| //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This family of functions perform manipulations on basic blocks, and | 
 | // instructions contained within basic blocks. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/Constant.h" | 
 | #include "llvm/Type.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/ValueHandle.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | /// DeleteDeadBlock - Delete the specified block, which must have no | 
 | /// predecessors. | 
 | void llvm::DeleteDeadBlock(BasicBlock *BB) { | 
 |   assert((pred_begin(BB) == pred_end(BB) || | 
 |          // Can delete self loop. | 
 |          BB->getSinglePredecessor() == BB) && "Block is not dead!"); | 
 |   TerminatorInst *BBTerm = BB->getTerminator(); | 
 |    | 
 |   // Loop through all of our successors and make sure they know that one | 
 |   // of their predecessors is going away. | 
 |   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) | 
 |     BBTerm->getSuccessor(i)->removePredecessor(BB); | 
 |    | 
 |   // Zap all the instructions in the block. | 
 |   while (!BB->empty()) { | 
 |     Instruction &I = BB->back(); | 
 |     // If this instruction is used, replace uses with an arbitrary value. | 
 |     // Because control flow can't get here, we don't care what we replace the | 
 |     // value with.  Note that since this block is unreachable, and all values | 
 |     // contained within it must dominate their uses, that all uses will | 
 |     // eventually be removed (they are themselves dead). | 
 |     if (!I.use_empty()) | 
 |       I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
 |     BB->getInstList().pop_back(); | 
 |   } | 
 |    | 
 |   // Zap the block! | 
 |   BB->eraseFromParent(); | 
 | } | 
 |  | 
 | /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are | 
 | /// any single-entry PHI nodes in it, fold them away.  This handles the case | 
 | /// when all entries to the PHI nodes in a block are guaranteed equal, such as | 
 | /// when the block has exactly one predecessor. | 
 | void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { | 
 |   if (!isa<PHINode>(BB->begin())) return; | 
 |    | 
 |   AliasAnalysis *AA = 0; | 
 |   MemoryDependenceAnalysis *MemDep = 0; | 
 |   if (P) { | 
 |     AA = P->getAnalysisIfAvailable<AliasAnalysis>(); | 
 |     MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); | 
 |   } | 
 |    | 
 |   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { | 
 |     if (PN->getIncomingValue(0) != PN) | 
 |       PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
 |     else | 
 |       PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
 |      | 
 |     if (MemDep) | 
 |       MemDep->removeInstruction(PN);  // Memdep updates AA itself. | 
 |     else if (AA && isa<PointerType>(PN->getType())) | 
 |       AA->deleteValue(PN); | 
 |      | 
 |     PN->eraseFromParent(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it | 
 | /// is dead. Also recursively delete any operands that become dead as | 
 | /// a result. This includes tracing the def-use list from the PHI to see if | 
 | /// it is ultimately unused or if it reaches an unused cycle. | 
 | bool llvm::DeleteDeadPHIs(BasicBlock *BB) { | 
 |   // Recursively deleting a PHI may cause multiple PHIs to be deleted | 
 |   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. | 
 |   SmallVector<WeakVH, 8> PHIs; | 
 |   for (BasicBlock::iterator I = BB->begin(); | 
 |        PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
 |     PHIs.push_back(PN); | 
 |  | 
 |   bool Changed = false; | 
 |   for (unsigned i = 0, e = PHIs.size(); i != e; ++i) | 
 |     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) | 
 |       Changed |= RecursivelyDeleteDeadPHINode(PN); | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, | 
 | /// if possible.  The return value indicates success or failure. | 
 | bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { | 
 |   // Don't merge away blocks who have their address taken. | 
 |   if (BB->hasAddressTaken()) return false; | 
 |    | 
 |   // Can't merge if there are multiple predecessors, or no predecessors. | 
