|  | //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  | #include "SDNodeDbgValue.h" | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetFrameLowering.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// LimitFloatPrecision - Generate low-precision inline sequences for | 
|  | /// some float libcalls (6, 8 or 12 bits). | 
|  | static unsigned LimitFloatPrecision; | 
|  |  | 
|  | static cl::opt<unsigned, true> | 
|  | LimitFPPrecision("limit-float-precision", | 
|  | cl::desc("Generate low-precision inline sequences " | 
|  | "for some float libcalls"), | 
|  | cl::location(LimitFloatPrecision), | 
|  | cl::init(0)); | 
|  |  | 
|  | // Limit the width of DAG chains. This is important in general to prevent | 
|  | // prevent DAG-based analysis from blowing up. For example, alias analysis and | 
|  | // load clustering may not complete in reasonable time. It is difficult to | 
|  | // recognize and avoid this situation within each individual analysis, and | 
|  | // future analyses are likely to have the same behavior. Limiting DAG width is | 
|  | // the safe approach, and will be especially important with global DAGs. | 
|  | // | 
|  | // MaxParallelChains default is arbitrarily high to avoid affecting | 
|  | // optimization, but could be lowered to improve compile time. Any ld-ld-st-st | 
|  | // sequence over this should have been converted to llvm.memcpy by the | 
|  | // frontend. It easy to induce this behavior with .ll code such as: | 
|  | // %buffer = alloca [4096 x i8] | 
|  | // %data = load [4096 x i8]* %argPtr | 
|  | // store [4096 x i8] %data, [4096 x i8]* %buffer | 
|  | static const unsigned MaxParallelChains = 64; | 
|  |  | 
|  | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | EVT PartVT, EVT ValueVT); | 
|  |  | 
|  | /// getCopyFromParts - Create a value that contains the specified legal parts | 
|  | /// combined into the value they represent.  If the parts combine to a type | 
|  | /// larger then ValueVT then AssertOp can be used to specify whether the extra | 
|  | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT | 
|  | /// (ISD::AssertSext). | 
|  | static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, | 
|  | const SDValue *Parts, | 
|  | unsigned NumParts, EVT PartVT, EVT ValueVT, | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE) { | 
|  | if (ValueVT.isVector()) | 
|  | return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); | 
|  |  | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | if (NumParts > 1) { | 
|  | // Assemble the value from multiple parts. | 
|  | if (ValueVT.isInteger()) { | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned ValueBits = ValueVT.getSizeInBits(); | 
|  |  | 
|  | // Assemble the power of 2 part. | 
|  | unsigned RoundParts = NumParts & (NumParts - 1) ? | 
|  | 1 << Log2_32(NumParts) : NumParts; | 
|  | unsigned RoundBits = PartBits * RoundParts; | 
|  | EVT RoundVT = RoundBits == ValueBits ? | 
|  | ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); | 
|  |  | 
|  | if (RoundParts > 2) { | 
|  | Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, | 
|  | PartVT, HalfVT); | 
|  | Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, | 
|  | RoundParts / 2, PartVT, HalfVT); | 
|  | } else { | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); | 
|  | } | 
|  |  | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  |  | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); | 
|  |  | 
|  | if (RoundParts < NumParts) { | 
|  | // Assemble the trailing non-power-of-2 part. | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); | 
|  | Hi = getCopyFromParts(DAG, DL, | 
|  | Parts + RoundParts, OddParts, PartVT, OddVT); | 
|  |  | 
|  | // Combine the round and odd parts. | 
|  | Lo = Val; | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); | 
|  | Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, | 
|  | DAG.getConstant(Lo.getValueType().getSizeInBits(), | 
|  | TLI.getPointerTy())); | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); | 
|  | Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); | 
|  | } | 
|  | } else if (PartVT.isFloatingPoint()) { | 
|  | // FP split into multiple FP parts (for ppcf128) | 
|  | assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && | 
|  | "Unexpected split"); | 
|  | SDValue Lo, Hi; | 
|  | Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); | 
|  | Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); | 
|  | if (TLI.isBigEndian()) | 
|  | std::swap(Lo, Hi); | 
|  | Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); | 
|  | } else { | 
|  | // FP split into integer parts (soft fp) | 
|  | assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && | 
|  | !PartVT.isVector() && "Unexpected split"); | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); | 
|  | Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | PartVT = Val.getValueType(); | 
|  |  | 
|  | if (PartVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartVT.isInteger() && ValueVT.isInteger()) { | 
|  | if (ValueVT.bitsLT(PartVT)) { | 
|  | // For a truncate, see if we have any information to | 
|  | // indicate whether the truncated bits will always be | 
|  | // zero or sign-extension. | 
|  | if (AssertOp != ISD::DELETED_NODE) | 
|  | Val = DAG.getNode(AssertOp, DL, PartVT, Val, | 
|  | DAG.getValueType(ValueVT)); | 
|  | return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  | return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | // FP_ROUND's are always exact here. | 
|  | if (ValueVT.bitsLT(Val.getValueType())) | 
|  | return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, | 
|  | DAG.getIntPtrConstant(1)); | 
|  |  | 
|  | return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | llvm_unreachable("Unknown mismatch!"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// getCopyFromParts - Create a value that contains the specified legal parts | 
|  | /// combined into the value they represent.  If the parts combine to a type | 
|  | /// larger then ValueVT then AssertOp can be used to specify whether the extra | 
|  | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT | 
|  | /// (ISD::AssertSext). | 
|  | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, | 
|  | const SDValue *Parts, unsigned NumParts, | 
|  | EVT PartVT, EVT ValueVT) { | 
|  | assert(ValueVT.isVector() && "Not a vector value"); | 
|  | assert(NumParts > 0 && "No parts to assemble!"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Val = Parts[0]; | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | if (NumParts > 1) { | 
|  | EVT IntermediateVT, RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs = | 
|  | TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  | assert(RegisterVT == Parts[0].getValueType() && | 
|  | "Part type doesn't match part!"); | 
|  |  | 
|  | // Assemble the parts into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | if (NumIntermediates == NumParts) { | 
|  | // If the register was not expanded, truncate or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, | 
|  | PartVT, IntermediateVT); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, build the intermediate | 
|  | // operands from the parts. | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, | 
|  | PartVT, IntermediateVT); | 
|  | } | 
|  |  | 
|  | // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the | 
|  | // intermediate operands. | 
|  | Val = DAG.getNode(IntermediateVT.isVector() ? | 
|  | ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, | 
|  | ValueVT, &Ops[0], NumIntermediates); | 
|  | } | 
|  |  | 
|  | // There is now one part, held in Val.  Correct it to match ValueVT. | 
|  | PartVT = Val.getValueType(); | 
|  |  | 
|  | if (PartVT == ValueVT) | 
|  | return Val; | 
|  |  | 
|  | if (PartVT.isVector()) { | 
|  | // If the element type of the source/dest vectors are the same, but the | 
|  | // parts vector has more elements than the value vector, then we have a | 
|  | // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the | 
|  | // elements we want. | 
|  | if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { | 
|  | assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && | 
|  | "Cannot narrow, it would be a lossy transformation"); | 
|  | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, | 
|  | DAG.getIntPtrConstant(0)); | 
|  | } | 
|  |  | 
|  | // Vector/Vector bitcast. | 
|  | if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && | 
|  | "Cannot handle this kind of promotion"); | 
|  | // Promoted vector extract | 
|  | bool Smaller = ValueVT.bitsLE(PartVT); | 
|  | return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), | 
|  | DL, ValueVT, Val); | 
|  |  | 
|  | } | 
|  |  | 
|  | // Trivial bitcast if the types are the same size and the destination | 
|  | // vector type is legal. | 
|  | if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && | 
|  | TLI.isTypeLegal(ValueVT)) | 
|  | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); | 
|  |  | 
|  | // Handle cases such as i8 -> <1 x i1> | 
|  | assert(ValueVT.getVectorNumElements() == 1 && | 
|  | "Only trivial scalar-to-vector conversions should get here!"); | 
|  |  | 
|  | if (ValueVT.getVectorNumElements() == 1 && | 
|  | ValueVT.getVectorElementType() != PartVT) { | 
|  | bool Smaller = ValueVT.bitsLE(PartVT); | 
|  | Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), | 
|  | DL, ValueVT.getScalarType(), Val); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | EVT PartVT); | 
|  |  | 
|  | /// getCopyToParts - Create a series of nodes that contain the specified value | 
|  | /// split into legal parts.  If the parts contain more bits than Val, then, for | 
|  | /// integers, ExtendKind can be used to specify how to generate the extra bits. | 
|  | static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | EVT PartVT, | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  |  | 
|  | // Handle the vector case separately. | 
|  | if (ValueVT.isVector()) | 
|  | return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned PartBits = PartVT.getSizeInBits(); | 
|  | unsigned OrigNumParts = NumParts; | 
|  | assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); | 
|  |  | 
|  | if (NumParts == 0) | 
|  | return; | 
|  |  | 
|  | assert(!ValueVT.isVector() && "Vector case handled elsewhere"); | 
|  | if (PartVT == ValueVT) { | 
|  | assert(NumParts == 1 && "No-op copy with multiple parts!"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NumParts * PartBits > ValueVT.getSizeInBits()) { | 
|  | // If the parts cover more bits than the value has, promote the value. | 
|  | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { | 
|  | assert(NumParts == 1 && "Do not know what to promote to!"); | 
|  | Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); | 
|  | } else { | 
|  | assert(PartVT.isInteger() && ValueVT.isInteger() && | 
|  | "Unknown mismatch!"); | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); | 
|  | } | 
|  | } else if (PartBits == ValueVT.getSizeInBits()) { | 
|  | // Different types of the same size. | 
|  | assert(NumParts == 1 && PartVT != ValueVT); | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { | 
|  | // If the parts cover less bits than value has, truncate the value. | 
|  | assert(PartVT.isInteger() && ValueVT.isInteger() && | 
|  | "Unknown mismatch!"); | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | // The value may have changed - recompute ValueVT. | 
|  | ValueVT = Val.getValueType(); | 
|  | assert(NumParts * PartBits == ValueVT.getSizeInBits() && | 
|  | "Failed to tile the value with PartVT!"); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | assert(PartVT == ValueVT && "Type conversion failed!"); | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Expand the value into multiple parts. | 
|  | if (NumParts & (NumParts - 1)) { | 
|  | // The number of parts is not a power of 2.  Split off and copy the tail. | 
|  | assert(PartVT.isInteger() && ValueVT.isInteger() && | 
|  | "Do not know what to expand to!"); | 
|  | unsigned RoundParts = 1 << Log2_32(NumParts); | 
|  | unsigned RoundBits = RoundParts * PartBits; | 
|  | unsigned OddParts = NumParts - RoundParts; | 
|  | SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, | 
|  | DAG.getIntPtrConstant(RoundBits)); | 
|  | getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); | 
|  |  | 
|  | if (TLI.isBigEndian()) | 
|  | // The odd parts were reversed by getCopyToParts - unreverse them. | 
|  | std::reverse(Parts + RoundParts, Parts + NumParts); | 
|  |  | 
|  | NumParts = RoundParts; | 
|  | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); | 
|  | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); | 
|  | } | 
|  |  | 
|  | // The number of parts is a power of 2.  Repeatedly bisect the value using | 
|  | // EXTRACT_ELEMENT. | 
|  | Parts[0] = DAG.getNode(ISD::BITCAST, DL, | 
|  | EVT::getIntegerVT(*DAG.getContext(), | 
|  | ValueVT.getSizeInBits()), | 
|  | Val); | 
|  |  | 
|  | for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { | 
|  | for (unsigned i = 0; i < NumParts; i += StepSize) { | 
|  | unsigned ThisBits = StepSize * PartBits / 2; | 
|  | EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); | 
|  | SDValue &Part0 = Parts[i]; | 
|  | SDValue &Part1 = Parts[i+StepSize/2]; | 
|  |  | 
|  | Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, | 
|  | ThisVT, Part0, DAG.getIntPtrConstant(1)); | 
|  | Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, | 
|  | ThisVT, Part0, DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | if (ThisBits == PartBits && ThisVT != PartVT) { | 
|  | Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); | 
|  | Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TLI.isBigEndian()) | 
|  | std::reverse(Parts, Parts + OrigNumParts); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getCopyToPartsVector - Create a series of nodes that contain the specified | 
|  | /// value split into legal parts. | 
|  | static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, | 
|  | SDValue Val, SDValue *Parts, unsigned NumParts, | 
|  | EVT PartVT) { | 
|  | EVT ValueVT = Val.getValueType(); | 
|  | assert(ValueVT.isVector() && "Not a vector"); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | if (NumParts == 1) { | 
|  | if (PartVT == ValueVT) { | 
|  | // Nothing to do. | 
|  | } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { | 
|  | // Bitconvert vector->vector case. | 
|  | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); | 
|  | } else if (PartVT.isVector() && | 
|  | PartVT.getVectorElementType() == ValueVT.getVectorElementType() && | 
|  | PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { | 
|  | EVT ElementVT = PartVT.getVectorElementType(); | 
|  | // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in | 
|  | // undef elements. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) | 
|  | Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, | 
|  | ElementVT, Val, DAG.getIntPtrConstant(i))); | 
|  |  | 
|  | for (unsigned i = ValueVT.getVectorNumElements(), | 
|  | e = PartVT.getVectorNumElements(); i != e; ++i) | 
|  | Ops.push_back(DAG.getUNDEF(ElementVT)); | 
|  |  | 
|  | Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); | 
|  |  | 
|  | // FIXME: Use CONCAT for 2x -> 4x. | 
|  |  | 
|  | //SDValue UndefElts = DAG.getUNDEF(VectorTy); | 
|  | //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); | 
|  | } else if (PartVT.isVector() && | 
|  | PartVT.getVectorElementType().bitsGE( | 
|  | ValueVT.getVectorElementType()) && | 
|  | PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { | 
|  |  | 
|  | // Promoted vector extract | 
|  | bool Smaller = PartVT.bitsLE(ValueVT); | 
|  | Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), | 
|  | DL, PartVT, Val); | 
|  | } else{ | 
|  | // Vector -> scalar conversion. | 
|  | assert(ValueVT.getVectorNumElements() == 1 && | 
|  | "Only trivial vector-to-scalar conversions should get here!"); | 
|  | Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, | 
|  | PartVT, Val, DAG.getIntPtrConstant(0)); | 
|  |  | 
|  | bool Smaller = ValueVT.bitsLE(PartVT); | 
|  | Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), | 
|  | DL, PartVT, Val); | 
|  | } | 
|  |  | 
|  | Parts[0] = Val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a multi-element vector. | 
|  | EVT IntermediateVT, RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, | 
|  | IntermediateVT, | 
|  | NumIntermediates, RegisterVT); | 
|  | unsigned NumElements = ValueVT.getVectorNumElements(); | 
|  |  | 
|  | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); | 
|  | NumParts = NumRegs; // Silence a compiler warning. | 
|  | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); | 
|  |  | 
|  | // Split the vector into intermediate operands. | 
|  | SmallVector<SDValue, 8> Ops(NumIntermediates); | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) { | 
|  | if (IntermediateVT.isVector()) | 
|  | Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, | 
|  | IntermediateVT, Val, | 
|  | DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); | 
|  | else | 
|  | Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, | 
|  | IntermediateVT, Val, DAG.getIntPtrConstant(i)); | 
|  | } | 
|  |  | 
|  | // Split the intermediate operands into legal parts. | 
|  | if (NumParts == NumIntermediates) { | 
|  | // If the register was not expanded, promote or copy the value, | 
|  | // as appropriate. | 
|  | for (unsigned i = 0; i != NumParts; ++i) | 
|  | getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); | 
|  | } else if (NumParts > 0) { | 
|  | // If the intermediate type was expanded, split each the value into | 
|  | // legal parts. | 
|  | assert(NumParts % NumIntermediates == 0 && | 
|  | "Must expand into a divisible number of parts!"); | 
|  | unsigned Factor = NumParts / NumIntermediates; | 
|  | for (unsigned i = 0; i != NumIntermediates; ++i) | 
|  | getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// RegsForValue - This struct represents the registers (physical or virtual) | 
|  | /// that a particular set of values is assigned, and the type information | 
|  | /// about the value. The most common situation is to represent one value at a | 
|  | /// time, but struct or array values are handled element-wise as multiple | 
|  | /// values.  The splitting of aggregates is performed recursively, so that we | 
|  | /// never have aggregate-typed registers. The values at this point do not | 
|  | /// necessarily have legal types, so each value may require one or more | 
|  | /// registers of some legal type. | 
|  | /// | 
|  | struct RegsForValue { | 
|  | /// ValueVTs - The value types of the values, which may not be legal, and | 
|  | /// may need be promoted or synthesized from one or more registers. | 
|  | /// | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  |  | 
|  | /// RegVTs - The value types of the registers. This is the same size as | 
|  | /// ValueVTs and it records, for each value, what the type of the assigned | 
|  | /// register or registers are. (Individual values are never synthesized | 
|  | /// from more than one type of register.) | 
|  | /// | 
|  | /// With virtual registers, the contents of RegVTs is redundant with TLI's | 
|  | /// getRegisterType member function, however when with physical registers | 
|  | /// it is necessary to have a separate record of the types. | 
|  | /// | 
|  | SmallVector<EVT, 4> RegVTs; | 
|  |  | 
|  | /// Regs - This list holds the registers assigned to the values. | 
|  | /// Each legal or promoted value requires one register, and each | 
|  | /// expanded value requires multiple registers. | 
|  | /// | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | RegsForValue() {} | 
|  |  | 
|  | RegsForValue(const SmallVector<unsigned, 4> ®s, | 
|  | EVT regvt, EVT valuevt) | 
|  | : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} | 
|  |  | 
|  | RegsForValue(LLVMContext &Context, const TargetLowering &tli, | 
|  | unsigned Reg, Type *Ty) { | 
|  | ComputeValueVTs(tli, Ty, ValueVTs); | 
|  |  | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); | 
|  | EVT RegisterVT = tli.getRegisterType(Context, ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) | 
|  | Regs.push_back(Reg + i); | 
|  | RegVTs.push_back(RegisterVT); | 
|  | Reg += NumRegs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// areValueTypesLegal - Return true if types of all the values are legal. | 
|  | bool areValueTypesLegal(const TargetLowering &TLI) { | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT RegisterVT = RegVTs[Value]; | 
|  | if (!TLI.isTypeLegal(RegisterVT)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// append - Add the specified values to this one. | 
|  | void append(const RegsForValue &RHS) { | 
|  | ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); | 
|  | RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); | 
|  | Regs.append(RHS.Regs.begin(), RHS.Regs.end()); | 
|  | } | 
|  |  | 
|  | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
|  | /// this value and returns the result as a ValueVTs value.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, | 
|  | DebugLoc dl, | 
|  | SDValue &Chain, SDValue *Flag) const; | 
|  |  | 
|  | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
|  | /// specified value into the registers specified by this object.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, | 
|  | SDValue &Chain, SDValue *Flag) const; | 
|  |  | 
|  | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
|  | /// operand list.  This adds the code marker, matching input operand index | 
|  | /// (if applicable), and includes the number of values added into it. | 
|  | void AddInlineAsmOperands(unsigned Kind, | 
|  | bool HasMatching, unsigned MatchingIdx, | 
|  | SelectionDAG &DAG, | 
|  | std::vector<SDValue> &Ops) const; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from | 
|  | /// this value and returns the result as a ValueVT value.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, | 
|  | FunctionLoweringInfo &FuncInfo, | 
|  | DebugLoc dl, | 
|  | SDValue &Chain, SDValue *Flag) const { | 
|  | // A Value with type {} or [0 x %t] needs no registers. | 
|  | if (ValueVTs.empty()) | 
|  | return SDValue(); | 
|  |  | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // Assemble the legal parts into the final values. | 
|  | SmallVector<SDValue, 4> Values(ValueVTs.size()); | 
|  | SmallVector<SDValue, 8> Parts; | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | // Copy the legal parts from the registers. | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); | 
|  | EVT RegisterVT = RegVTs[Value]; | 
|  |  | 
|  | Parts.resize(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue P; | 
|  | if (Flag == 0) { | 
|  | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); | 
|  | } else { | 
|  | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); | 
|  | *Flag = P.getValue(2); | 
|  | } | 
|  |  | 
|  | Chain = P.getValue(1); | 
|  | Parts[i] = P; | 
|  |  | 
|  | // If the source register was virtual and if we know something about it, | 
|  | // add an assert node. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || | 
|  | !RegisterVT.isInteger() || RegisterVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | const FunctionLoweringInfo::LiveOutInfo *LOI = | 
|  | FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); | 
|  | if (!LOI) | 
|  | continue; | 
|  |  | 
|  | unsigned RegSize = RegisterVT.getSizeInBits(); | 
|  | unsigned NumSignBits = LOI->NumSignBits; | 
|  | unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); | 
|  |  | 
|  | // FIXME: We capture more information than the dag can represent.  For | 
|  | // now, just use the tightest assertzext/assertsext possible. | 
|  | bool isSExt = true; | 
|  | EVT FromVT(MVT::Other); | 
|  | if (NumSignBits == RegSize) | 
|  | isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1 | 
|  | else if (NumZeroBits >= RegSize-1) | 
|  | isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1 | 
|  | else if (NumSignBits > RegSize-8) | 
|  | isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8 | 
|  | else if (NumZeroBits >= RegSize-8) | 
|  | isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8 | 
|  | else if (NumSignBits > RegSize-16) | 
|  | isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16 | 
|  | else if (NumZeroBits >= RegSize-16) | 
|  | isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 | 
|  | else if (NumSignBits > RegSize-32) | 
|  | isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32 | 
|  | else if (NumZeroBits >= RegSize-32) | 
|  | isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 | 
|  | else | 
|  | continue; | 
|  |  | 
|  | // Add an assertion node. | 
|  | assert(FromVT != MVT::Other); | 
|  | Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, | 
|  | RegisterVT, P, DAG.getValueType(FromVT)); | 
|  | } | 
|  |  | 
|  | Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), | 
|  | NumRegs, RegisterVT, ValueVT); | 
|  | Part += NumRegs; | 
|  | Parts.clear(); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(&ValueVTs[0], ValueVTs.size()), | 
|  | &Values[0], ValueVTs.size()); | 
|  | } | 
|  |  | 
|  | /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the | 
|  | /// specified value into the registers specified by this object.  This uses | 
|  | /// Chain/Flag as the input and updates them for the output Chain/Flag. | 
|  | /// If the Flag pointer is NULL, no flag is used. | 
|  | void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, | 
|  | SDValue &Chain, SDValue *Flag) const { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // Get the list of the values's legal parts. | 
|  | unsigned NumRegs = Regs.size(); | 
|  | SmallVector<SDValue, 8> Parts(NumRegs); | 
|  | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); | 
|  | EVT RegisterVT = RegVTs[Value]; | 
|  |  | 
|  | getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), | 
|  | &Parts[Part], NumParts, RegisterVT); | 
|  | Part += NumParts; | 
|  | } | 
|  |  | 
|  | // Copy the parts into the registers. | 
|  | SmallVector<SDValue, 8> Chains(NumRegs); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | SDValue Part; | 
|  | if (Flag == 0) { | 
|  | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); | 
|  | } else { | 
|  | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); | 
|  | *Flag = Part.getValue(1); | 
|  | } | 
|  |  | 
|  | Chains[i] = Part.getValue(0); | 
|  | } | 
|  |  | 
|  | if (NumRegs == 1 || Flag) | 
|  | // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is | 
|  | // flagged to it. That is the CopyToReg nodes and the user are considered | 
|  | // a single scheduling unit. If we create a TokenFactor and return it as | 
|  | // chain, then the TokenFactor is both a predecessor (operand) of the | 
|  | // user as well as a successor (the TF operands are flagged to the user). | 
|  | // c1, f1 = CopyToReg | 
|  | // c2, f2 = CopyToReg | 
|  | // c3     = TokenFactor c1, c2 | 
|  | // ... | 
|  | //        = op c3, ..., f2 | 
|  | Chain = Chains[NumRegs-1]; | 
|  | else | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); | 
|  | } | 
|  |  | 
|  | /// AddInlineAsmOperands - Add this value to the specified inlineasm node | 
|  | /// operand list.  This adds the code marker and includes the number of | 
|  | /// values added into it. | 
|  | void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, | 
|  | unsigned MatchingIdx, | 
|  | SelectionDAG &DAG, | 
|  | std::vector<SDValue> &Ops) const { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); | 
|  | if (HasMatching) | 
|  | Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); | 
|  | else if (!Regs.empty() && | 
|  | TargetRegisterInfo::isVirtualRegister(Regs.front())) { | 
|  | // Put the register class of the virtual registers in the flag word.  That | 
|  | // way, later passes can recompute register class constraints for inline | 
|  | // assembly as well as normal instructions. | 
|  | // Don't do this for tied operands that can use the regclass information | 
|  | // from the def. | 
|  | const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); | 
|  | Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); | 
|  | } | 
|  |  | 
|  | SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); | 
|  | Ops.push_back(Res); | 
|  |  | 
|  | for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); | 
