| //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // A pre-emit peephole for catching opportunities introduced by late passes such |
| // as MachineBlockPlacement. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPC.h" |
| #include "PPCInstrInfo.h" |
| #include "PPCSubtarget.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppc-pre-emit-peephole" |
| |
| STATISTIC(NumRRConvertedInPreEmit, |
| "Number of r+r instructions converted to r+i in pre-emit peephole"); |
| STATISTIC(NumRemovedInPreEmit, |
| "Number of instructions deleted in pre-emit peephole"); |
| STATISTIC(NumberOfSelfCopies, |
| "Number of self copy instructions eliminated"); |
| STATISTIC(NumFrameOffFoldInPreEmit, |
| "Number of folding frame offset by using r+r in pre-emit peephole"); |
| STATISTIC(NumCmpsInPreEmit, |
| "Number of compares eliminated in pre-emit peephole"); |
| |
| static cl::opt<bool> |
| EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true), |
| cl::desc("enable PC Relative linker optimization")); |
| |
| static cl::opt<bool> |
| RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true), |
| cl::desc("Run pre-emit peephole optimizations.")); |
| |
| static cl::opt<uint64_t> |
| DSCRValue("ppc-set-dscr", cl::Hidden, |
| cl::desc("Set the Data Stream Control Register.")); |
| |
| namespace { |
| |
| static bool hasPCRelativeForm(MachineInstr &Use) { |
| switch (Use.getOpcode()) { |
| default: |
| return false; |
| case PPC::LBZ: |
| case PPC::LBZ8: |
| case PPC::LHA: |
| case PPC::LHA8: |
| case PPC::LHZ: |
| case PPC::LHZ8: |
| case PPC::LWZ: |
| case PPC::LWZ8: |
| case PPC::STB: |
| case PPC::STB8: |
| case PPC::STH: |
| case PPC::STH8: |
| case PPC::STW: |
| case PPC::STW8: |
| case PPC::LD: |
| case PPC::STD: |
| case PPC::LWA: |
| case PPC::LXSD: |
| case PPC::LXSSP: |
| case PPC::LXV: |
| case PPC::STXSD: |
| case PPC::STXSSP: |
| case PPC::STXV: |
| case PPC::LFD: |
| case PPC::LFS: |
| case PPC::STFD: |
| case PPC::STFS: |
| case PPC::DFLOADf32: |
| case PPC::DFLOADf64: |
| case PPC::DFSTOREf32: |
| case PPC::DFSTOREf64: |
| return true; |
| } |
| } |
| |
| class PPCPreEmitPeephole : public MachineFunctionPass { |
| public: |
| static char ID; |
| PPCPreEmitPeephole() : MachineFunctionPass(ID) { |
| initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| // This function removes any redundant load immediates. It has two level |
| // loops - The outer loop finds the load immediates BBI that could be used |
| // to replace following redundancy. The inner loop scans instructions that |
| // after BBI to find redundancy and update kill/dead flags accordingly. If |
| // AfterBBI is the same as BBI, it is redundant, otherwise any instructions |
| // that modify the def register of BBI would break the scanning. |
| // DeadOrKillToUnset is a pointer to the previous operand that had the |
| // kill/dead flag set. It keeps track of the def register of BBI, the use |
| // registers of AfterBBIs and the def registers of AfterBBIs. |
| bool removeRedundantLIs(MachineBasicBlock &MBB, |
| const TargetRegisterInfo *TRI) { |
| LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n"; |
| MBB.dump(); dbgs() << "\n"); |
| |
| DenseSet<MachineInstr *> InstrsToErase; |
| for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) { |
| // Skip load immediate that is marked to be erased later because it |
| // cannot be used to replace any other instructions. |
| if (InstrsToErase.contains(&*BBI)) |
| continue; |
| // Skip non-load immediate. |
| unsigned Opc = BBI->getOpcode(); |