 |   BasicBlock *PredBB = BB->getUniquePredecessor(); | 
 |   if (!PredBB) return false; | 
 |  | 
 |   // Don't break self-loops. | 
 |   if (PredBB == BB) return false; | 
 |   // Don't break invokes. | 
 |   if (isa<InvokeInst>(PredBB->getTerminator())) return false; | 
 |    | 
 |   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); | 
 |   BasicBlock *OnlySucc = BB; | 
 |   for (; SI != SE; ++SI) | 
 |     if (*SI != OnlySucc) { | 
 |       OnlySucc = 0;     // There are multiple distinct successors! | 
 |       break; | 
 |     } | 
 |    | 
 |   // Can't merge if there are multiple successors. | 
 |   if (!OnlySucc) return false; | 
 |  | 
 |   // Can't merge if there is PHI loop. | 
 |   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { | 
 |     if (PHINode *PN = dyn_cast<PHINode>(BI)) { | 
 |       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
 |         if (PN->getIncomingValue(i) == PN) | 
 |           return false; | 
 |     } else | 
 |       break; | 
 |   } | 
 |  | 
 |   // Begin by getting rid of unneeded PHIs. | 
 |   if (isa<PHINode>(BB->front())) | 
 |     FoldSingleEntryPHINodes(BB, P); | 
 |    | 
 |   // Delete the unconditional branch from the predecessor... | 
 |   PredBB->getInstList().pop_back(); | 
 |    | 
 |   // Make all PHI nodes that referred to BB now refer to Pred as their | 
 |   // source... | 
 |   BB->replaceAllUsesWith(PredBB); | 
 |    | 
 |   // Move all definitions in the successor to the predecessor... | 
 |   PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); | 
 |    | 
 |   // Inherit predecessors name if it exists. | 
 |   if (!PredBB->hasName()) | 
 |     PredBB->takeName(BB); | 
 |    | 
 |   // Finally, erase the old block and update dominator info. | 
 |   if (P) { | 
 |     if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { | 
 |       if (DomTreeNode *DTN = DT->getNode(BB)) { | 
 |         DomTreeNode *PredDTN = DT->getNode(PredBB); | 
 |         SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); | 
 |         for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(), | 
 |              DE = Children.end(); DI != DE; ++DI) | 
 |           DT->changeImmediateDominator(*DI, PredDTN); | 
 |  | 
 |         DT->eraseNode(BB); | 
 |       } | 
 |        | 
 |       if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) | 
 |         LI->removeBlock(BB); | 
 |        | 
 |       if (MemoryDependenceAnalysis *MD = | 
 |             P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) | 
 |         MD->invalidateCachedPredecessors(); | 
 |     } | 
 |   } | 
 |    | 
 |   BB->eraseFromParent(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) | 
 | /// with a value, then remove and delete the original instruction. | 
 | /// | 
 | void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, | 
 |                                 BasicBlock::iterator &BI, Value *V) { | 
 |   Instruction &I = *BI; | 
 |   // Replaces all of the uses of the instruction with uses of the value | 
 |   I.replaceAllUsesWith(V); | 
 |  | 
 |   // Make sure to propagate a name if there is one already. | 
 |   if (I.hasName() && !V->hasName()) | 
 |     V->takeName(&I); | 
 |  | 
 |   // Delete the unnecessary instruction now... | 
 |   BI = BIL.erase(BI); | 
 | } | 
 |  | 
 |  | 
 | /// ReplaceInstWithInst - Replace the instruction specified by BI with the | 
 | /// instruction specified by I.  The original instruction is deleted and BI is | 
 | /// updated to point to the new instruction. | 
 | /// | 
 | void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, | 
 |                                BasicBlock::iterator &BI, Instruction *I) { | 
 |   assert(I->getParent() == 0 && | 
 |          "ReplaceInstWithInst: Instruction already inserted into basic block!"); | 
 |  | 
 |   // Insert the new instruction into the basic block... | 
 |   BasicBlock::iterator New = BIL.insert(BI, I); | 
 |  | 
 |   // Replace all uses of the old instruction, and delete it. | 
 |   ReplaceInstWithValue(BIL, BI, I); | 
 |  | 
 |   // Move BI back to point to the newly inserted instruction | 
 |   BI = New; | 
 | } | 
 |  | 
 | /// ReplaceInstWithInst - Replace the instruction specified by From with the | 
