|  | //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the BasicBlock class for the IR library. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "SymbolTableListTraitsImpl.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | ValueSymbolTable *BasicBlock::getValueSymbolTable() { | 
|  | if (Function *F = getParent()) | 
|  | return F->getValueSymbolTable(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LLVMContext &BasicBlock::getContext() const { | 
|  | return getType()->getContext(); | 
|  | } | 
|  |  | 
|  | // Explicit instantiation of SymbolTableListTraits since some of the methods | 
|  | // are not in the public header file... | 
|  | template class llvm::SymbolTableListTraits<Instruction>; | 
|  |  | 
|  | BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, | 
|  | BasicBlock *InsertBefore) | 
|  | : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { | 
|  |  | 
|  | if (NewParent) | 
|  | insertInto(NewParent, InsertBefore); | 
|  | else | 
|  | assert(!InsertBefore && | 
|  | "Cannot insert block before another block with no function!"); | 
|  |  | 
|  | setName(Name); | 
|  | } | 
|  |  | 
|  | void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { | 
|  | assert(NewParent && "Expected a parent"); | 
|  | assert(!Parent && "Already has a parent"); | 
|  |  | 
|  | if (InsertBefore) | 
|  | NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this); | 
|  | else | 
|  | NewParent->getBasicBlockList().push_back(this); | 
|  | } | 
|  |  | 
|  | BasicBlock::~BasicBlock() { | 
|  | // If the address of the block is taken and it is being deleted (e.g. because | 
|  | // it is dead), this means that there is either a dangling constant expr | 
|  | // hanging off the block, or an undefined use of the block (source code | 
|  | // expecting the address of a label to keep the block alive even though there | 
|  | // is no indirect branch).  Handle these cases by zapping the BlockAddress | 
|  | // nodes.  There are no other possible uses at this point. | 
|  | if (hasAddressTaken()) { | 
|  | assert(!use_empty() && "There should be at least one blockaddress!"); | 
|  | Constant *Replacement = | 
|  | ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); | 
|  | while (!use_empty()) { | 
|  | BlockAddress *BA = cast<BlockAddress>(user_back()); | 
|  | BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, | 
|  | BA->getType())); | 
|  | BA->destroyConstant(); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(getParent() == nullptr && "BasicBlock still linked into the program!"); | 
|  | dropAllReferences(); | 
|  | InstList.clear(); | 
|  | } | 
|  |  | 
|  | void BasicBlock::setParent(Function *parent) { | 
|  | // Set Parent=parent, updating instruction symtab entries as appropriate. | 
|  | InstList.setSymTabObject(&Parent, parent); | 
|  | } | 
|  |  | 
|  | iterator_range<filter_iterator<BasicBlock::const_iterator, | 
|  | std::function<bool(const Instruction &)>>> | 
|  | BasicBlock::instructionsWithoutDebug() const { | 
|  | std::function<bool(const Instruction &)> Fn = [](const Instruction &I) { | 
|  | return !isa<DbgInfoIntrinsic>(I); | 
|  | }; | 
|  | return make_filter_range(*this, Fn); | 
|  | } | 
|  |  | 
|  | iterator_range<filter_iterator<BasicBlock::iterator, | 
|  | std::function<bool(Instruction &)>>> | 
|  | BasicBlock::instructionsWithoutDebug() { | 
|  | std::function<bool(Instruction &)> Fn = [](Instruction &I) { | 
|  | return !isa<DbgInfoIntrinsic>(I); | 
|  | }; | 
|  | return make_filter_range(*this, Fn); | 
|  | } | 
|  |  | 
|  | void BasicBlock::removeFromParent() { | 
|  | getParent()->getBasicBlockList().remove(getIterator()); | 
|  | } | 
|  |  | 
|  | iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() { | 
|  | return getParent()->getBasicBlockList().erase(getIterator()); | 
|  | } | 
|  |  | 
|  | /// Unlink this basic block from its current function and | 
|  | /// insert it into the function that MovePos lives in, right before MovePos. | 
|  | void BasicBlock::moveBefore(BasicBlock *MovePos) { | 
|  | MovePos->getParent()->getBasicBlockList().splice( | 
|  | MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator()); | 
|  | } | 
|  |  | 
|  | /// Unlink this basic block from its current function and | 
|  | /// insert it into the function that MovePos lives in, right after MovePos. | 
|  | void BasicBlock::moveAfter(BasicBlock *MovePos) { | 
|  | MovePos->getParent()->getBasicBlockList().splice( | 
|  | ++MovePos->getIterator(), getParent()->getBasicBlockList(), | 