| if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS && |
| Opc != PPC::LIS8) |
| continue; |
| // Skip load immediate, where the operand is a relocation (e.g., $r3 = |
| // LI target-flags(ppc-lo) %const.0). |
| if (!BBI->getOperand(1).isImm()) |
| continue; |
| assert(BBI->getOperand(0).isReg() && |
| "Expected a register for the first operand"); |
| |
| LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump();); |
| |
| Register Reg = BBI->getOperand(0).getReg(); |
| int64_t Imm = BBI->getOperand(1).getImm(); |
| MachineOperand *DeadOrKillToUnset = nullptr; |
| if (BBI->getOperand(0).isDead()) { |
| DeadOrKillToUnset = &BBI->getOperand(0); |
| LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset |
| << " from load immediate " << *BBI |
| << " is a unsetting candidate\n"); |
| } |
| // This loop scans instructions after BBI to see if there is any |
| // redundant load immediate. |
| for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end(); |
| ++AfterBBI) { |
| // Track the operand that kill Reg. We would unset the kill flag of |
| // the operand if there is a following redundant load immediate. |
| int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI); |
| |
| // We can't just clear implicit kills, so if we encounter one, stop |
| // looking further. |
| if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) { |
| LLVM_DEBUG(dbgs() |
| << "Encountered an implicit kill, cannot proceed: "); |
| LLVM_DEBUG(AfterBBI->dump()); |
| break; |
| } |
| |
| if (KillIdx != -1) { |
| assert(!DeadOrKillToUnset && "Shouldn't kill same register twice"); |
| DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx); |
| LLVM_DEBUG(dbgs() |
| << " Kill flag of " << *DeadOrKillToUnset << " from " |
| << *AfterBBI << " is a unsetting candidate\n"); |
| } |
| |
| if (!AfterBBI->modifiesRegister(Reg, TRI)) |
| continue; |
| // Finish scanning because Reg is overwritten by a non-load |
| // instruction. |
| if (AfterBBI->getOpcode() != Opc) |
| break; |
| assert(AfterBBI->getOperand(0).isReg() && |
| "Expected a register for the first operand"); |
| // Finish scanning because Reg is overwritten by a relocation or a |
| // different value. |
| if (!AfterBBI->getOperand(1).isImm() || |
| AfterBBI->getOperand(1).getImm() != Imm) |
| break; |
| |
| // It loads same immediate value to the same Reg, which is redundant. |
| // We would unset kill flag in previous Reg usage to extend live range |
| // of Reg first, then remove the redundancy. |
| if (DeadOrKillToUnset) { |
| LLVM_DEBUG(dbgs() |
| << " Unset dead/kill flag of " << *DeadOrKillToUnset |
| << " from " << *DeadOrKillToUnset->getParent()); |
| if (DeadOrKillToUnset->isDef()) |
| DeadOrKillToUnset->setIsDead(false); |
| else |
| DeadOrKillToUnset->setIsKill(false); |
| } |
| DeadOrKillToUnset = |
| AfterBBI->findRegisterDefOperand(Reg, true, true, TRI); |
| if (DeadOrKillToUnset) |
| LLVM_DEBUG(dbgs() |
| << " Dead flag of " << *DeadOrKillToUnset << " from " |
| << *AfterBBI << " is a unsetting candidate\n"); |
| InstrsToErase.insert(&*AfterBBI); |
| LLVM_DEBUG(dbgs() << " Remove redundant load immediate: "; |
| AfterBBI->dump()); |
| } |
| } |
| |
| for (MachineInstr *MI : InstrsToErase) { |
| MI->eraseFromParent(); |
| } |
| NumRemovedInPreEmit += InstrsToErase.size(); |
| return !InstrsToErase.empty(); |
| } |
| |
| // Check if this instruction is a PLDpc that is part of a GOT indirect |
| // access. |
| bool isGOTPLDpc(MachineInstr &Instr) { |
| if (Instr.getOpcode() != PPC::PLDpc) |
| return false; |
| |