 | /// instruction specified by To. | 
 | /// | 
 | void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { | 
 |   BasicBlock::iterator BI(From); | 
 |   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); | 
 | } | 
 |  | 
 | /// GetSuccessorNumber - Search for the specified successor of basic block BB | 
 | /// and return its position in the terminator instruction's list of | 
 | /// successors.  It is an error to call this with a block that is not a | 
 | /// successor. | 
 | unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { | 
 |   TerminatorInst *Term = BB->getTerminator(); | 
 | #ifndef NDEBUG | 
 |   unsigned e = Term->getNumSuccessors(); | 
 | #endif | 
 |   for (unsigned i = 0; ; ++i) { | 
 |     assert(i != e && "Didn't find edge?"); | 
 |     if (Term->getSuccessor(i) == Succ) | 
 |       return i; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// SplitEdge -  Split the edge connecting specified block. Pass P must  | 
 | /// not be NULL.  | 
 | BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { | 
 |   unsigned SuccNum = GetSuccessorNumber(BB, Succ); | 
 |    | 
 |   // If this is a critical edge, let SplitCriticalEdge do it. | 
 |   TerminatorInst *LatchTerm = BB->getTerminator(); | 
 |   if (SplitCriticalEdge(LatchTerm, SuccNum, P)) | 
 |     return LatchTerm->getSuccessor(SuccNum); | 
 |  | 
 |   // If the edge isn't critical, then BB has a single successor or Succ has a | 
 |   // single pred.  Split the block. | 
 |   BasicBlock::iterator SplitPoint; | 
 |   if (BasicBlock *SP = Succ->getSinglePredecessor()) { | 
 |     // If the successor only has a single pred, split the top of the successor | 
 |     // block. | 
 |     assert(SP == BB && "CFG broken"); | 
 |     SP = NULL; | 
 |     return SplitBlock(Succ, Succ->begin(), P); | 
 |   } | 
 |    | 
 |   // Otherwise, if BB has a single successor, split it at the bottom of the | 
 |   // block. | 
 |   assert(BB->getTerminator()->getNumSuccessors() == 1 && | 
 |          "Should have a single succ!");  | 
 |   return SplitBlock(BB, BB->getTerminator(), P); | 
 | } | 
 |  | 
 | /// SplitBlock - Split the specified block at the specified instruction - every | 
 | /// thing before SplitPt stays in Old and everything starting with SplitPt moves | 
 | /// to a new block.  The two blocks are joined by an unconditional branch and | 
 | /// the loop info is updated. | 
 | /// | 
 | BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { | 
 |   BasicBlock::iterator SplitIt = SplitPt; | 
 |   while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) | 
 |     ++SplitIt; | 
 |   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); | 
 |  | 
 |   // The new block lives in whichever loop the old one did. This preserves | 
 |   // LCSSA as well, because we force the split point to be after any PHI nodes. | 
 |   if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) | 
 |     if (Loop *L = LI->getLoopFor(Old)) | 
 |       L->addBasicBlockToLoop(New, LI->getBase()); | 
 |  | 
 |   if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { | 
 |     // Old dominates New. New node dominates all other nodes dominated by Old. | 
 |     if (DomTreeNode *OldNode = DT->getNode(Old)) { | 
 |       std::vector<DomTreeNode *> Children; | 
 |       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); | 
 |            I != E; ++I)  | 
 |         Children.push_back(*I); | 
 |  | 
 |       DomTreeNode *NewNode = DT->addNewBlock(New,Old); | 
 |       for (std::vector<DomTreeNode *>::iterator I = Children.begin(), | 
 |              E = Children.end(); I != E; ++I)  | 
 |         DT->changeImmediateDominator(*I, NewNode); | 
 |     } | 
 |   } | 
 |  | 
 |   return New; | 
 | } | 
 |  | 
 | /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA | 
 | /// analysis information. | 
 | static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, | 
 |                                       ArrayRef<BasicBlock *> Preds, | 
 |                                       Pass *P, bool &HasLoopExit) { | 
 |   if (!P) return; | 
 |  | 
 |   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); | 
 |   Loop *L = LI ? LI->getLoopFor(OldBB) : 0; | 
