| //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the PowerPC implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCInstrInfo.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCHazardRecognizers.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineCombinerPattern.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppc-instr-info" |
| |
| #define GET_INSTRMAP_INFO |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "PPCGenInstrInfo.inc" |
| |
| STATISTIC(NumStoreSPILLVSRRCAsVec, |
| "Number of spillvsrrc spilled to stack as vec"); |
| STATISTIC(NumStoreSPILLVSRRCAsGpr, |
| "Number of spillvsrrc spilled to stack as gpr"); |
| STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); |
| STATISTIC(CmpIselsConverted, |
| "Number of ISELs that depend on comparison of constants converted"); |
| STATISTIC(MissedConvertibleImmediateInstrs, |
| "Number of compare-immediate instructions fed by constants"); |
| STATISTIC(NumRcRotatesConvertedToRcAnd, |
| "Number of record-form rotates converted to record-form andi"); |
| |
| static cl:: |
| opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, |
| cl::desc("Disable analysis for CTR loops")); |
| |
| static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", |
| cl::desc("Disable compare instruction optimization"), cl::Hidden); |
| |
| static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", |
| cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), |
| cl::Hidden); |
| |
| static cl::opt<bool> |
| UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, |
| cl::desc("Use the old (incorrect) instruction latency calculation")); |
| |
| static cl::opt<float> |
| FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), |
| cl::desc("register pressure factor for the transformations.")); |
| |
| static cl::opt<bool> EnableFMARegPressureReduction( |
| "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), |
| cl::desc("enable register pressure reduce in machine combiner pass.")); |
| |
| // Pin the vtable to this file. |
| void PPCInstrInfo::anchor() {} |
| |
| PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) |
| : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, |
| /* CatchRetOpcode */ -1, |
| STI.isPPC64() ? PPC::BLR8 : PPC::BLR), |
| Subtarget(STI), RI(STI.getTargetMachine()) {} |
| |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for |
| /// this target when scheduling the DAG. |
| ScheduleHazardRecognizer * |
| PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| const ScheduleDAG *DAG) const { |
| unsigned Directive = |
| static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); |
| if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || |
| Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { |
| const InstrItineraryData *II = |
| static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); |
| return new ScoreboardHazardRecognizer(II, DAG); |
| } |
| |
| return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); |
| } |
| |
| /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer |
| /// to use for this target when scheduling the DAG. |
| ScheduleHazardRecognizer * |
| PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| unsigned Directive = |
| DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); |
| |
| // FIXME: Leaving this as-is until we have POWER9 scheduling info |
| if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) |
| return new PPCDispatchGroupSBHazardRecognizer(II, DAG); |
| |
| // Most subtargets use a PPC970 recognizer. |
| if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && |
| Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { |
| assert(DAG->TII && "No InstrInfo?"); |
| |
| return new PPCHazardRecognizer970(*DAG); |
| } |
| |
| return new ScoreboardHazardRecognizer(II, DAG); |
| } |
| |
| unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &MI, |
| unsigned *PredCost) const { |
| if (!ItinData || UseOldLatencyCalc) |
| return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); |
| |
| // The default implementation of getInstrLatency calls getStageLatency, but |
| // getStageLatency does not do the right thing for us. While we have |
| // itinerary, most cores are fully pipelined, and so the itineraries only |
| // express the first part of the pipeline, not every stage. Instead, we need |
| // to use the listed output operand cycle number (using operand 0 here, which |
| // is an output). |
| |
| unsigned Latency = 1; |
| unsigned DefClass = MI.getDesc().getSchedClass(); |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| continue; |
| |
| int Cycle = ItinData->getOperandCycle(DefClass, i); |
| if (Cycle < 0) |
| continue; |