|  | EVT RegisterVT = RegVTs[Value]; | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | assert(Reg < Regs.size() && "Mismatch in # registers expected"); | 
|  | Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { | 
|  | AA = &aa; | 
|  | GFI = gfi; | 
|  | TD = DAG.getTarget().getTargetData(); | 
|  | LPadToCallSiteMap.clear(); | 
|  | } | 
|  |  | 
|  | /// clear - Clear out the current SelectionDAG and the associated | 
|  | /// state and prepare this SelectionDAGBuilder object to be used | 
|  | /// for a new block. This doesn't clear out information about | 
|  | /// additional blocks that are needed to complete switch lowering | 
|  | /// or PHI node updating; that information is cleared out as it is | 
|  | /// consumed. | 
|  | void SelectionDAGBuilder::clear() { | 
|  | NodeMap.clear(); | 
|  | UnusedArgNodeMap.clear(); | 
|  | PendingLoads.clear(); | 
|  | PendingExports.clear(); | 
|  | CurDebugLoc = DebugLoc(); | 
|  | HasTailCall = false; | 
|  | } | 
|  |  | 
|  | /// clearDanglingDebugInfo - Clear the dangling debug information | 
|  | /// map. This function is seperated from the clear so that debug | 
|  | /// information that is dangling in a basic block can be properly | 
|  | /// resolved in a different basic block. This allows the | 
|  | /// SelectionDAG to resolve dangling debug information attached | 
|  | /// to PHI nodes. | 
|  | void SelectionDAGBuilder::clearDanglingDebugInfo() { | 
|  | DanglingDebugInfoMap.clear(); | 
|  | } | 
|  |  | 
|  | /// getRoot - Return the current virtual root of the Selection DAG, | 
|  | /// flushing any PendingLoad items. This must be done before emitting | 
|  | /// a store or any other node that may need to be ordered after any | 
|  | /// prior load instructions. | 
|  | /// | 
|  | SDValue SelectionDAGBuilder::getRoot() { | 
|  | if (PendingLoads.empty()) | 
|  | return DAG.getRoot(); | 
|  |  | 
|  | if (PendingLoads.size() == 1) { | 
|  | SDValue Root = PendingLoads[0]; | 
|  | DAG.setRoot(Root); | 
|  | PendingLoads.clear(); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to make a token factor node. | 
|  | SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, | 
|  | &PendingLoads[0], PendingLoads.size()); | 
|  | PendingLoads.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | /// getControlRoot - Similar to getRoot, but instead of flushing all the | 
|  | /// PendingLoad items, flush all the PendingExports items. It is necessary | 
|  | /// to do this before emitting a terminator instruction. | 
|  | /// | 
|  | SDValue SelectionDAGBuilder::getControlRoot() { | 
|  | SDValue Root = DAG.getRoot(); | 
|  |  | 
|  | if (PendingExports.empty()) | 
|  | return Root; | 
|  |  | 
|  | // Turn all of the CopyToReg chains into one factored node. | 
|  | if (Root.getOpcode() != ISD::EntryToken) { | 
|  | unsigned i = 0, e = PendingExports.size(); | 
|  | for (; i != e; ++i) { | 
|  | assert(PendingExports[i].getNode()->getNumOperands() > 1); | 
|  | if (PendingExports[i].getNode()->getOperand(0) == Root) | 
|  | break;  // Don't add the root if we already indirectly depend on it. | 
|  | } | 
|  |  | 
|  | if (i == e) | 
|  | PendingExports.push_back(Root); | 
|  | } | 
|  |  | 
|  | Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, | 
|  | &PendingExports[0], | 
|  | PendingExports.size()); | 
|  | PendingExports.clear(); | 
|  | DAG.setRoot(Root); | 
|  | return Root; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { | 
|  | if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. | 
|  | DAG.AssignOrdering(Node, SDNodeOrder); | 
|  |  | 
|  | for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) | 
|  | AssignOrderingToNode(Node->getOperand(I).getNode()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visit(const Instruction &I) { | 
|  | // Set up outgoing PHI node register values before emitting the terminator. | 
|  | if (isa<TerminatorInst>(&I)) | 
|  | HandlePHINodesInSuccessorBlocks(I.getParent()); | 
|  |  | 
|  | CurDebugLoc = I.getDebugLoc(); | 
|  |  | 
|  | visit(I.getOpcode(), I); | 
|  |  | 
|  | if (!isa<TerminatorInst>(&I) && !HasTailCall) | 
|  | CopyToExportRegsIfNeeded(&I); | 
|  |  | 
|  | CurDebugLoc = DebugLoc(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitPHI(const PHINode &) { | 
|  | llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { | 
|  | // Note: this doesn't use InstVisitor, because it has to work with | 
|  | // ConstantExpr's in addition to instructions. | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unknown instruction type encountered!"); | 
|  | // Build the switch statement using the Instruction.def file. | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS) \ | 
|  | case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; | 
|  | #include "llvm/Instruction.def" | 
|  | } | 
|  |  | 
|  | // Assign the ordering to the freshly created DAG nodes. | 
|  | if (NodeMap.count(&I)) { | 
|  | ++SDNodeOrder; | 
|  | AssignOrderingToNode(getValue(&I).getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, | 
|  | // generate the debug data structures now that we've seen its definition. | 
|  | void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, | 
|  | SDValue Val) { | 
|  | DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; | 
|  | if (DDI.getDI()) { | 
|  | const DbgValueInst *DI = DDI.getDI(); | 
|  | DebugLoc dl = DDI.getdl(); | 
|  | unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); | 
|  | MDNode *Variable = DI->getVariable(); | 
|  | uint64_t Offset = DI->getOffset(); | 
|  | SDDbgValue *SDV; | 
|  | if (Val.getNode()) { | 
|  | if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { | 
|  | SDV = DAG.getDbgValue(Variable, Val.getNode(), | 
|  | Val.getResNo(), Offset, dl, DbgSDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, Val.getNode(), false); | 
|  | } | 
|  | } else | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI); | 
|  | DanglingDebugInfoMap[V] = DanglingDebugInfo(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getValue - Return an SDValue for the given Value. | 
|  | SDValue SelectionDAGBuilder::getValue(const Value *V) { | 
|  | // If we already have an SDValue for this value, use it. It's important | 
|  | // to do this first, so that we don't create a CopyFromReg if we already | 
|  | // have a regular SDValue. | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) return N; | 
|  |  | 
|  | // If there's a virtual register allocated and initialized for this | 
|  | // value, use it. | 
|  | DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); | 
|  | if (It != FuncInfo.ValueMap.end()) { | 
|  | unsigned InReg = It->second; | 
|  | RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); | 
|  | resolveDanglingDebugInfo(V, N); | 
|  | return N; | 
|  | } | 
|  |  | 
|  | // Otherwise create a new SDValue and remember it. | 
|  | SDValue Val = getValueImpl(V); | 
|  | NodeMap[V] = Val; | 
|  | resolveDanglingDebugInfo(V, Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// getNonRegisterValue - Return an SDValue for the given Value, but | 
|  | /// don't look in FuncInfo.ValueMap for a virtual register. | 
|  | SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { | 
|  | // If we already have an SDValue for this value, use it. | 
|  | SDValue &N = NodeMap[V]; | 
|  | if (N.getNode()) return N; | 
|  |  | 
|  | // Otherwise create a new SDValue and remember it. | 
|  | SDValue Val = getValueImpl(V); | 
|  | NodeMap[V] = Val; | 
|  | resolveDanglingDebugInfo(V, Val); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// getValueImpl - Helper function for getValue and getNonRegisterValue. | 
|  | /// Create an SDValue for the given value. | 
|  | SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { | 
|  | if (const Constant *C = dyn_cast<Constant>(V)) { | 
|  | EVT VT = TLI.getValueType(V->getType(), true); | 
|  |  | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
|  | return DAG.getConstant(*CI, VT); | 
|  |  | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
|  | return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(C)) | 
|  | return DAG.getConstant(0, TLI.getPointerTy()); | 
|  |  | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
|  | return DAG.getConstantFP(*CFP, VT); | 
|  |  | 
|  | if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) | 
|  | return DAG.getUNDEF(VT); | 
|  |  | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | visit(CE->getOpcode(), *CE); | 
|  | SDValue N1 = NodeMap[V]; | 
|  | assert(N1.getNode() && "visit didn't populate the NodeMap!"); | 
|  | return N1; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { | 
|  | SmallVector<SDValue, 4> Constants; | 
|  | for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); | 
|  | OI != OE; ++OI) { | 
|  | SDNode *Val = getValue(*OI).getNode(); | 
|  | // If the operand is an empty aggregate, there are no values. | 
|  | if (!Val) continue; | 
|  | // Add each leaf value from the operand to the Constants list | 
|  | // to form a flattened list of all the values. | 
|  | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) | 
|  | Constants.push_back(SDValue(Val, i)); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues(&Constants[0], Constants.size(), | 
|  | getCurDebugLoc()); | 
|  | } | 
|  |  | 
|  | if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { | 
|  | assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && | 
|  | "Unknown struct or array constant!"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, C->getType(), ValueVTs); | 
|  | unsigned NumElts = ValueVTs.size(); | 
|  | if (NumElts == 0) | 
|  | return SDValue(); // empty struct | 
|  | SmallVector<SDValue, 4> Constants(NumElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | EVT EltVT = ValueVTs[i]; | 
|  | if (isa<UndefValue>(C)) | 
|  | Constants[i] = DAG.getUNDEF(EltVT); | 
|  | else if (EltVT.isFloatingPoint()) | 
|  | Constants[i] = DAG.getConstantFP(0, EltVT); | 
|  | else | 
|  | Constants[i] = DAG.getConstant(0, EltVT); | 
|  | } | 
|  |  | 
|  | return DAG.getMergeValues(&Constants[0], NumElts, | 
|  | getCurDebugLoc()); | 
|  | } | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) | 
|  | return DAG.getBlockAddress(BA, VT); | 
|  |  | 
|  | VectorType *VecTy = cast<VectorType>(V->getType()); | 
|  | unsigned NumElements = VecTy->getNumElements(); | 
|  |  | 
|  | // Now that we know the number and type of the elements, get that number of | 
|  | // elements into the Ops array based on what kind of constant it is. | 
|  | SmallVector<SDValue, 16> Ops; | 
|  | if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { | 
|  | for (unsigned i = 0; i != NumElements; ++i) | 
|  | Ops.push_back(getValue(CP->getOperand(i))); | 
|  | } else { | 
|  | assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); | 
|  | EVT EltVT = TLI.getValueType(VecTy->getElementType()); | 
|  |  | 
|  | SDValue Op; | 
|  | if (EltVT.isFloatingPoint()) | 
|  | Op = DAG.getConstantFP(0, EltVT); | 
|  | else | 
|  | Op = DAG.getConstant(0, EltVT); | 
|  | Ops.assign(NumElements, Op); | 
|  | } | 
|  |  | 
|  | // Create a BUILD_VECTOR node. | 
|  | return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), | 
|  | VT, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | // If this is a static alloca, generate it as the frameindex instead of | 
|  | // computation. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) | 
|  | return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); | 
|  | } | 
|  |  | 
|  | // If this is an instruction which fast-isel has deferred, select it now. | 
|  | if (const Instruction *Inst = dyn_cast<Instruction>(V)) { | 
|  | unsigned InReg = FuncInfo.InitializeRegForValue(Inst); | 
|  | RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Can't get register for value!"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitRet(const ReturnInst &I) { | 
|  | SDValue Chain = getControlRoot(); | 
|  | SmallVector<ISD::OutputArg, 8> Outs; | 
|  | SmallVector<SDValue, 8> OutVals; | 
|  |  | 
|  | if (!FuncInfo.CanLowerReturn) { | 
|  | unsigned DemoteReg = FuncInfo.DemoteRegister; | 
|  | const Function *F = I.getParent()->getParent(); | 
|  |  | 
|  | // Emit a store of the return value through the virtual register. | 
|  | // Leave Outs empty so that LowerReturn won't try to load return | 
|  | // registers the usual way. | 
|  | SmallVector<EVT, 1> PtrValueVTs; | 
|  | ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), | 
|  | PtrValueVTs); | 
|  |  | 
|  | SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); | 
|  | SDValue RetOp = getValue(I.getOperand(0)); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
|  | RetPtr.getValueType(), RetPtr, | 
|  | DAG.getIntPtrConstant(Offsets[i])); | 
|  | Chains[i] = | 
|  | DAG.getStore(Chain, getCurDebugLoc(), | 
|  | SDValue(RetOp.getNode(), RetOp.getResNo() + i), | 
|  | // FIXME: better loc info would be nice. | 
|  | Add, MachinePointerInfo(), false, false, 0); | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
|  | MVT::Other, &Chains[0], NumValues); | 
|  | } else if (I.getNumOperands() != 0) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues) { | 
|  | SDValue RetOp = getValue(I.getOperand(0)); | 
|  | for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
|  | EVT VT = ValueVTs[j]; | 
|  |  | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | const Function *F = I.getParent()->getParent(); | 
|  | if (F->paramHasAttr(0, Attribute::SExt)) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (F->paramHasAttr(0, Attribute::ZExt)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) | 
|  | VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); | 
|  |  | 
|  | unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); | 
|  | EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | getCopyToParts(DAG, getCurDebugLoc(), | 
|  | SDValue(RetOp.getNode(), RetOp.getResNo() + j), | 
|  | &Parts[0], NumParts, PartVT, ExtendKind); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (F->paramHasAttr(0, Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  |  | 
|  | // Propagate extension type if any | 
|  | if (ExtendKind == ISD::SIGN_EXTEND) | 
|  | Flags.setSExt(); | 
|  | else if (ExtendKind == ISD::ZERO_EXTEND) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), | 
|  | /*isfixed=*/true)); | 
|  | OutVals.push_back(Parts[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); | 
|  | CallingConv::ID CallConv = | 
|  | DAG.getMachineFunction().getFunction()->getCallingConv(); | 
|  | Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, | 
|  | Outs, OutVals, getCurDebugLoc(), DAG); | 
|  |  | 
|  | // Verify that the target's LowerReturn behaved as expected. | 
|  | assert(Chain.getNode() && Chain.getValueType() == MVT::Other && | 
|  | "LowerReturn didn't return a valid chain!"); | 
|  |  | 
|  | // Update the DAG with the new chain value resulting from return lowering. | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// CopyToExportRegsIfNeeded - If the given value has virtual registers | 
|  | /// created for it, emit nodes to copy the value into the virtual | 
|  | /// registers. | 
|  | void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | return; | 
|  |  | 
|  | DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) { | 
|  | assert(!V->use_empty() && "Unused value assigned virtual registers!"); | 
|  | CopyValueToVirtualRegister(V, VMI->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExportFromCurrentBlock - If this condition isn't known to be exported from | 
|  | /// the current basic block, add it to ValueMap now so that we'll get a | 
|  | /// CopyTo/FromReg. | 
|  | void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { | 
|  | // No need to export constants. | 
|  | if (!isa<Instruction>(V) && !isa<Argument>(V)) return; | 
|  |  | 
|  | // Already exported? | 
|  | if (FuncInfo.isExportedInst(V)) return; | 
|  |  | 
|  | unsigned Reg = FuncInfo.InitializeRegForValue(V); | 
|  | CopyValueToVirtualRegister(V, Reg); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, | 
|  | const BasicBlock *FromBB) { | 
|  | // The operands of the setcc have to be in this block.  We don't know | 
|  | // how to export them from some other block. | 
|  | if (const Instruction *VI = dyn_cast<Instruction>(V)) { | 
|  | // Can export from current BB. | 
|  | if (VI->getParent() == FromBB) | 
|  | return true; | 
|  |  | 
|  | // Is already exported, noop. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // If this is an argument, we can export it if the BB is the entry block or | 
|  | // if it is already exported. | 
|  | if (isa<Argument>(V)) { | 
|  | if (FromBB == &FromBB->getParent()->getEntryBlock()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, can only export this if it is already exported. | 
|  | return FuncInfo.isExportedInst(V); | 
|  | } | 
|  |  | 
|  | // Otherwise, constants can always be exported. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. | 
|  | uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, | 
|  | MachineBasicBlock *Dst) { | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | if (!BPI) | 
|  | return 0; | 
|  | const BasicBlock *SrcBB = Src->getBasicBlock(); | 
|  | const BasicBlock *DstBB = Dst->getBasicBlock(); | 
|  | return BPI->getEdgeWeight(SrcBB, DstBB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder:: | 
|  | addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, | 
|  | uint32_t Weight /* = 0 */) { | 
|  | if (!Weight) | 
|  | Weight = getEdgeWeight(Src, Dst); | 
|  | Src->addSuccessor(Dst, Weight); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool InBlock(const Value *V, const BasicBlock *BB) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | return I->getParent() == BB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. | 
|  | /// This function emits a branch and is used at the leaves of an OR or an | 
|  | /// AND operator tree. | 
|  | /// | 
|  | void | 
|  | SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | const BasicBlock *BB = CurBB->getBasicBlock(); | 
|  |  | 
|  | // If the leaf of the tree is a comparison, merge the condition into | 
|  | // the caseblock. | 
|  | if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { | 
|  | // The operands of the cmp have to be in this block.  We don't know | 
|  | // how to export them from some other block.  If this is the first block | 
|  | // of the sequence, no exporting is needed. | 
|  | if (CurBB == SwitchBB || | 
|  | (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && | 
|  | isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { | 
|  | ISD::CondCode Condition; | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { | 
|  | Condition = getICmpCondCode(IC->getPredicate()); | 
|  | } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { | 
|  | Condition = getFCmpCondCode(FC->getPredicate()); | 
|  | } else { | 
|  | Condition = ISD::SETEQ; // silence warning. | 
|  | llvm_unreachable("Unknown compare instruction"); | 
|  | } | 
|  |  | 
|  | CaseBlock CB(Condition, BOp->getOperand(0), | 
|  | BOp->getOperand(1), NULL, TBB, FBB, CurBB); | 
|  | SwitchCases.push_back(CB); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), | 
|  | NULL, TBB, FBB, CurBB); | 
|  | SwitchCases.push_back(CB); | 
|  | } | 
|  |  | 
|  | /// FindMergedConditions - If Cond is an expression like | 
|  | void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | unsigned Opc) { | 
|  | // If this node is not part of the or/and tree, emit it as a branch. | 
|  | const Instruction *BOp = dyn_cast<Instruction>(Cond); | 
|  | if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || | 
|  | (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || | 
|  | BOp->getParent() != CurBB->getBasicBlock() || | 
|  | !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || | 
|  | !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { | 
|  | EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | //  Create TmpBB after CurBB. | 
|  | MachineFunction::iterator BBI = CurBB; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); | 
|  | CurBB->getParent()->insert(++BBI, TmpBB); | 
|  |  | 
|  | if (Opc == Instruction::Or) { | 
|  | // Codegen X | Y as: | 
|  | //   jmp_if_X TBB | 
|  | //   jmp TmpBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  |  | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); | 
|  |  | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); | 
|  | } else { | 
|  | assert(Opc == Instruction::And && "Unknown merge op!"); | 
|  | // Codegen X & Y as: | 
|  | //   jmp_if_X TmpBB | 
|  | //   jmp FBB | 
|  | // TmpBB: | 
|  | //   jmp_if_Y TBB | 
|  | //   jmp FBB | 
|  | // | 
|  | //  This requires creation of TmpBB after CurBB. | 
|  |  | 
|  | // Emit the LHS condition. | 
|  | FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); | 
|  |  | 
|  | // Emit the RHS condition into TmpBB. | 
|  | FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the set of cases should be emitted as a series of branches, return true. | 
|  | /// If we should emit this as a bunch of and/or'd together conditions, return | 
|  | /// false. | 
|  | bool | 
|  | SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ | 
|  | if (Cases.size() != 2) return true; | 
|  |  | 
|  | // If this is two comparisons of the same values or'd or and'd together, they | 
|  | // will get folded into a single comparison, so don't emit two blocks. | 
|  | if ((Cases[0].CmpLHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpRHS == Cases[1].CmpRHS) || | 
|  | (Cases[0].CmpRHS == Cases[1].CmpLHS && | 
|  | Cases[0].CmpLHS == Cases[1].CmpRHS)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handle: (X != null) | (Y != null) --> (X|Y) != 0 | 
|  | // Handle: (X == null) & (Y == null) --> (X|Y) == 0 | 
|  | if (Cases[0].CmpRHS == Cases[1].CmpRHS && | 
|  | Cases[0].CC == Cases[1].CC && | 
|  | isa<Constant>(Cases[0].CmpRHS) && | 
|  | cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { | 
|  | if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) | 
|  | return false; | 
|  | if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBr(const BranchInst &I) { | 
|  | MachineBasicBlock *BrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Update machine-CFG edges. | 
|  | MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = BrMBB; | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | if (I.isUnconditional()) { | 
|  | // Update machine-CFG edges. | 
|  | BrMBB->addSuccessor(Succ0MBB); | 
|  |  | 
|  | // If this is not a fall-through branch, emit the branch. | 
|  | if (Succ0MBB != NextBlock) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Succ0MBB))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this condition is one of the special cases we handle, do special stuff | 
|  | // now. | 
|  | const Value *CondVal = I.getCondition(); | 
|  | MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
|  |  | 
|  | // If this is a series of conditions that are or'd or and'd together, emit | 
|  | // this as a sequence of branches instead of setcc's with and/or operations. | 
|  | // As long as jumps are not expensive, this should improve performance. | 
|  | // For example, instead of something like: | 
|  | //     cmp A, B | 
|  | //     C = seteq | 
|  | //     cmp D, E | 
|  | //     F = setle | 
|  | //     or C, F | 
|  | //     jnz foo | 
|  | // Emit: | 
|  | //     cmp A, B | 
|  | //     je foo | 
|  | //     cmp D, E | 
|  | //     jle foo | 
|  | // | 
|  | if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { | 
|  | if (!TLI.isJumpExpensive() && | 
|  | BOp->hasOneUse() && | 
|  | (BOp->getOpcode() == Instruction::And || | 
|  | BOp->getOpcode() == Instruction::Or)) { | 
|  | FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, | 
|  | BOp->getOpcode()); | 
|  | // If the compares in later blocks need to use values not currently | 
|  | // exported from this block, export them now.  This block should always | 
|  | // be the first entry. | 
|  | assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); | 
|  |  | 
|  | // Allow some cases to be rejected. | 
|  | if (ShouldEmitAsBranches(SwitchCases)) { | 
|  | for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { | 
|  | ExportFromCurrentBlock(SwitchCases[i].CmpLHS); | 
|  | ExportFromCurrentBlock(SwitchCases[i].CmpRHS); | 
|  | } | 
|  |  | 
|  | // Emit the branch for this block. | 
|  | visitSwitchCase(SwitchCases[0], BrMBB); | 
|  | SwitchCases.erase(SwitchCases.begin()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, we decided not to do this, remove any inserted MBB's and clear | 
|  | // SwitchCases. | 
|  | for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) | 
|  | FuncInfo.MF->erase(SwitchCases[i].ThisBB); | 
|  |  | 
|  | SwitchCases.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing this branch. | 
|  | CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), | 
|  | NULL, Succ0MBB, Succ1MBB, BrMBB); | 
|  |  | 
|  | // Use visitSwitchCase to actually insert the fast branch sequence for this | 
|  | // cond branch. | 
|  | visitSwitchCase(CB, BrMBB); | 
|  | } | 
|  |  | 
|  | /// visitSwitchCase - Emits the necessary code to represent a single node in | 
|  | /// the binary search tree resulting from lowering a switch instruction. | 
|  | void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | SDValue Cond; | 
|  | SDValue CondLHS = getValue(CB.CmpLHS); | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | // Build the setcc now. | 
|  | if (CB.CmpMHS == NULL) { | 
|  | // Fold "(X == true)" to X and "(X == false)" to !X to | 
|  | // handle common cases produced by branch lowering. | 
|  | if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && | 
|  | CB.CC == ISD::SETEQ) | 
|  | Cond = CondLHS; | 
|  | else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && | 
|  | CB.CC == ISD::SETEQ) { | 
|  | SDValue True = DAG.getConstant(1, CondLHS.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); | 
|  | } else | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); | 
|  | } else { | 
|  | assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); | 
|  |  | 
|  | const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); | 
|  | const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue(); | 
|  |  | 
|  | SDValue CmpOp = getValue(CB.CmpMHS); | 
|  | EVT VT = CmpOp.getValueType(); | 
|  |  | 
|  | if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), | 
|  | ISD::SETLE); | 
|  | } else { | 
|  | SDValue SUB = DAG.getNode(ISD::SUB, dl, | 
|  | VT, CmpOp, DAG.getConstant(Low, VT)); | 
|  | Cond = DAG.getSetCC(dl, MVT::i1, SUB, | 
|  | DAG.getConstant(High-Low, VT), ISD::SETULE); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update successor info | 
|  | addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); | 
|  | addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = SwitchBB; | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | // If the lhs block is the next block, invert the condition so that we can | 
|  | // fall through to the lhs instead of the rhs block. | 
|  | if (CB.TrueBB == NextBlock) { | 
|  | std::swap(CB.TrueBB, CB.FalseBB); | 
|  | SDValue True = DAG.getConstant(1, Cond.getValueType()); | 
|  | Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); | 
|  | } | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, | 
|  | MVT::Other, getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(CB.TrueBB)); | 
|  |  | 
|  | // Insert the false branch. Do this even if it's a fall through branch, | 
|  | // this makes it easier to do DAG optimizations which require inverting | 
|  | // the branch condition. | 
|  | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(CB.FalseBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | } | 
|  |  | 
|  | /// visitJumpTable - Emit JumpTable node in the current MBB | 
|  | void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { | 
|  | // Emit the code for the jump table | 
|  | assert(JT.Reg != -1U && "Should lower JT Header first!"); | 
|  | EVT PTy = TLI.getPointerTy(); | 
|  | SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), | 
|  | JT.Reg, PTy); | 
|  | SDValue Table = DAG.getJumpTable(JT.JTI, PTy); | 
|  | SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), | 
|  | MVT::Other, Index.getValue(1), | 
|  | Table, Index); | 
|  | DAG.setRoot(BrJumpTable); | 
|  | } | 
|  |  | 
|  | /// visitJumpTableHeader - This function emits necessary code to produce index | 
|  | /// in the JumpTable from switch case. | 
|  | void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, | 
|  | JumpTableHeader &JTH, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | // Subtract the lowest switch case value from the value being switched on and | 
