { |
| report("src operand 2 must be an immediate type", MI); |
| break; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (MI->getNumOperands() < MCID.getNumOperands()) { |
| report("Too few operands", MI); |
| errs() << MCID.getNumOperands() << " operands expected, but " |
| << MI->getNumOperands() << " given.\n"; |
| } |
| |
| if (MI->isPHI()) { |
| if (MF->getProperties().hasProperty( |
| MachineFunctionProperties::Property::NoPHIs)) |
| report("Found PHI instruction with NoPHIs property set", MI); |
| |
| if (FirstNonPHI) |
| report("Found PHI instruction after non-PHI", MI); |
| } else if (FirstNonPHI == nullptr) |
| FirstNonPHI = MI; |
| |
| // Check the tied operands. |
| if (MI->isInlineAsm()) |
| verifyInlineAsm(MI); |
| |
| // Check the MachineMemOperands for basic consistency. |
| for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), |
| E = MI->memoperands_end(); |
| I != E; ++I) { |
| if ((*I)->isLoad() && !MI->mayLoad()) |
| report("Missing mayLoad flag", MI); |
| if ((*I)->isStore() && !MI->mayStore()) |
| report("Missing mayStore flag", MI); |
| } |
| |
| // Debug values must not have a slot index. |
| // Other instructions must have one, unless they are inside a bundle. |
| if (LiveInts) { |
| bool mapped = !LiveInts->isNotInMIMap(*MI); |
| if (MI->isDebugInstr()) { |
| if (mapped) |
| report("Debug instruction has a slot index", MI); |
| } else if (MI->isInsideBundle()) { |
| if (mapped) |
| report("Instruction inside bundle has a slot index", MI); |
| } else { |
| if (!mapped) |
| report("Missing slot index", MI); |
| } |
| } |
| |
| if (isPreISelGenericOpcode(MCID.getOpcode())) { |
| verifyPreISelGenericInstruction(MI); |
| return; |
| } |
| |
| StringRef ErrorInfo; |
| if (!TII->verifyInstruction(*MI, ErrorInfo)) |
| report(ErrorInfo.data(), MI); |
| |
| // Verify properties of various specific instruction types |
| switch (MI->getOpcode()) { |
| case TargetOpcode::COPY: { |
| if (foundErrors) |
| break; |
| const MachineOperand &DstOp = MI->getOperand(0); |
| const MachineOperand &SrcOp = MI->getOperand(1); |
| LLT DstTy = MRI->getType(DstOp.getReg()); |
| LLT SrcTy = MRI->getType(SrcOp.getReg()); |
| if (SrcTy.isValid() && DstTy.isValid()) { |
| // If both types are valid, check that the types are the same. |
| if (SrcTy != DstTy) { |
| report("Copy Instruction is illegal with mismatching types", MI); |
| errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; |
| } |
| } |
| if (SrcTy.isValid() || DstTy.isValid()) { |
| // If one of them have valid types, let's just check they have the same |
| // size. |
| unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); |
| unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); |
| assert(SrcSize && "Expecting size here"); |
| assert(DstSize && "Expecting size here"); |
| if (SrcSize != DstSize) |
| if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { |
| report("Copy Instruction is illegal with mismatching sizes", MI); |
| errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize |
| << "\n"; |
| } |
| } |
| break; |
| } |
| case TargetOpcode::STATEPOINT: |
| if (!MI->getOperand(StatepointOpers::IDPos).isImm() || |
| !MI->getOperand(StatepointOpers::NBytesPos).isImm() || |
| !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) |
| report("meta operands to STATEPOINT not constant!", MI); |
| break; |
| |
| auto VerifyStackMapConstant = [&](unsigned Offset) { |
| if (!MI->getOperand(Offset).isImm() || |
| MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || |
| !MI->getOperand(Offset + 1).isImm()) |
| report("stack map constant to STATEPOINT not well formed!", MI); |
| }; |
| const unsigned VarStart = StatepointOpers(MI).getVarIdx(); |
| VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); |
| VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); |
| VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); |
| |
| // TODO: verify we have properly encoded deopt arguments |
| break; |
| } |
| } |
| |
| void |
| MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
| const MachineInstr *MI = MO->getParent(); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumDefs = MCID.getNumDefs(); |
| if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) |
| NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; |
| |
| // The first MCID.NumDefs operands must be explicit register defines |
| if (MONum < NumDefs) { |
| const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; |
| if (!MO->isReg()) |
| report("Explicit definition must be a register", MO, MONum); |
| else if (!MO->isDef() && !MCOI.isOptionalDef()) |
| report("Explicit definition marked as use", MO, MONum); |
| else if (MO->isImplicit()) |
| report("Explicit definition marked as implicit", MO, MONum); |
| } else if (MONum < MCID.getNumOperands()) { |
| const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; |
| // Don't check if it's the last operand in a variadic instruction. See, |
| // e.g., LDM_RET in the arm back end. Check non-variadic operands only. |
| bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; |
| if (!IsOptional) { |
| if (MO->isReg()) { |
| if (MO->isDef() && !MCOI.isOptionalDef()) |
| report("Explicit operand marked as def", MO, MONum); |
| if (MO->isImplicit()) |
| report("Explicit operand marked as implicit", MO, MONum); |
| } |
| |
| // Check that an instruction has register operands only as expected. |
| if (MCOI.OperandType == MCOI::OPERAND_REGISTER && |
| !MO->isReg() && !MO->isFI()) |
| report("Expected a register operand.", MO, MONum); |
| if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || |
| MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) |
| report("Expected a non-register operand.", MO, MONum); |
| } |
| |
| int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); |
| if (TiedTo != -1) { |
| if (!MO->isReg()) |