| // The result must be a register. |
| const MachineOperand &LoadedAddressReg = Instr.getOperand(0); |
| if (!LoadedAddressReg.isReg()) |
| return false; |
| |
| // Make sure that this is a global symbol. |
| const MachineOperand &SymbolOp = Instr.getOperand(1); |
| if (!SymbolOp.isGlobal()) |
| return false; |
| |
| // Finally return true only if the GOT flag is present. |
| return (SymbolOp.getTargetFlags() & PPCII::MO_GOT_FLAG); |
| } |
| |
| bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) { |
| MachineFunction *MF = MBB.getParent(); |
| // If the linker opt is disabled then just return. |
| if (!EnablePCRelLinkerOpt) |
| return false; |
| |
| // Add this linker opt only if we are using PC Relative memops. |
| if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) |
| return false; |
| |
| // Struct to keep track of one def/use pair for a GOT indirect access. |
| struct GOTDefUsePair { |
| MachineBasicBlock::iterator DefInst; |
| MachineBasicBlock::iterator UseInst; |
| Register DefReg; |
| Register UseReg; |
| bool StillValid; |
| }; |
| // Vector of def/ues pairs in this basic block. |
| SmallVector<GOTDefUsePair, 4> CandPairs; |
| SmallVector<GOTDefUsePair, 4> ValidPairs; |
| bool MadeChange = false; |
| |
| // Run through all of the instructions in the basic block and try to |
| // collect potential pairs of GOT indirect access instructions. |
| for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) { |
| // Look for the initial GOT indirect load. |
| if (isGOTPLDpc(*BBI)) { |
| GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(), |
| BBI->getOperand(0).getReg(), |
| PPC::NoRegister, true}; |
| CandPairs.push_back(CurrentPair); |
| continue; |
| } |
| |
| // We haven't encountered any new PLD instructions, nothing to check. |
| if (CandPairs.empty()) |
| continue; |
| |
| // Run through the candidate pairs and see if any of the registers |
| // defined in the PLD instructions are used by this instruction. |
| // Note: the size of CandPairs can change in the loop. |
| for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) { |
| GOTDefUsePair &Pair = CandPairs[Idx]; |
| // The instruction does not use or modify this PLD's def reg, |
| // ignore it. |
| if (!BBI->readsRegister(Pair.DefReg, TRI) && |
| !BBI->modifiesRegister(Pair.DefReg, TRI)) |
| continue; |
| |
| // The use needs to be used in the address computation and not |
| // as the register being stored for a store. |
| const MachineOperand *UseOp = |
| hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr; |
| |
| // Check for a valid use. |
| if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg && |
| UseOp->isUse() && UseOp->isKill()) { |
| Pair.UseInst = BBI; |
| Pair.UseReg = BBI->getOperand(0).getReg(); |
| ValidPairs.push_back(Pair); |
| } |
| CandPairs.erase(CandPairs.begin() + Idx); |
| } |
| } |
| |
| // Go through all of the pairs and check for any more valid uses. |
| for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) { |
| // We shouldn't be here if we don't have a valid pair. |
| assert(Pair->UseInst.isValid() && Pair->StillValid && |
| "Kept an invalid def/use pair for GOT PCRel opt"); |
| // We have found a potential pair. Search through the instructions |
| // between the def and the use to see if it is valid to mark this as a |
| // linker opt. |
| MachineBasicBlock::iterator BBI = Pair->DefInst; |
| ++BBI; |
| for (; BBI != Pair->UseInst; ++BBI) { |
| if (BBI->readsRegister(Pair->UseReg, TRI) || |
| BBI->modifiesRegister(Pair->UseReg, TRI)) { |