| |
| Latency = std::max(Latency, (unsigned) Cycle); |
| } |
| |
| return Latency; |
| } |
| |
| int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr &DefMI, unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const { |
| int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, |
| UseMI, UseIdx); |
| |
| if (!DefMI.getParent()) |
| return Latency; |
| |
| const MachineOperand &DefMO = DefMI.getOperand(DefIdx); |
| Register Reg = DefMO.getReg(); |
| |
| bool IsRegCR; |
| if (Reg.isVirtual()) { |
| const MachineRegisterInfo *MRI = |
| &DefMI.getParent()->getParent()->getRegInfo(); |
| IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || |
| MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); |
| } else { |
| IsRegCR = PPC::CRRCRegClass.contains(Reg) || |
| PPC::CRBITRCRegClass.contains(Reg); |
| } |
| |
| if (UseMI.isBranch() && IsRegCR) { |
| if (Latency < 0) |
| Latency = getInstrLatency(ItinData, DefMI); |
| |
| // On some cores, there is an additional delay between writing to a condition |
| // register, and using it from a branch. |
| unsigned Directive = Subtarget.getCPUDirective(); |
| switch (Directive) { |
| default: break; |
| case PPC::DIR_7400: |
| case PPC::DIR_750: |
| case PPC::DIR_970: |
| case PPC::DIR_E5500: |
| case PPC::DIR_PWR4: |
| case PPC::DIR_PWR5: |
| case PPC::DIR_PWR5X: |
| case PPC::DIR_PWR6: |
| case PPC::DIR_PWR6X: |
| case PPC::DIR_PWR7: |
| case PPC::DIR_PWR8: |
| // FIXME: Is this needed for POWER9? |
| Latency += 2; |
| break; |
| } |
| } |
| |
| return Latency; |
| } |
| |
| /// This is an architecture-specific helper function of reassociateOps. |
| /// Set special operand attributes for new instructions after reassociation. |
| void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, |
| MachineInstr &OldMI2, |
| MachineInstr &NewMI1, |
| MachineInstr &NewMI2) const { |
| // Propagate FP flags from the original instructions. |
| // But clear poison-generating flags because those may not be valid now. |
| uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); |
| NewMI1.setFlags(IntersectedFlags); |
| NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); |
| NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); |
| NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); |
| |
| NewMI2.setFlags(IntersectedFlags); |
| NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); |
| NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); |
| NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); |
| } |
| |
| void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, |
| uint16_t Flags) const { |
| MI.setFlags(Flags); |
| MI.clearFlag(MachineInstr::MIFlag::NoSWrap); |
| MI.clearFlag(MachineInstr::MIFlag::NoUWrap); |
| MI.clearFlag(MachineInstr::MIFlag::IsExact); |
| } |
| |
| // This function does not list all associative and commutative operations, but |
| // only those worth feeding through the machine combiner in an attempt to |
| // reduce the critical path. Mostly, this means floating-point operations, |
| // because they have high latencies(>=5) (compared to other operations, such as |
| // and/or, which are also associative and commutative, but have low latencies). |
| bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, |
| bool Invert) const { |
| if (Invert) |
| return false; |
| switch (Inst.getOpcode()) { |
| // Floating point: |
| // FP Add: |
| case PPC::FADD: |
| case PPC::FADDS: |
| // FP Multiply: |
| case PPC::FMUL: |
| case PPC::FMULS: |
| // Altivec Add: |
| case PPC::VADDFP: |
| // VSX Add: |
| case PPC::XSADDDP: |
| case PPC::XVADDDP: |
| case PPC::XVADDSP: |
| case PPC::XSADDSP: |
| // VSX Multiply: |
| case PPC::XSMULDP: |
| case PPC::XVMULDP: |
| case PPC::XVMULSP: |
| case PPC::XSMULSP: |
| return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Inst.getFlag(MachineInstr::MIFlag::FmNsz); |
| // Fixed point: |
| // Multiply: |
| case PPC::MULHD: |
| case PPC::MULLD: |
| case PPC::MULHW: |
| case PPC::MULLW: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| #define InfoArrayIdxFMAInst 0 |
| #define InfoArrayIdxFAddInst 1 |
| #define InfoArrayIdxFMULInst 2 |
| #define InfoArrayIdxAddOpIdx 3 |
| #define InfoArrayIdxMULOpIdx 4 |
| #define InfoArrayIdxFSubInst 5 |
| // Array keeps info for FMA instructions: |
| // Index 0(InfoArrayIdxFMAInst): FMA instruction; |
| // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; |
| // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; |
| // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; |
| // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; |
| // second MUL operand index is plus 1; |
| // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. |