|  | // conditional branch to default mbb if the result is greater than the | 
|  | // difference between smallest and largest cases. | 
|  | SDValue SwitchOp = getValue(JTH.SValue); | 
|  | EVT VT = SwitchOp.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, | 
|  | DAG.getConstant(JTH.First, VT)); | 
|  |  | 
|  | // The SDNode we just created, which holds the value being switched on minus | 
|  | // the smallest case value, needs to be copied to a virtual register so it | 
|  | // can be used as an index into the jump table in a subsequent basic block. | 
|  | // This value may be smaller or larger than the target's pointer type, and | 
|  | // therefore require extension or truncating. | 
|  | SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); | 
|  |  | 
|  | unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), | 
|  | JumpTableReg, SwitchOp); | 
|  | JT.Reg = JumpTableReg; | 
|  |  | 
|  | // Emit the range check for the jump table, and branch to the default block | 
|  | // for the switch statement if the value being switched on exceeds the largest | 
|  | // case in the switch. | 
|  | SDValue CMP = DAG.getSetCC(getCurDebugLoc(), | 
|  | TLI.getSetCCResultType(Sub.getValueType()), Sub, | 
|  | DAG.getConstant(JTH.Last-JTH.First,VT), | 
|  | ISD::SETUGT); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = SwitchBB; | 
|  |  | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), | 
|  | MVT::Other, CopyTo, CMP, | 
|  | DAG.getBasicBlock(JT.Default)); | 
|  |  | 
|  | if (JT.MBB != NextBlock) | 
|  | BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(JT.MBB)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | } | 
|  |  | 
|  | /// visitBitTestHeader - This function emits necessary code to produce value | 
|  | /// suitable for "bit tests" | 
|  | void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | // Subtract the minimum value | 
|  | SDValue SwitchOp = getValue(B.SValue); | 
|  | EVT VT = SwitchOp.getValueType(); | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, | 
|  | DAG.getConstant(B.First, VT)); | 
|  |  | 
|  | // Check range | 
|  | SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), | 
|  | TLI.getSetCCResultType(Sub.getValueType()), | 
|  | Sub, DAG.getConstant(B.Range, VT), | 
|  | ISD::SETUGT); | 
|  |  | 
|  | // Determine the type of the test operands. | 
|  | bool UsePtrType = false; | 
|  | if (!TLI.isTypeLegal(VT)) | 
|  | UsePtrType = true; | 
|  | else { | 
|  | for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) | 
|  | if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { | 
|  | // Switch table case range are encoded into series of masks. | 
|  | // Just use pointer type, it's guaranteed to fit. | 
|  | UsePtrType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (UsePtrType) { | 
|  | VT = TLI.getPointerTy(); | 
|  | Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); | 
|  | } | 
|  |  | 
|  | B.RegVT = VT; | 
|  | B.Reg = FuncInfo.CreateReg(VT); | 
|  | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), | 
|  | B.Reg, Sub); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = SwitchBB; | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | MachineBasicBlock* MBB = B.Cases[0].ThisBB; | 
|  |  | 
|  | addSuccessorWithWeight(SwitchBB, B.Default); | 
|  | addSuccessorWithWeight(SwitchBB, MBB); | 
|  |  | 
|  | SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), | 
|  | MVT::Other, CopyTo, RangeCmp, | 
|  | DAG.getBasicBlock(B.Default)); | 
|  |  | 
|  | if (MBB != NextBlock) | 
|  | BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, | 
|  | DAG.getBasicBlock(MBB)); | 
|  |  | 
|  | DAG.setRoot(BrRange); | 
|  | } | 
|  |  | 
|  | /// visitBitTestCase - this function produces one "bit test" | 
|  | void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, | 
|  | MachineBasicBlock* NextMBB, | 
|  | unsigned Reg, | 
|  | BitTestCase &B, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | EVT VT = BB.RegVT; | 
|  | SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), | 
|  | Reg, VT); | 
|  | SDValue Cmp; | 
|  | unsigned PopCount = CountPopulation_64(B.Mask); | 
|  | if (PopCount == 1) { | 
|  | // Testing for a single bit; just compare the shift count with what it | 
|  | // would need to be to shift a 1 bit in that position. | 
|  | Cmp = DAG.getSetCC(getCurDebugLoc(), | 
|  | TLI.getSetCCResultType(VT), | 
|  | ShiftOp, | 
|  | DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), | 
|  | ISD::SETEQ); | 
|  | } else if (PopCount == BB.Range) { | 
|  | // There is only one zero bit in the range, test for it directly. | 
|  | Cmp = DAG.getSetCC(getCurDebugLoc(), | 
|  | TLI.getSetCCResultType(VT), | 
|  | ShiftOp, | 
|  | DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), | 
|  | ISD::SETNE); | 
|  | } else { | 
|  | // Make desired shift | 
|  | SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, | 
|  | DAG.getConstant(1, VT), ShiftOp); | 
|  |  | 
|  | // Emit bit tests and jumps | 
|  | SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), | 
|  | VT, SwitchVal, DAG.getConstant(B.Mask, VT)); | 
|  | Cmp = DAG.getSetCC(getCurDebugLoc(), | 
|  | TLI.getSetCCResultType(VT), | 
|  | AndOp, DAG.getConstant(0, VT), | 
|  | ISD::SETNE); | 
|  | } | 
|  |  | 
|  | addSuccessorWithWeight(SwitchBB, B.TargetBB); | 
|  | addSuccessorWithWeight(SwitchBB, NextMBB); | 
|  |  | 
|  | SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | Cmp, DAG.getBasicBlock(B.TargetBB)); | 
|  |  | 
|  | // Set NextBlock to be the MBB immediately after the current one, if any. | 
|  | // This is used to avoid emitting unnecessary branches to the next block. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = SwitchBB; | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | if (NextMBB != NextBlock) | 
|  | BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, | 
|  | DAG.getBasicBlock(NextMBB)); | 
|  |  | 
|  | DAG.setRoot(BrAnd); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { | 
|  | MachineBasicBlock *InvokeMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Retrieve successors. | 
|  | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; | 
|  | MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; | 
|  |  | 
|  | const Value *Callee(I.getCalledValue()); | 
|  | if (isa<InlineAsm>(Callee)) | 
|  | visitInlineAsm(&I); | 
|  | else | 
|  | LowerCallTo(&I, getValue(Callee), false, LandingPad); | 
|  |  | 
|  | // If the value of the invoke is used outside of its defining block, make it | 
|  | // available as a virtual register. | 
|  | CopyToExportRegsIfNeeded(&I); | 
|  |  | 
|  | // Update successor info | 
|  | InvokeMBB->addSuccessor(Return); | 
|  | InvokeMBB->addSuccessor(LandingPad); | 
|  |  | 
|  | // Drop into normal successor. | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Return))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { | 
|  | llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { | 
|  | assert(FuncInfo.MBB->isLandingPad() && | 
|  | "Call to landingpad not in landing pad!"); | 
|  |  | 
|  | MachineBasicBlock *MBB = FuncInfo.MBB; | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | AddLandingPadInfo(LP, MMI, MBB); | 
|  |  | 
|  | SmallVector<EVT, 2> ValueVTs; | 
|  | ComputeValueVTs(TLI, LP.getType(), ValueVTs); | 
|  |  | 
|  | // Insert the EXCEPTIONADDR instruction. | 
|  | assert(FuncInfo.MBB->isLandingPad() && | 
|  | "Call to eh.exception not in landing pad!"); | 
|  | SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = DAG.getRoot(); | 
|  | SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); | 
|  | SDValue Chain = Op1.getValue(1); | 
|  |  | 
|  | // Insert the EHSELECTION instruction. | 
|  | VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
|  | Ops[0] = Op1; | 
|  | Ops[1] = Chain; | 
|  | SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); | 
|  | Chain = Op2.getValue(1); | 
|  | Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); | 
|  |  | 
|  | Ops[0] = Op1; | 
|  | Ops[1] = Op2; | 
|  | SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
|  | DAG.getVTList(&ValueVTs[0], ValueVTs.size()), | 
|  | &Ops[0], 2); | 
|  |  | 
|  | std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); | 
|  | setValue(&LP, RetPair.first); | 
|  | DAG.setRoot(RetPair.second); | 
|  | } | 
|  |  | 
|  | /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for | 
|  | /// small case ranges). | 
|  | bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | const Value* SV, | 
|  | MachineBasicBlock *Default, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  |  | 
|  | // Size is the number of Cases represented by this range. | 
|  | size_t Size = CR.Range.second - CR.Range.first; | 
|  | if (Size > 3) | 
|  | return false; | 
|  |  | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  |  | 
|  | if (++BBI != FuncInfo.MF->end()) | 
|  | NextBlock = BBI; | 
|  |  | 
|  | // If any two of the cases has the same destination, and if one value | 
|  | // is the same as the other, but has one bit unset that the other has set, | 
|  | // use bit manipulation to do two compares at once.  For example: | 
|  | // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" | 
|  | // TODO: This could be extended to merge any 2 cases in switches with 3 cases. | 
|  | // TODO: Handle cases where CR.CaseBB != SwitchBB. | 
|  | if (Size == 2 && CR.CaseBB == SwitchBB) { | 
|  | Case &Small = *CR.Range.first; | 
|  | Case &Big = *(CR.Range.second-1); | 
|  |  | 
|  | if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { | 
|  | const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); | 
|  | const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); | 
|  |  | 
|  | // Check that there is only one bit different. | 
|  | if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && | 
|  | (SmallValue | BigValue) == BigValue) { | 
|  | // Isolate the common bit. | 
|  | APInt CommonBit = BigValue & ~SmallValue; | 
|  | assert((SmallValue | CommonBit) == BigValue && | 
|  | CommonBit.countPopulation() == 1 && "Not a common bit?"); | 
|  |  | 
|  | SDValue CondLHS = getValue(SV); | 
|  | EVT VT = CondLHS.getValueType(); | 
|  | DebugLoc DL = getCurDebugLoc(); | 
|  |  | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, | 
|  | DAG.getConstant(CommonBit, VT)); | 
|  | SDValue Cond = DAG.getSetCC(DL, MVT::i1, | 
|  | Or, DAG.getConstant(BigValue, VT), | 
|  | ISD::SETEQ); | 
|  |  | 
|  | // Update successor info. | 
|  | addSuccessorWithWeight(SwitchBB, Small.BB); | 
|  | addSuccessorWithWeight(SwitchBB, Default); | 
|  |  | 
|  | // Insert the true branch. | 
|  | SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, | 
|  | getControlRoot(), Cond, | 
|  | DAG.getBasicBlock(Small.BB)); | 
|  |  | 
|  | // Insert the false branch. | 
|  | BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, | 
|  | DAG.getBasicBlock(Default)); | 
|  |  | 
|  | DAG.setRoot(BrCond); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rearrange the case blocks so that the last one falls through if possible. | 
|  | if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { | 
|  | // The last case block won't fall through into 'NextBlock' if we emit the | 
|  | // branches in this order.  See if rearranging a case value would help. | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { | 
|  | if (I->BB == NextBlock) { | 
|  | std::swap(*I, BackCase); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing a conditional branch to | 
|  | // the Case's target mbb if the value being switched on SV is equal | 
|  | // to C. | 
|  | MachineBasicBlock *CurBlock = CR.CaseBB; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { | 
|  | MachineBasicBlock *FallThrough; | 
|  | if (I != E-1) { | 
|  | FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); | 
|  | CurMF->insert(BBI, FallThrough); | 
|  |  | 
|  | // Put SV in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(SV); | 
|  | } else { | 
|  | // If the last case doesn't match, go to the default block. | 
|  | FallThrough = Default; | 
|  | } | 
|  |  | 
|  | const Value *RHS, *LHS, *MHS; | 
|  | ISD::CondCode CC; | 
|  | if (I->High == I->Low) { | 
|  | // This is just small small case range :) containing exactly 1 case | 
|  | CC = ISD::SETEQ; | 
|  | LHS = SV; RHS = I->High; MHS = NULL; | 
|  | } else { | 
|  | CC = ISD::SETLE; | 
|  | LHS = I->Low; MHS = SV; RHS = I->High; | 
|  | } | 
|  |  | 
|  | uint32_t ExtraWeight = I->ExtraWeight; | 
|  | CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, | 
|  | /* me */ CurBlock, | 
|  | /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); | 
|  |  | 
|  | // If emitting the first comparison, just call visitSwitchCase to emit the | 
|  | // code into the current block.  Otherwise, push the CaseBlock onto the | 
|  | // vector to be later processed by SDISel, and insert the node's MBB | 
|  | // before the next MBB. | 
|  | if (CurBlock == SwitchBB) | 
|  | visitSwitchCase(CB, SwitchBB); | 
|  | else | 
|  | SwitchCases.push_back(CB); | 
|  |  | 
|  | CurBlock = FallThrough; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool areJTsAllowed(const TargetLowering &TLI) { | 
|  | return !DisableJumpTables && | 
|  | (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || | 
|  | TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); | 
|  | } | 
|  |  | 
|  | static APInt ComputeRange(const APInt &First, const APInt &Last) { | 
|  | uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; | 
|  | APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); | 
|  | return (LastExt - FirstExt + 1ULL); | 
|  | } | 
|  |  | 
|  | /// handleJTSwitchCase - Emit jumptable for current switch case range | 
|  | bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, | 
|  | CaseRecVector &WorkList, | 
|  | const Value *SV, | 
|  | MachineBasicBlock *Default, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | Case& FrontCase = *CR.Range.first; | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  |  | 
|  | const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); | 
|  | const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue(); | 
|  |  | 
|  | APInt TSize(First.getBitWidth(), 0); | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) | 
|  | TSize += I->size(); | 
|  |  | 
|  | if (!areJTsAllowed(TLI) || TSize.ult(4)) | 
|  | return false; | 
|  |  | 
|  | APInt Range = ComputeRange(First, Last); | 
|  | // The density is TSize / Range. Require at least 40%. | 
|  | // It should not be possible for IntTSize to saturate for sane code, but make | 
|  | // sure we handle Range saturation correctly. | 
|  | uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); | 
|  | uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); | 
|  | if (IntTSize * 10 < IntRange * 4) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "Lowering jump table\n" | 
|  | << "First entry: " << First << ". Last entry: " << Last << '\n' | 
|  | << "Range: " << Range << ". Size: " << TSize << ".\n\n"); | 
|  |  | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  | ++BBI; | 
|  |  | 
|  | const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
|  |  | 
|  | // Create a new basic block to hold the code for loading the address | 
|  | // of the jump table, and jumping to it.  Update successor information; | 
|  | // we will either branch to the default case for the switch, or the jump | 
|  | // table. | 
|  | MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, JumpTableBB); | 
|  |  | 
|  | addSuccessorWithWeight(CR.CaseBB, Default); | 
|  | addSuccessorWithWeight(CR.CaseBB, JumpTableBB); | 
|  |  | 
|  | // Build a vector of destination BBs, corresponding to each target | 
|  | // of the jump table. If the value of the jump table slot corresponds to | 
|  | // a case statement, push the case's BB onto the vector, otherwise, push | 
|  | // the default BB. | 
|  | std::vector<MachineBasicBlock*> DestBBs; | 
|  | APInt TEI = First; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { | 
|  | const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); | 
|  | const APInt &High = cast<ConstantInt>(I->High)->getValue(); | 
|  |  | 
|  | if (Low.sle(TEI) && TEI.sle(High)) { | 
|  | DestBBs.push_back(I->BB); | 
|  | if (TEI==High) | 
|  | ++I; | 
|  | } else { | 
|  | DestBBs.push_back(Default); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update successor info. Add one edge to each unique successor. | 
|  | BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); | 
|  | for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), | 
|  | E = DestBBs.end(); I != E; ++I) { | 
|  | if (!SuccsHandled[(*I)->getNumber()]) { | 
|  | SuccsHandled[(*I)->getNumber()] = true; | 
|  | addSuccessorWithWeight(JumpTableBB, *I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a jump table index for this jump table. | 
|  | unsigned JTEncoding = TLI.getJumpTableEncoding(); | 
|  | unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) | 
|  | ->createJumpTableIndex(DestBBs); | 
|  |  | 
|  | // Set the jump table information so that we can codegen it as a second | 
|  | // MachineBasicBlock | 
|  | JumpTable JT(-1U, JTI, JumpTableBB, Default); | 
|  | JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); | 
|  | if (CR.CaseBB == SwitchBB) | 
|  | visitJumpTableHeader(JT, JTH, SwitchBB); | 
|  |  | 
|  | JTCases.push_back(JumpTableBlock(JTH, JT)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// handleBTSplitSwitchCase - emit comparison and split binary search tree into | 
|  | /// 2 subtrees. | 
|  | bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | const Value* SV, | 
|  | MachineBasicBlock *Default, | 
|  | MachineBasicBlock *SwitchBB) { | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  | ++BBI; | 
|  |  | 
|  | Case& FrontCase = *CR.Range.first; | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  | const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
|  |  | 
|  | // Size is the number of Cases represented by this range. | 
|  | unsigned Size = CR.Range.second - CR.Range.first; | 
|  |  | 
|  | const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); | 
|  | const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue(); | 
|  | double FMetric = 0; | 
|  | CaseItr Pivot = CR.Range.first + Size/2; | 
|  |  | 
|  | // Select optimal pivot, maximizing sum density of LHS and RHS. This will | 
|  | // (heuristically) allow us to emit JumpTable's later. | 
|  | APInt TSize(First.getBitWidth(), 0); | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
|  | I!=E; ++I) | 
|  | TSize += I->size(); | 
|  |  | 
|  | APInt LSize = FrontCase.size(); | 
|  | APInt RSize = TSize-LSize; | 
|  | DEBUG(dbgs() << "Selecting best pivot: \n" | 
|  | << "First: " << First << ", Last: " << Last <<'\n' | 
|  | << "LSize: " << LSize << ", RSize: " << RSize << '\n'); | 
|  | for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; | 
|  | J!=E; ++I, ++J) { | 
|  | const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); | 
|  | const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); | 
|  | APInt Range = ComputeRange(LEnd, RBegin); | 
|  | assert((Range - 2ULL).isNonNegative() && | 
|  | "Invalid case distance"); | 
|  | // Use volatile double here to avoid excess precision issues on some hosts, | 
|  | // e.g. that use 80-bit X87 registers. | 
|  | volatile double LDensity = | 
|  | (double)LSize.roundToDouble() / | 
|  | (LEnd - First + 1ULL).roundToDouble(); | 
|  | volatile double RDensity = | 
|  | (double)RSize.roundToDouble() / | 
|  | (Last - RBegin + 1ULL).roundToDouble(); | 
|  | double Metric = Range.logBase2()*(LDensity+RDensity); | 
|  | // Should always split in some non-trivial place | 
|  | DEBUG(dbgs() <<"=>Step\n" | 
|  | << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' | 
|  | << "LDensity: " << LDensity | 
|  | << ", RDensity: " << RDensity << '\n' | 
|  | << "Metric: " << Metric << '\n'); | 
|  | if (FMetric < Metric) { | 
|  | Pivot = J; | 
|  | FMetric = Metric; | 
|  | DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); | 
|  | } | 
|  |  | 
|  | LSize += J->size(); | 
|  | RSize -= J->size(); | 
|  | } | 
|  | if (areJTsAllowed(TLI)) { | 
|  | // If our case is dense we *really* should handle it earlier! | 
|  | assert((FMetric > 0) && "Should handle dense range earlier!"); | 
|  | } else { | 
|  | Pivot = CR.Range.first + Size/2; | 
|  | } | 
|  |  | 
|  | CaseRange LHSR(CR.Range.first, Pivot); | 
|  | CaseRange RHSR(Pivot, CR.Range.second); | 
|  | Constant *C = Pivot->Low; | 
|  | MachineBasicBlock *FalseBB = 0, *TrueBB = 0; | 
|  |  | 
|  | // We know that we branch to the LHS if the Value being switched on is | 
|  | // less than the Pivot value, C.  We use this to optimize our binary | 
|  | // tree a bit, by recognizing that if SV is greater than or equal to the | 
|  | // LHS's Case Value, and that Case Value is exactly one less than the | 
|  | // Pivot's Value, then we can branch directly to the LHS's Target, | 
|  | // rather than creating a leaf node for it. | 
|  | if ((LHSR.second - LHSR.first) == 1 && | 
|  | LHSR.first->High == CR.GE && | 
|  | cast<ConstantInt>(C)->getValue() == | 
|  | (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { | 
|  | TrueBB = LHSR.first->BB; | 
|  | } else { | 
|  | TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, TrueBB); | 
|  | WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); | 
|  |  | 
|  | // Put SV in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(SV); | 
|  | } | 
|  |  | 
|  | // Similar to the optimization above, if the Value being switched on is | 
|  | // known to be less than the Constant CR.LT, and the current Case Value | 
|  | // is CR.LT - 1, then we can branch directly to the target block for | 
|  | // the current Case Value, rather than emitting a RHS leaf node for it. | 
|  | if ((RHSR.second - RHSR.first) == 1 && CR.LT && | 
|  | cast<ConstantInt>(RHSR.first->Low)->getValue() == | 
|  | (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { | 
|  | FalseBB = RHSR.first->BB; | 
|  | } else { | 
|  | FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, FalseBB); | 
|  | WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); | 
|  |  | 
|  | // Put SV in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(SV); | 
|  | } | 
|  |  | 
|  | // Create a CaseBlock record representing a conditional branch to | 
|  | // the LHS node if the value being switched on SV is less than C. | 
|  | // Otherwise, branch to LHS. | 
|  | CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); | 
|  |  | 
|  | if (CR.CaseBB == SwitchBB) | 
|  | visitSwitchCase(CB, SwitchBB); | 
|  | else | 
|  | SwitchCases.push_back(CB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// handleBitTestsSwitchCase - if current case range has few destination and | 
|  | /// range span less, than machine word bitwidth, encode case range into series | 
|  | /// of masks and emit bit tests with these masks. | 
|  | bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, | 
|  | CaseRecVector& WorkList, | 
|  | const Value* SV, | 
|  | MachineBasicBlock* Default, | 
|  | MachineBasicBlock *SwitchBB){ | 
|  | EVT PTy = TLI.getPointerTy(); | 
|  | unsigned IntPtrBits = PTy.getSizeInBits(); | 
|  |  | 
|  | Case& FrontCase = *CR.Range.first; | 
|  | Case& BackCase  = *(CR.Range.second-1); | 
|  |  | 
|  | // Get the MachineFunction which holds the current MBB.  This is used when | 
|  | // inserting any additional MBBs necessary to represent the switch. | 
|  | MachineFunction *CurMF = FuncInfo.MF; | 
|  |  | 
|  | // If target does not have legal shift left, do not emit bit tests at all. | 
|  | if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) | 
|  | return false; | 
|  |  | 
|  | size_t numCmps = 0; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; | 
|  | I!=E; ++I) { | 
|  | // Single case counts one, case range - two. | 
|  | numCmps += (I->Low == I->High ? 1 : 2); | 
|  | } | 
|  |  | 
|  | // Count unique destinations | 
|  | SmallSet<MachineBasicBlock*, 4> Dests; | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
|  | Dests.insert(I->BB); | 
|  | if (Dests.size() > 3) | 
|  | // Don't bother the code below, if there are too much unique destinations | 
|  | return false; | 
|  | } | 
|  | DEBUG(dbgs() << "Total number of unique destinations: " | 
|  | << Dests.size() << '\n' | 
|  | << "Total number of comparisons: " << numCmps << '\n'); | 
|  |  | 
|  | // Compute span of values. | 
|  | const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); | 
|  | const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); | 
|  | APInt cmpRange = maxValue - minValue; | 
|  |  | 
|  | DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' | 
|  | << "Low bound: " << minValue << '\n' | 
|  | << "High bound: " << maxValue << '\n'); | 
|  |  | 
|  | if (cmpRange.uge(IntPtrBits) || | 
|  | (!(Dests.size() == 1 && numCmps >= 3) && | 
|  | !(Dests.size() == 2 && numCmps >= 5) && | 
|  | !(Dests.size() >= 3 && numCmps >= 6))) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "Emitting bit tests\n"); | 
|  | APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); | 
|  |  | 
|  | // Optimize the case where all the case values fit in a | 
|  | // word without having to subtract minValue. In this case, | 
|  | // we can optimize away the subtraction. | 
|  | if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { | 
|  | cmpRange = maxValue; | 
|  | } else { | 
|  | lowBound = minValue; | 
|  | } | 
|  |  | 
|  | CaseBitsVector CasesBits; | 
|  | unsigned i, count = 0; | 
|  |  | 
|  | for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { | 
|  | MachineBasicBlock* Dest = I->BB; | 
|  | for (i = 0; i < count; ++i) | 
|  | if (Dest == CasesBits[i].BB) | 
|  | break; | 
|  |  | 
|  | if (i == count) { | 
|  | assert((count < 3) && "Too much destinations to test!"); | 
|  | CasesBits.push_back(CaseBits(0, Dest, 0)); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); | 
|  | const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); | 
|  |  | 
|  | uint64_t lo = (lowValue - lowBound).getZExtValue(); | 
|  | uint64_t hi = (highValue - lowBound).getZExtValue(); | 
|  |  | 
|  | for (uint64_t j = lo; j <= hi; j++) { | 
|  | CasesBits[i].Mask |=  1ULL << j; | 
|  | CasesBits[i].Bits++; | 
|  | } | 
|  |  | 
|  | } | 
|  | std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); | 
|  |  | 
|  | BitTestInfo BTC; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineFunction::iterator BBI = CR.CaseBB; | 
|  | ++BBI; | 
|  |  | 
|  | const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); | 
|  |  | 
|  | DEBUG(dbgs() << "Cases:\n"); | 
|  | for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { | 
|  | DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask | 
|  | << ", Bits: " << CasesBits[i].Bits | 
|  | << ", BB: " << CasesBits[i].BB << '\n'); | 
|  |  | 
|  | MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); | 
|  | CurMF->insert(BBI, CaseBB); | 
|  | BTC.push_back(BitTestCase(CasesBits[i].Mask, | 
|  | CaseBB, | 
|  | CasesBits[i].BB)); | 
|  |  | 
|  | // Put SV in a virtual register to make it available from the new blocks. | 
|  | ExportFromCurrentBlock(SV); | 
|  | } | 
|  |  | 
|  | BitTestBlock BTB(lowBound, cmpRange, SV, | 
|  | -1U, MVT::Other, (CR.CaseBB == SwitchBB), | 
|  | CR.CaseBB, Default, BTC); | 
|  |  | 
|  | if (CR.CaseBB == SwitchBB) | 
|  | visitBitTestHeader(BTB, SwitchBB); | 
|  |  | 
|  | BitTestCases.push_back(BTB); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Clusterify - Transform simple list of Cases into list of CaseRange's | 
|  | size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, | 
|  | const SwitchInst& SI) { | 
|  | size_t numCmps = 0; | 
|  |  | 
|  | BranchProbabilityInfo *BPI = FuncInfo.BPI; | 
|  | // Start with "simple" cases | 
|  | for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { | 
|  | BasicBlock *SuccBB = SI.getSuccessor(i); | 
|  | MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; | 
|  |  | 
|  | uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; | 
|  |  | 
|  | Cases.push_back(Case(SI.getSuccessorValue(i), | 
|  | SI.getSuccessorValue(i), | 
|  | SMBB, ExtraWeight)); | 
|  | } | 
|  | std::sort(Cases.begin(), Cases.end(), CaseCmp()); | 
|  |  | 
|  | // Merge case into clusters | 
|  | if (Cases.size() >= 2) | 
|  | // Must recompute end() each iteration because it may be | 
|  | // invalidated by erase if we hold on to it | 
|  | for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); | 
|  | J != Cases.end(); ) { | 
|  | const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); | 