| Pair->StillValid = false; |
| break; |
| } |
| } |
| |
| if (!Pair->StillValid) |
| continue; |
| |
| // The load/store instruction that uses the address from the PLD will |
| // either use a register (for a store) or define a register (for the |
| // load). That register will be added as an implicit def to the PLD |
| // and as an implicit use on the second memory op. This is a precaution |
| // to prevent future passes from using that register between the two |
| // instructions. |
| MachineOperand ImplDef = |
| MachineOperand::CreateReg(Pair->UseReg, true, true); |
| MachineOperand ImplUse = |
| MachineOperand::CreateReg(Pair->UseReg, false, true); |
| Pair->DefInst->addOperand(ImplDef); |
| Pair->UseInst->addOperand(ImplUse); |
| |
| // Create the symbol. |
| MCContext &Context = MF->getContext(); |
| MCSymbol *Symbol = Context.createNamedTempSymbol("pcrel"); |
| MachineOperand PCRelLabel = |
| MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG); |
| Pair->DefInst->addOperand(*MF, PCRelLabel); |
| Pair->UseInst->addOperand(*MF, PCRelLabel); |
| MadeChange |= true; |
| } |
| return MadeChange; |
| } |
| |
| // This function removes redundant pairs of accumulator prime/unprime |
| // instructions. In some situations, it's possible the compiler inserts an |
| // accumulator prime instruction followed by an unprime instruction (e.g. |
| // when we store an accumulator after restoring it from a spill). If the |
| // accumulator is not used between the two, they can be removed. This |
| // function removes these redundant pairs from basic blocks. |
| // The algorithm is quite straightforward - every time we encounter a prime |
| // instruction, the primed register is added to a candidate set. Any use |
| // other than a prime removes the candidate from the set and any de-prime |
| // of a current candidate marks both the prime and de-prime for removal. |
| // This way we ensure we only remove prime/de-prime *pairs* with no |
| // intervening uses. |
| bool removeAccPrimeUnprime(MachineBasicBlock &MBB) { |
| DenseSet<MachineInstr *> InstrsToErase; |
| // Initially, none of the acc registers are candidates. |
| SmallVector<MachineInstr *, 8> Candidates( |
| PPC::UACCRCRegClass.getNumRegs(), nullptr); |
| |
| for (MachineInstr &BBI : MBB.instrs()) { |
| unsigned Opc = BBI.getOpcode(); |
| // If we are visiting a xxmtacc instruction, we add it and its operand |
| // register to the candidate set. |
| if (Opc == PPC::XXMTACC) { |
| Register Acc = BBI.getOperand(0).getReg(); |
| assert(PPC::ACCRCRegClass.contains(Acc) && |
| "Unexpected register for XXMTACC"); |
| Candidates[Acc - PPC::ACC0] = &BBI; |
| } |
| // If we are visiting a xxmfacc instruction and its operand register is |
| // in the candidate set, we mark the two instructions for removal. |
| else if (Opc == PPC::XXMFACC) { |
| Register Acc = BBI.getOperand(0).getReg(); |
| assert(PPC::ACCRCRegClass.contains(Acc) && |
| "Unexpected register for XXMFACC"); |
| if (!Candidates[Acc - PPC::ACC0]) |
| continue; |
| InstrsToErase.insert(&BBI); |
| InstrsToErase.insert(Candidates[Acc - PPC::ACC0]); |
| } |
| // If we are visiting an instruction using an accumulator register |
| // as operand, we remove it from the candidate set. |
| else { |
| for (MachineOperand &Operand : BBI.operands()) { |
| if (!Operand.isReg()) |
| continue; |
| Register Reg = Operand.getReg(); |
| if (PPC::ACCRCRegClass.contains(Reg)) |
| Candidates[Reg - PPC::ACC0] = nullptr; |
| } |
| } |
| } |
| |
| for (MachineInstr *MI : InstrsToErase) |