| static const uint16_t FMAOpIdxInfo[][6] = { |
| // FIXME: Add more FMA instructions like XSNMADDADP and so on. |
| {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, |
| {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, |
| {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, |
| {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, |
| {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, |
| {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; |
| |
| // Check if an opcode is a FMA instruction. If it is, return the index in array |
| // FMAOpIdxInfo. Otherwise, return -1. |
| int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { |
| for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) |
| if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) |
| return I; |
| return -1; |
| } |
| |
| // On PowerPC target, we have two kinds of patterns related to FMA: |
| // 1: Improve ILP. |
| // Try to reassociate FMA chains like below: |
| // |
| // Pattern 1: |
| // A = FADD X, Y (Leaf) |
| // B = FMA A, M21, M22 (Prev) |
| // C = FMA B, M31, M32 (Root) |
| // --> |
| // A = FMA X, M21, M22 |
| // B = FMA Y, M31, M32 |
| // C = FADD A, B |
| // |
| // Pattern 2: |
| // A = FMA X, M11, M12 (Leaf) |
| // B = FMA A, M21, M22 (Prev) |
| // C = FMA B, M31, M32 (Root) |
| // --> |
| // A = FMUL M11, M12 |
| // B = FMA X, M21, M22 |
| // D = FMA A, M31, M32 |
| // C = FADD B, D |
| // |
| // breaking the dependency between A and B, allowing FMA to be executed in |
| // parallel (or back-to-back in a pipeline) instead of depending on each other. |
| // |
| // 2: Reduce register pressure. |
| // Try to reassociate FMA with FSUB and a constant like below: |
| // C is a floating point const. |
| // |
| // Pattern 1: |
| // A = FSUB X, Y (Leaf) |
| // D = FMA B, C, A (Root) |
| // --> |
| // A = FMA B, Y, -C |
| // D = FMA A, X, C |
| // |
| // Pattern 2: |
| // A = FSUB X, Y (Leaf) |
| // D = FMA B, A, C (Root) |
| // --> |
| // A = FMA B, Y, -C |
| // D = FMA A, X, C |
| // |
| // Before the transformation, A must be assigned with different hardware |
| // register with D. After the transformation, A and D must be assigned with |
| // same hardware register due to TIE attribute of FMA instructions. |
| // |
| bool PPCInstrInfo::getFMAPatterns( |
| MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) const { |
| MachineBasicBlock *MBB = Root.getParent(); |
| const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { |
| for (const auto &MO : Instr.explicit_operands()) |
| if (!(MO.isReg() && MO.getReg().isVirtual())) |
| return false; |
| return true; |
| }; |
| |
| auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, |
| unsigned OpType) { |
| if (Instr.getOpcode() != |
| FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) |
| return false; |
| |
| // Instruction can be reassociated. |
| // fast math flags may prohibit reassociation. |
| if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Instr.getFlag(MachineInstr::MIFlag::FmNsz))) |
| return false; |
| |
| // Instruction operands are virtual registers for reassociation. |
| if (!IsAllOpsVirtualReg(Instr)) |
| return false; |
| |
| // For register pressure reassociation, the FSub must have only one use as |
| // we want to delete the sub to save its def. |
| if (OpType == InfoArrayIdxFSubInst && |
| !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) |
| return false; |
| |
| return true; |
| }; |
| |
| auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, |
| int16_t &MulOpIdx, bool IsLeaf) { |
| int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); |
| if (Idx < 0) |
| return false; |
| |
| // Instruction can be reassociated. |
| // fast math flags may prohibit reassociation. |
| if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && |
| Instr.getFlag(MachineInstr::MIFlag::FmNsz))) |
| return false; |
| |
| // Instruction operands are virtual registers for reassociation. |
| if (!IsAllOpsVirtualReg(Instr)) |
| return false; |
| |
| MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| if (IsLeaf) |
| return true; |
| |
| AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; |
| |
| const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); |
| MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); |
| // If 'add' operand's def is not in current block, don't do ILP related opt. |
| if (!MIAdd || MIAdd->getParent() != MBB) |
| return false; |
| |
| // If this is not Leaf FMA Instr, its 'add' operand should only have one use |
| // as this fma will be changed later. |
| return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); |
| }; |
| |