|  | const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); | 
|  | MachineBasicBlock* nextBB = J->BB; | 
|  | MachineBasicBlock* currentBB = I->BB; | 
|  |  | 
|  | // If the two neighboring cases go to the same destination, merge them | 
|  | // into a single case. | 
|  | if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { | 
|  | I->High = J->High; | 
|  | J = Cases.erase(J); | 
|  |  | 
|  | if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { | 
|  | uint32_t CurWeight = currentBB->getBasicBlock() ? | 
|  | BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; | 
|  | uint32_t NextWeight = nextBB->getBasicBlock() ? | 
|  | BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; | 
|  |  | 
|  | BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), | 
|  | CurWeight + NextWeight); | 
|  | } | 
|  | } else { | 
|  | I = J++; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { | 
|  | if (I->Low != I->High) | 
|  | // A range counts double, since it requires two compares. | 
|  | ++numCmps; | 
|  | } | 
|  |  | 
|  | return numCmps; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, | 
|  | MachineBasicBlock *Last) { | 
|  | // Update JTCases. | 
|  | for (unsigned i = 0, e = JTCases.size(); i != e; ++i) | 
|  | if (JTCases[i].first.HeaderBB == First) | 
|  | JTCases[i].first.HeaderBB = Last; | 
|  |  | 
|  | // Update BitTestCases. | 
|  | for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) | 
|  | if (BitTestCases[i].Parent == First) | 
|  | BitTestCases[i].Parent = Last; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { | 
|  | MachineBasicBlock *SwitchMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Figure out which block is immediately after the current one. | 
|  | MachineBasicBlock *NextBlock = 0; | 
|  | MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; | 
|  |  | 
|  | // If there is only the default destination, branch to it if it is not the | 
|  | // next basic block.  Otherwise, just fall through. | 
|  | if (SI.getNumCases() == 1) { | 
|  | // Update machine-CFG edges. | 
|  |  | 
|  | // If this is not a fall-through branch, emit the branch. | 
|  | SwitchMBB->addSuccessor(Default); | 
|  | if (Default != NextBlock) | 
|  | DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | DAG.getBasicBlock(Default))); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there are any non-default case statements, create a vector of Cases | 
|  | // representing each one, and sort the vector so that we can efficiently | 
|  | // create a binary search tree from them. | 
|  | CaseVector Cases; | 
|  | size_t numCmps = Clusterify(Cases, SI); | 
|  | DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() | 
|  | << ". Total compares: " << numCmps << '\n'); | 
|  | (void)numCmps; | 
|  |  | 
|  | // Get the Value to be switched on and default basic blocks, which will be | 
|  | // inserted into CaseBlock records, representing basic blocks in the binary | 
|  | // search tree. | 
|  | const Value *SV = SI.getCondition(); | 
|  |  | 
|  | // Push the initial CaseRec onto the worklist | 
|  | CaseRecVector WorkList; | 
|  | WorkList.push_back(CaseRec(SwitchMBB,0,0, | 
|  | CaseRange(Cases.begin(),Cases.end()))); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | // Grab a record representing a case range to process off the worklist | 
|  | CaseRec CR = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  |  | 
|  | if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) | 
|  | continue; | 
|  |  | 
|  | // If the range has few cases (two or less) emit a series of specific | 
|  | // tests. | 
|  | if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) | 
|  | continue; | 
|  |  | 
|  | // If the switch has more than 5 blocks, and at least 40% dense, and the | 
|  | // target supports indirect branches, then emit a jump table rather than | 
|  | // lowering the switch to a binary tree of conditional branches. | 
|  | if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) | 
|  | continue; | 
|  |  | 
|  | // Emit binary tree. We need to pick a pivot, and push left and right ranges | 
|  | // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. | 
|  | handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { | 
|  | MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; | 
|  |  | 
|  | // Update machine-CFG edges with unique successors. | 
|  | SmallVector<BasicBlock*, 32> succs; | 
|  | succs.reserve(I.getNumSuccessors()); | 
|  | for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) | 
|  | succs.push_back(I.getSuccessor(i)); | 
|  | array_pod_sort(succs.begin(), succs.end()); | 
|  | succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); | 
|  | for (unsigned i = 0, e = succs.size(); i != e; ++i) { | 
|  | MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; | 
|  | addSuccessorWithWeight(IndirectBrMBB, Succ); | 
|  | } | 
|  |  | 
|  | DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), | 
|  | MVT::Other, getControlRoot(), | 
|  | getValue(I.getAddress()))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFSub(const User &I) { | 
|  | // -0.0 - X --> fneg | 
|  | Type *Ty = I.getType(); | 
|  | if (isa<Constant>(I.getOperand(0)) && | 
|  | I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), | 
|  | Op2.getValueType(), Op2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | visitBinary(I, ISD::FSUB); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), | 
|  | Op1.getValueType(), Op1, Op2)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); | 
|  |  | 
|  | // Coerce the shift amount to the right type if we can. | 
|  | if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { | 
|  | unsigned ShiftSize = ShiftTy.getSizeInBits(); | 
|  | unsigned Op2Size = Op2.getValueType().getSizeInBits(); | 
|  | DebugLoc DL = getCurDebugLoc(); | 
|  |  | 
|  | // If the operand is smaller than the shift count type, promote it. | 
|  | if (ShiftSize > Op2Size) | 
|  | Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); | 
|  |  | 
|  | // If the operand is larger than the shift count type but the shift | 
|  | // count type has enough bits to represent any shift value, truncate | 
|  | // it now. This is a common case and it exposes the truncate to | 
|  | // optimization early. | 
|  | else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) | 
|  | Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); | 
|  | // Otherwise we'll need to temporarily settle for some other convenient | 
|  | // type.  Type legalization will make adjustments once the shiftee is split. | 
|  | else | 
|  | Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), | 
|  | Op1.getValueType(), Op1, Op2)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSDiv(const User &I) { | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | // Turn exact SDivs into multiplications. | 
|  | // FIXME: This should be in DAGCombiner, but it doesn't have access to the | 
|  | // exact bit. | 
|  | if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && | 
|  | !isa<ConstantSDNode>(Op1) && | 
|  | isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) | 
|  | setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); | 
|  | else | 
|  | setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), | 
|  | Op1, Op2)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitICmp(const User &I) { | 
|  | ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) | 
|  | predicate = IC->getPredicate(); | 
|  | else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = ICmpInst::Predicate(IC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Opcode = getICmpCondCode(predicate); | 
|  |  | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFCmp(const User &I) { | 
|  | FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; | 
|  | if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) | 
|  | predicate = FC->getPredicate(); | 
|  | else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) | 
|  | predicate = FCmpInst::Predicate(FC->getPredicate()); | 
|  | SDValue Op1 = getValue(I.getOperand(0)); | 
|  | SDValue Op2 = getValue(I.getOperand(1)); | 
|  | ISD::CondCode Condition = getFCmpCondCode(predicate); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSelect(const User &I) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I.getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) return; | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SDValue Cond     = getValue(I.getOperand(0)); | 
|  | SDValue TrueVal  = getValue(I.getOperand(1)); | 
|  | SDValue FalseVal = getValue(I.getOperand(2)); | 
|  | ISD::NodeType OpCode = Cond.getValueType().isVector() ? | 
|  | ISD::VSELECT : ISD::SELECT; | 
|  |  | 
|  | for (unsigned i = 0; i != NumValues; ++i) | 
|  | Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), | 
|  | TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), | 
|  | Cond, | 
|  | SDValue(TrueVal.getNode(), | 
|  | TrueVal.getResNo() + i), | 
|  | SDValue(FalseVal.getNode(), | 
|  | FalseVal.getResNo() + i)); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
|  | DAG.getVTList(&ValueVTs[0], NumValues), | 
|  | &Values[0], NumValues)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitTrunc(const User &I) { | 
|  | // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitZExt(const User &I) { | 
|  | // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // ZExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSExt(const User &I) { | 
|  | // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). | 
|  | // SExt also can't be a cast to bool for same reason. So, nothing much to do | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPTrunc(const User &I) { | 
|  | // FPTrunc is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), | 
|  | DestVT, N, DAG.getIntPtrConstant(0))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPExt(const User &I){ | 
|  | // FPTrunc is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPToUI(const User &I) { | 
|  | // FPToUI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFPToSI(const User &I) { | 
|  | // FPToSI is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitUIToFP(const User &I) { | 
|  | // UIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitSIToFP(const User &I){ | 
|  | // SIToFP is never a no-op cast, no need to check | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitPtrToInt(const User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitIntToPtr(const User &I) { | 
|  | // What to do depends on the size of the integer and the size of the pointer. | 
|  | // We can either truncate, zero extend, or no-op, accordingly. | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitBitCast(const User &I) { | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  |  | 
|  | // BitCast assures us that source and destination are the same size so this is | 
|  | // either a BITCAST or a no-op. | 
|  | if (DestVT != N.getValueType()) | 
|  | setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), | 
|  | DestVT, N)); // convert types. | 
|  | else | 
|  | setValue(&I, N);            // noop cast. | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInsertElement(const User &I) { | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InVal = getValue(I.getOperand(1)); | 
|  | SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), | 
|  | TLI.getPointerTy(), | 
|  | getValue(I.getOperand(2))); | 
|  | setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), | 
|  | TLI.getValueType(I.getType()), | 
|  | InVec, InVal, InIdx)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitExtractElement(const User &I) { | 
|  | SDValue InVec = getValue(I.getOperand(0)); | 
|  | SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), | 
|  | TLI.getPointerTy(), | 
|  | getValue(I.getOperand(1))); | 
|  | setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), | 
|  | TLI.getValueType(I.getType()), InVec, InIdx)); | 
|  | } | 
|  |  | 
|  | // Utility for visitShuffleVector - Returns true if the mask is mask starting | 
|  | // from SIndx and increasing to the element length (undefs are allowed). | 
|  | static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { | 
|  | unsigned MaskNumElts = Mask.size(); | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) | 
|  | if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitShuffleVector(const User &I) { | 
|  | SmallVector<int, 8> Mask; | 
|  | SDValue Src1 = getValue(I.getOperand(0)); | 
|  | SDValue Src2 = getValue(I.getOperand(1)); | 
|  |  | 
|  | // Convert the ConstantVector mask operand into an array of ints, with -1 | 
|  | // representing undef values. | 
|  | SmallVector<Constant*, 8> MaskElts; | 
|  | cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); | 
|  | unsigned MaskNumElts = MaskElts.size(); | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | if (isa<UndefValue>(MaskElts[i])) | 
|  | Mask.push_back(-1); | 
|  | else | 
|  | Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); | 
|  | } | 
|  |  | 
|  | EVT VT = TLI.getValueType(I.getType()); | 
|  | EVT SrcVT = Src1.getValueType(); | 
|  | unsigned SrcNumElts = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | if (SrcNumElts == MaskNumElts) { | 
|  | setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, | 
|  | &Mask[0])); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Normalize the shuffle vector since mask and vector length don't match. | 
|  | if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { | 
|  | // Mask is longer than the source vectors and is a multiple of the source | 
|  | // vectors.  We can use concatenate vector to make the mask and vectors | 
|  | // lengths match. | 
|  | if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { | 
|  | // The shuffle is concatenating two vectors together. | 
|  | setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), | 
|  | VT, Src1, Src2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Pad both vectors with undefs to make them the same length as the mask. | 
|  | unsigned NumConcat = MaskNumElts / SrcNumElts; | 
|  | bool Src1U = Src1.getOpcode() == ISD::UNDEF; | 
|  | bool Src2U = Src2.getOpcode() == ISD::UNDEF; | 
|  | SDValue UndefVal = DAG.getUNDEF(SrcVT); | 
|  |  | 
|  | SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); | 
|  | SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); | 
|  | MOps1[0] = Src1; | 
|  | MOps2[0] = Src2; | 
|  |  | 
|  | Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, | 
|  | getCurDebugLoc(), VT, | 
|  | &MOps1[0], NumConcat); | 
|  | Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, | 
|  | getCurDebugLoc(), VT, | 
|  | &MOps2[0], NumConcat); | 
|  |  | 
|  | // Readjust mask for new input vector length. | 
|  | SmallVector<int, 8> MappedOps; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | if (Idx < (int)SrcNumElts) | 
|  | MappedOps.push_back(Idx); | 
|  | else | 
|  | MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, | 
|  | &MappedOps[0])); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcNumElts > MaskNumElts) { | 
|  | // Analyze the access pattern of the vector to see if we can extract | 
|  | // two subvectors and do the shuffle. The analysis is done by calculating | 
|  | // the range of elements the mask access on both vectors. | 
|  | int MinRange[2] = { static_cast<int>(SrcNumElts+1), | 
|  | static_cast<int>(SrcNumElts+1)}; | 
|  | int MaxRange[2] = {-1, -1}; | 
|  |  | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | int Input = 0; | 
|  | if (Idx < 0) | 
|  | continue; | 
|  |  | 
|  | if (Idx >= (int)SrcNumElts) { | 
|  | Input = 1; | 
|  | Idx -= SrcNumElts; | 
|  | } | 
|  | if (Idx > MaxRange[Input]) | 
|  | MaxRange[Input] = Idx; | 
|  | if (Idx < MinRange[Input]) | 
|  | MinRange[Input] = Idx; | 
|  | } | 
|  |  | 
|  | // Check if the access is smaller than the vector size and can we find | 
|  | // a reasonable extract index. | 
|  | int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not | 
|  | // Extract. | 
|  | int StartIdx[2];  // StartIdx to extract from | 
|  | for (int Input=0; Input < 2; ++Input) { | 
|  | if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { | 
|  | RangeUse[Input] = 0; // Unused | 
|  | StartIdx[Input] = 0; | 
|  | } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { | 
|  | // Fits within range but we should see if we can find a good | 
|  | // start index that is a multiple of the mask length. | 
|  | if (MaxRange[Input] < (int)MaskNumElts) { | 
|  | RangeUse[Input] = 1; // Extract from beginning of the vector | 
|  | StartIdx[Input] = 0; | 
|  | } else { | 
|  | StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; | 
|  | if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && | 
|  | StartIdx[Input] + MaskNumElts <= SrcNumElts) | 
|  | RangeUse[Input] = 1; // Extract from a multiple of the mask length. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RangeUse[0] == 0 && RangeUse[1] == 0) { | 
|  | setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. | 
|  | return; | 
|  | } | 
|  | else if (RangeUse[0] < 2 && RangeUse[1] < 2) { | 
|  | // Extract appropriate subvector and generate a vector shuffle | 
|  | for (int Input=0; Input < 2; ++Input) { | 
|  | SDValue &Src = Input == 0 ? Src1 : Src2; | 
|  | if (RangeUse[Input] == 0) | 
|  | Src = DAG.getUNDEF(VT); | 
|  | else | 
|  | Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, | 
|  | Src, DAG.getIntPtrConstant(StartIdx[Input])); | 
|  | } | 
|  |  | 
|  | // Calculate new mask. | 
|  | SmallVector<int, 8> MappedOps; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Idx = Mask[i]; | 
|  | if (Idx < 0) | 
|  | MappedOps.push_back(Idx); | 
|  | else if (Idx < (int)SrcNumElts) | 
|  | MappedOps.push_back(Idx - StartIdx[0]); | 
|  | else | 
|  | MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, | 
|  | &MappedOps[0])); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't use either concat vectors or extract subvectors so fall back to | 
|  | // replacing the shuffle with extract and build vector. | 
|  | // to insert and build vector. | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | EVT PtrVT = TLI.getPointerTy(); | 
|  | SmallVector<SDValue,8> Ops; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | if (Mask[i] < 0) { | 
|  | Ops.push_back(DAG.getUNDEF(EltVT)); | 
|  | } else { | 
|  | int Idx = Mask[i]; | 
|  | SDValue Res; | 
|  |  | 
|  | if (Idx < (int)SrcNumElts) | 
|  | Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), | 
|  | EltVT, Src1, DAG.getConstant(Idx, PtrVT)); | 
|  | else | 
|  | Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), | 
|  | EltVT, Src2, | 
|  | DAG.getConstant(Idx - SrcNumElts, PtrVT)); | 
|  |  | 
|  | Ops.push_back(Res); | 
|  | } | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), | 
|  | VT, &Ops[0], Ops.size())); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | const Value *Op1 = I.getOperand(1); | 
|  | Type *AggTy = I.getType(); | 
|  | Type *ValTy = Op1->getType(); | 
|  | bool IntoUndef = isa<UndefValue>(Op0); | 
|  | bool FromUndef = isa<UndefValue>(Op1); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); | 
|  |  | 
|  | SmallVector<EVT, 4> AggValueVTs; | 
|  | ComputeValueVTs(TLI, AggTy, AggValueVTs); | 
|  | SmallVector<EVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumAggValues = AggValueVTs.size(); | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  | SmallVector<SDValue, 4> Values(NumAggValues); | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | unsigned i = 0; | 
|  | // Copy the beginning value(s) from the original aggregate. | 
|  | for (; i != LinearIndex; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  | // Copy values from the inserted value(s). | 
|  | if (NumValValues) { | 
|  | SDValue Val = getValue(Op1); | 
|  | for (; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); | 
|  | } | 
|  | // Copy remaining value(s) from the original aggregate. | 
|  | for (; i != NumAggValues; ++i) | 
|  | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
|  | DAG.getVTList(&AggValueVTs[0], NumAggValues), | 
|  | &Values[0], NumAggValues)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { | 
|  | const Value *Op0 = I.getOperand(0); | 
|  | Type *AggTy = Op0->getType(); | 
|  | Type *ValTy = I.getType(); | 
|  | bool OutOfUndef = isa<UndefValue>(Op0); | 
|  |  | 
|  | unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); | 
|  |  | 
|  | SmallVector<EVT, 4> ValValueVTs; | 
|  | ComputeValueVTs(TLI, ValTy, ValValueVTs); | 
|  |  | 
|  | unsigned NumValValues = ValValueVTs.size(); | 
|  |  | 
|  | // Ignore a extractvalue that produces an empty object | 
|  | if (!NumValValues) { | 
|  | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValValues); | 
|  |  | 
|  | SDValue Agg = getValue(Op0); | 
|  | // Copy out the selected value(s). | 
|  | for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) | 
|  | Values[i - LinearIndex] = | 
|  | OutOfUndef ? | 
|  | DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : | 
|  | SDValue(Agg.getNode(), Agg.getResNo() + i); | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
|  | DAG.getVTList(&ValValueVTs[0], NumValValues), | 
|  | &Values[0], NumValValues)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGetElementPtr(const User &I) { | 
|  | SDValue N = getValue(I.getOperand(0)); | 
|  | Type *Ty = I.getOperand(0)->getType(); | 
|  |  | 
|  | for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); | 
|  | OI != E; ++OI) { | 
|  | const Value *Idx = *OI; | 
|  | if (StructType *StTy = dyn_cast<StructType>(Ty)) { | 
|  | unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); | 
|  | N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, | 
|  | DAG.getIntPtrConstant(Offset)); | 
|  | } | 
|  |  | 
|  | Ty = StTy->getElementType(Field); | 
|  | } else { | 
|  | Ty = cast<SequentialType>(Ty)->getElementType(); | 
|  |  | 
|  | // If this is a constant subscript, handle it quickly. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { | 
|  | if (CI->isZero()) continue; | 
|  | uint64_t Offs = | 
|  | TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); | 
|  | SDValue OffsVal; | 
|  | EVT PTy = TLI.getPointerTy(); | 
|  | unsigned PtrBits = PTy.getSizeInBits(); | 
|  | if (PtrBits < 64) | 
|  | OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), | 
|  | TLI.getPointerTy(), | 
|  | DAG.getConstant(Offs, MVT::i64)); | 
|  | else | 
|  | OffsVal = DAG.getIntPtrConstant(Offs); | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, | 
|  | OffsVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), | 
|  | TD->getTypeAllocSize(Ty)); | 
|  | SDValue IdxN = getValue(Idx); | 
|  |  | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend | 
|  | // it. | 
|  | IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); | 
|  |  | 
|  | // If this is a multiply by a power of two, turn it into a shl | 
|  | // immediately.  This is a very common case. | 
|  | if (ElementSize != 1) { | 
|  | if (ElementSize.isPowerOf2()) { | 
|  | unsigned Amt = ElementSize.logBase2(); | 
|  | IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), | 
|  | N.getValueType(), IdxN, | 
|  | DAG.getConstant(Amt, TLI.getPointerTy())); | 
|  | } else { | 
|  | SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); | 
|  | IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), | 
|  | N.getValueType(), IdxN, Scale); | 
|  | } | 
|  | } | 
|  |  | 
|  | N = DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
|  | N.getValueType(), N, IdxN); | 
|  | } | 
|  | } | 
|  |  | 
|  | setValue(&I, N); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { | 
|  | // If this is a fixed sized alloca in the entry block of the function, | 
|  | // allocate it statically on the stack. | 
|  | if (FuncInfo.StaticAllocaMap.count(&I)) | 
|  | return;   // getValue will auto-populate this. | 
|  |  | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
|  | I.getAlignment()); | 
|  |  | 
|  | SDValue AllocSize = getValue(I.getArraySize()); | 
|  |  | 
|  | EVT IntPtr = TLI.getPointerTy(); | 
|  | if (AllocSize.getValueType() != IntPtr) | 
|  | AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); | 
|  |  | 
|  | AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, | 
|  | AllocSize, | 
|  | DAG.getConstant(TySize, IntPtr)); | 
|  |  | 
|  | // Handle alignment.  If the requested alignment is less than or equal to | 
|  | // the stack alignment, ignore it.  If the size is greater than or equal to | 
|  | // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. | 
|  | unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); | 
|  | if (Align <= StackAlign) | 
|  | Align = 0; | 
|  |  | 
|  | // Round the size of the allocation up to the stack alignment size | 
|  | // by add SA-1 to the size. | 
|  | AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
|  | AllocSize.getValueType(), AllocSize, | 
|  | DAG.getIntPtrConstant(StackAlign-1)); | 
|  |  | 
|  | // Mask out the low bits for alignment purposes. | 
|  | AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), | 
|  | AllocSize.getValueType(), AllocSize, | 
|  | DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); | 
|  |  | 
|  | SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; | 
|  | SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); | 
|  | SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), | 
|  | VTs, Ops, 3); | 
|  | setValue(&I, DSA); | 
|  | DAG.setRoot(DSA.getValue(1)); | 
|  |  | 
|  | // Inform the Frame Information that we have just allocated a variable-sized | 
|  | // object. | 
|  | FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitLoad(const LoadInst &I) { | 
|  | if (I.isAtomic()) | 
|  | return visitAtomicLoad(I); | 
|  |  | 
|  | const Value *SV = I.getOperand(0); | 
|  | SDValue Ptr = getValue(SV); | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  |  | 
|  | bool isVolatile = I.isVolatile(); | 
|  | bool isNonTemporal = I.getMetadata("nontemporal") != 0; | 
|  | unsigned Alignment = I.getAlignment(); | 
|  | const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  | if (I.isVolatile() || NumValues > MaxParallelChains) | 
|  | // Serialize volatile loads with other side effects. | 
|  | Root = getRoot(); | 
|  | else if (AA->pointsToConstantMemory( | 
|  | AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | Root = DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), | 
|  | NumValues)); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | unsigned ChainI = 0; | 
|  | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { | 
|  | // Serializing loads here may result in excessive register pressure, and | 
|  | // TokenFactor places arbitrary choke points on the scheduler. SD scheduling | 
|  | // could recover a bit by hoisting nodes upward in the chain by recognizing | 
|  | // they are side-effect free or do not alias. The optimizer should really | 
|  | // avoid this case by converting large object/array copies to llvm.memcpy | 
|  | // (MaxParallelChains should always remain as failsafe). | 
|  | if (ChainI == MaxParallelChains) { | 
|  | assert(PendingLoads.empty() && "PendingLoads must be serialized first"); | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
|  | MVT::Other, &Chains[0], ChainI); | 
|  | Root = Chain; | 
|  | ChainI = 0; | 
|  | } | 
|  | SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), | 
|  | PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], PtrVT)); | 
|  | SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, | 
|  | A, MachinePointerInfo(SV, Offsets[i]), isVolatile, | 
|  | isNonTemporal, Alignment, TBAAInfo); | 
|  |  | 
|  | Values[i] = L; | 
|  | Chains[ChainI] = L.getValue(1); | 
|  | } | 
|  |  | 
|  | if (!ConstantMemory) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
|  | MVT::Other, &Chains[0], ChainI); | 
|  | if (isVolatile) | 
|  | DAG.setRoot(Chain); | 
|  | else | 
|  | PendingLoads.push_back(Chain); | 
|  | } | 
|  |  | 
|  | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
|  | DAG.getVTList(&ValueVTs[0], NumValues), | 
|  | &Values[0], NumValues)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitStore(const StoreInst &I) { | 
|  | if (I.isAtomic()) | 
|  | return visitAtomicStore(I); | 
|  |  | 
|  | const Value *SrcV = I.getOperand(0); | 
|  | const Value *PtrV = I.getOperand(1); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) | 
|  | return; | 
|  |  | 
|  | // Get the lowered operands. Note that we do this after | 
|  | // checking if NumResults is zero, because with zero results | 
|  | // the operands won't have values in the map. | 
|  | SDValue Src = getValue(SrcV); | 