| MI->eraseFromParent(); |
| NumRemovedInPreEmit += InstrsToErase.size(); |
| return !InstrsToErase.empty(); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| // If the user wants to set the DSCR using command-line options, |
| // load in the specified value at the start of main. |
| if (DSCRValue.getNumOccurrences() > 0 && MF.getName().equals("main") && |
| MF.getFunction().hasExternalLinkage()) { |
| DSCRValue = (uint32_t)(DSCRValue & 0x01FFFFFF); // 25-bit DSCR mask |
| RegScavenger RS; |
| MachineBasicBlock &MBB = MF.front(); |
| // Find an unused GPR according to register liveness |
| RS.enterBasicBlock(MBB); |
| unsigned InDSCR = RS.FindUnusedReg(&PPC::GPRCRegClass); |
| if (InDSCR) { |
| const PPCInstrInfo *TII = |
| MF.getSubtarget<PPCSubtarget>().getInstrInfo(); |
| DebugLoc dl; |
| MachineBasicBlock::iterator IP = MBB.begin(); // Insert Point |
| // Copy the 32-bit DSCRValue integer into the GPR InDSCR using LIS and |
| // ORI, then move to DSCR. If the requested DSCR value is contained |
| // in a 16-bit signed number, we can emit a single `LI`, but the |
| // impact of saving one instruction in one function does not warrant |
| // any additional complexity in the logic here. |
| BuildMI(MBB, IP, dl, TII->get(PPC::LIS), InDSCR) |
| .addImm(DSCRValue >> 16); |
| BuildMI(MBB, IP, dl, TII->get(PPC::ORI), InDSCR) |
| .addReg(InDSCR) |
| .addImm(DSCRValue & 0xFFFF); |
| BuildMI(MBB, IP, dl, TII->get(PPC::MTUDSCR)) |
| .addReg(InDSCR, RegState::Kill); |
| } else |
| errs() << "Warning: Ran out of registers - Unable to set DSCR as " |
| "requested"; |
| } |
| |
| if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) { |
| // Remove UNENCODED_NOP even when this pass is disabled. |
| // This needs to be done unconditionally so we don't emit zeros |
| // in the instruction stream. |
| SmallVector<MachineInstr *, 4> InstrsToErase; |
| for (MachineBasicBlock &MBB : MF) |
| for (MachineInstr &MI : MBB) |
| if (MI.getOpcode() == PPC::UNENCODED_NOP) |
| InstrsToErase.push_back(&MI); |
| for (MachineInstr *MI : InstrsToErase) |
| MI->eraseFromParent(); |
| return false; |
| } |
| bool Changed = false; |
| const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo(); |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| SmallVector<MachineInstr *, 4> InstrsToErase; |
| for (MachineBasicBlock &MBB : MF) { |
| Changed |= removeRedundantLIs(MBB, TRI); |
| Changed |= addLinkerOpt(MBB, TRI); |
| Changed |= removeAccPrimeUnprime(MBB); |
| for (MachineInstr &MI : MBB) { |
| unsigned Opc = MI.getOpcode(); |
| if (Opc == PPC::UNENCODED_NOP) { |
| InstrsToErase.push_back(&MI); |
| continue; |
| } |
| // Detect self copies - these can result from running AADB. |
| if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) { |
| const MCInstrDesc &MCID = TII->get(Opc); |
| if (MCID.getNumOperands() == 3 && |
| MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && |
| MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) { |
| NumberOfSelfCopies++; |
| LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: "); |
| LLVM_DEBUG(MI.dump()); |
| InstrsToErase.push_back(&MI); |
| continue; |
| } |
| else if (MCID.getNumOperands() == 2 && |
| MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { |
| NumberOfSelfCopies++; |
| LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: "); |
| LLVM_DEBUG(MI.dump()); |
| InstrsToErase.push_back(&MI); |
| continue; |
| } |
| } |
| MachineInstr *DefMIToErase = nullptr; |
| if (TII->convertToImmediateForm(MI, &DefMIToErase)) { |
| Changed = true; |