| report("Tied use must be a register", MO, MONum); |
| else if (!MO->isTied()) |
| report("Operand should be tied", MO, MONum); |
| else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) |
| report("Tied def doesn't match MCInstrDesc", MO, MONum); |
| else if (Register::isPhysicalRegister(MO->getReg())) { |
| const MachineOperand &MOTied = MI->getOperand(TiedTo); |
| if (!MOTied.isReg()) |
| report("Tied counterpart must be a register", &MOTied, TiedTo); |
| else if (Register::isPhysicalRegister(MOTied.getReg()) && |
| MO->getReg() != MOTied.getReg()) |
| report("Tied physical registers must match.", &MOTied, TiedTo); |
| } |
| } else if (MO->isReg() && MO->isTied()) |
| report("Explicit operand should not be tied", MO, MONum); |
| } else { |
| // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
| if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) |
| report("Extra explicit operand on non-variadic instruction", MO, MONum); |
| } |
| |
| switch (MO->getType()) { |
| case MachineOperand::MO_Register: { |
| const Register Reg = MO->getReg(); |
| if (!Reg) |
| return; |
| if (MRI->tracksLiveness() && !MI->isDebugValue()) |
| checkLiveness(MO, MONum); |
| |
| // Verify the consistency of tied operands. |
| if (MO->isTied()) { |
| unsigned OtherIdx = MI->findTiedOperandIdx(MONum); |
| const MachineOperand &OtherMO = MI->getOperand(OtherIdx); |
| if (!OtherMO.isReg()) |
| report("Must be tied to a register", MO, MONum); |
| if (!OtherMO.isTied()) |
| report("Missing tie flags on tied operand", MO, MONum); |
| if (MI->findTiedOperandIdx(OtherIdx) != MONum) |
| report("Inconsistent tie links", MO, MONum); |
| if (MONum < MCID.getNumDefs()) { |
| if (OtherIdx < MCID.getNumOperands()) { |
| if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) |
| report("Explicit def tied to explicit use without tie constraint", |
| MO, MONum); |
| } else { |
| if (!OtherMO.isImplicit()) |
| report("Explicit def should be tied to implicit use", MO, MONum); |
| } |
| } |
| } |
| |
| // Verify two-address constraints after leaving SSA form. |
| unsigned DefIdx; |
| if (!MRI->isSSA() && MO->isUse() && |
| MI->isRegTiedToDefOperand(MONum, &DefIdx) && |
| Reg != MI->getOperand(DefIdx).getReg()) |
| report("Two-address instruction operands must be identical", MO, MONum); |
| |
| // Check register classes. |
| unsigned SubIdx = MO->getSubReg(); |
| |
| if (Register::isPhysicalRegister(Reg)) { |
| if (SubIdx) { |
| report("Illegal subregister index for physical register", MO, MONum); |
| return; |
| } |
| if (MONum < MCID.getNumOperands()) { |
| if (const TargetRegisterClass *DRC = |
| TII->getRegClass(MCID, MONum, TRI, *MF)) { |
| if (!DRC->contains(Reg)) { |
| report("Illegal physical register for instruction", MO, MONum); |
| errs() << printReg(Reg, TRI) << " is not a " |
| << TRI->getRegClassName(DRC) << " register.\n"; |
| } |
| } |
| } |
| if (MO->isRenamable()) { |
| if (MRI->isReserved(Reg)) { |
| report("isRenamable set on reserved register", MO, MONum); |
| return; |
| } |
| } |
| if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { |
| report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); |
| return; |
| } |
| } else { |
| // Virtual register. |
| const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); |
| if (!RC) { |
| // This is a generic virtual register. |
| |
| // If we're post-Select, we can't have gvregs anymore. |
| if (isFunctionSelected) { |
| report("Generic virtual register invalid in a Selected function", |
| MO, MONum); |
| return; |
| } |
| |
| // The gvreg must have a type and it must not have a SubIdx. |
| LLT Ty = MRI->getType(Reg); |
| if (!Ty.isValid()) { |
| report("Generic virtual register must have a valid type", MO, |
| MONum); |
| return; |
| } |
| |
| const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); |
| |
| // If we're post-RegBankSelect, the gvreg must have a bank. |
| if (!RegBank && isFunctionRegBankSelected) { |
| report("Generic virtual register must have a bank in a " |
| "RegBankSelected function", |
| MO, MONum); |
| return; |
| } |
| |
| // Make sure the register fits into its register bank if any. |
| if (RegBank && Ty.isValid() && |
| RegBank->getSize() < Ty.getSizeInBits()) { |
| report("Register bank is too small for virtual register", MO, |
| MONum); |
| errs() << "Register bank " << RegBank->getName() << " too small(" |
| << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() |
| << "-bits\n"; |
| return; |
| } |
| if (SubIdx) { |
| report("Generic virtual register does not allow subregister index", MO, |
| MONum); |
| return; |
| } |
| |
| // If this is a target specific instruction and this operand |
| // has register class constraint, the virtual register must |
| // comply to it. |
| if (!isPreISelGenericOpcode(MCID.getOpcode()) && |
| MONum < MCID.getNumOperands() && |
| TII->getRegClass(MCID, MONum, TRI, *MF)) { |
| report("Virtual register does not match instruction constraint", MO, |
| MONum); |
| errs() << "Expect register class " |
| << TRI->getRegClassName( |
| TII->getRegClass(MCID, MONum, TRI, *MF)) |
| << " but got nothing\n"; |
| return; |
| } |
| |
| break; |
| } |
| if (SubIdx) { |
| const TargetRegisterClass *SRC = |
| TRI->getSubClassWithSubReg(RC, SubIdx); |
| if (!SRC) { |
| report("Invalid subregister index for virtual register", MO, MONum); |
| errs() << "Register class " << TRI->getRegClassName(RC) |
| << " does not support subreg index " << SubIdx << "\n"; |
| return; |
| } |
| if (RC != SRC) { |
| report("Invalid register class for subregister index", MO, MONum); |
| errs() << "Register class " << TRI->getRegClassName(RC) |
| << " does not fully support subreg index " << SubIdx << "\n"; |
| return; |
| } |
| } |
| if (MONum < MCID.getNumOperands()) { |
| if (const TargetRegisterClass *DRC = |
| TII->getRegClass(MCID, MONum, TRI, *MF)) { |
| if (SubIdx) { |