|  | SDValue Ptr = getValue(PtrV); | 
|  |  | 
|  | SDValue Root = getRoot(); | 
|  | SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), | 
|  | NumValues)); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | bool isVolatile = I.isVolatile(); | 
|  | bool isNonTemporal = I.getMetadata("nontemporal") != 0; | 
|  | unsigned Alignment = I.getAlignment(); | 
|  | const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); | 
|  |  | 
|  | unsigned ChainI = 0; | 
|  | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { | 
|  | // See visitLoad comments. | 
|  | if (ChainI == MaxParallelChains) { | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
|  | MVT::Other, &Chains[0], ChainI); | 
|  | Root = Chain; | 
|  | ChainI = 0; | 
|  | } | 
|  | SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, | 
|  | DAG.getConstant(Offsets[i], PtrVT)); | 
|  | SDValue St = DAG.getStore(Root, getCurDebugLoc(), | 
|  | SDValue(Src.getNode(), Src.getResNo() + i), | 
|  | Add, MachinePointerInfo(PtrV, Offsets[i]), | 
|  | isVolatile, isNonTemporal, Alignment, TBAAInfo); | 
|  | Chains[ChainI] = St; | 
|  | } | 
|  |  | 
|  | SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
|  | MVT::Other, &Chains[0], ChainI); | 
|  | ++SDNodeOrder; | 
|  | AssignOrderingToNode(StoreNode.getNode()); | 
|  | DAG.setRoot(StoreNode); | 
|  | } | 
|  |  | 
|  | static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, | 
|  | SynchronizationScope Scope, | 
|  | bool Before, DebugLoc dl, | 
|  | SelectionDAG &DAG, | 
|  | const TargetLowering &TLI) { | 
|  | // Fence, if necessary | 
|  | if (Before) { | 
|  | if (Order == AcquireRelease || Order == SequentiallyConsistent) | 
|  | Order = Release; | 
|  | else if (Order == Acquire || Order == Monotonic) | 
|  | return Chain; | 
|  | } else { | 
|  | if (Order == AcquireRelease) | 
|  | Order = Acquire; | 
|  | else if (Order == Release || Order == Monotonic) | 
|  | return Chain; | 
|  | } | 
|  | SDValue Ops[3]; | 
|  | Ops[0] = Chain; | 
|  | Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); | 
|  | Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); | 
|  | return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | SDValue L = | 
|  | DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, | 
|  | getValue(I.getCompareOperand()).getValueType().getSimpleVT(), | 
|  | InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | getValue(I.getCompareOperand()), | 
|  | getValue(I.getNewValOperand()), | 
|  | MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, | 
|  | TLI.getInsertFencesForAtomic() ? Monotonic : Order, | 
|  | Scope); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | ISD::NodeType NT; | 
|  | switch (I.getOperation()) { | 
|  | default: llvm_unreachable("Unknown atomicrmw operation"); return; | 
|  | case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; | 
|  | case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break; | 
|  | case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break; | 
|  | case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break; | 
|  | case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; | 
|  | case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break; | 
|  | case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break; | 
|  | case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break; | 
|  | case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break; | 
|  | case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; | 
|  | case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; | 
|  | } | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | SDValue L = | 
|  | DAG.getAtomic(NT, dl, | 
|  | getValue(I.getValOperand()).getValueType().getSimpleVT(), | 
|  | InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | getValue(I.getValOperand()), | 
|  | I.getPointerOperand(), 0 /* Alignment */, | 
|  | TLI.getInsertFencesForAtomic() ? Monotonic : Order, | 
|  | Scope); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitFence(const FenceInst &I) { | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | SDValue Ops[3]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); | 
|  | Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); | 
|  | DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | EVT VT = EVT::getEVT(I.getType()); | 
|  |  | 
|  | if (I.getAlignment() * 8 < VT.getSizeInBits()) | 
|  | report_fatal_error("Cannot generate unaligned atomic load"); | 
|  |  | 
|  | SDValue L = | 
|  | DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | I.getPointerOperand(), I.getAlignment(), | 
|  | TLI.getInsertFencesForAtomic() ? Monotonic : Order, | 
|  | Scope); | 
|  |  | 
|  | SDValue OutChain = L.getValue(1); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | setValue(&I, L); | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | AtomicOrdering Order = I.getOrdering(); | 
|  | SynchronizationScope Scope = I.getSynchScope(); | 
|  |  | 
|  | SDValue InChain = getRoot(); | 
|  |  | 
|  | EVT VT = EVT::getEVT(I.getValueOperand()->getType()); | 
|  |  | 
|  | if (I.getAlignment() * 8 < VT.getSizeInBits()) | 
|  | report_fatal_error("Cannot generate unaligned atomic store"); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | SDValue OutChain = | 
|  | DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, | 
|  | InChain, | 
|  | getValue(I.getPointerOperand()), | 
|  | getValue(I.getValueOperand()), | 
|  | I.getPointerOperand(), I.getAlignment(), | 
|  | TLI.getInsertFencesForAtomic() ? Monotonic : Order, | 
|  | Scope); | 
|  |  | 
|  | if (TLI.getInsertFencesForAtomic()) | 
|  | OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, | 
|  | DAG, TLI); | 
|  |  | 
|  | DAG.setRoot(OutChain); | 
|  | } | 
|  |  | 
|  | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC | 
|  | /// node. | 
|  | void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, | 
|  | unsigned Intrinsic) { | 
|  | bool HasChain = !I.doesNotAccessMemory(); | 
|  | bool OnlyLoad = HasChain && I.onlyReadsMemory(); | 
|  |  | 
|  | // Build the operand list. | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | if (HasChain) {  // If this intrinsic has side-effects, chainify it. | 
|  | if (OnlyLoad) { | 
|  | // We don't need to serialize loads against other loads. | 
|  | Ops.push_back(DAG.getRoot()); | 
|  | } else { | 
|  | Ops.push_back(getRoot()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Info is set by getTgtMemInstrinsic | 
|  | TargetLowering::IntrinsicInfo Info; | 
|  | bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); | 
|  |  | 
|  | // Add the intrinsic ID as an integer operand if it's not a target intrinsic. | 
|  | if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || | 
|  | Info.opc == ISD::INTRINSIC_W_CHAIN) | 
|  | Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); | 
|  |  | 
|  | // Add all operands of the call to the operand list. | 
|  | for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { | 
|  | SDValue Op = getValue(I.getArgOperand(i)); | 
|  | assert(TLI.isTypeLegal(Op.getValueType()) && | 
|  | "Intrinsic uses a non-legal type?"); | 
|  | Ops.push_back(Op); | 
|  | } | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I.getType(), ValueVTs); | 
|  | #ifndef NDEBUG | 
|  | for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { | 
|  | assert(TLI.isTypeLegal(ValueVTs[Val]) && | 
|  | "Intrinsic uses a non-legal type?"); | 
|  | } | 
|  | #endif // NDEBUG | 
|  |  | 
|  | if (HasChain) | 
|  | ValueVTs.push_back(MVT::Other); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); | 
|  |  | 
|  | // Create the node. | 
|  | SDValue Result; | 
|  | if (IsTgtIntrinsic) { | 
|  | // This is target intrinsic that touches memory | 
|  | Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), | 
|  | VTs, &Ops[0], Ops.size(), | 
|  | Info.memVT, | 
|  | MachinePointerInfo(Info.ptrVal, Info.offset), | 
|  | Info.align, Info.vol, | 
|  | Info.readMem, Info.writeMem); | 
|  | } else if (!HasChain) { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), | 
|  | VTs, &Ops[0], Ops.size()); | 
|  | } else if (!I.getType()->isVoidTy()) { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), | 
|  | VTs, &Ops[0], Ops.size()); | 
|  | } else { | 
|  | Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), | 
|  | VTs, &Ops[0], Ops.size()); | 
|  | } | 
|  |  | 
|  | if (HasChain) { | 
|  | SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); | 
|  | if (OnlyLoad) | 
|  | PendingLoads.push_back(Chain); | 
|  | else | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | if (!I.getType()->isVoidTy()) { | 
|  | if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { | 
|  | EVT VT = TLI.getValueType(PTy); | 
|  | Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); | 
|  | } | 
|  |  | 
|  | setValue(&I, Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetSignificand - Get the significand and build it into a floating-point | 
|  | /// number with exponent of 1: | 
|  | /// | 
|  | ///   Op = (Op & 0x007fffff) | 0x3f800000; | 
|  | /// | 
|  | /// where Op is the hexidecimal representation of floating point value. | 
|  | static SDValue | 
|  | GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { | 
|  | SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0x007fffff, MVT::i32)); | 
|  | SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, | 
|  | DAG.getConstant(0x3f800000, MVT::i32)); | 
|  | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// GetExponent - Get the exponent: | 
|  | /// | 
|  | ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127); | 
|  | /// | 
|  | /// where Op is the hexidecimal representation of floating point value. | 
|  | static SDValue | 
|  | GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, | 
|  | DebugLoc dl) { | 
|  | SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, | 
|  | DAG.getConstant(0x7f800000, MVT::i32)); | 
|  | SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, | 
|  | DAG.getConstant(23, TLI.getPointerTy())); | 
|  | SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, | 
|  | DAG.getConstant(127, MVT::i32)); | 
|  | return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); | 
|  | } | 
|  |  | 
|  | /// getF32Constant - Get 32-bit floating point constant. | 
|  | static SDValue | 
|  | getF32Constant(SelectionDAG &DAG, unsigned Flt) { | 
|  | return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); | 
|  | } | 
|  |  | 
|  | // implVisitAluOverflow - Lower arithmetic overflow instrinsics. | 
|  | const char * | 
|  | SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); | 
|  | setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// visitExp - Lower an exp intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGBuilder::visitExp(const CallInst &I) { | 
|  | SDValue result; | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getArgOperand(0)); | 
|  |  | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OFe 1.4426950f | 
|  | //   IntegerPartOfX = ((int32_t)(X * LOG2OFe)); | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, | 
|  | getF32Constant(DAG, 0x3fb8aa3b)); | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); | 
|  |  | 
|  | //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, TLI.getPointerTy())); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e)); | 
|  | SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
|  | TwoToFracPartOfX, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // 0.000107046256 error, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd)); | 
|  | SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
|  | TwoToFracPartOfX, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
|  | SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000)); | 
|  | SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::i32, t13); | 
|  |  | 
|  | // Add the exponent into the result in integer domain. | 
|  | SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, | 
|  | TwoToFracPartOfX, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FEXP, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitLog - Lower a log intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGBuilder::visitLog(const CallInst &I) { | 
|  | SDValue result; | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getArgOperand(0)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log(2) [0.69314718f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3f317218)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   LogofMantissa = | 
|  | //     -1.1609546f + | 
|  | //       (1.4034025f - 0.23903021f * x) * x; | 
|  | // | 
|  | // error 0.0034276066, which is better than 8 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbe74c456)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3fb3a2b1)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f949a29)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -1.7417939f + | 
|  | //       (2.8212026f + | 
|  | //         (-1.4699568f + | 
|  | //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.000061011436, which is 14 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbd67b6d6)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ee4f4b8)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fbc278b)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40348e95)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fdef31a)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   LogOfMantissa = | 
|  | //     -2.1072184f + | 
|  | //       (4.2372794f + | 
|  | //         (-3.7029485f + | 
|  | //           (2.2781945f + | 
|  | //             (-0.87823314f + | 
|  | //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; | 
|  | // | 
|  | // error 0.0000023660568, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbc91e5ac)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e4350aa)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f60d3e3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x4011cdf0)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x406cfd1c)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x408797cb)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4006dcab)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, LogOfMantissa); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FLOG, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGBuilder::visitLog2(const CallInst &I) { | 
|  | SDValue result; | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getArgOperand(0)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Get the exponent. | 
|  | SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | // Different possible minimax approximations of significand in | 
|  | // floating-point for various degrees of accuracy over [1,2]. | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; | 
|  | // | 
|  | // error 0.0049451742, which is more than 7 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbeb08fe0)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x40019463)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fd6633d)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -2.51285454f + | 
|  | //       (4.07009056f + | 
|  | //         (-2.12067489f + | 
|  | //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000876136000, which is better than 13 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbda7262e)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f25280b)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x4007b923)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40823e2f)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x4020d29c)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log2ofMantissa = | 
|  | //     -3.0400495f + | 
|  | //       (6.1129976f + | 
|  | //         (-5.3420409f + | 
|  | //           (3.2865683f + | 
|  | //             (-1.2669343f + | 
|  | //               (0.27515199f - | 
|  | //                 0.25691327e-1f * x) * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000018516, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbcd2769e)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e8ce0b9)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3fa22ae7)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x40525723)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x40aaf200)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x40c39dad)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x4042902c)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, Log2ofMantissa); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FLOG2, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGBuilder::visitLog10(const CallInst &I) { | 
|  | SDValue result; | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getArgOperand(0)); | 
|  | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); | 
|  |  | 
|  | // Scale the exponent by log10(2) [0.30102999f]. | 
|  | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); | 
|  | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, | 
|  | getF32Constant(DAG, 0x3e9a209a)); | 
|  |  | 
|  | // Get the significand and build it into a floating-point number with | 
|  | // exponent of 1. | 
|  | SDValue X = GetSignificand(DAG, Op1, dl); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.50419619f + | 
|  | //       (0.60948995f - 0.10380950f * x) * x; | 
|  | // | 
|  | // error 0.0014886165, which is 6 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0xbdd49a13)); | 
|  | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3f1c0789)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f011300)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.64831180f + | 
|  | //       (0.91751397f + | 
|  | //         (-0.31664806f + 0.47637168e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.00019228036, which is better than 12 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3d431f31)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3ea21fb2)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f6ae232)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f25f7c3)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   Log10ofMantissa = | 
|  | //     -0.84299375f + | 
|  | //       (1.5327582f + | 
|  | //         (-1.0688956f + | 
|  | //           (0.49102474f + | 
|  | //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; | 
|  | // | 
|  | // error 0.0000037995730, which is better than 18 bits | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3c5d51ce)); | 
|  | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, | 
|  | getF32Constant(DAG, 0x3e00685a)); | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3efb6798)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f88d192)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3fc4316c)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3f57ce70)); | 
|  |  | 
|  | result = DAG.getNode(ISD::FADD, dl, | 
|  | MVT::f32, LogOfExponent, Log10ofMantissa); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FLOG10, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode. | 
|  | void | 
|  | SelectionDAGBuilder::visitExp2(const CallInst &I) { | 
|  | SDValue result; | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  |  | 
|  | if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getArgOperand(0)); | 
|  |  | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); | 
|  |  | 
|  | //   FractionalPartOfX = x - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, TLI.getPointerTy())); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e)); | 
|  | SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::f32, TwoToFractionalPartOfX); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.000107046256, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd)); | 
|  | SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::f32, TwoToFractionalPartOfX); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
|  | SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000)); | 
|  | SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::f32, TwoToFractionalPartOfX); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FEXP2, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  | /// visitPow - Lower a pow intrinsic. Handles the special sequences for | 
|  | /// limited-precision mode with x == 10.0f. | 
|  | void | 
|  | SelectionDAGBuilder::visitPow(const CallInst &I) { | 
|  | SDValue result; | 
|  | const Value *Val = I.getArgOperand(0); | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | bool IsExp10 = false; | 
|  |  | 
|  | if (getValue(Val).getValueType() == MVT::f32 && | 
|  | getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && | 
|  | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | APFloat Ten(10.0f); | 
|  | IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { | 
|  | SDValue Op = getValue(I.getArgOperand(1)); | 
|  |  | 
|  | // Put the exponent in the right bit position for later addition to the | 
|  | // final result: | 
|  | // | 
|  | //   #define LOG2OF10 3.3219281f | 
|  | //   IntegerPartOfX = (int32_t)(x * LOG2OF10); | 
|  | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, | 
|  | getF32Constant(DAG, 0x40549a78)); | 
|  | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); | 
|  |  | 
|  | //   FractionalPartOfX = x - (float)IntegerPartOfX; | 
|  | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); | 
|  | SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); | 
|  |  | 
|  | //   IntegerPartOfX <<= 23; | 
|  | IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, | 
|  | DAG.getConstant(23, TLI.getPointerTy())); | 
|  |  | 
|  | if (LimitFloatPrecision <= 6) { | 
|  | // For floating-point precision of 6: | 
|  | // | 
|  | //   twoToFractionalPartOfX = | 
|  | //     0.997535578f + | 
|  | //       (0.735607626f + 0.252464424f * x) * x; | 
|  | // | 
|  | // error 0.0144103317, which is 6 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3e814304)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3f3c50c8)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f7f5e7e)); | 
|  | SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::f32, TwoToFractionalPartOfX); | 
|  | } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { | 
|  | // For floating-point precision of 12: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999892986f + | 
|  | //       (0.696457318f + | 
|  | //         (0.224338339f + 0.792043434e-1f * x) * x) * x; | 
|  | // | 
|  | // error 0.000107046256, which is 13 to 14 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3da235e3)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3e65b8f3)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3f324b07)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3f7ff8fd)); | 
|  | SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::f32, TwoToFractionalPartOfX); | 
|  | } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 | 
|  | // For floating-point precision of 18: | 
|  | // | 
|  | //   TwoToFractionalPartOfX = | 
|  | //     0.999999982f + | 
|  | //       (0.693148872f + | 
|  | //         (0.240227044f + | 
|  | //           (0.554906021e-1f + | 
|  | //             (0.961591928e-2f + | 
|  | //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; | 
|  | // error 2.47208000*10^(-7), which is better than 18 bits | 
|  | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, | 
|  | getF32Constant(DAG, 0x3924b03e)); | 
|  | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, | 
|  | getF32Constant(DAG, 0x3ab24b87)); | 
|  | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); | 
|  | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, | 
|  | getF32Constant(DAG, 0x3c1d8c17)); | 
|  | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); | 
|  | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, | 
|  | getF32Constant(DAG, 0x3d634a1d)); | 
|  | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); | 
|  | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, | 
|  | getF32Constant(DAG, 0x3e75fe14)); | 
|  | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); | 
|  | SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, | 
|  | getF32Constant(DAG, 0x3f317234)); | 
|  | SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); | 
|  | SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, | 
|  | getF32Constant(DAG, 0x3f800000)); | 
|  | SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); | 
|  | SDValue TwoToFractionalPartOfX = | 
|  | DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); | 
|  |  | 
|  | result = DAG.getNode(ISD::BITCAST, dl, | 
|  | MVT::f32, TwoToFractionalPartOfX); | 
|  | } | 
|  | } else { | 
|  | // No special expansion. | 
|  | result = DAG.getNode(ISD::FPOW, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1))); | 
|  | } | 
|  |  | 
|  | setValue(&I, result); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExpandPowI - Expand a llvm.powi intrinsic. | 
|  | static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, | 
|  | SelectionDAG &DAG) { | 
|  | // If RHS is a constant, we can expand this out to a multiplication tree, | 
|  | // otherwise we end up lowering to a call to __powidf2 (for example).  When | 
|  | // optimizing for size, we only want to do this if the expansion would produce | 
|  | // a small number of multiplies, otherwise we do the full expansion. | 
|  | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { | 
|  | // Get the exponent as a positive value. | 
|  | unsigned Val = RHSC->getSExtValue(); | 
|  | if ((int)Val < 0) Val = -Val; | 
|  |  | 
|  | // powi(x, 0) -> 1.0 | 
|  | if (Val == 0) | 
|  | return DAG.getConstantFP(1.0, LHS.getValueType()); | 
|  |  | 
|  | const Function *F = DAG.getMachineFunction().getFunction(); | 
|  | if (!F->hasFnAttr(Attribute::OptimizeForSize) || | 
|  | // If optimizing for size, don't insert too many multiplies.  This | 
|  | // inserts up to 5 multiplies. | 
|  | CountPopulation_32(Val)+Log2_32(Val) < 7) { | 
|  | // We use the simple binary decomposition method to generate the multiply | 
|  | // sequence.  There are more optimal ways to do this (for example, | 
|  | // powi(x,15) generates one more multiply than it should), but this has | 
|  | // the benefit of being both really simple and much better than a libcall. | 
|  | SDValue Res;  // Logically starts equal to 1.0 | 
|  | SDValue CurSquare = LHS; | 
|  | while (Val) { | 
|  | if (Val & 1) { | 
|  | if (Res.getNode()) | 
|  | Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); | 
|  | else | 
|  | Res = CurSquare;  // 1.0*CurSquare. | 
|  | } | 
|  |  | 
|  | CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), | 
|  | CurSquare, CurSquare); | 
|  | Val >>= 1; | 
|  | } | 
|  |  | 
|  | // If the original was negative, invert the result, producing 1/(x*x*x). | 
|  | if (RHSC->getSExtValue() < 0) | 
|  | Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), | 
|  | DAG.getConstantFP(1.0, LHS.getValueType()), Res); | 
|  | return Res; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, expand to a libcall. | 
|  | return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); | 
|  | } | 
|  |  | 
|  | // getTruncatedArgReg - Find underlying register used for an truncated | 
|  | // argument. | 
|  | static unsigned getTruncatedArgReg(const SDValue &N) { | 
|  | if (N.getOpcode() != ISD::TRUNCATE) | 
|  | return 0; | 
|  |  | 
|  | const SDValue &Ext = N.getOperand(0); | 
|  | if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ | 
|  | const SDValue &CFR = Ext.getOperand(0); | 
|  | if (CFR.getOpcode() == ISD::CopyFromReg) | 
|  | return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); | 
|  | else | 
|  | if (CFR.getOpcode() == ISD::TRUNCATE) | 
|  | return getTruncatedArgReg(CFR); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function | 
|  | /// argument, create the corresponding DBG_VALUE machine instruction for it now. | 
|  | /// At the end of instruction selection, they will be inserted to the entry BB. | 
|  | bool | 
|  | SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, | 
|  | int64_t Offset, | 
|  | const SDValue &N) { | 
|  | const Argument *Arg = dyn_cast<Argument>(V); | 
|  | if (!Arg) | 
|  | return false; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); | 
|  | const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); | 
|  |  | 
|  | // Ignore inlined function arguments here. | 
|  | DIVariable DV(Variable); | 
|  | if (DV.isInlinedFnArgument(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | unsigned Reg = 0; | 
|  | // Some arguments' frame index is recorded during argument lowering. | 
|  | Offset = FuncInfo.getArgumentFrameIndex(Arg); | 
|  | if (Offset) | 
|  | Reg = TRI->getFrameRegister(MF); | 