 |  | 
 |   // If we need to preserve loop analyses, collect some information about how | 
 |   // this split will affect loops. | 
 |   bool IsLoopEntry = !!L; | 
 |   bool SplitMakesNewLoopHeader = false; | 
 |   if (LI) { | 
 |     bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); | 
 |     for (ArrayRef<BasicBlock*>::iterator | 
 |            i = Preds.begin(), e = Preds.end(); i != e; ++i) { | 
 |       BasicBlock *Pred = *i; | 
 |  | 
 |       // If we need to preserve LCSSA, determine if any of the preds is a loop | 
 |       // exit. | 
 |       if (PreserveLCSSA) | 
 |         if (Loop *PL = LI->getLoopFor(Pred)) | 
 |           if (!PL->contains(OldBB)) | 
 |             HasLoopExit = true; | 
 |  | 
 |       // If we need to preserve LoopInfo, note whether any of the preds crosses | 
 |       // an interesting loop boundary. | 
 |       if (!L) continue; | 
 |       if (L->contains(Pred)) | 
 |         IsLoopEntry = false; | 
 |       else | 
 |         SplitMakesNewLoopHeader = true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Update dominator tree if available. | 
 |   DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); | 
 |   if (DT) | 
 |     DT->splitBlock(NewBB); | 
 |  | 
 |   if (!L) return; | 
 |  | 
 |   if (IsLoopEntry) { | 
 |     // Add the new block to the nearest enclosing loop (and not an adjacent | 
 |     // loop). To find this, examine each of the predecessors and determine which | 
 |     // loops enclose them, and select the most-nested loop which contains the | 
 |     // loop containing the block being split. | 
 |     Loop *InnermostPredLoop = 0; | 
 |     for (ArrayRef<BasicBlock*>::iterator | 
 |            i = Preds.begin(), e = Preds.end(); i != e; ++i) { | 
 |       BasicBlock *Pred = *i; | 
 |       if (Loop *PredLoop = LI->getLoopFor(Pred)) { | 
 |         // Seek a loop which actually contains the block being split (to avoid | 
 |         // adjacent loops). | 
 |         while (PredLoop && !PredLoop->contains(OldBB)) | 
 |           PredLoop = PredLoop->getParentLoop(); | 
 |  | 
 |         // Select the most-nested of these loops which contains the block. | 
 |         if (PredLoop && PredLoop->contains(OldBB) && | 
 |             (!InnermostPredLoop || | 
 |              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) | 
 |           InnermostPredLoop = PredLoop; | 
 |       } | 
 |     } | 
 |  | 
 |     if (InnermostPredLoop) | 
 |       InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); | 
 |   } else { | 
 |     L->addBasicBlockToLoop(NewBB, LI->getBase()); | 
 |     if (SplitMakesNewLoopHeader) | 
 |       L->moveToHeader(NewBB); | 
 |   } | 
 | } | 
 |  | 
 | /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming | 
 | /// from NewBB. This also updates AliasAnalysis, if available. | 
 | static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, | 
 |                            ArrayRef<BasicBlock*> Preds, BranchInst *BI, | 
 |                            Pass *P, bool HasLoopExit) { | 
 |   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. | 
 |   AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; | 
 |   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { | 
 |     PHINode *PN = cast<PHINode>(I++); | 
 |  | 
 |     // Check to see if all of the values coming in are the same.  If so, we | 
 |     // don't need to create a new PHI node, unless it's needed for LCSSA. | 
 |     Value *InVal = 0; | 
 |     if (!HasLoopExit) { | 
 |       InVal = PN->getIncomingValueForBlock(Preds[0]); | 
 |       for (unsigned i = 1, e = Preds.size(); i != e; ++i) | 
 |         if (InVal != PN->getIncomingValueForBlock(Preds[i])) { | 
 |           InVal = 0; | 
 |           break; | 
 |         } | 
 |     } | 
 |  | 
 |     if (InVal) { | 
 |       // If all incoming values for the new PHI would be the same, just don't | 
 |       // make a new PHI.  Instead, just remove the incoming values from the old | 
 |       // PHI. | 
 |       for (unsigned i = 0, e = Preds.size(); i != e; ++i) | 
 |         PN->removeIncomingValue(Preds[i], false); | 
 |     } else { | 