| const TargetRegisterClass *SuperRC = |
| TRI->getLargestLegalSuperClass(RC, *MF); |
| if (!SuperRC) { |
| report("No largest legal super class exists.", MO, MONum); |
| return; |
| } |
| DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); |
| if (!DRC) { |
| report("No matching super-reg register class.", MO, MONum); |
| return; |
| } |
| } |
| if (!RC->hasSuperClassEq(DRC)) { |
| report("Illegal virtual register for instruction", MO, MONum); |
| errs() << "Expected a " << TRI->getRegClassName(DRC) |
| << " register, but got a " << TRI->getRegClassName(RC) |
| << " register\n"; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| case MachineOperand::MO_RegisterMask: |
| regMasks.push_back(MO->getRegMask()); |
| break; |
| |
| case MachineOperand::MO_MachineBasicBlock: |
| if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) |
| report("PHI operand is not in the CFG", MO, MONum); |
| break; |
| |
| case MachineOperand::MO_FrameIndex: |
| if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && |
| LiveInts && !LiveInts->isNotInMIMap(*MI)) { |
| int FI = MO->getIndex(); |
| LiveInterval &LI = LiveStks->getInterval(FI); |
| SlotIndex Idx = LiveInts->getInstructionIndex(*MI); |
| |
| bool stores = MI->mayStore(); |
| bool loads = MI->mayLoad(); |
| // For a memory-to-memory move, we need to check if the frame |
| // index is used for storing or loading, by inspecting the |
| // memory operands. |
| if (stores && loads) { |
| for (auto *MMO : MI->memoperands()) { |
| const PseudoSourceValue *PSV = MMO->getPseudoValue(); |
| if (PSV == nullptr) continue; |
| const FixedStackPseudoSourceValue *Value = |
| dyn_cast<FixedStackPseudoSourceValue>(PSV); |
| if (Value == nullptr) continue; |
| if (Value->getFrameIndex() != FI) continue; |
| |
| if (MMO->isStore()) |
| loads = false; |
| else |
| stores = false; |
| break; |
| } |
| if (loads == stores) |
| report("Missing fixed stack memoperand.", MI); |
| } |
| if (loads && !LI.liveAt(Idx.getRegSlot(true))) { |
| report("Instruction loads from dead spill slot", MO, MONum); |
| errs() << "Live stack: " << LI << '\n'; |
| } |
| if (stores && !LI.liveAt(Idx.getRegSlot())) { |
| report("Instruction stores to dead spill slot", MO, MONum); |
| errs() << "Live stack: " << LI << '\n'; |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, |
| unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, |
| LaneBitmask LaneMask) { |
| LiveQueryResult LRQ = LR.Query(UseIdx); |
| // Check if we have a segment at the use, note however that we only need one |
| // live subregister range, the others may be dead. |
| if (!LRQ.valueIn() && LaneMask.none()) { |
| report("No live segment at use", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| report_context(UseIdx); |
| } |
| if (MO->isKill() && !LRQ.isKill()) { |
| report("Live range continues after kill flag", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| report_context(UseIdx); |
| } |
| } |
| |
| void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, |
| unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, |
| bool SubRangeCheck, LaneBitmask LaneMask) { |
| if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { |
| assert(VNI && "NULL valno is not allowed"); |
| if (VNI->def != DefIdx) { |
| report("Inconsistent valno->def", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| report_context(*VNI); |
| report_context(DefIdx); |
| } |
| } else { |
| report("No live segment at def", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| report_context(DefIdx); |
| } |
| // Check that, if the dead def flag is present, LiveInts agree. |
| if (MO->isDead()) { |
| LiveQueryResult LRQ = LR.Query(DefIdx); |
| if (!LRQ.isDeadDef()) { |
| assert(Register::isVirtualRegister(VRegOrUnit) && |
| "Expecting a virtual register."); |
| // A dead subreg def only tells us that the specific subreg is dead. There |
| // could be other non-dead defs of other subregs, or we could have other |
| // parts of the register being live through the instruction. So unless we |
| // are checking liveness for a subrange it is ok for the live range to |
| // continue, given that we have a dead def of a subregister. |
| if (SubRangeCheck || MO->getSubReg() == 0) { |
| report("Live range continues after dead def flag", MO, MONum); |
| report_context_liverange(LR); |
| report_context_vreg_regunit(VRegOrUnit); |
| if (LaneMask.any()) |
| report_context_lanemask(LaneMask); |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { |
| const MachineInstr *MI = MO->getParent(); |
| const unsigned Reg = MO->getReg(); |
| |
| // Both use and def operands can read a register. |
| if (MO->readsReg()) { |
| if (MO->isKill()) |
| addRegWithSubRegs(regsKilled, Reg); |
| |
| // Check that LiveVars knows this kill. |
| if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| if (!is_contained(VI.Kills, MI)) |
| report("Kill missing from LiveVariables", MO, MONum); |
| } |
| |
| // Check LiveInts liveness and kill. |
| if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { |
| SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); |
| // Check the cached regunit intervals. |
| if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { |
| for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { |
| if (MRI->isReservedRegUnit(*Units)) |
| continue; |
| if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) |
| checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); |
| } |
| } |
| |
| if (Register::isVirtualRegister(Reg)) { |
| if (LiveInts->hasInterval(Reg)) { |
| // This is a virtual register interval. |
| const LiveInterval &LI = LiveInts->getInterval(Reg); |
| checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); |
| |
| if (LI.hasSubRanges() && !MO->isDef()) { |
| unsigned SubRegIdx = MO->getSubReg(); |
| LaneBitmask MOMask = SubRegIdx != 0 |