| NumRRConvertedInPreEmit++; |
| LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); |
| LLVM_DEBUG(MI.dump()); |
| if (DefMIToErase) { |
| InstrsToErase.push_back(DefMIToErase); |
| } |
| } |
| if (TII->foldFrameOffset(MI)) { |
| Changed = true; |
| NumFrameOffFoldInPreEmit++; |
| LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: "); |
| LLVM_DEBUG(MI.dump()); |
| } |
| if (TII->optimizeCmpPostRA(MI)) { |
| Changed = true; |
| NumCmpsInPreEmit++; |
| LLVM_DEBUG(dbgs() << "Optimize compare by using record form: "); |
| LLVM_DEBUG(MI.dump()); |
| InstrsToErase.push_back(&MI); |
| } |
| } |
| |
| // Eliminate conditional branch based on a constant CR bit by |
| // CRSET or CRUNSET. We eliminate the conditional branch or |
| // convert it into an unconditional branch. Also, if the CR bit |
| // is not used by other instructions, we eliminate CRSET as well. |
| auto I = MBB.getFirstInstrTerminator(); |
| if (I == MBB.instr_end()) |
| continue; |
| MachineInstr *Br = &*I; |
| if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn) |
| continue; |
| MachineInstr *CRSetMI = nullptr; |
| Register CRBit = Br->getOperand(0).getReg(); |
| unsigned CRReg = getCRFromCRBit(CRBit); |
| bool SeenUse = false; |
| MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend(); |
| for (It++; It != Er; It++) { |
| if (It->modifiesRegister(CRBit, TRI)) { |
| if ((It->getOpcode() == PPC::CRUNSET || |
| It->getOpcode() == PPC::CRSET) && |
| It->getOperand(0).getReg() == CRBit) |
| CRSetMI = &*It; |
| break; |
| } |
| if (It->readsRegister(CRBit, TRI)) |
| SeenUse = true; |
| } |
| if (!CRSetMI) continue; |
| |
| unsigned CRSetOp = CRSetMI->getOpcode(); |
| if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) || |
| (Br->getOpcode() == PPC::BC && CRSetOp == PPC::CRUNSET)) { |
| // Remove this branch since it cannot be taken. |
| InstrsToErase.push_back(Br); |
| MBB.removeSuccessor(Br->getOperand(1).getMBB()); |
| } |
| else { |
| // This conditional branch is always taken. So, remove all branches |
| // and insert an unconditional branch to the destination of this. |
| MachineBasicBlock::iterator It = Br, Er = MBB.end(); |
| for (; It != Er; It++) { |
| if (It->isDebugInstr()) continue; |
| assert(It->isTerminator() && "Non-terminator after a terminator"); |
| InstrsToErase.push_back(&*It); |
| } |
| if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) { |
| ArrayRef<MachineOperand> NoCond; |
| TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr, |
| NoCond, Br->getDebugLoc()); |
| } |
| for (auto &Succ : MBB.successors()) |
| if (Succ != Br->getOperand(1).getMBB()) { |
| MBB.removeSuccessor(Succ); |
| break; |
| } |
| } |
| |
| // If the CRBit is not used by another instruction, we can eliminate |
| // CRSET/CRUNSET instruction. |
| if (!SeenUse) { |
| // We need to check use of the CRBit in successors. |
| for (auto &SuccMBB : MBB.successors()) |
| if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) { |
| SeenUse = true; |
| break; |
| } |
| if (!SeenUse) |
| InstrsToErase.push_back(CRSetMI); |
| } |
| } |
| for (MachineInstr *MI : InstrsToErase) { |
| LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: "); |
| LLVM_DEBUG(MI->dump()); |
| MI->eraseFromParent(); |
| NumRemovedInPreEmit++; |
| } |
| return Changed; |
| } |
| }; |
| } |
| |
| INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole", |
| false, false) |
| char PPCPreEmitPeephole::ID = 0; |
| |
| FunctionPass *llvm::createPPCPreEmitPeepholePass() { |
| return new PPCPreEmitPeephole(); |
| } |