 |       // If the values coming into the block are not the same, we need a PHI. | 
 |       // Create the new PHI node, insert it into NewBB at the end of the block | 
 |       PHINode *NewPHI = | 
 |         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); | 
 |       if (AA) AA->copyValue(PN, NewPHI); | 
 |        | 
 |       // Move all of the PHI values for 'Preds' to the new PHI. | 
 |       for (unsigned i = 0, e = Preds.size(); i != e; ++i) { | 
 |         Value *V = PN->removeIncomingValue(Preds[i], false); | 
 |         NewPHI->addIncoming(V, Preds[i]); | 
 |       } | 
 |  | 
 |       InVal = NewPHI; | 
 |     } | 
 |  | 
 |     // Add an incoming value to the PHI node in the loop for the preheader | 
 |     // edge. | 
 |     PN->addIncoming(InVal, NewBB); | 
 |   } | 
 | } | 
 |  | 
 | /// SplitBlockPredecessors - This method transforms BB by introducing a new | 
 | /// basic block into the function, and moving some of the predecessors of BB to | 
 | /// be predecessors of the new block.  The new predecessors are indicated by the | 
 | /// Preds array, which has NumPreds elements in it.  The new block is given a | 
 | /// suffix of 'Suffix'. | 
 | /// | 
 | /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, | 
 | /// LoopInfo, and LCCSA but no other analyses. In particular, it does not | 
 | /// preserve LoopSimplify (because it's complicated to handle the case where one | 
 | /// of the edges being split is an exit of a loop with other exits). | 
 | /// | 
 | BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,  | 
 |                                          BasicBlock *const *Preds, | 
 |                                          unsigned NumPreds, const char *Suffix, | 
 |                                          Pass *P) { | 
 |   // Create new basic block, insert right before the original block. | 
 |   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, | 
 |                                          BB->getParent(), BB); | 
 |    | 
 |   // The new block unconditionally branches to the old block. | 
 |   BranchInst *BI = BranchInst::Create(BB, NewBB); | 
 |    | 
 |   // Move the edges from Preds to point to NewBB instead of BB. | 
 |   for (unsigned i = 0; i != NumPreds; ++i) { | 
 |     // This is slightly more strict than necessary; the minimum requirement | 
 |     // is that there be no more than one indirectbr branching to BB. And | 
 |     // all BlockAddress uses would need to be updated. | 
 |     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && | 
 |            "Cannot split an edge from an IndirectBrInst"); | 
 |     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); | 
 |   } | 
 |  | 
 |   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI | 
 |   // node becomes an incoming value for BB's phi node.  However, if the Preds | 
 |   // list is empty, we need to insert dummy entries into the PHI nodes in BB to | 
 |   // account for the newly created predecessor. | 
 |   if (NumPreds == 0) { | 
 |     // Insert dummy values as the incoming value. | 
 |     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) | 
 |       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); | 
 |     return NewBB; | 
 |   } | 
 |  | 
 |   // Update DominatorTree, LoopInfo, and LCCSA analysis information. | 
 |   bool HasLoopExit = false; | 
 |   UpdateAnalysisInformation(BB, NewBB, ArrayRef<BasicBlock*>(Preds, NumPreds), | 
 |                             P, HasLoopExit); | 
 |  | 
 |   // Update the PHI nodes in BB with the values coming from NewBB. | 
 |   UpdatePHINodes(BB, NewBB, ArrayRef<BasicBlock*>(Preds, NumPreds), BI, | 
 |                  P, HasLoopExit); | 
 |   return NewBB; | 
 | } | 
 |  | 
 | /// SplitLandingPadPredecessors - This method transforms the landing pad, | 
 | /// OrigBB, by introducing two new basic blocks into the function. One of those | 
 | /// new basic blocks gets the predecessors listed in Preds. The other basic | 
 | /// block gets the remaining predecessors of OrigBB. The landingpad instruction | 
 | /// OrigBB is clone into both of the new basic blocks. The new blocks are given | 
 | /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. | 
 | ///  | 