| ? TRI->getSubRegIndexLaneMask(SubRegIdx) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| LaneBitmask LiveInMask; |
| for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| if ((MOMask & SR.LaneMask).none()) |
| continue; |
| checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); |
| LiveQueryResult LRQ = SR.Query(UseIdx); |
| if (LRQ.valueIn()) |
| LiveInMask |= SR.LaneMask; |
| } |
| // At least parts of the register has to be live at the use. |
| if ((LiveInMask & MOMask).none()) { |
| report("No live subrange at use", MO, MONum); |
| report_context(LI); |
| report_context(UseIdx); |
| } |
| } |
| } else { |
| report("Virtual register has no live interval", MO, MONum); |
| } |
| } |
| } |
| |
| // Use of a dead register. |
| if (!regsLive.count(Reg)) { |
| if (Register::isPhysicalRegister(Reg)) { |
| // Reserved registers may be used even when 'dead'. |
| bool Bad = !isReserved(Reg); |
| // We are fine if just any subregister has a defined value. |
| if (Bad) { |
| |
| for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { |
| if (regsLive.count(SubReg)) { |
| Bad = false; |
| break; |
| } |
| } |
| } |
| // If there is an additional implicit-use of a super register we stop |
| // here. By definition we are fine if the super register is not |
| // (completely) dead, if the complete super register is dead we will |
| // get a report for its operand. |
| if (Bad) { |
| for (const MachineOperand &MOP : MI->uses()) { |
| if (!MOP.isReg() || !MOP.isImplicit()) |
| continue; |
| |
| if (!Register::isPhysicalRegister(MOP.getReg())) |
| continue; |
| |
| for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { |
| if (SubReg == Reg) { |
| Bad = false; |
| break; |
| } |
| } |
| } |
| } |
| if (Bad) |
| report("Using an undefined physical register", MO, MONum); |
| } else if (MRI->def_empty(Reg)) { |
| report("Reading virtual register without a def", MO, MONum); |
| } else { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| // We don't know which virtual registers are live in, so only complain |
| // if vreg was killed in this MBB. Otherwise keep track of vregs that |
| // must be live in. PHI instructions are handled separately. |
| if (MInfo.regsKilled.count(Reg)) |
| report("Using a killed virtual register", MO, MONum); |
| else if (!MI->isPHI()) |
| MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); |
| } |
| } |
| } |
| |
| if (MO->isDef()) { |
| // Register defined. |
| // TODO: verify that earlyclobber ops are not used. |
| if (MO->isDead()) |
| addRegWithSubRegs(regsDead, Reg); |
| else |
| addRegWithSubRegs(regsDefined, Reg); |
| |
| // Verify SSA form. |
| if (MRI->isSSA() && Register::isVirtualRegister(Reg) && |
| std::next(MRI->def_begin(Reg)) != MRI->def_end()) |
| report("Multiple virtual register defs in SSA form", MO, MONum); |
| |
| // Check LiveInts for a live segment, but only for virtual registers. |
| if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { |
| SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); |
| DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); |
| |
| if (Register::isVirtualRegister(Reg)) { |
| if (LiveInts->hasInterval(Reg)) { |
| const LiveInterval &LI = LiveInts->getInterval(Reg); |
| checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); |
| |
| if (LI.hasSubRanges()) { |
| unsigned SubRegIdx = MO->getSubReg(); |
| LaneBitmask MOMask = SubRegIdx != 0 |
| ? TRI->getSubRegIndexLaneMask(SubRegIdx) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| if ((SR.LaneMask & MOMask).none()) |
| continue; |
| checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); |
| } |
| } |
| } else { |
| report("Virtual register has no Live interval", MO, MONum); |
| } |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} |
| |
| // This function gets called after visiting all instructions in a bundle. The |
| // argument points to the bundle header. |
| // Normal stand-alone instructions are also considered 'bundles', and this |
| // function is called for all of them. |
| void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| set_union(MInfo.regsKilled, regsKilled); |
| set_subtract(regsLive, regsKilled); regsKilled.clear(); |
| // Kill any masked registers. |
| while (!regMasks.empty()) { |
| const uint32_t *Mask = regMasks.pop_back_val(); |
| for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) |
| if (Register::isPhysicalRegister(*I) && |
| MachineOperand::clobbersPhysReg(Mask, *I)) |
| regsDead.push_back(*I); |
| } |
| set_subtract(regsLive, regsDead); regsDead.clear(); |
| set_union(regsLive, regsDefined); regsDefined.clear(); |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
| MBBInfoMap[MBB].regsLiveOut = regsLive; |
| regsLive.clear(); |
| |
| if (Indexes) { |
| SlotIndex stop = Indexes->getMBBEndIdx(MBB); |
| if (!(stop > lastIndex)) { |
| report("Block ends before last instruction index", MBB); |
| errs() << "Block ends at " << stop |
| << " last instruction was at " << lastIndex << '\n'; |
| } |
| lastIndex = stop; |
| } |
| } |
| |
| // Calculate the largest possible vregsPassed sets. These are the registers that |
| // can pass through an MBB live, but may not be live every time. It is assumed |
| // that all vregsPassed sets are empty before the call. |
| void MachineVerifier::calcRegsPassed() { |
| // First push live-out regs to successors' vregsPassed. Remember the MBBs that |
| // have any vregsPassed. |
| SmallPtrSet<const MachineBasicBlock*, 8> todo; |
| for (const auto &MBB : *MF) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| if (!MInfo.reachable) |
| continue; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), |
| SuE = MBB.succ_end(); SuI != SuE; ++SuI) { |
| BBInfo &SInfo = MBBInfoMap[*SuI]; |
| if (SInfo.addPassed(MInfo.regsLiveOut)) |
| todo.insert(*SuI); |
| } |
| } |
| |
| // Iteratively push vregsPassed to successors. This will converge to the same |