|  |  | 
|  | if (!Reg && N.getNode()) { | 
|  | if (N.getOpcode() == ISD::CopyFromReg) | 
|  | Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); | 
|  | else | 
|  | Reg = getTruncatedArgReg(N); | 
|  | if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | unsigned PR = RegInfo.getLiveInPhysReg(Reg); | 
|  | if (PR) | 
|  | Reg = PR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Reg) { | 
|  | // Check if ValueMap has reg number. | 
|  | DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); | 
|  | if (VMI != FuncInfo.ValueMap.end()) | 
|  | Reg = VMI->second; | 
|  | } | 
|  |  | 
|  | if (!Reg && N.getNode()) { | 
|  | // Check if frame index is available. | 
|  | if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) | 
|  | if (FrameIndexSDNode *FINode = | 
|  | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { | 
|  | Reg = TRI->getFrameRegister(MF); | 
|  | Offset = FINode->getIndex(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Reg) | 
|  | return false; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), | 
|  | TII->get(TargetOpcode::DBG_VALUE)) | 
|  | .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); | 
|  | FuncInfo.ArgDbgValues.push_back(&*MIB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VisualStudio defines setjmp as _setjmp | 
|  | #if defined(_MSC_VER) && defined(setjmp) && \ | 
|  | !defined(setjmp_undefined_for_msvc) | 
|  | #  pragma push_macro("setjmp") | 
|  | #  undef setjmp | 
|  | #  define setjmp_undefined_for_msvc | 
|  | #endif | 
|  |  | 
|  | /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If | 
|  | /// we want to emit this as a call to a named external function, return the name | 
|  | /// otherwise lower it and return null. | 
|  | const char * | 
|  | SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | SDValue Res; | 
|  |  | 
|  | switch (Intrinsic) { | 
|  | default: | 
|  | // By default, turn this into a target intrinsic node. | 
|  | visitTargetIntrinsic(I, Intrinsic); | 
|  | return 0; | 
|  | case Intrinsic::vastart:  visitVAStart(I); return 0; | 
|  | case Intrinsic::vaend:    visitVAEnd(I); return 0; | 
|  | case Intrinsic::vacopy:   visitVACopy(I); return 0; | 
|  | case Intrinsic::returnaddress: | 
|  | setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::frameaddress: | 
|  | setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::setjmp: | 
|  | return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; | 
|  | case Intrinsic::longjmp: | 
|  | return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; | 
|  | case Intrinsic::memcpy: { | 
|  | // Assert for address < 256 since we support only user defined address | 
|  | // spaces. | 
|  | assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() | 
|  | < 256 && | 
|  | cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() | 
|  | < 256 && | 
|  | "Unknown address space"); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); | 
|  | bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); | 
|  | DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1)))); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | // Assert for address < 256 since we support only user defined address | 
|  | // spaces. | 
|  | assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() | 
|  | < 256 && | 
|  | "Unknown address space"); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); | 
|  | bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); | 
|  | DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, | 
|  | MachinePointerInfo(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::memmove: { | 
|  | // Assert for address < 256 since we support only user defined address | 
|  | // spaces. | 
|  | assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() | 
|  | < 256 && | 
|  | cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() | 
|  | < 256 && | 
|  | "Unknown address space"); | 
|  | SDValue Op1 = getValue(I.getArgOperand(0)); | 
|  | SDValue Op2 = getValue(I.getArgOperand(1)); | 
|  | SDValue Op3 = getValue(I.getArgOperand(2)); | 
|  | unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); | 
|  | bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); | 
|  | DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | MachinePointerInfo(I.getArgOperand(1)))); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_declare: { | 
|  | const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); | 
|  | MDNode *Variable = DI.getVariable(); | 
|  | const Value *Address = DI.getAddress(); | 
|  | if (!Address || !DIVariable(Variable).Verify()) | 
|  | return 0; | 
|  |  | 
|  | // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder | 
|  | // but do not always have a corresponding SDNode built.  The SDNodeOrder | 
|  | // absolute, but not relative, values are different depending on whether | 
|  | // debug info exists. | 
|  | ++SDNodeOrder; | 
|  |  | 
|  | // Check if address has undef value. | 
|  | if (isa<UndefValue>(Address) || | 
|  | (Address->use_empty() && !isa<Argument>(Address))) { | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDValue &N = NodeMap[Address]; | 
|  | if (!N.getNode() && isa<Argument>(Address)) | 
|  | // Check unused arguments map. | 
|  | N = UnusedArgNodeMap[Address]; | 
|  | SDDbgValue *SDV; | 
|  | if (N.getNode()) { | 
|  | // Parameters are handled specially. | 
|  | bool isParameter = | 
|  | DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
|  | Address = BCI->getOperand(0); | 
|  | const AllocaInst *AI = dyn_cast<AllocaInst>(Address); | 
|  |  | 
|  | if (isParameter && !AI) { | 
|  | FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); | 
|  | if (FINode) | 
|  | // Byval parameter.  We have a frame index at this point. | 
|  | SDV = DAG.getDbgValue(Variable, FINode->getIndex(), | 
|  | 0, dl, SDNodeOrder); | 
|  | else { | 
|  | // Address is an argument, so try to emit its dbg value using | 
|  | // virtual register info from the FuncInfo.ValueMap. | 
|  | EmitFuncArgumentDbgValue(Address, Variable, 0, N); | 
|  | return 0; | 
|  | } | 
|  | } else if (AI) | 
|  | SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), | 
|  | 0, dl, SDNodeOrder); | 
|  | else { | 
|  | // Can't do anything with other non-AI cases yet. | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI); | 
|  | return 0; | 
|  | } | 
|  | DAG.AddDbgValue(SDV, N.getNode(), isParameter); | 
|  | } else { | 
|  | // If Address is an argument then try to emit its dbg value using | 
|  | // virtual register info from the FuncInfo.ValueMap. | 
|  | if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { | 
|  | // If variable is pinned by a alloca in dominating bb then | 
|  | // use StaticAllocaMap. | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { | 
|  | if (AI->getParent() != DI.getParent()) { | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | SDV = DAG.getDbgValue(Variable, SI->second, | 
|  | 0, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, 0, false); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::dbg_value: { | 
|  | const DbgValueInst &DI = cast<DbgValueInst>(I); | 
|  | if (!DIVariable(DI.getVariable()).Verify()) | 
|  | return 0; | 
|  |  | 
|  | MDNode *Variable = DI.getVariable(); | 
|  | uint64_t Offset = DI.getOffset(); | 
|  | const Value *V = DI.getValue(); | 
|  | if (!V) | 
|  | return 0; | 
|  |  | 
|  | // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder | 
|  | // but do not always have a corresponding SDNode built.  The SDNodeOrder | 
|  | // absolute, but not relative, values are different depending on whether | 
|  | // debug info exists. | 
|  | ++SDNodeOrder; | 
|  | SDDbgValue *SDV; | 
|  | if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { | 
|  | SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, 0, false); | 
|  | } else { | 
|  | // Do not use getValue() in here; we don't want to generate code at | 
|  | // this point if it hasn't been done yet. | 
|  | SDValue N = NodeMap[V]; | 
|  | if (!N.getNode() && isa<Argument>(V)) | 
|  | // Check unused arguments map. | 
|  | N = UnusedArgNodeMap[V]; | 
|  | if (N.getNode()) { | 
|  | if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { | 
|  | SDV = DAG.getDbgValue(Variable, N.getNode(), | 
|  | N.getResNo(), Offset, dl, SDNodeOrder); | 
|  | DAG.AddDbgValue(SDV, N.getNode(), false); | 
|  | } | 
|  | } else if (!V->use_empty() ) { | 
|  | // Do not call getValue(V) yet, as we don't want to generate code. | 
|  | // Remember it for later. | 
|  | DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); | 
|  | DanglingDebugInfoMap[V] = DDI; | 
|  | } else { | 
|  | // We may expand this to cover more cases.  One case where we have no | 
|  | // data available is an unreferenced parameter. | 
|  | DEBUG(dbgs() << "Dropping debug info for " << DI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build a debug info table entry. | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) | 
|  | V = BCI->getOperand(0); | 
|  | const AllocaInst *AI = dyn_cast<AllocaInst>(V); | 
|  | // Don't handle byval struct arguments or VLAs, for example. | 
|  | if (!AI) | 
|  | return 0; | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI == FuncInfo.StaticAllocaMap.end()) | 
|  | return 0; // VLAs. | 
|  | int FI = SI->second; | 
|  |  | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) | 
|  | MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::eh_exception: { | 
|  | // Insert the EXCEPTIONADDR instruction. | 
|  | assert(FuncInfo.MBB->isLandingPad() && | 
|  | "Call to eh.exception not in landing pad!"); | 
|  | SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
|  | SDValue Ops[1]; | 
|  | Ops[0] = DAG.getRoot(); | 
|  | SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); | 
|  | setValue(&I, Op); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_selector: { | 
|  | MachineBasicBlock *CallMBB = FuncInfo.MBB; | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | if (CallMBB->isLandingPad()) | 
|  | AddCatchInfo(I, &MMI, CallMBB); | 
|  | else { | 
|  | #ifndef NDEBUG | 
|  | FuncInfo.CatchInfoLost.insert(&I); | 
|  | #endif | 
|  | // FIXME: Mark exception selector register as live in.  Hack for PR1508. | 
|  | unsigned Reg = TLI.getExceptionSelectorRegister(); | 
|  | if (Reg) FuncInfo.MBB->addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | // Insert the EHSELECTION instruction. | 
|  | SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = getValue(I.getArgOperand(0)); | 
|  | Ops[1] = getRoot(); | 
|  | SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_typeid_for: { | 
|  | // Find the type id for the given typeinfo. | 
|  | GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); | 
|  | unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); | 
|  | Res = DAG.getConstant(TypeID, MVT::i32); | 
|  | setValue(&I, Res); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::eh_return_i32: | 
|  | case Intrinsic::eh_return_i64: | 
|  | DAG.getMachineFunction().getMMI().setCallsEHReturn(true); | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, | 
|  | MVT::Other, | 
|  | getControlRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)))); | 
|  | return 0; | 
|  | case Intrinsic::eh_unwind_init: | 
|  | DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); | 
|  | return 0; | 
|  | case Intrinsic::eh_dwarf_cfa: { | 
|  | SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, | 
|  | TLI.getPointerTy()); | 
|  | SDValue Offset = DAG.getNode(ISD::ADD, dl, | 
|  | TLI.getPointerTy(), | 
|  | DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, | 
|  | TLI.getPointerTy()), | 
|  | CfaArg); | 
|  | SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, | 
|  | TLI.getPointerTy(), | 
|  | DAG.getConstant(0, TLI.getPointerTy())); | 
|  | setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), | 
|  | FA, Offset)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_callsite: { | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); | 
|  | assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); | 
|  | assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); | 
|  |  | 
|  | MMI.setCurrentCallSite(CI->getZExtValue()); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_functioncontext: { | 
|  | // Get and store the index of the function context. | 
|  | MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | AllocaInst *FnCtx = | 
|  | cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); | 
|  | int FI = FuncInfo.StaticAllocaMap[FnCtx]; | 
|  | MFI->setFunctionContextIndex(FI); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_setjmp: { | 
|  | SDValue Ops[2]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, | 
|  | DAG.getVTList(MVT::i32, MVT::Other), | 
|  | Ops, 2); | 
|  | setValue(&I, Op.getValue(0)); | 
|  | DAG.setRoot(Op.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_longjmp: { | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, | 
|  | getRoot(), getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::eh_sjlj_dispatch_setup: { | 
|  | DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, | 
|  | getRoot(), getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | case Intrinsic::x86_mmx_psrai_d: { | 
|  | SDValue ShAmt = getValue(I.getArgOperand(1)); | 
|  | if (isa<ConstantSDNode>(ShAmt)) { | 
|  | visitTargetIntrinsic(I, Intrinsic); | 
|  | return 0; | 
|  | } | 
|  | unsigned NewIntrinsic = 0; | 
|  | EVT ShAmtVT = MVT::v2i32; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::x86_mmx_pslli_w: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psll_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_d: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psll_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_pslli_q: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psll_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_w: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psrl_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_d: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psrl_d; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrli_q: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psrl_q; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_w: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psra_w; | 
|  | break; | 
|  | case Intrinsic::x86_mmx_psrai_d: | 
|  | NewIntrinsic = Intrinsic::x86_mmx_psra_d; | 
|  | break; | 
|  | default: llvm_unreachable("Impossible intrinsic");  // Can't reach here. | 
|  | } | 
|  |  | 
|  | // The vector shift intrinsics with scalars uses 32b shift amounts but | 
|  | // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits | 
|  | // to be zero. | 
|  | // We must do this early because v2i32 is not a legal type. | 
|  | DebugLoc dl = getCurDebugLoc(); | 
|  | SDValue ShOps[2]; | 
|  | ShOps[0] = ShAmt; | 
|  | ShOps[1] = DAG.getConstant(0, MVT::i32); | 
|  | ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); | 
|  | Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, | 
|  | DAG.getConstant(NewIntrinsic, MVT::i32), | 
|  | getValue(I.getArgOperand(0)), ShAmt); | 
|  | setValue(&I, Res); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::convertff: | 
|  | case Intrinsic::convertfsi: | 
|  | case Intrinsic::convertfui: | 
|  | case Intrinsic::convertsif: | 
|  | case Intrinsic::convertuif: | 
|  | case Intrinsic::convertss: | 
|  | case Intrinsic::convertsu: | 
|  | case Intrinsic::convertus: | 
|  | case Intrinsic::convertuu: { | 
|  | ISD::CvtCode Code = ISD::CVT_INVALID; | 
|  | switch (Intrinsic) { | 
|  | case Intrinsic::convertff:  Code = ISD::CVT_FF; break; | 
|  | case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; | 
|  | case Intrinsic::convertfui: Code = ISD::CVT_FU; break; | 
|  | case Intrinsic::convertsif: Code = ISD::CVT_SF; break; | 
|  | case Intrinsic::convertuif: Code = ISD::CVT_UF; break; | 
|  | case Intrinsic::convertss:  Code = ISD::CVT_SS; break; | 
|  | case Intrinsic::convertsu:  Code = ISD::CVT_SU; break; | 
|  | case Intrinsic::convertus:  Code = ISD::CVT_US; break; | 
|  | case Intrinsic::convertuu:  Code = ISD::CVT_UU; break; | 
|  | } | 
|  | EVT DestVT = TLI.getValueType(I.getType()); | 
|  | const Value *Op1 = I.getArgOperand(0); | 
|  | Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), | 
|  | DAG.getValueType(DestVT), | 
|  | DAG.getValueType(getValue(Op1).getValueType()), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)), | 
|  | Code); | 
|  | setValue(&I, Res); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::sqrt: | 
|  | setValue(&I, DAG.getNode(ISD::FSQRT, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::powi: | 
|  | setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), DAG)); | 
|  | return 0; | 
|  | case Intrinsic::sin: | 
|  | setValue(&I, DAG.getNode(ISD::FSIN, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::cos: | 
|  | setValue(&I, DAG.getNode(ISD::FCOS, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::log: | 
|  | visitLog(I); | 
|  | return 0; | 
|  | case Intrinsic::log2: | 
|  | visitLog2(I); | 
|  | return 0; | 
|  | case Intrinsic::log10: | 
|  | visitLog10(I); | 
|  | return 0; | 
|  | case Intrinsic::exp: | 
|  | visitExp(I); | 
|  | return 0; | 
|  | case Intrinsic::exp2: | 
|  | visitExp2(I); | 
|  | return 0; | 
|  | case Intrinsic::pow: | 
|  | visitPow(I); | 
|  | return 0; | 
|  | case Intrinsic::fma: | 
|  | setValue(&I, DAG.getNode(ISD::FMA, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | getValue(I.getArgOperand(2)))); | 
|  | return 0; | 
|  | case Intrinsic::convert_to_fp16: | 
|  | setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, | 
|  | MVT::i16, getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::convert_from_fp16: | 
|  | setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, | 
|  | MVT::f32, getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::pcmarker: { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::readcyclecounter: { | 
|  | SDValue Op = getRoot(); | 
|  | Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, | 
|  | DAG.getVTList(MVT::i64, MVT::Other), | 
|  | &Op, 1); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::bswap: | 
|  | setValue(&I, DAG.getNode(ISD::BSWAP, dl, | 
|  | getValue(I.getArgOperand(0)).getValueType(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | case Intrinsic::cttz: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::ctlz: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::ctpop: { | 
|  | SDValue Arg = getValue(I.getArgOperand(0)); | 
|  | EVT Ty = Arg.getValueType(); | 
|  | setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::stacksave: { | 
|  | SDValue Op = getRoot(); | 
|  | Res = DAG.getNode(ISD::STACKSAVE, dl, | 
|  | DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res.getValue(1)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::stackrestore: { | 
|  | Res = getValue(I.getArgOperand(0)); | 
|  | DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::stackprotector: { | 
|  | // Emit code into the DAG to store the stack guard onto the stack. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  | EVT PtrTy = TLI.getPointerTy(); | 
|  |  | 
|  | SDValue Src = getValue(I.getArgOperand(0));   // The guard's value. | 
|  | AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); | 
|  |  | 
|  | int FI = FuncInfo.StaticAllocaMap[Slot]; | 
|  | MFI->setStackProtectorIndex(FI); | 
|  |  | 
|  | SDValue FIN = DAG.getFrameIndex(FI, PtrTy); | 
|  |  | 
|  | // Store the stack protector onto the stack. | 
|  | Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, | 
|  | MachinePointerInfo::getFixedStack(FI), | 
|  | true, false, 0); | 
|  | setValue(&I, Res); | 
|  | DAG.setRoot(Res); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::objectsize: { | 
|  | // If we don't know by now, we're never going to know. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); | 
|  |  | 
|  | assert(CI && "Non-constant type in __builtin_object_size?"); | 
|  |  | 
|  | SDValue Arg = getValue(I.getCalledValue()); | 
|  | EVT Ty = Arg.getValueType(); | 
|  |  | 
|  | if (CI->isZero()) | 
|  | Res = DAG.getConstant(-1ULL, Ty); | 
|  | else | 
|  | Res = DAG.getConstant(0, Ty); | 
|  |  | 
|  | setValue(&I, Res); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::var_annotation: | 
|  | // Discard annotate attributes | 
|  | return 0; | 
|  |  | 
|  | case Intrinsic::init_trampoline: { | 
|  | const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); | 
|  |  | 
|  | SDValue Ops[6]; | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | Ops[2] = getValue(I.getArgOperand(1)); | 
|  | Ops[3] = getValue(I.getArgOperand(2)); | 
|  | Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); | 
|  | Ops[5] = DAG.getSrcValue(F); | 
|  |  | 
|  | Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); | 
|  |  | 
|  | DAG.setRoot(Res); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::adjust_trampoline: { | 
|  | setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, | 
|  | TLI.getPointerTy(), | 
|  | getValue(I.getArgOperand(0)))); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::gcroot: | 
|  | if (GFI) { | 
|  | const Value *Alloca = I.getArgOperand(0); | 
|  | const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); | 
|  |  | 
|  | FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); | 
|  | GFI->addStackRoot(FI->getIndex(), TypeMap); | 
|  | } | 
|  | return 0; | 
|  | case Intrinsic::gcread: | 
|  | case Intrinsic::gcwrite: | 
|  | llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); | 
|  | return 0; | 
|  | case Intrinsic::flt_rounds: | 
|  | setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); | 
|  | return 0; | 
|  |  | 
|  | case Intrinsic::expect: { | 
|  | // Just replace __builtin_expect(exp, c) with EXP. | 
|  | setValue(&I, getValue(I.getArgOperand(0))); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::trap: { | 
|  | StringRef TrapFuncName = getTrapFunctionName(); | 
|  | if (TrapFuncName.empty()) { | 
|  | DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); | 
|  | return 0; | 
|  | } | 
|  | TargetLowering::ArgListTy Args; | 
|  | std::pair<SDValue, SDValue> Result = | 
|  | TLI.LowerCallTo(getRoot(), I.getType(), | 
|  | false, false, false, false, 0, CallingConv::C, | 
|  | /*isTailCall=*/false, /*isReturnValueUsed=*/true, | 
|  | DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), | 
|  | Args, DAG, getCurDebugLoc()); | 
|  | DAG.setRoot(Result.second); | 
|  | return 0; | 
|  | } | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::UADDO); | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::SADDO); | 
|  | case Intrinsic::usub_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::USUBO); | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::SSUBO); | 
|  | case Intrinsic::umul_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::UMULO); | 
|  | case Intrinsic::smul_with_overflow: | 
|  | return implVisitAluOverflow(I, ISD::SMULO); | 
|  |  | 
|  | case Intrinsic::prefetch: { | 
|  | SDValue Ops[5]; | 
|  | unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); | 
|  | Ops[0] = getRoot(); | 
|  | Ops[1] = getValue(I.getArgOperand(0)); | 
|  | Ops[2] = getValue(I.getArgOperand(1)); | 
|  | Ops[3] = getValue(I.getArgOperand(2)); | 
|  | Ops[4] = getValue(I.getArgOperand(3)); | 
|  | DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, | 
|  | DAG.getVTList(MVT::Other), | 
|  | &Ops[0], 5, | 
|  | EVT::getIntegerVT(*Context, 8), | 
|  | MachinePointerInfo(I.getArgOperand(0)), | 
|  | 0, /* align */ | 
|  | false, /* volatile */ | 
|  | rw==0, /* read */ | 
|  | rw==1)); /* write */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case Intrinsic::invariant_start: | 
|  | case Intrinsic::lifetime_start: | 
|  | // Discard region information. | 
|  | setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); | 
|  | return 0; | 
|  | case Intrinsic::invariant_end: | 
|  | case Intrinsic::lifetime_end: | 
|  | // Discard region information. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, | 
|  | bool isTailCall, | 
|  | MachineBasicBlock *LandingPad) { | 
|  | PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); | 
|  | FunctionType *FTy = cast<FunctionType>(PT->getElementType()); | 
|  | Type *RetTy = FTy->getReturnType(); | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | MCSymbol *BeginLabel = 0; | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | Args.reserve(CS.arg_size()); | 
|  |  | 
|  | // Check whether the function can return without sret-demotion. | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | SmallVector<uint64_t, 4> Offsets; | 
|  | GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), | 
|  | Outs, TLI, &Offsets); | 
|  |  | 
|  | bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), | 
|  | DAG.getMachineFunction(), | 
|  | FTy->isVarArg(), Outs, | 
|  | FTy->getContext()); | 
|  |  | 
|  | SDValue DemoteStackSlot; | 
|  | int DemoteStackIdx = -100; | 
|  |  | 
|  | if (!CanLowerReturn) { | 
|  | uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( | 
|  | FTy->getReturnType()); | 
|  | unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment( | 
|  | FTy->getReturnType()); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); | 
|  | Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); | 
|  |  | 
|  | DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); | 
|  | Entry.Node = DemoteStackSlot; | 
|  | Entry.Ty = StackSlotPtrType; | 
|  | Entry.isSExt = false; | 
|  | Entry.isZExt = false; | 
|  | Entry.isInReg = false; | 
|  | Entry.isSRet = true; | 
|  | Entry.isNest = false; | 
|  | Entry.isByVal = false; | 
|  | Entry.Alignment = Align; | 
|  | Args.push_back(Entry); | 
|  | RetTy = Type::getVoidTy(FTy->getContext()); | 
|  | } | 
|  |  | 
|  | for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | i != e; ++i) { | 
|  | const Value *V = *i; | 
|  |  | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | SDValue ArgNode = getValue(V); | 
|  | Entry.Node = ArgNode; Entry.Ty = V->getType(); | 
|  |  | 
|  | unsigned attrInd = i - CS.arg_begin() + 1; | 
|  | Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt); | 
|  | Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt); | 
|  | Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); | 
|  | Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet); | 
|  | Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest); | 
|  | Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); | 
|  | Entry.Alignment = CS.getParamAlignment(attrInd); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | if (LandingPad) { | 
|  | // Insert a label before the invoke call to mark the try range.  This can be | 
|  | // used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | BeginLabel = MMI.getContext().CreateTempSymbol(); | 
|  |  | 
|  | // For SjLj, keep track of which landing pads go with which invokes | 
|  | // so as to maintain the ordering of pads in the LSDA. | 
|  | unsigned CallSiteIndex = MMI.getCurrentCallSite(); | 
|  | if (CallSiteIndex) { | 
|  | MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); | 
|  | LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); | 
|  |  | 
|  | // Now that the call site is handled, stop tracking it. | 
|  | MMI.setCurrentCallSite(0); | 
|  | } | 
|  |  | 
|  | // Both PendingLoads and PendingExports must be flushed here; | 
|  | // this call might not return. | 
|  | (void)getRoot(); | 
|  | DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); | 
|  | } | 
|  |  | 
|  | // Check if target-independent constraints permit a tail call here. | 
|  | // Target-dependent constraints are checked within TLI.LowerCallTo. | 
|  | if (isTailCall && | 
|  | !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) | 
|  | isTailCall = false; | 
|  |  | 
|  | // If there's a possibility that fast-isel has already selected some amount | 
|  | // of the current basic block, don't emit a tail call. | 
|  | if (isTailCall && EnableFastISel) | 
|  | isTailCall = false; | 
|  |  | 
|  | std::pair<SDValue,SDValue> Result = | 
|  | TLI.LowerCallTo(getRoot(), RetTy, | 
|  | CS.paramHasAttr(0, Attribute::SExt), | 
|  | CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), | 
|  | CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), | 
|  | CS.getCallingConv(), | 
|  | isTailCall, | 
|  | !CS.getInstruction()->use_empty(), | 
|  | Callee, Args, DAG, getCurDebugLoc()); | 
|  | assert((isTailCall || Result.second.getNode()) && | 
|  | "Non-null chain expected with non-tail call!"); | 
|  | assert((Result.second.getNode() || !Result.first.getNode()) && | 