 | /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, | 
 | /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, | 
 | /// it does not preserve LoopSimplify (because it's complicated to handle the | 
 | /// case where one of the edges being split is an exit of a loop with other | 
 | /// exits). | 
 | ///  | 
 | void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, | 
 |                                        ArrayRef<BasicBlock*> Preds, | 
 |                                        const char *Suffix1, const char *Suffix2, | 
 |                                        Pass *P, | 
 |                                        SmallVectorImpl<BasicBlock*> &NewBBs) { | 
 |   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); | 
 |  | 
 |   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert | 
 |   // it right before the original block. | 
 |   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), | 
 |                                           OrigBB->getName() + Suffix1, | 
 |                                           OrigBB->getParent(), OrigBB); | 
 |   NewBBs.push_back(NewBB1); | 
 |  | 
 |   // The new block unconditionally branches to the old block. | 
 |   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); | 
 |  | 
 |   // Move the edges from Preds to point to NewBB1 instead of OrigBB. | 
 |   for (unsigned i = 0, e = Preds.size(); i != e; ++i) { | 
 |     // This is slightly more strict than necessary; the minimum requirement | 
 |     // is that there be no more than one indirectbr branching to BB. And | 
 |     // all BlockAddress uses would need to be updated. | 
 |     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && | 
 |            "Cannot split an edge from an IndirectBrInst"); | 
 |     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); | 
 |   } | 
 |  | 
 |   // Update DominatorTree, LoopInfo, and LCCSA analysis information. | 
 |   bool HasLoopExit = false; | 
 |   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit); | 
 |  | 
 |   // Update the PHI nodes in OrigBB with the values coming from NewBB1. | 
 |   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit); | 
 |  | 
 |   // Move the remaining edges from OrigBB to point to NewBB2. | 
 |   SmallVector<BasicBlock*, 8> NewBB2Preds; | 
 |   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); | 
 |        i != e; ) { | 
 |     BasicBlock *Pred = *i++; | 
 |     if (Pred == NewBB1) continue; | 
 |     assert(!isa<IndirectBrInst>(Pred->getTerminator()) && | 
 |            "Cannot split an edge from an IndirectBrInst"); | 
 |     NewBB2Preds.push_back(Pred); | 
 |     e = pred_end(OrigBB); | 
 |   } | 
 |  | 
 |   BasicBlock *NewBB2 = 0; | 
 |   if (!NewBB2Preds.empty()) { | 
 |     // Create another basic block for the rest of OrigBB's predecessors. | 
 |     NewBB2 = BasicBlock::Create(OrigBB->getContext(), | 
 |                                 OrigBB->getName() + Suffix2, | 
 |                                 OrigBB->getParent(), OrigBB); | 
 |     NewBBs.push_back(NewBB2); | 
 |  | 
 |     // The new block unconditionally branches to the old block. | 
 |     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); | 
 |  | 
 |     // Move the remaining edges from OrigBB to point to NewBB2. | 
 |     for (SmallVectorImpl<BasicBlock*>::iterator | 
 |            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) | 
 |       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); | 
 |  | 
 |     // Update DominatorTree, LoopInfo, and LCCSA analysis information. | 
 |     HasLoopExit = false; | 
 |     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit); | 
 |  | 
 |     // Update the PHI nodes in OrigBB with the values coming from NewBB2. | 
 |     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit); | 
 |   } | 
 |  | 
 |   LandingPadInst *LPad = OrigBB->getLandingPadInst(); | 
 |   Instruction *Clone1 = LPad->clone(); | 
 |   Clone1->setName(Twine("lpad") + Suffix1); | 
 |   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); | 
 |  | 
 |   if (NewBB2) { | 
 |     Instruction *Clone2 = LPad->clone(); | 
 |     Clone2->setName(Twine("lpad") + Suffix2); | 