| // final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), |
| SuE = MBB->succ_end(); SuI != SuE; ++SuI) { |
| if (*SuI == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[*SuI]; |
| if (SInfo.addPassed(MInfo.vregsPassed)) |
| todo.insert(*SuI); |
| } |
| } |
| } |
| |
| // Calculate the set of virtual registers that must be passed through each basic |
| // block in order to satisfy the requirements of successor blocks. This is very |
| // similar to calcRegsPassed, only backwards. |
| void MachineVerifier::calcRegsRequired() { |
| // First push live-in regs to predecessors' vregsRequired. |
| SmallPtrSet<const MachineBasicBlock*, 8> todo; |
| for (const auto &MBB : *MF) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), |
| PrE = MBB.pred_end(); PrI != PrE; ++PrI) { |
| BBInfo &PInfo = MBBInfoMap[*PrI]; |
| if (PInfo.addRequired(MInfo.vregsLiveIn)) |
| todo.insert(*PrI); |
| } |
| } |
| |
| // Iteratively push vregsRequired to predecessors. This will converge to the |
| // same final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), |
| PrE = MBB->pred_end(); PrI != PrE; ++PrI) { |
| if (*PrI == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[*PrI]; |
| if (SInfo.addRequired(MInfo.vregsRequired)) |
| todo.insert(*PrI); |
| } |
| } |
| } |
| |
| // Check PHI instructions at the beginning of MBB. It is assumed that |
| // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
| void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| |
| SmallPtrSet<const MachineBasicBlock*, 8> seen; |
| for (const MachineInstr &Phi : MBB) { |
| if (!Phi.isPHI()) |
| break; |
| seen.clear(); |
| |
| const MachineOperand &MODef = Phi.getOperand(0); |
| if (!MODef.isReg() || !MODef.isDef()) { |
| report("Expected first PHI operand to be a register def", &MODef, 0); |
| continue; |
| } |
| if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || |
| MODef.isEarlyClobber() || MODef.isDebug()) |
| report("Unexpected flag on PHI operand", &MODef, 0); |
| Register DefReg = MODef.getReg(); |
| if (!Register::isVirtualRegister(DefReg)) |
| report("Expected first PHI operand to be a virtual register", &MODef, 0); |
| |
| for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { |
| const MachineOperand &MO0 = Phi.getOperand(I); |
| if (!MO0.isReg()) { |
| report("Expected PHI operand to be a register", &MO0, I); |
| continue; |
| } |
| if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || |
| MO0.isDebug() || MO0.isTied()) |
| report("Unexpected flag on PHI operand", &MO0, I); |
| |
| const MachineOperand &MO1 = Phi.getOperand(I + 1); |
| if (!MO1.isMBB()) { |
| report("Expected PHI operand to be a basic block", &MO1, I + 1); |
| continue; |
| } |
| |
| const MachineBasicBlock &Pre = *MO1.getMBB(); |
| if (!Pre.isSuccessor(&MBB)) { |
| report("PHI input is not a predecessor block", &MO1, I + 1); |
| continue; |
| } |
| |
| if (MInfo.reachable) { |
| seen.insert(&Pre); |
| BBInfo &PrInfo = MBBInfoMap[&Pre]; |
| if (!MO0.isUndef() && PrInfo.reachable && |
| !PrInfo.isLiveOut(MO0.getReg())) |
| report("PHI operand is not live-out from predecessor", &MO0, I); |
| } |
| } |
| |
| // Did we see all predecessors? |
| if (MInfo.reachable) { |
| for (MachineBasicBlock *Pred : MBB.predecessors()) { |
| if (!seen.count(Pred)) { |
| report("Missing PHI operand", &Phi); |
| errs() << printMBBReference(*Pred) |
| << " is a predecessor according to the CFG.\n"; |
| } |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionAfter() { |
| calcRegsPassed(); |
| |
| for (const MachineBasicBlock &MBB : *MF) |
| checkPHIOps(MBB); |
| |
| // Now check liveness info if available |
| calcRegsRequired(); |
| |
| // Check for killed virtual registers that should be live out. |
| for (const auto &MBB : *MF) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| for (RegSet::iterator |
| I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; |
| ++I) |
| if (MInfo.regsKilled.count(*I)) { |
| report("Virtual register killed in block, but needed live out.", &MBB); |
| errs() << "Virtual register " << printReg(*I) |
| << " is used after the block.\n"; |
| } |
| } |
| |
| if (!MF->empty()) { |
| BBInfo &MInfo = MBBInfoMap[&MF->front()]; |
| for (RegSet::iterator |
| I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; |
| ++I) { |
| report("Virtual register defs don't dominate all uses.", MF); |
| report_context_vreg(*I); |
| } |
| } |
| |
| if (LiveVars) |
| verifyLiveVariables(); |
| if (LiveInts) |
| verifyLiveIntervals(); |
| |
| // Check live-in list of each MBB. If a register is live into MBB, check |
| // that the register is in regsLiveOut of each predecessor block. Since |
| // this must come from a definition in the predecesssor or its live-in |
| // list, this will catch a live-through case where the predecessor does not |
| // have the register in its live-in list. This currently only checks |
| // registers that have no aliases, are not allocatable and are not |
| // reserved, which could mean a condition code register for instance. |
| if (MRI->tracksLiveness()) |
| for (const auto &MBB : *MF) |
| for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
| MCPhysReg LiveInReg = P.PhysReg; |
| bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); |
| if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) |
| continue; |
| for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
| BBInfo &PInfo = MBBInfoMap[Pred]; |
| if (!PInfo.regsLiveOut.count(LiveInReg)) { |
| report("Live in register not found to be live out from predecessor.", |
| &MBB); |
| errs() << TRI->getName(LiveInReg) |
| << " not found to be live out from " |
| << printMBBReference(*Pred) << "\n"; |
| } |
| } |
| } |
| |
| for (auto CSInfo : MF->getCallSitesInfo()) |
| if (!CSInfo.first->isCall()) |
| report("Call site info referencing instruction that is not call", MF); |
| } |
| |