| int16_t AddOpIdx = -1; |
| int16_t MulOpIdx = -1; |
| |
| bool IsUsedOnceL = false; |
| bool IsUsedOnceR = false; |
| MachineInstr *MULInstrL = nullptr; |
| MachineInstr *MULInstrR = nullptr; |
| |
| auto IsRPReductionCandidate = [&]() { |
| // Currently, we only support float and double. |
| // FIXME: add support for other types. |
| unsigned Opcode = Root.getOpcode(); |
| if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) |
| return false; |
| |
| // Root must be a valid FMA like instruction. |
| // Treat it as leaf as we don't care its add operand. |
| if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { |
| assert((MulOpIdx >= 0) && "mul operand index not right!"); |
| Register MULRegL = TRI->lookThruSingleUseCopyChain( |
| Root.getOperand(MulOpIdx).getReg(), MRI); |
| Register MULRegR = TRI->lookThruSingleUseCopyChain( |
| Root.getOperand(MulOpIdx + 1).getReg(), MRI); |
| if (!MULRegL && !MULRegR) |
| return false; |
| |
| if (MULRegL && !MULRegR) { |
| MULRegR = |
| TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); |
| IsUsedOnceL = true; |
| } else if (!MULRegL && MULRegR) { |
| MULRegL = |
| TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); |
| IsUsedOnceR = true; |
| } else { |
| IsUsedOnceL = true; |
| IsUsedOnceR = true; |
| } |
| |
| if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) |
| return false; |
| |
| MULInstrL = MRI->getVRegDef(MULRegL); |
| MULInstrR = MRI->getVRegDef(MULRegR); |
| return true; |
| } |
| return false; |
| }; |
| |
| // Register pressure fma reassociation patterns. |
| if (DoRegPressureReduce && IsRPReductionCandidate()) { |
| assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); |
| // Register pressure pattern 1 |
| if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && |
| IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); |
| return true; |
| } |
| |
| // Register pressure pattern 2 |
| if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && |
| IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); |
| return true; |
| } |
| } |
| |
| // ILP fma reassociation patterns. |
| // Root must be a valid FMA like instruction. |
| AddOpIdx = -1; |
| if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) |
| return false; |
| |
| assert((AddOpIdx >= 0) && "add operand index not right!"); |
| |
| Register RegB = Root.getOperand(AddOpIdx).getReg(); |
| MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); |
| |
| // Prev must be a valid FMA like instruction. |
| AddOpIdx = -1; |
| if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) |
| return false; |
| |
| assert((AddOpIdx >= 0) && "add operand index not right!"); |
| |
| Register RegA = Prev->getOperand(AddOpIdx).getReg(); |
| MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); |
| AddOpIdx = -1; |
| if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); |
| return true; |
| } |
| if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { |
| Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); |
| LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); |
| return true; |
| } |
| return false; |
| } |
| |
| void PPCInstrInfo::finalizeInsInstrs( |
| MachineInstr &Root, MachineCombinerPattern &P, |
| SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); |
| |
| MachineFunction *MF = Root.getMF(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineConstantPool *MCP = MF->getConstantPool(); |
| |
| int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); |
| if (Idx < 0) |
| return; |
| |
| uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| |
| // For now we only need to fix up placeholder for register pressure reduce |
| // patterns. |
| Register ConstReg = 0; |
| switch (P) { |
| case MachineCombinerPattern::REASSOC_XY_BCA: |
| ConstReg = |
| TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); |
| break; |
| case MachineCombinerPattern::REASSOC_XY_BAC: |
| ConstReg = |
| TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); |
| break; |
| default: |
| // Not register pressure reduce patterns. |
| return; |
| } |
| |
| MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); |
| // Get const value from const pool. |
| const Constant *C = getConstantFromConstantPool(ConstDefInstr); |
| assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); |
| |
| // Get negative fp const. |
| APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); |
| F1.changeSign(); |
| Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); |
| Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); |
| |
| // Put negative fp const into constant pool. |
| unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); |
| |
| MachineOperand *Placeholder = nullptr; |