 |     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); | 
 |  | 
 |     // Create a PHI node for the two cloned landingpad instructions. | 
 |     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); | 
 |     PN->addIncoming(Clone1, NewBB1); | 
 |     PN->addIncoming(Clone2, NewBB2); | 
 |     LPad->replaceAllUsesWith(PN); | 
 |     LPad->eraseFromParent(); | 
 |   } else { | 
 |     // There is no second clone. Just replace the landing pad with the first | 
 |     // clone. | 
 |     LPad->replaceAllUsesWith(Clone1); | 
 |     LPad->eraseFromParent(); | 
 |   } | 
 | } | 
 |  | 
 | /// FindFunctionBackedges - Analyze the specified function to find all of the | 
 | /// loop backedges in the function and return them.  This is a relatively cheap | 
 | /// (compared to computing dominators and loop info) analysis. | 
 | /// | 
 | /// The output is added to Result, as pairs of <from,to> edge info. | 
 | void llvm::FindFunctionBackedges(const Function &F, | 
 |      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { | 
 |   const BasicBlock *BB = &F.getEntryBlock(); | 
 |   if (succ_begin(BB) == succ_end(BB)) | 
 |     return; | 
 |    | 
 |   SmallPtrSet<const BasicBlock*, 8> Visited; | 
 |   SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; | 
 |   SmallPtrSet<const BasicBlock*, 8> InStack; | 
 |    | 
 |   Visited.insert(BB); | 
 |   VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); | 
 |   InStack.insert(BB); | 
 |   do { | 
 |     std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); | 
 |     const BasicBlock *ParentBB = Top.first; | 
 |     succ_const_iterator &I = Top.second; | 
 |      | 
 |     bool FoundNew = false; | 
 |     while (I != succ_end(ParentBB)) { | 
 |       BB = *I++; | 
 |       if (Visited.insert(BB)) { | 
 |         FoundNew = true; | 
 |         break; | 
 |       } | 
 |       // Successor is in VisitStack, it's a back edge. | 
 |       if (InStack.count(BB)) | 
 |         Result.push_back(std::make_pair(ParentBB, BB)); | 
 |     } | 
 |      | 
 |     if (FoundNew) { | 
 |       // Go down one level if there is a unvisited successor. | 
 |       InStack.insert(BB); | 
 |       VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); | 
 |     } else { | 
 |       // Go up one level. | 
 |       InStack.erase(VisitStack.pop_back_val().first); | 
 |     } | 
 |   } while (!VisitStack.empty());  | 
 | } | 
 |  | 
 | /// FoldReturnIntoUncondBranch - This method duplicates the specified return | 
 | /// instruction into a predecessor which ends in an unconditional branch. If | 
 | /// the return instruction returns a value defined by a PHI, propagate the | 
 | /// right value into the return. It returns the new return instruction in the | 
 | /// predecessor. | 
 | ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, | 
 |                                              BasicBlock *Pred) { | 
 |   Instruction *UncondBranch = Pred->getTerminator(); | 
 |   // Clone the return and add it to the end of the predecessor. | 
 |   Instruction *NewRet = RI->clone(); | 
 |   Pred->getInstList().push_back(NewRet); | 
 |        | 
 |   // If the return instruction returns a value, and if the value was a | 
 |   // PHI node in "BB", propagate the right value into the return. | 
 |   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); | 
 |        i != e; ++i) | 
 |     if (PHINode *PN = dyn_cast<PHINode>(*i)) | 
 |       if (PN->getParent() == BB) | 
 |         *i = PN->getIncomingValueForBlock(Pred); | 
 |        | 
 |   // Update any PHI nodes in the returning block to realize that we no | 
 |   // longer branch to them. | 
 |   BB->removePredecessor(Pred); | 
 |   UncondBranch->eraseFromParent(); | 
 |   return cast<ReturnInst>(NewRet); | 
 | } | 
 |  | 
 | /// GetFirstDebugLocInBasicBlock - Return first valid DebugLoc entry in a  | 
 | /// given basic block. | 
 | DebugLoc llvm::GetFirstDebugLocInBasicBlock(const BasicBlock *BB) { | 
 |   if (const Instruction *I = BB->getFirstNonPHI()) | 
 |     return I->getDebugLoc(); | 
 |   // Scanning entire block may be too expensive, if the first instruction | 
 |   // does not have valid location info. | 
 |   return DebugLoc(); | 
 | } |