| void MachineVerifier::verifyLiveVariables() { |
| assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = Register::index2VirtReg(i); |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| for (const auto &MBB : *MF) { |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| |
| // Our vregsRequired should be identical to LiveVariables' AliveBlocks |
| if (MInfo.vregsRequired.count(Reg)) { |
| if (!VI.AliveBlocks.test(MBB.getNumber())) { |
| report("LiveVariables: Block missing from AliveBlocks", &MBB); |
| errs() << "Virtual register " << printReg(Reg) |
| << " must be live through the block.\n"; |
| } |
| } else { |
| if (VI.AliveBlocks.test(MBB.getNumber())) { |
| report("LiveVariables: Block should not be in AliveBlocks", &MBB); |
| errs() << "Virtual register " << printReg(Reg) |
| << " is not needed live through the block.\n"; |
| } |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::verifyLiveIntervals() { |
| assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = Register::index2VirtReg(i); |
| |
| // Spilling and splitting may leave unused registers around. Skip them. |
| if (MRI->reg_nodbg_empty(Reg)) |
| continue; |
| |
| if (!LiveInts->hasInterval(Reg)) { |
| report("Missing live interval for virtual register", MF); |
| errs() << printReg(Reg, TRI) << " still has defs or uses\n"; |
| continue; |
| } |
| |
| const LiveInterval &LI = LiveInts->getInterval(Reg); |
| assert(Reg == LI.reg && "Invalid reg to interval mapping"); |
| verifyLiveInterval(LI); |
| } |
| |
| // Verify all the cached regunit intervals. |
| for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
| if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) |
| verifyLiveRange(*LR, i); |
| } |
| |
| void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, |
| const VNInfo *VNI, unsigned Reg, |
| LaneBitmask LaneMask) { |
| if (VNI->isUnused()) |
| return; |
| |
| const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); |
| |
| if (!DefVNI) { |
| report("Value not live at VNInfo def and not marked unused", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| return; |
| } |
| |
| if (DefVNI != VNI) { |
| report("Live segment at def has different VNInfo", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| return; |
| } |
| |
| const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); |
| if (!MBB) { |
| report("Invalid VNInfo definition index", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| return; |
| } |
| |
| if (VNI->isPHIDef()) { |
| if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { |
| report("PHIDef VNInfo is not defined at MBB start", MBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| } |
| return; |
| } |
| |
| // Non-PHI def. |
| const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); |
| if (!MI) { |
| report("No instruction at VNInfo def index", MBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| return; |
| } |
| |
| if (Reg != 0) { |
| bool hasDef = false; |
| bool isEarlyClobber = false; |
| for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
| if (!MOI->isReg() || !MOI->isDef()) |
| continue; |
| if (Register::isVirtualRegister(Reg)) { |
| if (MOI->getReg() != Reg) |
| continue; |
| } else { |
| if (!Register::isPhysicalRegister(MOI->getReg()) || |
| !TRI->hasRegUnit(MOI->getReg(), Reg)) |
| continue; |
| } |
| if (LaneMask.any() && |
| (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) |
| continue; |
| hasDef = true; |
| if (MOI->isEarlyClobber()) |
| isEarlyClobber = true; |
| } |
| |
| if (!hasDef) { |
| report("Defining instruction does not modify register", MI); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| } |
| |
| // Early clobber defs begin at USE slots, but other defs must begin at |
| // DEF slots. |
| if (isEarlyClobber) { |
| if (!VNI->def.isEarlyClobber()) { |
| report("Early clobber def must be at an early-clobber slot", MBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| } |
| } else if (!VNI->def.isRegister()) { |
| report("Non-PHI, non-early clobber def must be at a register slot", MBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| } |
| } |
| } |
| |
| void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, |
| const LiveRange::const_iterator I, |
| unsigned Reg, LaneBitmask LaneMask) |
| { |
| const LiveRange::Segment &S = *I; |
| const VNInfo *VNI = S.valno; |
| assert(VNI && "Live segment has no valno"); |
| |
| if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { |
| report("Foreign valno in live segment", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| report_context(*VNI); |
| } |
| |
| if (VNI->isUnused()) { |
| report("Live segment valno is marked unused", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| |
| const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); |
| if (!MBB) { |
| report("Bad start of live segment, no basic block", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| return; |
| } |
| SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); |
| if (S.start != MBBStartIdx && S.start != VNI->def) { |
| report("Live segment must begin at MBB entry or valno def", MBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| |
| const MachineBasicBlock *EndMBB = |
| LiveInts->getMBBFromIndex(S.end.getPrevSlot()); |
| if (!EndMBB) { |
| report("Bad end of live segment, no basic block", MF); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| return; |
| } |
| |
| // No more checks for live-out segments. |
| if (S.end == LiveInts->getMBBEndIdx(EndMBB)) |
| return; |
| |
| // RegUnit intervals are allowed dead phis. |
| if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && |
| S.start == VNI->def && S.end == VNI->def.getDeadSlot()) |
| return; |
| |
| // The live segment is ending inside EndMBB |
| const MachineInstr *MI = |
| LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); |
| if (!MI) { |