|  | getIterator()); | 
|  | } | 
|  |  | 
|  | const Module *BasicBlock::getModule() const { | 
|  | return getParent()->getParent(); | 
|  | } | 
|  |  | 
|  | const TerminatorInst *BasicBlock::getTerminator() const { | 
|  | if (InstList.empty()) return nullptr; | 
|  | return dyn_cast<TerminatorInst>(&InstList.back()); | 
|  | } | 
|  |  | 
|  | const CallInst *BasicBlock::getTerminatingMustTailCall() const { | 
|  | if (InstList.empty()) | 
|  | return nullptr; | 
|  | const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); | 
|  | if (!RI || RI == &InstList.front()) | 
|  | return nullptr; | 
|  |  | 
|  | const Instruction *Prev = RI->getPrevNode(); | 
|  | if (!Prev) | 
|  | return nullptr; | 
|  |  | 
|  | if (Value *RV = RI->getReturnValue()) { | 
|  | if (RV != Prev) | 
|  | return nullptr; | 
|  |  | 
|  | // Look through the optional bitcast. | 
|  | if (auto *BI = dyn_cast<BitCastInst>(Prev)) { | 
|  | RV = BI->getOperand(0); | 
|  | Prev = BI->getPrevNode(); | 
|  | if (!Prev || RV != Prev) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *CI = dyn_cast<CallInst>(Prev)) { | 
|  | if (CI->isMustTailCall()) | 
|  | return CI; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const { | 
|  | if (InstList.empty()) | 
|  | return nullptr; | 
|  | auto *RI = dyn_cast<ReturnInst>(&InstList.back()); | 
|  | if (!RI || RI == &InstList.front()) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode())) | 
|  | if (Function *F = CI->getCalledFunction()) | 
|  | if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) | 
|  | return CI; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const Instruction* BasicBlock::getFirstNonPHI() const { | 
|  | for (const Instruction &I : *this) | 
|  | if (!isa<PHINode>(I)) | 
|  | return &I; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const Instruction* BasicBlock::getFirstNonPHIOrDbg() const { | 
|  | for (const Instruction &I : *this) | 
|  | if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I)) | 
|  | return &I; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const { | 
|  | for (const Instruction &I : *this) { | 
|  | if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  |  | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | II->getIntrinsicID() == Intrinsic::lifetime_end) | 
|  | continue; | 
|  |  | 
|  | return &I; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const { | 
|  | const Instruction *FirstNonPHI = getFirstNonPHI(); | 
|  | if (!FirstNonPHI) | 
|  | return end(); | 
|  |  | 
|  | const_iterator InsertPt = FirstNonPHI->getIterator(); | 
|  | if (InsertPt->isEHPad()) ++InsertPt; | 
|  | return InsertPt; | 
|  | } | 
|  |  | 
|  | void BasicBlock::dropAllReferences() { | 
|  | for (Instruction &I : *this) | 
|  | I.dropAllReferences(); | 
|  | } | 
|  |  | 
|  | /// If this basic block has a single predecessor block, | 
|  | /// return the block, otherwise return a null pointer. | 
|  | const BasicBlock *BasicBlock::getSinglePredecessor() const { | 
|  | const_pred_iterator PI = pred_begin(this), E = pred_end(this); | 
|  | if (PI == E) return nullptr;         // No preds. | 
|  | const BasicBlock *ThePred = *PI; | 
|  | ++PI; | 
|  | return (PI == E) ? ThePred : nullptr /*multiple preds*/; | 
|  | } | 
|  |  | 
|  | /// If this basic block has a unique predecessor block, | 
|  | /// return the block, otherwise return a null pointer. | 
|  | /// Note that unique predecessor doesn't mean single edge, there can be | 
|  | /// multiple edges from the unique predecessor to this block (for example | 
|  | /// a switch statement with multiple cases having the same destination). | 
|  | const BasicBlock *BasicBlock::getUniquePredecessor() const { | 
|  | const_pred_iterator PI = pred_begin(this), E = pred_end(this); | 
|  | if (PI == E) return nullptr; // No preds. | 
|  | const BasicBlock *PredBB = *PI; | 
|  | ++PI; | 
|  | for (;PI != E; ++PI) { | 
|  | if (*PI != PredBB) | 
|  | return nullptr; | 
|  | // The same predecessor appears multiple times in the predecessor list. | 
|  | // This is OK. | 
|  | } | 
|  | return PredBB; | 
|  | } | 
|  |  | 
|  | const BasicBlock *BasicBlock::getSingleSuccessor() const { | 
|  | succ_const_iterator SI = succ_begin(this), E = succ_end(this); | 
|  | if (SI == E) return nullptr; // no successors | 
|  | const BasicBlock *TheSucc = *SI; | 
|  | ++SI; | 
|  | return (SI == E) ? TheSucc : nullptr /* multiple successors */; | 
|  | } | 
|  |  | 
|  | const BasicBlock *BasicBlock::getUniqueSuccessor() const { | 