|  | "Null value expected with tail call!"); | 
|  | if (Result.first.getNode()) { | 
|  | setValue(CS.getInstruction(), Result.first); | 
|  | } else if (!CanLowerReturn && Result.second.getNode()) { | 
|  | // The instruction result is the result of loading from the | 
|  | // hidden sret parameter. | 
|  | SmallVector<EVT, 1> PVTs; | 
|  | Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); | 
|  |  | 
|  | ComputeValueVTs(TLI, PtrRetTy, PVTs); | 
|  | assert(PVTs.size() == 1 && "Pointers should fit in one register"); | 
|  | EVT PtrVT = PVTs[0]; | 
|  | unsigned NumValues = Outs.size(); | 
|  | SmallVector<SDValue, 4> Values(NumValues); | 
|  | SmallVector<SDValue, 4> Chains(NumValues); | 
|  |  | 
|  | for (unsigned i = 0; i < NumValues; ++i) { | 
|  | SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, | 
|  | DemoteStackSlot, | 
|  | DAG.getConstant(Offsets[i], PtrVT)); | 
|  | SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, | 
|  | Add, | 
|  | MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), | 
|  | false, false, 1); | 
|  | Values[i] = L; | 
|  | Chains[i] = L.getValue(1); | 
|  | } | 
|  |  | 
|  | SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), | 
|  | MVT::Other, &Chains[0], NumValues); | 
|  | PendingLoads.push_back(Chain); | 
|  |  | 
|  | // Collect the legal value parts into potentially illegal values | 
|  | // that correspond to the original function's return values. | 
|  | SmallVector<EVT, 4> RetTys; | 
|  | RetTy = FTy->getReturnType(); | 
|  | ComputeValueVTs(TLI, RetTy, RetTys); | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | SmallVector<SDValue, 4> ReturnValues; | 
|  | unsigned CurReg = 0; | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); | 
|  | unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); | 
|  |  | 
|  | SDValue ReturnValue = | 
|  | getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, | 
|  | RegisterVT, VT, AssertOp); | 
|  | ReturnValues.push_back(ReturnValue); | 
|  | CurReg += NumRegs; | 
|  | } | 
|  |  | 
|  | setValue(CS.getInstruction(), | 
|  | DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), | 
|  | DAG.getVTList(&RetTys[0], RetTys.size()), | 
|  | &ReturnValues[0], ReturnValues.size())); | 
|  | } | 
|  |  | 
|  | // Assign order to nodes here. If the call does not produce a result, it won't | 
|  | // be mapped to a SDNode and visit() will not assign it an order number. | 
|  | if (!Result.second.getNode()) { | 
|  | // As a special case, a null chain means that a tail call has been emitted and | 
|  | // the DAG root is already updated. | 
|  | HasTailCall = true; | 
|  | ++SDNodeOrder; | 
|  | AssignOrderingToNode(DAG.getRoot().getNode()); | 
|  | } else { | 
|  | DAG.setRoot(Result.second); | 
|  | ++SDNodeOrder; | 
|  | AssignOrderingToNode(Result.second.getNode()); | 
|  | } | 
|  |  | 
|  | if (LandingPad) { | 
|  | // Insert a label at the end of the invoke call to mark the try range.  This | 
|  | // can be used to detect deletion of the invoke via the MachineModuleInfo. | 
|  | MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); | 
|  | DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); | 
|  |  | 
|  | // Inform MachineModuleInfo of range. | 
|  | MMI.addInvoke(LandingPad, BeginLabel, EndLabel); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the | 
|  | /// value is equal or not-equal to zero. | 
|  | static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { | 
|  | for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); | 
|  | UI != E; ++UI) { | 
|  | if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) | 
|  | if (IC->isEquality()) | 
|  | if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) | 
|  | if (C->isNullValue()) | 
|  | continue; | 
|  | // Unknown instruction. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, | 
|  | Type *LoadTy, | 
|  | SelectionDAGBuilder &Builder) { | 
|  |  | 
|  | // Check to see if this load can be trivially constant folded, e.g. if the | 
|  | // input is from a string literal. | 
|  | if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { | 
|  | // Cast pointer to the type we really want to load. | 
|  | LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), | 
|  | PointerType::getUnqual(LoadTy)); | 
|  |  | 
|  | if (const Constant *LoadCst = | 
|  | ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), | 
|  | Builder.TD)) | 
|  | return Builder.getValue(LoadCst); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to emit the load.  If the pointer is to unfoldable but | 
|  | // still constant memory, the input chain can be the entry node. | 
|  | SDValue Root; | 
|  | bool ConstantMemory = false; | 
|  |  | 
|  | // Do not serialize (non-volatile) loads of constant memory with anything. | 
|  | if (Builder.AA->pointsToConstantMemory(PtrVal)) { | 
|  | Root = Builder.DAG.getEntryNode(); | 
|  | ConstantMemory = true; | 
|  | } else { | 
|  | // Do not serialize non-volatile loads against each other. | 
|  | Root = Builder.DAG.getRoot(); | 
|  | } | 
|  |  | 
|  | SDValue Ptr = Builder.getValue(PtrVal); | 
|  | SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, | 
|  | Ptr, MachinePointerInfo(PtrVal), | 
|  | false /*volatile*/, | 
|  | false /*nontemporal*/, 1 /* align=1 */); | 
|  |  | 
|  | if (!ConstantMemory) | 
|  | Builder.PendingLoads.push_back(LoadVal.getValue(1)); | 
|  | return LoadVal; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. | 
|  | /// If so, return true and lower it, otherwise return false and it will be | 
|  | /// lowered like a normal call. | 
|  | bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { | 
|  | // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t) | 
|  | if (I.getNumArgOperands() != 3) | 
|  | return false; | 
|  |  | 
|  | const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); | 
|  | if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || | 
|  | !I.getArgOperand(2)->getType()->isIntegerTy() || | 
|  | !I.getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); | 
|  |  | 
|  | // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0 | 
|  | // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0 | 
|  | if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { | 
|  | bool ActuallyDoIt = true; | 
|  | MVT LoadVT; | 
|  | Type *LoadTy; | 
|  | switch (Size->getZExtValue()) { | 
|  | default: | 
|  | LoadVT = MVT::Other; | 
|  | LoadTy = 0; | 
|  | ActuallyDoIt = false; | 
|  | break; | 
|  | case 2: | 
|  | LoadVT = MVT::i16; | 
|  | LoadTy = Type::getInt16Ty(Size->getContext()); | 
|  | break; | 
|  | case 4: | 
|  | LoadVT = MVT::i32; | 
|  | LoadTy = Type::getInt32Ty(Size->getContext()); | 
|  | break; | 
|  | case 8: | 
|  | LoadVT = MVT::i64; | 
|  | LoadTy = Type::getInt64Ty(Size->getContext()); | 
|  | break; | 
|  | /* | 
|  | case 16: | 
|  | LoadVT = MVT::v4i32; | 
|  | LoadTy = Type::getInt32Ty(Size->getContext()); | 
|  | LoadTy = VectorType::get(LoadTy, 4); | 
|  | break; | 
|  | */ | 
|  | } | 
|  |  | 
|  | // This turns into unaligned loads.  We only do this if the target natively | 
|  | // supports the MVT we'll be loading or if it is small enough (<= 4) that | 
|  | // we'll only produce a small number of byte loads. | 
|  |  | 
|  | // Require that we can find a legal MVT, and only do this if the target | 
|  | // supports unaligned loads of that type.  Expanding into byte loads would | 
|  | // bloat the code. | 
|  | if (ActuallyDoIt && Size->getZExtValue() > 4) { | 
|  | // TODO: Handle 5 byte compare as 4-byte + 1 byte. | 
|  | // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. | 
|  | if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) | 
|  | ActuallyDoIt = false; | 
|  | } | 
|  |  | 
|  | if (ActuallyDoIt) { | 
|  | SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); | 
|  | SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); | 
|  |  | 
|  | SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, | 
|  | ISD::SETNE); | 
|  | EVT CallVT = TLI.getValueType(I.getType(), true); | 
|  | setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGBuilder::visitCall(const CallInst &I) { | 
|  | // Handle inline assembly differently. | 
|  | if (isa<InlineAsm>(I.getCalledValue())) { | 
|  | visitInlineAsm(&I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // See if any floating point values are being passed to this function. This is | 
|  | // used to emit an undefined reference to fltused on Windows. | 
|  | FunctionType *FT = | 
|  | cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); | 
|  | MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); | 
|  | if (FT->isVarArg() && | 
|  | !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { | 
|  | for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { | 
|  | Type* T = I.getArgOperand(i)->getType(); | 
|  | for (po_iterator<Type*> i = po_begin(T), e = po_end(T); | 
|  | i != e; ++i) { | 
|  | if (!i->isFloatingPointTy()) continue; | 
|  | MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *RenameFn = 0; | 
|  | if (Function *F = I.getCalledFunction()) { | 
|  | if (F->isDeclaration()) { | 
|  | if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { | 
|  | if (unsigned IID = II->getIntrinsicID(F)) { | 
|  | RenameFn = visitIntrinsicCall(I, IID); | 
|  | if (!RenameFn) | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (unsigned IID = F->getIntrinsicID()) { | 
|  | RenameFn = visitIntrinsicCall(I, IID); | 
|  | if (!RenameFn) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for well-known libc/libm calls.  If the function is internal, it | 
|  | // can't be a library call. | 
|  | if (!F->hasLocalLinkage() && F->hasName()) { | 
|  | StringRef Name = F->getName(); | 
|  | if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { | 
|  | if (I.getNumArgOperands() == 2 &&   // Basic sanity checks. | 
|  | I.getArgOperand(0)->getType()->isFloatingPointTy() && | 
|  | I.getType() == I.getArgOperand(0)->getType() && | 
|  | I.getType() == I.getArgOperand(1)->getType()) { | 
|  | SDValue LHS = getValue(I.getArgOperand(0)); | 
|  | SDValue RHS = getValue(I.getArgOperand(1)); | 
|  | setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), | 
|  | LHS.getValueType(), LHS, RHS)); | 
|  | return; | 
|  | } | 
|  | } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { | 
|  | if (I.getNumArgOperands() == 1 &&   // Basic sanity checks. | 
|  | I.getArgOperand(0)->getType()->isFloatingPointTy() && | 
|  | I.getType() == I.getArgOperand(0)->getType()) { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), | 
|  | Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { | 
|  | if (I.getNumArgOperands() == 1 &&   // Basic sanity checks. | 
|  | I.getArgOperand(0)->getType()->isFloatingPointTy() && | 
|  | I.getType() == I.getArgOperand(0)->getType() && | 
|  | I.onlyReadsMemory()) { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), | 
|  | Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { | 
|  | if (I.getNumArgOperands() == 1 &&   // Basic sanity checks. | 
|  | I.getArgOperand(0)->getType()->isFloatingPointTy() && | 
|  | I.getType() == I.getArgOperand(0)->getType() && | 
|  | I.onlyReadsMemory()) { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), | 
|  | Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { | 
|  | if (I.getNumArgOperands() == 1 &&   // Basic sanity checks. | 
|  | I.getArgOperand(0)->getType()->isFloatingPointTy() && | 
|  | I.getType() == I.getArgOperand(0)->getType() && | 
|  | I.onlyReadsMemory()) { | 
|  | SDValue Tmp = getValue(I.getArgOperand(0)); | 
|  | setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), | 
|  | Tmp.getValueType(), Tmp)); | 
|  | return; | 
|  | } | 
|  | } else if (Name == "memcmp") { | 
|  | if (visitMemCmpCall(I)) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Callee; | 
|  | if (!RenameFn) | 
|  | Callee = getValue(I.getCalledValue()); | 
|  | else | 
|  | Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); | 
|  |  | 
|  | // Check if we can potentially perform a tail call. More detailed checking is | 
|  | // be done within LowerCallTo, after more information about the call is known. | 
|  | LowerCallTo(&I, Callee, I.isTailCall()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// AsmOperandInfo - This contains information for each constraint that we are | 
|  | /// lowering. | 
|  | class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { | 
|  | public: | 
|  | /// CallOperand - If this is the result output operand or a clobber | 
|  | /// this is null, otherwise it is the incoming operand to the CallInst. | 
|  | /// This gets modified as the asm is processed. | 
|  | SDValue CallOperand; | 
|  |  | 
|  | /// AssignedRegs - If this is a register or register class operand, this | 
|  | /// contains the set of register corresponding to the operand. | 
|  | RegsForValue AssignedRegs; | 
|  |  | 
|  | explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) | 
|  | : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { | 
|  | } | 
|  |  | 
|  | /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers | 
|  | /// busy in OutputRegs/InputRegs. | 
|  | void MarkAllocatedRegs(bool isOutReg, bool isInReg, | 
|  | std::set<unsigned> &OutputRegs, | 
|  | std::set<unsigned> &InputRegs, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | if (isOutReg) { | 
|  | for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) | 
|  | MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); | 
|  | } | 
|  | if (isInReg) { | 
|  | for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) | 
|  | MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCallOperandValEVT - Return the EVT of the Value* that this operand | 
|  | /// corresponds to.  If there is no Value* for this operand, it returns | 
|  | /// MVT::Other. | 
|  | EVT getCallOperandValEVT(LLVMContext &Context, | 
|  | const TargetLowering &TLI, | 
|  | const TargetData *TD) const { | 
|  | if (CallOperandVal == 0) return MVT::Other; | 
|  |  | 
|  | if (isa<BasicBlock>(CallOperandVal)) | 
|  | return TLI.getPointerTy(); | 
|  |  | 
|  | llvm::Type *OpTy = CallOperandVal->getType(); | 
|  |  | 
|  | // FIXME: code duplicated from TargetLowering::ParseConstraints(). | 
|  | // If this is an indirect operand, the operand is a pointer to the | 
|  | // accessed type. | 
|  | if (isIndirect) { | 
|  | llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); | 
|  | if (!PtrTy) | 
|  | report_fatal_error("Indirect operand for inline asm not a pointer!"); | 
|  | OpTy = PtrTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. | 
|  | if (StructType *STy = dyn_cast<StructType>(OpTy)) | 
|  | if (STy->getNumElements() == 1) | 
|  | OpTy = STy->getElementType(0); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = TD->getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpTy = IntegerType::get(Context, BitSize); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TLI.getValueType(OpTy, true); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// MarkRegAndAliases - Mark the specified register and all aliases in the | 
|  | /// specified set. | 
|  | static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, | 
|  | const TargetRegisterInfo &TRI) { | 
|  | assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); | 
|  | Regs.insert(Reg); | 
|  | if (const unsigned *Aliases = TRI.getAliasSet(Reg)) | 
|  | for (; *Aliases; ++Aliases) | 
|  | Regs.insert(*Aliases); | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// GetRegistersForValue - Assign registers (virtual or physical) for the | 
|  | /// specified operand.  We prefer to assign virtual registers, to allow the | 
|  | /// register allocator to handle the assignment process.  However, if the asm | 
|  | /// uses features that we can't model on machineinstrs, we have SDISel do the | 
|  | /// allocation.  This produces generally horrible, but correct, code. | 
|  | /// | 
|  | ///   OpInfo describes the operand. | 
|  | ///   Input and OutputRegs are the set of already allocated physical registers. | 
|  | /// | 
|  | static void GetRegistersForValue(SelectionDAG &DAG, | 
|  | const TargetLowering &TLI, | 
|  | DebugLoc DL, | 
|  | SDISelAsmOperandInfo &OpInfo, | 
|  | std::set<unsigned> &OutputRegs, | 
|  | std::set<unsigned> &InputRegs) { | 
|  | LLVMContext &Context = *DAG.getContext(); | 
|  |  | 
|  | // Compute whether this value requires an input register, an output register, | 
|  | // or both. | 
|  | bool isOutReg = false; | 
|  | bool isInReg = false; | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | isOutReg = true; | 
|  |  | 
|  | // If there is an input constraint that matches this, we need to reserve | 
|  | // the input register so no other inputs allocate to it. | 
|  | isInReg = OpInfo.hasMatchingInput(); | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | isInReg = true; | 
|  | isOutReg = false; | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | isOutReg = true; | 
|  | isInReg = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | // If this is a constraint for a single physreg, or a constraint for a | 
|  | // register class, find it. | 
|  | std::pair<unsigned, const TargetRegisterClass*> PhysReg = | 
|  | TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  |  | 
|  | unsigned NumRegs = 1; | 
|  | if (OpInfo.ConstraintVT != MVT::Other) { | 
|  | // If this is a FP input in an integer register (or visa versa) insert a bit | 
|  | // cast of the input value.  More generally, handle any case where the input | 
|  | // value disagrees with the register class we plan to stick this in. | 
|  | if (OpInfo.Type == InlineAsm::isInput && | 
|  | PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { | 
|  | // Try to convert to the first EVT that the reg class contains.  If the | 
|  | // types are identical size, use a bitcast to convert (e.g. two differing | 
|  | // vector types). | 
|  | EVT RegVT = *PhysReg.second->vt_begin(); | 
|  | if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { | 
|  | OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, | 
|  | RegVT, OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { | 
|  | // If the input is a FP value and we want it in FP registers, do a | 
|  | // bitcast to the corresponding integer type.  This turns an f64 value | 
|  | // into i64, which can be passed with two i32 values on a 32-bit | 
|  | // machine. | 
|  | RegVT = EVT::getIntegerVT(Context, | 
|  | OpInfo.ConstraintVT.getSizeInBits()); | 
|  | OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, | 
|  | RegVT, OpInfo.CallOperand); | 
|  | OpInfo.ConstraintVT = RegVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); | 
|  | } | 
|  |  | 
|  | EVT RegVT; | 
|  | EVT ValueVT = OpInfo.ConstraintVT; | 
|  |  | 
|  | // If this is a constraint for a specific physical register, like {r17}, | 
|  | // assign it now. | 
|  | if (unsigned AssignedReg = PhysReg.first) { | 
|  | const TargetRegisterClass *RC = PhysReg.second; | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = *RC->vt_begin(); | 
|  |  | 
|  | // Get the actual register value type.  This is important, because the user | 
|  | // may have asked for (e.g.) the AX register in i32 type.  We need to | 
|  | // remember that AX is actually i16 to get the right extension. | 
|  | RegVT = *RC->vt_begin(); | 
|  |  | 
|  | // This is a explicit reference to a physical register. | 
|  | Regs.push_back(AssignedReg); | 
|  |  | 
|  | // If this is an expanded reference, add the rest of the regs to Regs. | 
|  | if (NumRegs != 1) { | 
|  | TargetRegisterClass::iterator I = RC->begin(); | 
|  | for (; *I != AssignedReg; ++I) | 
|  | assert(I != RC->end() && "Didn't find reg!"); | 
|  |  | 
|  | // Already added the first reg. | 
|  | --NumRegs; ++I; | 
|  | for (; NumRegs; --NumRegs, ++I) { | 
|  | assert(I != RC->end() && "Ran out of registers to allocate!"); | 
|  | Regs.push_back(*I); | 
|  | } | 
|  | } | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
|  | const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); | 
|  | OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, if this was a reference to an LLVM register class, create vregs | 
|  | // for this reference. | 
|  | if (const TargetRegisterClass *RC = PhysReg.second) { | 
|  | RegVT = *RC->vt_begin(); | 
|  | if (OpInfo.ConstraintVT == MVT::Other) | 
|  | ValueVT = RegVT; | 
|  |  | 
|  | // Create the appropriate number of virtual registers. | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | for (; NumRegs; --NumRegs) | 
|  | Regs.push_back(RegInfo.createVirtualRegister(RC)); | 
|  |  | 
|  | OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we couldn't allocate enough registers for this. | 
|  | } | 
|  |  | 
|  | /// visitInlineAsm - Handle a call to an InlineAsm object. | 
|  | /// | 
|  | void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  |  | 
|  | /// ConstraintOperands - Information about all of the constraints. | 
|  | SDISelAsmOperandInfoVector ConstraintOperands; | 
|  |  | 
|  | std::set<unsigned> OutputRegs, InputRegs; | 
|  |  | 
|  | TargetLowering::AsmOperandInfoVector | 
|  | TargetConstraints = TLI.ParseConstraints(CS); | 
|  |  | 
|  | bool hasMemory = false; | 
|  |  | 
|  | unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0;   // ResNo - The result number of the next output. | 
|  | for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { | 
|  | ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | EVT OpVT = MVT::Other; | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | // Indirect outputs just consume an argument. | 
|  | if (OpInfo.isIndirect) { | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); | 
|  | if (StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpVT = TLI.getValueType(STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpVT = TLI.getValueType(CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | // Nothing to do. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is an input or an indirect output, process the call argument. | 
|  | // BasicBlocks are labels, currently appearing only in asm's. | 
|  | if (OpInfo.CallOperandVal) { | 
|  | if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { | 
|  | OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); | 
|  | } else { | 
|  | OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); | 
|  | } | 
|  |  | 
|  | OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintVT = OpVT; | 
|  |  | 
|  | // Indirect operand accesses access memory. | 
|  | if (OpInfo.isIndirect) | 
|  | hasMemory = true; | 
|  | else { | 
|  | for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { | 
|  | TargetLowering::ConstraintType | 
|  | CType = TLI.getConstraintType(OpInfo.Codes[j]); | 
|  | if (CType == TargetLowering::C_Memory) { | 
|  | hasMemory = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain, Flag; | 
|  |  | 
|  | // We won't need to flush pending loads if this asm doesn't touch | 
|  | // memory and is nonvolatile. | 
|  | if (hasMemory || IA->hasSideEffects()) | 
|  | Chain = getRoot(); | 
|  | else | 
|  | Chain = DAG.getRoot(); | 
|  |  | 
|  | // Second pass over the constraints: compute which constraint option to use | 
|  | // and assign registers to constraints that want a specific physreg. | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input. If their types mismatch, e.g. one is an integer, the | 
|  | // other is floating point, or their sizes are different, flag it as an | 
|  | // error. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  |  | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | std::pair<unsigned, const TargetRegisterClass*> MatchRC = | 
|  | TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  | std::pair<unsigned, const TargetRegisterClass*> InputRC = | 
|  | TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, | 
|  | Input.ConstraintVT); | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (MatchRC.second != InputRC.second)) { | 
|  | report_fatal_error("Unsupported asm: input constraint" | 
|  | " with a matching output constraint of" | 
|  | " incompatible type!"); | 
|  | } | 
|  | Input.ConstraintVT = OpInfo.ConstraintVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the constraint code and ConstraintType to use. | 
|  | TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); | 
|  |  | 
|  | // If this is a memory input, and if the operand is not indirect, do what we | 
|  | // need to to provide an address for the memory input. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | 
|  | !OpInfo.isIndirect) { | 
|  | assert((OpInfo.isMultipleAlternative || | 
|  | (OpInfo.Type == InlineAsm::isInput)) && | 
|  | "Can only indirectify direct input operands!"); | 
|  |  | 
|  | // Memory operands really want the address of the value.  If we don't have | 
|  | // an indirect input, put it in the constpool if we can, otherwise spill | 
|  | // it to a stack slot. | 
|  | // TODO: This isn't quite right. We need to handle these according to | 
|  | // the addressing mode that the constraint wants. Also, this may take | 
|  | // an additional register for the computation and we don't want that | 
|  | // either. | 
|  |  | 
|  | // If the operand is a float, integer, or vector constant, spill to a | 
|  | // constant pool entry to get its address. | 
|  | const Value *OpVal = OpInfo.CallOperandVal; | 
|  | if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || | 
|  | isa<ConstantVector>(OpVal)) { | 
|  | OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), | 
|  | TLI.getPointerTy()); | 
|  | } else { | 
|  | // Otherwise, create a stack slot and emit a store to it before the | 
|  | // asm. | 
|  | Type *Ty = OpVal->getType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
|  | unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); | 
|  | SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); | 
|  | Chain = DAG.getStore(Chain, getCurDebugLoc(), | 
|  | OpInfo.CallOperand, StackSlot, | 
|  | MachinePointerInfo::getFixedStack(SSFI), | 
|  | false, false, 0); | 
|  | OpInfo.CallOperand = StackSlot; | 
|  | } | 
|  |  | 
|  | // There is no longer a Value* corresponding to this operand. | 
|  | OpInfo.CallOperandVal = 0; | 
|  |  | 
|  | // It is now an indirect operand. | 
|  | OpInfo.isIndirect = true; | 
|  | } | 
|  |  | 
|  | // If this constraint is for a specific register, allocate it before | 
|  | // anything else. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Register) | 
|  | GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, | 
|  | InputRegs); | 
|  | } | 
|  |  | 
|  | // Second pass - Loop over all of the operands, assigning virtual or physregs | 
|  | // to register class operands. | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | // C_Register operands have already been allocated, Other/Memory don't need | 
|  | // to be. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) | 
|  | GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, | 
|  | InputRegs); | 
|  | } | 
|  |  | 
|  | // AsmNodeOperands - The operands for the ISD::INLINEASM node. | 
|  | std::vector<SDValue> AsmNodeOperands; | 
|  | AsmNodeOperands.push_back(SDValue());  // reserve space for input chain | 
|  | AsmNodeOperands.push_back( | 
|  | DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), | 
|  | TLI.getPointerTy())); | 
|  |  | 
|  | // If we have a !srcloc metadata node associated with it, we want to attach | 
|  | // this to the ultimately generated inline asm machineinstr.  To do this, we | 
|  | // pass in the third operand as this (potentially null) inline asm MDNode. | 
|  | const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); | 
|  | AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); | 
|  |  | 
|  | // Remember the HasSideEffect and AlignStack bits as operand 3. | 
|  | unsigned ExtraInfo = 0; | 
|  | if (IA->hasSideEffects()) | 
|  | ExtraInfo |= InlineAsm::Extra_HasSideEffects; | 
|  | if (IA->isAlignStack()) | 
|  | ExtraInfo |= InlineAsm::Extra_IsAlignStack; | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, | 
|  | TLI.getPointerTy())); | 
|  |  | 
|  | // Loop over all of the inputs, copying the operand values into the | 
|  | // appropriate registers and processing the output regs. | 
|  | RegsForValue RetValRegs; | 
|  |  | 
|  | // IndirectStoresToEmit - The set of stores to emit after the inline asm node. | 
|  | std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; | 
|  |  | 
|  | for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { | 
|  | SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; | 
|  |  | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: { | 