| report("Live segment doesn't end at a valid instruction", EndMBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| return; |
| } |
| |
| // The block slot must refer to a basic block boundary. |
| if (S.end.isBlock()) { |
| report("Live segment ends at B slot of an instruction", EndMBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| |
| if (S.end.isDead()) { |
| // Segment ends on the dead slot. |
| // That means there must be a dead def. |
| if (!SlotIndex::isSameInstr(S.start, S.end)) { |
| report("Live segment ending at dead slot spans instructions", EndMBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| } |
| |
| // A live segment can only end at an early-clobber slot if it is being |
| // redefined by an early-clobber def. |
| if (S.end.isEarlyClobber()) { |
| if (I+1 == LR.end() || (I+1)->start != S.end) { |
| report("Live segment ending at early clobber slot must be " |
| "redefined by an EC def in the same instruction", EndMBB); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| } |
| |
| // The following checks only apply to virtual registers. Physreg liveness |
| // is too weird to check. |
| if (Register::isVirtualRegister(Reg)) { |
| // A live segment can end with either a redefinition, a kill flag on a |
| // use, or a dead flag on a def. |
| bool hasRead = false; |
| bool hasSubRegDef = false; |
| bool hasDeadDef = false; |
| for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
| if (!MOI->isReg() || MOI->getReg() != Reg) |
| continue; |
| unsigned Sub = MOI->getSubReg(); |
| LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) |
| : LaneBitmask::getAll(); |
| if (MOI->isDef()) { |
| if (Sub != 0) { |
| hasSubRegDef = true; |
| // An operand %0:sub0 reads %0:sub1..n. Invert the lane |
| // mask for subregister defs. Read-undef defs will be handled by |
| // readsReg below. |
| SLM = ~SLM; |
| } |
| if (MOI->isDead()) |
| hasDeadDef = true; |
| } |
| if (LaneMask.any() && (LaneMask & SLM).none()) |
| continue; |
| if (MOI->readsReg()) |
| hasRead = true; |
| } |
| if (S.end.isDead()) { |
| // Make sure that the corresponding machine operand for a "dead" live |
| // range has the dead flag. We cannot perform this check for subregister |
| // liveranges as partially dead values are allowed. |
| if (LaneMask.none() && !hasDeadDef) { |
| report("Instruction ending live segment on dead slot has no dead flag", |
| MI); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| } else { |
| if (!hasRead) { |
| // When tracking subregister liveness, the main range must start new |
| // values on partial register writes, even if there is no read. |
| if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || |
| !hasSubRegDef) { |
| report("Instruction ending live segment doesn't read the register", |
| MI); |
| report_context(LR, Reg, LaneMask); |
| report_context(S); |
| } |
| } |
| } |
| } |
| |
| // Now check all the basic blocks in this live segment. |
| MachineFunction::const_iterator MFI = MBB->getIterator(); |
| // Is this live segment the beginning of a non-PHIDef VN? |
| if (S.start == VNI->def && !VNI->isPHIDef()) { |
| // Not live-in to any blocks. |
| if (MBB == EndMBB) |
| return; |
| // Skip this block. |
| ++MFI; |
| } |
| |
| SmallVector<SlotIndex, 4> Undefs; |
| if (LaneMask.any()) { |
| LiveInterval &OwnerLI = LiveInts->getInterval(Reg); |
| OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); |
| } |
| |
| while (true) { |
| assert(LiveInts->isLiveInToMBB(LR, &*MFI)); |
| // We don't know how to track physregs into a landing pad. |
| if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { |
| if (&*MFI == EndMBB) |
| break; |
| ++MFI; |
| continue; |
| } |
| |
| // Is VNI a PHI-def in the current block? |
| bool IsPHI = VNI->isPHIDef() && |
| VNI->def == LiveInts->getMBBStartIdx(&*MFI); |
| |
| // Check that VNI is live-out of all predecessors. |
| for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), |
| PE = MFI->pred_end(); PI != PE; ++PI) { |
| SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); |
| const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); |
| |
| // All predecessors must have a live-out value. However for a phi |
| // instruction with subregister intervals |
| // only one of the subregisters (not necessarily the current one) needs to |
| // be defined. |
| if (!PVNI && (LaneMask.none() || !IsPHI)) { |
| if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) |
| continue; |
| report("Register not marked live out of predecessor", *PI); |
| report_context(LR, Reg, LaneMask); |
| report_context(*VNI); |
| errs() << " live into " << printMBBReference(*MFI) << '@' |
| << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " |
| << PEnd << '\n'; |
| continue; |
| } |
| |
| // Only PHI-defs can take different predecessor values. |
| if (!IsPHI && PVNI != VNI) { |
| report("Different value live out of predecessor", *PI); |
| report_context(LR, Reg, LaneMask); |
| errs() << "Valno #" << PVNI->id << " live out of " |
| << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" |
| << VNI->id << " live into " << printMBBReference(*MFI) << '@' |
| << LiveInts->getMBBStartIdx(&*MFI) << '\n'; |
| } |
| } |
| if (&*MFI == EndMBB) |
| break; |
| ++MFI; |
| } |
| } |
| |
| void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, |
| LaneBitmask LaneMask) { |
| for (const VNInfo *VNI : LR.valnos) |
| verifyLiveRangeValue(LR, VNI, Reg, LaneMask); |
| |
| for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) |
| verifyLiveRangeSegment(LR, I, Reg, LaneMask); |
| } |
| |
| void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { |
| unsigned Reg = LI.reg; |
| assert(Register::isVirtualRegister(Reg)); |
| verifyLiveRange(LI, Reg); |
| |
| LaneBitmask Mask; |
| LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); |
| for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| if ((Mask & SR.LaneMask).any()) { |