|  | succ_const_iterator SI = succ_begin(this), E = succ_end(this); | 
|  | if (SI == E) return nullptr; // No successors | 
|  | const BasicBlock *SuccBB = *SI; | 
|  | ++SI; | 
|  | for (;SI != E; ++SI) { | 
|  | if (*SI != SuccBB) | 
|  | return nullptr; | 
|  | // The same successor appears multiple times in the successor list. | 
|  | // This is OK. | 
|  | } | 
|  | return SuccBB; | 
|  | } | 
|  |  | 
|  | iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() { | 
|  | PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin()); | 
|  | return make_range<phi_iterator>(P, nullptr); | 
|  | } | 
|  |  | 
|  | /// This method is used to notify a BasicBlock that the | 
|  | /// specified Predecessor of the block is no longer able to reach it.  This is | 
|  | /// actually not used to update the Predecessor list, but is actually used to | 
|  | /// update the PHI nodes that reside in the block.  Note that this should be | 
|  | /// called while the predecessor still refers to this block. | 
|  | /// | 
|  | void BasicBlock::removePredecessor(BasicBlock *Pred, | 
|  | bool DontDeleteUselessPHIs) { | 
|  | assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. | 
|  | find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && | 
|  | "removePredecessor: BB is not a predecessor!"); | 
|  |  | 
|  | if (InstList.empty()) return; | 
|  | PHINode *APN = dyn_cast<PHINode>(&front()); | 
|  | if (!APN) return;   // Quick exit. | 
|  |  | 
|  | // If there are exactly two predecessors, then we want to nuke the PHI nodes | 
|  | // altogether.  However, we cannot do this, if this in this case: | 
|  | // | 
|  | //  Loop: | 
|  | //    %x = phi [X, Loop] | 
|  | //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1 | 
|  | //    br Loop                 ;; %x2 does not dominate all uses | 
|  | // | 
|  | // This is because the PHI node input is actually taken from the predecessor | 
|  | // basic block.  The only case this can happen is with a self loop, so we | 
|  | // check for this case explicitly now. | 
|  | // | 
|  | unsigned max_idx = APN->getNumIncomingValues(); | 
|  | assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); | 
|  | if (max_idx == 2) { | 
|  | BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); | 
|  |  | 
|  | // Disable PHI elimination! | 
|  | if (this == Other) max_idx = 3; | 
|  | } | 
|  |  | 
|  | // <= Two predecessors BEFORE I remove one? | 
|  | if (max_idx <= 2 && !DontDeleteUselessPHIs) { | 
|  | // Yup, loop through and nuke the PHI nodes | 
|  | while (PHINode *PN = dyn_cast<PHINode>(&front())) { | 
|  | // Remove the predecessor first. | 
|  | PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); | 
|  |  | 
|  | // If the PHI _HAD_ two uses, replace PHI node with its now *single* value | 
|  | if (max_idx == 2) { | 
|  | if (PN->getIncomingValue(0) != PN) | 
|  | PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
|  | else | 
|  | // We are left with an infinite loop with no entries: kill the PHI. | 
|  | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
|  | getInstList().pop_front();    // Remove the PHI node | 
|  | } | 
|  |  | 
|  | // If the PHI node already only had one entry, it got deleted by | 
|  | // removeIncomingValue. | 
|  | } | 
|  | } else { | 
|  | // Okay, now we know that we need to remove predecessor #pred_idx from all | 
|  | // PHI nodes.  Iterate over each PHI node fixing them up | 
|  | PHINode *PN; | 
|  | for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { | 
|  | ++II; | 
|  | PN->removeIncomingValue(Pred, false); | 
|  | // If all incoming values to the Phi are the same, we can replace the Phi | 
|  | // with that value. | 
|  | Value* PNV = nullptr; | 
|  | if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) | 
|  | if (PNV != PN) { | 
|  | PN->replaceAllUsesWith(PNV); | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BasicBlock::canSplitPredecessors() const { | 
|  | const Instruction *FirstNonPHI = getFirstNonPHI(); | 
|  | if (isa<LandingPadInst>(FirstNonPHI)) | 
|  | return true; | 
|  | // This is perhaps a little conservative because constructs like | 
|  | // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors | 
|  | // cannot handle such things just yet. | 
|  | if (FirstNonPHI->isEHPad()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BasicBlock::isLegalToHoistInto() const { | 
|  | auto *Term = getTerminator(); | 
|  | // No terminator means the block is under construction. | 
|  | if (!Term) | 
|  | return true; | 