|  | if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && | 
|  | OpInfo.ConstraintType != TargetLowering::C_Register) { | 
|  | // Memory output, or 'other' output (e.g. 'X' constraint). | 
|  | assert(OpInfo.isIndirect && "Memory output must be indirect operand"); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this output. | 
|  | unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.push_back(OpInfo.CallOperand); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a register or register class output. | 
|  |  | 
|  | // Copy the output from the appropriate register.  Find a register that | 
|  | // we can use. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) | 
|  | report_fatal_error("Couldn't allocate output reg for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'!"); | 
|  |  | 
|  | // If this is an indirect operand, store through the pointer after the | 
|  | // asm. | 
|  | if (OpInfo.isIndirect) { | 
|  | IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, | 
|  | OpInfo.CallOperandVal)); | 
|  | } else { | 
|  | // This is the result value of the call. | 
|  | assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); | 
|  | // Concatenate this output onto the outputs list. | 
|  | RetValRegs.append(OpInfo.AssignedRegs); | 
|  | } | 
|  |  | 
|  | // Add information to the INLINEASM node to know that this register is | 
|  | // set. | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? | 
|  | InlineAsm::Kind_RegDefEarlyClobber : | 
|  | InlineAsm::Kind_RegDef, | 
|  | false, | 
|  | 0, | 
|  | DAG, | 
|  | AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isInput: { | 
|  | SDValue InOperandVal = OpInfo.CallOperand; | 
|  |  | 
|  | if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint? | 
|  | // If this is required to match an output register we have already set, | 
|  | // just use its register. | 
|  | unsigned OperandNo = OpInfo.getMatchedOperand(); | 
|  |  | 
|  | // Scan until we find the definition we already emitted of this operand. | 
|  | // When we find it, create a RegsForValue operand. | 
|  | unsigned CurOp = InlineAsm::Op_FirstOperand; | 
|  | for (; OperandNo; --OperandNo) { | 
|  | // Advance to the next operand. | 
|  | unsigned OpFlag = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | assert((InlineAsm::isRegDefKind(OpFlag) || | 
|  | InlineAsm::isRegDefEarlyClobberKind(OpFlag) || | 
|  | InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); | 
|  | CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; | 
|  | } | 
|  |  | 
|  | unsigned OpFlag = | 
|  | cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); | 
|  | if (InlineAsm::isRegDefKind(OpFlag) || | 
|  | InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { | 
|  | // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. | 
|  | if (OpInfo.isIndirect) { | 
|  | // This happens on gcc/testsuite/gcc.dg/pr8788-1.c | 
|  | LLVMContext &Ctx = *DAG.getContext(); | 
|  | Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:" | 
|  | " don't know how to handle tied " | 
|  | "indirect register inputs"); | 
|  | } | 
|  |  | 
|  | RegsForValue MatchedRegs; | 
|  | MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); | 
|  | EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); | 
|  | MatchedRegs.RegVTs.push_back(RegVT); | 
|  | MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); | 
|  | for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); | 
|  | i != e; ++i) | 
|  | MatchedRegs.Regs.push_back | 
|  | (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); | 
|  |  | 
|  | // Use the produced MatchedRegs object to | 
|  | MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), | 
|  | Chain, &Flag); | 
|  | MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, | 
|  | true, OpInfo.getMatchedOperand(), | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); | 
|  | assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && | 
|  | "Unexpected number of operands"); | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | // See InlineAsm.h isUseOperandTiedToDef. | 
|  | OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, | 
|  | OpInfo.getMatchedOperand()); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Treat indirect 'X' constraint as memory. | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Other && | 
|  | OpInfo.isIndirect) | 
|  | OpInfo.ConstraintType = TargetLowering::C_Memory; | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Other) { | 
|  | std::vector<SDValue> Ops; | 
|  | TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, | 
|  | Ops, DAG); | 
|  | if (Ops.empty()) | 
|  | report_fatal_error("Invalid operand for inline asm constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'!"); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = | 
|  | InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OpInfo.ConstraintType == TargetLowering::C_Memory) { | 
|  | assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); | 
|  | assert(InOperandVal.getValueType() == TLI.getPointerTy() && | 
|  | "Memory operands expect pointer values"); | 
|  |  | 
|  | // Add information to the INLINEASM node to know about this input. | 
|  | unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); | 
|  | AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, | 
|  | TLI.getPointerTy())); | 
|  | AsmNodeOperands.push_back(InOperandVal); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || | 
|  | OpInfo.ConstraintType == TargetLowering::C_Register) && | 
|  | "Unknown constraint type!"); | 
|  | assert(!OpInfo.isIndirect && | 
|  | "Don't know how to handle indirect register inputs yet!"); | 
|  |  | 
|  | // Copy the input into the appropriate registers. | 
|  | if (OpInfo.AssignedRegs.Regs.empty()) | 
|  | report_fatal_error("Couldn't allocate input reg for constraint '" + | 
|  | Twine(OpInfo.ConstraintCode) + "'!"); | 
|  |  | 
|  | OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), | 
|  | Chain, &Flag); | 
|  |  | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, | 
|  | DAG, AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | case InlineAsm::isClobber: { | 
|  | // Add the clobbered value to the operand list, so that the register | 
|  | // allocator is aware that the physreg got clobbered. | 
|  | if (!OpInfo.AssignedRegs.Regs.empty()) | 
|  | OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, | 
|  | false, 0, DAG, | 
|  | AsmNodeOperands); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finish up input operands.  Set the input chain and add the flag last. | 
|  | AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; | 
|  | if (Flag.getNode()) AsmNodeOperands.push_back(Flag); | 
|  |  | 
|  | Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), | 
|  | DAG.getVTList(MVT::Other, MVT::Glue), | 
|  | &AsmNodeOperands[0], AsmNodeOperands.size()); | 
|  | Flag = Chain.getValue(1); | 
|  |  | 
|  | // If this asm returns a register value, copy the result from that register | 
|  | // and set it as the value of the call. | 
|  | if (!RetValRegs.Regs.empty()) { | 
|  | SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), | 
|  | Chain, &Flag); | 
|  |  | 
|  | // FIXME: Why don't we do this for inline asms with MRVs? | 
|  | if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { | 
|  | EVT ResultType = TLI.getValueType(CS.getType()); | 
|  |  | 
|  | // If any of the results of the inline asm is a vector, it may have the | 
|  | // wrong width/num elts.  This can happen for register classes that can | 
|  | // contain multiple different value types.  The preg or vreg allocated may | 
|  | // not have the same VT as was expected.  Convert it to the right type | 
|  | // with bit_convert. | 
|  | if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { | 
|  | Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), | 
|  | ResultType, Val); | 
|  |  | 
|  | } else if (ResultType != Val.getValueType() && | 
|  | ResultType.isInteger() && Val.getValueType().isInteger()) { | 
|  | // If a result value was tied to an input value, the computed result may | 
|  | // have a wider width than the expected result.  Extract the relevant | 
|  | // portion. | 
|  | Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); | 
|  | } | 
|  |  | 
|  | assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); | 
|  | } | 
|  |  | 
|  | setValue(CS.getInstruction(), Val); | 
|  | // Don't need to use this as a chain in this case. | 
|  | if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<SDValue, const Value *> > StoresToEmit; | 
|  |  | 
|  | // Process indirect outputs, first output all of the flagged copies out of | 
|  | // physregs. | 
|  | for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { | 
|  | RegsForValue &OutRegs = IndirectStoresToEmit[i].first; | 
|  | const Value *Ptr = IndirectStoresToEmit[i].second; | 
|  | SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), | 
|  | Chain, &Flag); | 
|  | StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); | 
|  | } | 
|  |  | 
|  | // Emit the non-flagged stores from the physregs. | 
|  | SmallVector<SDValue, 8> OutChains; | 
|  | for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { | 
|  | SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), | 
|  | StoresToEmit[i].first, | 
|  | getValue(StoresToEmit[i].second), | 
|  | MachinePointerInfo(StoresToEmit[i].second), | 
|  | false, false, 0); | 
|  | OutChains.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (!OutChains.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, | 
|  | &OutChains[0], OutChains.size()); | 
|  |  | 
|  | DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAStart(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { | 
|  | const TargetData &TD = *TLI.getTargetData(); | 
|  | SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), | 
|  | getRoot(), getValue(I.getOperand(0)), | 
|  | DAG.getSrcValue(I.getOperand(0)), | 
|  | TD.getABITypeAlignment(I.getType())); | 
|  | setValue(&I, V); | 
|  | DAG.setRoot(V.getValue(1)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)))); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitVACopy(const CallInst &I) { | 
|  | DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), | 
|  | MVT::Other, getRoot(), | 
|  | getValue(I.getArgOperand(0)), | 
|  | getValue(I.getArgOperand(1)), | 
|  | DAG.getSrcValue(I.getArgOperand(0)), | 
|  | DAG.getSrcValue(I.getArgOperand(1)))); | 
|  | } | 
|  |  | 
|  | /// TargetLowering::LowerCallTo - This is the default LowerCallTo | 
|  | /// implementation, which just calls LowerCall. | 
|  | /// FIXME: When all targets are | 
|  | /// migrated to using LowerCall, this hook should be integrated into SDISel. | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, | 
|  | bool RetSExt, bool RetZExt, bool isVarArg, | 
|  | bool isInreg, unsigned NumFixedArgs, | 
|  | CallingConv::ID CallConv, bool isTailCall, | 
|  | bool isReturnValueUsed, | 
|  | SDValue Callee, | 
|  | ArgListTy &Args, SelectionDAG &DAG, | 
|  | DebugLoc dl) const { | 
|  | // Handle all of the outgoing arguments. | 
|  | SmallVector<ISD::OutputArg, 32> Outs; | 
|  | SmallVector<SDValue, 32> OutVals; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(*this, Args[i].Ty, ValueVTs); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | EVT VT = ValueVTs[Value]; | 
|  | Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); | 
|  | SDValue Op = SDValue(Args[i].Node.getNode(), | 
|  | Args[i].Node.getResNo() + Value); | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = | 
|  | getTargetData()->getABITypeAlignment(ArgTy); | 
|  |  | 
|  | if (Args[i].isZExt) | 
|  | Flags.setZExt(); | 
|  | if (Args[i].isSExt) | 
|  | Flags.setSExt(); | 
|  | if (Args[i].isInReg) | 
|  | Flags.setInReg(); | 
|  | if (Args[i].isSRet) | 
|  | Flags.setSRet(); | 
|  | if (Args[i].isByVal) { | 
|  | Flags.setByVal(); | 
|  | PointerType *Ty = cast<PointerType>(Args[i].Ty); | 
|  | Type *ElementTy = Ty->getElementType(); | 
|  | Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); | 
|  | // For ByVal, alignment should come from FE.  BE will guess if this | 
|  | // info is not there but there are cases it cannot get right. | 
|  | unsigned FrameAlign; | 
|  | if (Args[i].Alignment) | 
|  | FrameAlign = Args[i].Alignment; | 
|  | else | 
|  | FrameAlign = getByValTypeAlignment(ElementTy); | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | } | 
|  | if (Args[i].isNest) | 
|  | Flags.setNest(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | EVT PartVT = getRegisterType(RetTy->getContext(), VT); | 
|  | unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); | 
|  | SmallVector<SDValue, 4> Parts(NumParts); | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (Args[i].isSExt) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (Args[i].isZExt) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, | 
|  | PartVT, ExtendKind); | 
|  |  | 
|  | for (unsigned j = 0; j != NumParts; ++j) { | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), | 
|  | i < NumFixedArgs); | 
|  | if (NumParts > 1 && j == 0) | 
|  | MyFlags.Flags.setSplit(); | 
|  | else if (j != 0) | 
|  | MyFlags.Flags.setOrigAlign(1); | 
|  |  | 
|  | Outs.push_back(MyFlags); | 
|  | OutVals.push_back(Parts[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle the incoming return values from the call. | 
|  | SmallVector<ISD::InputArg, 32> Ins; | 
|  | SmallVector<EVT, 4> RetTys; | 
|  | ComputeValueVTs(*this, RetTy, RetTys); | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); | 
|  | unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags; | 
|  | MyFlags.VT = RegisterVT.getSimpleVT(); | 
|  | MyFlags.Used = isReturnValueUsed; | 
|  | if (RetSExt) | 
|  | MyFlags.Flags.setSExt(); | 
|  | if (RetZExt) | 
|  | MyFlags.Flags.setZExt(); | 
|  | if (isInreg) | 
|  | MyFlags.Flags.setInReg(); | 
|  | Ins.push_back(MyFlags); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<SDValue, 4> InVals; | 
|  | Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, | 
|  | Outs, OutVals, Ins, dl, DAG, InVals); | 
|  |  | 
|  | // Verify that the target's LowerCall behaved as expected. | 
|  | assert(Chain.getNode() && Chain.getValueType() == MVT::Other && | 
|  | "LowerCall didn't return a valid chain!"); | 
|  | assert((!isTailCall || InVals.empty()) && | 
|  | "LowerCall emitted a return value for a tail call!"); | 
|  | assert((isTailCall || InVals.size() == Ins.size()) && | 
|  | "LowerCall didn't emit the correct number of values!"); | 
|  |  | 
|  | // For a tail call, the return value is merely live-out and there aren't | 
|  | // any nodes in the DAG representing it. Return a special value to | 
|  | // indicate that a tail call has been emitted and no more Instructions | 
|  | // should be processed in the current block. | 
|  | if (isTailCall) { | 
|  | DAG.setRoot(Chain); | 
|  | return std::make_pair(SDValue(), SDValue()); | 
|  | } | 
|  |  | 
|  | DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | assert(InVals[i].getNode() && | 
|  | "LowerCall emitted a null value!"); | 
|  | assert(EVT(Ins[i].VT) == InVals[i].getValueType() && | 
|  | "LowerCall emitted a value with the wrong type!"); | 
|  | }); | 
|  |  | 
|  | // Collect the legal value parts into potentially illegal values | 
|  | // that correspond to the original function's return values. | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | if (RetSExt) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (RetZExt) | 
|  | AssertOp = ISD::AssertZext; | 
|  | SmallVector<SDValue, 4> ReturnValues; | 
|  | unsigned CurReg = 0; | 
|  | for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { | 
|  | EVT VT = RetTys[I]; | 
|  | EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); | 
|  | unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); | 
|  |  | 
|  | ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], | 
|  | NumRegs, RegisterVT, VT, | 
|  | AssertOp)); | 
|  | CurReg += NumRegs; | 
|  | } | 
|  |  | 
|  | // For a function returning void, there is no return value. We can't create | 
|  | // such a node, so we just return a null return value in that case. In | 
|  | // that case, nothing will actually look at the value. | 
|  | if (ReturnValues.empty()) | 
|  | return std::make_pair(SDValue(), Chain); | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, | 
|  | DAG.getVTList(&RetTys[0], RetTys.size()), | 
|  | &ReturnValues[0], ReturnValues.size()); | 
|  | return std::make_pair(Res, Chain); | 
|  | } | 
|  |  | 
|  | void TargetLowering::LowerOperationWrapper(SDNode *N, | 
|  | SmallVectorImpl<SDValue> &Results, | 
|  | SelectionDAG &DAG) const { | 
|  | SDValue Res = LowerOperation(SDValue(N, 0), DAG); | 
|  | if (Res.getNode()) | 
|  | Results.push_back(Res); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | llvm_unreachable("LowerOperation not implemented for this target!"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { | 
|  | SDValue Op = getNonRegisterValue(V); | 
|  | assert((Op.getOpcode() != ISD::CopyFromReg || | 
|  | cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && | 
|  | "Copy from a reg to the same reg!"); | 
|  | assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); | 
|  |  | 
|  | RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  | RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); | 
|  | PendingExports.push_back(Chain); | 
|  | } | 
|  |  | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  |  | 
|  | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
|  | /// entry block, return true.  This includes arguments used by switches, since | 
|  | /// the switch may expand into multiple basic blocks. | 
|  | static bool isOnlyUsedInEntryBlock(const Argument *A) { | 
|  | // With FastISel active, we may be splitting blocks, so force creation | 
|  | // of virtual registers for all non-dead arguments. | 
|  | if (EnableFastISel) | 
|  | return A->use_empty(); | 
|  |  | 
|  | const BasicBlock *Entry = A->getParent()->begin(); | 
|  | for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); | 
|  | UI != E; ++UI) { | 
|  | const User *U = *UI; | 
|  | if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) | 
|  | return false;  // Use not in entry block. | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { | 
|  | // If this is the entry block, emit arguments. | 
|  | const Function &F = *LLVMBB->getParent(); | 
|  | SelectionDAG &DAG = SDB->DAG; | 
|  | DebugLoc dl = SDB->getCurDebugLoc(); | 
|  | const TargetData *TD = TLI.getTargetData(); | 
|  | SmallVector<ISD::InputArg, 16> Ins; | 
|  |  | 
|  | // Check whether the function can return without sret-demotion. | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), | 
|  | Outs, TLI); | 
|  |  | 
|  | if (!FuncInfo->CanLowerReturn) { | 
|  | // Put in an sret pointer parameter before all the other parameters. | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); | 
|  |  | 
|  | // NOTE: Assuming that a pointer will never break down to more than one VT | 
|  | // or one register. | 
|  | ISD::ArgFlagsTy Flags; | 
|  | Flags.setSRet(); | 
|  | EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); | 
|  | ISD::InputArg RetArg(Flags, RegisterVT, true); | 
|  | Ins.push_back(RetArg); | 
|  | } | 
|  |  | 
|  | // Set up the incoming argument description vector. | 
|  | unsigned Idx = 1; | 
|  | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); | 
|  | I != E; ++I, ++Idx) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I->getType(), ValueVTs); | 
|  | bool isArgValueUsed = !I->use_empty(); | 
|  | for (unsigned Value = 0, NumValues = ValueVTs.size(); | 
|  | Value != NumValues; ++Value) { | 
|  | EVT VT = ValueVTs[Value]; | 
|  | Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = | 
|  | TD->getABITypeAlignment(ArgTy); | 
|  |  | 
|  | if (F.paramHasAttr(Idx, Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  | if (F.paramHasAttr(Idx, Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | if (F.paramHasAttr(Idx, Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  | if (F.paramHasAttr(Idx, Attribute::StructRet)) | 
|  | Flags.setSRet(); | 
|  | if (F.paramHasAttr(Idx, Attribute::ByVal)) { | 
|  | Flags.setByVal(); | 
|  | PointerType *Ty = cast<PointerType>(I->getType()); | 
|  | Type *ElementTy = Ty->getElementType(); | 
|  | Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); | 
|  | // For ByVal, alignment should be passed from FE.  BE will guess if | 
|  | // this info is not there but there are cases it cannot get right. | 
|  | unsigned FrameAlign; | 
|  | if (F.getParamAlignment(Idx)) | 
|  | FrameAlign = F.getParamAlignment(Idx); | 
|  | else | 
|  | FrameAlign = TLI.getByValTypeAlignment(ElementTy); | 
|  | Flags.setByValAlign(FrameAlign); | 
|  | } | 
|  | if (F.paramHasAttr(Idx, Attribute::Nest)) | 
|  | Flags.setNest(); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); | 
|  | unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); | 
|  | if (NumRegs > 1 && i == 0) | 
|  | MyFlags.Flags.setSplit(); | 
|  | // if it isn't first piece, alignment must be 1 | 
|  | else if (i > 0) | 
|  | MyFlags.Flags.setOrigAlign(1); | 
|  | Ins.push_back(MyFlags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Call the target to set up the argument values. | 
|  | SmallVector<SDValue, 8> InVals; | 
|  | SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), | 
|  | F.isVarArg(), Ins, | 
|  | dl, DAG, InVals); | 
|  |  | 
|  | // Verify that the target's LowerFormalArguments behaved as expected. | 
|  | assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && | 
|  | "LowerFormalArguments didn't return a valid chain!"); | 
|  | assert(InVals.size() == Ins.size() && | 
|  | "LowerFormalArguments didn't emit the correct number of values!"); | 
|  | DEBUG({ | 
|  | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | 
|  | assert(InVals[i].getNode() && | 
|  | "LowerFormalArguments emitted a null value!"); | 
|  | assert(EVT(Ins[i].VT) == InVals[i].getValueType() && | 
|  | "LowerFormalArguments emitted a value with the wrong type!"); | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Update the DAG with the new chain value resulting from argument lowering. | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | // Set up the argument values. | 
|  | unsigned i = 0; | 
|  | Idx = 1; | 
|  | if (!FuncInfo->CanLowerReturn) { | 
|  | // Create a virtual register for the sret pointer, and put in a copy | 
|  | // from the sret argument into it. | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); | 
|  | EVT VT = ValueVTs[0]; | 
|  | EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, | 
|  | RegVT, VT, AssertOp); | 
|  |  | 
|  | MachineFunction& MF = SDB->DAG.getMachineFunction(); | 
|  | MachineRegisterInfo& RegInfo = MF.getRegInfo(); | 
|  | unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); | 
|  | FuncInfo->DemoteRegister = SRetReg; | 
|  | NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), | 
|  | SRetReg, ArgValue); | 
|  | DAG.setRoot(NewRoot); | 
|  |  | 
|  | // i indexes lowered arguments.  Bump it past the hidden sret argument. | 
|  | // Idx indexes LLVM arguments.  Don't touch it. | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; | 
|  | ++I, ++Idx) { | 
|  | SmallVector<SDValue, 4> ArgValues; | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, I->getType(), ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  |  | 
|  | // If this argument is unused then remember its value. It is used to generate | 
|  | // debugging information. | 
|  | if (I->use_empty() && NumValues) | 
|  | SDB->setUnusedArgValue(I, InVals[i]); | 
|  |  | 
|  | for (unsigned Val = 0; Val != NumValues; ++Val) { | 
|  | EVT VT = ValueVTs[Val]; | 
|  | EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); | 
|  | unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); | 
|  |  | 
|  | if (!I->use_empty()) { | 
|  | ISD::NodeType AssertOp = ISD::DELETED_NODE; | 
|  | if (F.paramHasAttr(Idx, Attribute::SExt)) | 
|  | AssertOp = ISD::AssertSext; | 
|  | else if (F.paramHasAttr(Idx, Attribute::ZExt)) | 
|  | AssertOp = ISD::AssertZext; | 
|  |  | 
|  | ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], | 
|  | NumParts, PartVT, VT, | 
|  | AssertOp)); | 
|  | } | 
|  |  | 
|  | i += NumParts; | 
|  | } | 
|  |  | 
|  | // We don't need to do anything else for unused arguments. | 
|  | if (ArgValues.empty()) | 
|  | continue; | 
|  |  | 
|  | // Note down frame index. | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); | 
|  |  | 
|  | SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, | 
|  | SDB->getCurDebugLoc()); | 
|  |  | 
|  | SDB->setValue(I, Res); | 
|  | if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { | 
|  | if (LoadSDNode *LNode = | 
|  | dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) | 
|  | if (FrameIndexSDNode *FI = | 
|  | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) | 
|  | FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); | 
|  | } | 
|  |  | 
|  | // If this argument is live outside of the entry block, insert a copy from | 
|  | // wherever we got it to the vreg that other BB's will reference it as. | 
|  | if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { | 
|  | // If we can, though, try to skip creating an unnecessary vreg. | 
|  | // FIXME: This isn't very clean... it would be nice to make this more | 
|  | // general.  It's also subtly incompatible with the hacks FastISel | 
|  | // uses with vregs. | 
|  | unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | FuncInfo->ValueMap[I] = Reg; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (!isOnlyUsedInEntryBlock(I)) { | 
|  | FuncInfo->InitializeRegForValue(I); | 
|  | SDB->CopyToExportRegsIfNeeded(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(i == InVals.size() && "Argument register count mismatch!"); | 
|  |  | 
|  | // Finally, if the target has anything special to do, allow it to do so. | 
|  | // FIXME: this should insert code into the DAG! | 
|  | EmitFunctionEntryCode(); | 
|  | } | 
|  |  | 
|  | /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to | 
|  | /// ensure constants are generated when needed.  Remember the virtual registers | 
|  | /// that need to be added to the Machine PHI nodes as input.  We cannot just | 
|  | /// directly add them, because expansion might result in multiple MBB's for one | 
|  | /// BB.  As such, the start of the BB might correspond to a different MBB than | 
|  | /// the end. | 
|  | /// | 
|  | void | 
|  | SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { | 
|  | const TerminatorInst *TI = LLVMBB->getTerminator(); | 
|  |  | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  |  | 
|  | // Check successor nodes' PHI nodes that expect a constant to be available | 
|  | // from this block. | 
|  | for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { | 
|  | const BasicBlock *SuccBB = TI->getSuccessor(succ); | 
|  | if (!isa<PHINode>(SuccBB->begin())) continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB)) continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (BasicBlock::const_iterator I = SuccBB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
|  | // Ignore dead phi's. | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | // Skip empty types | 
|  | if (PN->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | unsigned Reg; | 
|  | const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | if (const Constant *C = dyn_cast<Constant>(PHIOp)) { | 
|  | unsigned &RegOut = ConstantsOut[C]; | 
|  | if (RegOut == 0) { | 
|  | RegOut = FuncInfo.CreateRegs(C->getType()); | 
|  | CopyValueToVirtualRegister(C, RegOut); | 
|  | } | 
|  | Reg = RegOut; | 
|  | } else { | 
|  | DenseMap<const Value *, unsigned>::iterator I = | 
|  | FuncInfo.ValueMap.find(PHIOp); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | Reg = I->second; | 
|  | else { | 
|  | assert(isa<AllocaInst>(PHIOp) && | 
|  | FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && | 
|  | "Didn't codegen value into a register!??"); | 
|  | Reg = FuncInfo.CreateRegs(PHIOp->getType()); | 
|  | CopyValueToVirtualRegister(PHIOp, Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember that this register needs to added to the machine PHI node as | 
|  | // the input for this MBB. | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | EVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); | 
|  | for (unsigned i = 0, e = NumRegisters; i != e; ++i) | 
|  | FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); | 
|  | Reg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  | ConstantsOut.clear(); | 
|  | } |