| report("Lane masks of sub ranges overlap in live interval", MF); |
| report_context(LI); |
| } |
| if ((SR.LaneMask & ~MaxMask).any()) { |
| report("Subrange lanemask is invalid", MF); |
| report_context(LI); |
| } |
| if (SR.empty()) { |
| report("Subrange must not be empty", MF); |
| report_context(SR, LI.reg, SR.LaneMask); |
| } |
| Mask |= SR.LaneMask; |
| verifyLiveRange(SR, LI.reg, SR.LaneMask); |
| if (!LI.covers(SR)) { |
| report("A Subrange is not covered by the main range", MF); |
| report_context(LI); |
| } |
| } |
| |
| // Check the LI only has one connected component. |
| ConnectedVNInfoEqClasses ConEQ(*LiveInts); |
| unsigned NumComp = ConEQ.Classify(LI); |
| if (NumComp > 1) { |
| report("Multiple connected components in live interval", MF); |
| report_context(LI); |
| for (unsigned comp = 0; comp != NumComp; ++comp) { |
| errs() << comp << ": valnos"; |
| for (LiveInterval::const_vni_iterator I = LI.vni_begin(), |
| E = LI.vni_end(); I!=E; ++I) |
| if (comp == ConEQ.getEqClass(*I)) |
| errs() << ' ' << (*I)->id; |
| errs() << '\n'; |
| } |
| } |
| } |
| |
| namespace { |
| |
| // FrameSetup and FrameDestroy can have zero adjustment, so using a single |
| // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the |
| // value is zero. |
| // We use a bool plus an integer to capture the stack state. |
| struct StackStateOfBB { |
| StackStateOfBB() = default; |
| StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : |
| EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), |
| ExitIsSetup(ExitSetup) {} |
| |
| // Can be negative, which means we are setting up a frame. |
| int EntryValue = 0; |
| int ExitValue = 0; |
| bool EntryIsSetup = false; |
| bool ExitIsSetup = false; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Make sure on every path through the CFG, a FrameSetup <n> is always followed |
| /// by a FrameDestroy <n>, stack adjustments are identical on all |
| /// CFG edges to a merge point, and frame is destroyed at end of a return block. |
| void MachineVerifier::verifyStackFrame() { |
| unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
| unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
| if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) |
| return; |
| |
| SmallVector<StackStateOfBB, 8> SPState; |
| SPState.resize(MF->getNumBlockIDs()); |
| df_iterator_default_set<const MachineBasicBlock*> Reachable; |
| |
| // Visit the MBBs in DFS order. |
| for (df_ext_iterator<const MachineFunction *, |
| df_iterator_default_set<const MachineBasicBlock *>> |
| DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); |
| DFI != DFE; ++DFI) { |
| const MachineBasicBlock *MBB = *DFI; |
| |
| StackStateOfBB BBState; |
| // Check the exit state of the DFS stack predecessor. |
| if (DFI.getPathLength() >= 2) { |
| const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); |
| assert(Reachable.count(StackPred) && |
| "DFS stack predecessor is already visited.\n"); |
| BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; |
| BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; |
| BBState.ExitValue = BBState.EntryValue; |
| BBState.ExitIsSetup = BBState.EntryIsSetup; |
| } |
| |
| // Update stack state by checking contents of MBB. |
| for (const auto &I : *MBB) { |
| if (I.getOpcode() == FrameSetupOpcode) { |
| if (BBState.ExitIsSetup) |
| report("FrameSetup is after another FrameSetup", &I); |
| BBState.ExitValue -= TII->getFrameTotalSize(I); |
| BBState.ExitIsSetup = true; |
| } |
| |
| if (I.getOpcode() == FrameDestroyOpcode) { |
| int Size = TII->getFrameTotalSize(I); |
| if (!BBState.ExitIsSetup) |
| report("FrameDestroy is not after a FrameSetup", &I); |
| int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : |
| BBState.ExitValue; |
| if (BBState.ExitIsSetup && AbsSPAdj != Size) { |
| report("FrameDestroy <n> is after FrameSetup <m>", &I); |
| errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" |
| << AbsSPAdj << ">.\n"; |
| } |
| BBState.ExitValue += Size; |
| BBState.ExitIsSetup = false; |
| } |
| } |
| SPState[MBB->getNumber()] = BBState; |
| |
| // Make sure the exit state of any predecessor is consistent with the entry |
| // state. |
| for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), |
| E = MBB->pred_end(); I != E; ++I) { |
| if (Reachable.count(*I) && |
| (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || |
| SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { |
| report("The exit stack state of a predecessor is inconsistent.", MBB); |
| errs() << "Predecessor " << printMBBReference(*(*I)) |
| << " has exit state (" << SPState[(*I)->getNumber()].ExitValue |
| << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " |
| << printMBBReference(*MBB) << " has entry state (" |
| << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; |
| } |
| } |
| |
| // Make sure the entry state of any successor is consistent with the exit |
| // state. |
| for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) { |
| if (Reachable.count(*I) && |
| (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || |
| SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { |
| report("The entry stack state of a successor is inconsistent.", MBB); |
| errs() << "Successor " << printMBBReference(*(*I)) |
| << " has entry state (" << SPState[(*I)->getNumber()].EntryValue |
| << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " |
| << printMBBReference(*MBB) << " has exit state (" |
| << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; |
| } |
| } |
| |
| // Make sure a basic block with return ends with zero stack adjustment. |
| if (!MBB->empty() && MBB->back().isReturn()) { |
| if (BBState.ExitIsSetup) |
| report("A return block ends with a FrameSetup.", MBB); |
| if (BBState.ExitValue) |
| report("A return block ends with a nonzero stack adjustment.", MBB); |
| } |
| } |
| } |