|  |  | 
|  | // If the block has no successors, there can be no instructions to hoist. | 
|  | assert(Term->getNumSuccessors() > 0); | 
|  |  | 
|  | // Instructions should not be hoisted across exception handling boundaries. | 
|  | return !Term->isExceptional(); | 
|  | } | 
|  |  | 
|  | /// This splits a basic block into two at the specified | 
|  | /// instruction.  Note that all instructions BEFORE the specified iterator stay | 
|  | /// as part of the original basic block, an unconditional branch is added to | 
|  | /// the new BB, and the rest of the instructions in the BB are moved to the new | 
|  | /// BB, including the old terminator.  This invalidates the iterator. | 
|  | /// | 
|  | /// Note that this only works on well formed basic blocks (must have a | 
|  | /// terminator), and 'I' must not be the end of instruction list (which would | 
|  | /// cause a degenerate basic block to be formed, having a terminator inside of | 
|  | /// the basic block). | 
|  | /// | 
|  | BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { | 
|  | assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); | 
|  | assert(I != InstList.end() && | 
|  | "Trying to get me to create degenerate basic block!"); | 
|  |  | 
|  | BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(), | 
|  | this->getNextNode()); | 
|  |  | 
|  | // Save DebugLoc of split point before invalidating iterator. | 
|  | DebugLoc Loc = I->getDebugLoc(); | 
|  | // Move all of the specified instructions from the original basic block into | 
|  | // the new basic block. | 
|  | New->getInstList().splice(New->end(), this->getInstList(), I, end()); | 
|  |  | 
|  | // Add a branch instruction to the newly formed basic block. | 
|  | BranchInst *BI = BranchInst::Create(New, this); | 
|  | BI->setDebugLoc(Loc); | 
|  |  | 
|  | // Now we must loop through all of the successors of the New block (which | 
|  | // _were_ the successors of the 'this' block), and update any PHI nodes in | 
|  | // successors.  If there were PHI nodes in the successors, then they need to | 
|  | // know that incoming branches will be from New, not from Old. | 
|  | // | 
|  | for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { | 
|  | // Loop over any phi nodes in the basic block, updating the BB field of | 
|  | // incoming values... | 
|  | BasicBlock *Successor = *I; | 
|  | for (auto &PN : Successor->phis()) { | 
|  | int Idx = PN.getBasicBlockIndex(this); | 
|  | while (Idx != -1) { | 
|  | PN.setIncomingBlock((unsigned)Idx, New); | 
|  | Idx = PN.getBasicBlockIndex(this); | 
|  | } | 
|  | } | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { | 
|  | TerminatorInst *TI = getTerminator(); | 
|  | if (!TI) | 
|  | // Cope with being called on a BasicBlock that doesn't have a terminator | 
|  | // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. | 
|  | return; | 
|  | for (BasicBlock *Succ : TI->successors()) { | 
|  | // N.B. Succ might not be a complete BasicBlock, so don't assume | 
|  | // that it ends with a non-phi instruction. | 
|  | for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { | 
|  | PHINode *PN = dyn_cast<PHINode>(II); | 
|  | if (!PN) | 
|  | break; | 
|  | int i; | 
|  | while ((i = PN->getBasicBlockIndex(this)) >= 0) | 
|  | PN->setIncomingBlock(i, New); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if this basic block is a landing pad. I.e., it's | 
|  | /// the destination of the 'unwind' edge of an invoke instruction. | 
|  | bool BasicBlock::isLandingPad() const { | 
|  | return isa<LandingPadInst>(getFirstNonPHI()); | 
|  | } | 
|  |  | 
|  | /// Return the landingpad instruction associated with the landing pad. | 
|  | const LandingPadInst *BasicBlock::getLandingPadInst() const { | 
|  | return dyn_cast<LandingPadInst>(getFirstNonPHI()); | 
|  | } | 
|  |  | 
|  | Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const { | 
|  | const TerminatorInst *TI = getTerminator(); | 
|  | if (MDNode *MDIrrLoopHeader = | 
|  | TI->getMetadata(LLVMContext::MD_irr_loop)) { | 
|  | MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0)); | 
|  | if (MDName->getString().equals("loop_header_weight")) { | 
|  | auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1)); | 
|  | return Optional<uint64_t>(CI->getValue().getZExtValue()); | 
|  | } | 
|  | } | 
|  | return Optional<uint64_t>(); | 
|  | } | 
|  |  | 
|  | BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) { | 
|  | while (isa<DbgInfoIntrinsic>(It)) | 
|  | ++It; | 
|  | return It; | 
|  | } |