| // Record the placeholder PPC::ZERO8 we add in reassociateFMA. |
| for (auto *Inst : InsInstrs) { |
| for (MachineOperand &Operand : Inst->explicit_operands()) { |
| assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); |
| if (Operand.getReg() == PPC::ZERO8) { |
| Placeholder = &Operand; |
| break; |
| } |
| } |
| } |
| |
| assert(Placeholder && "Placeholder does not exist!"); |
| |
| // Generate instructions to load the const fp from constant pool. |
| // We only support PPC64 and medium code model. |
| Register LoadNewConst = |
| generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); |
| |
| // Fill the placeholder with the new load from constant pool. |
| Placeholder->setReg(LoadNewConst); |
| } |
| |
| bool PPCInstrInfo::shouldReduceRegisterPressure( |
| const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { |
| |
| if (!EnableFMARegPressureReduction) |
| return false; |
| |
| // Currently, we only enable register pressure reducing in machine combiner |
| // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector |
| // support. |
| // |
| // So we need following instructions to access a TOC entry: |
| // |
| // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 |
| // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, |
| // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) |
| // |
| // FIXME: add more supported targets, like Small and Large code model, PPC32, |
| // AIX. |
| if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && |
| Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| const MachineFunction *MF = MBB->getParent(); |
| const MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| |
| auto GetMBBPressure = |
| [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { |
| RegionPressure Pressure; |
| RegPressureTracker RPTracker(Pressure); |
| |
| // Initialize the register pressure tracker. |
| RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), |
| /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); |
| |
| for (const auto &MI : reverse(*MBB)) { |
| if (MI.isDebugValue() || MI.isDebugLabel()) |
| continue; |
| RegisterOperands RegOpers; |
| RegOpers.collect(MI, *TRI, *MRI, false, false); |
| RPTracker.recedeSkipDebugValues(); |
| assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); |
| RPTracker.recede(RegOpers); |
| } |
| |
| // Close the RPTracker to finalize live ins. |
| RPTracker.closeRegion(); |
| |
| return RPTracker.getPressure().MaxSetPressure; |
| }; |
| |
| // For now we only care about float and double type fma. |
| unsigned VSSRCLimit = TRI->getRegPressureSetLimit( |
| *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); |
| |
| // Only reduce register pressure when pressure is high. |
| return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > |
| (float)VSSRCLimit * FMARPFactor; |
| } |
| |
| bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { |
| // I has only one memory operand which is load from constant pool. |
| if (!I->hasOneMemOperand()) |
| return false; |
| |
| MachineMemOperand *Op = I->memoperands()[0]; |
| return Op->isLoad() && Op->getPseudoValue() && |
| Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; |
| } |
| |
| Register PPCInstrInfo::generateLoadForNewConst( |
| unsigned Idx, MachineInstr *MI, Type *Ty, |
| SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| // Now we only support PPC64, Medium code model and P9 with vector. |
| // We have immutable pattern to access const pool. See function |
| // shouldReduceRegisterPressure. |
| assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && |
| Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && |
| "Target not supported!\n"); |
| |
| MachineFunction *MF = MI->getMF(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| |
| // Generate ADDIStocHA8 |
| Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); |
| MachineInstrBuilder TOCOffset = |
| BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) |
| .addReg(PPC::X2) |
| .addConstantPoolIndex(Idx); |
| |
| assert((Ty->isFloatTy() || Ty->isDoubleTy()) && |
| "Only float and double are supported!"); |
| |
| unsigned LoadOpcode; |
| // Should be float type or double type. |
| if (Ty->isFloatTy()) |
| LoadOpcode = PPC::DFLOADf32; |
| else |
| LoadOpcode = PPC::DFLOADf64; |
| |
| const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); |
| Register VReg2 = MRI->createVirtualRegister(RC); |
| MachineMemOperand *MMO = MF->getMachineMemOperand( |
| MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, |
| Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); |
| |
| // Generate Load from constant pool. |
| MachineInstrBuilder Load = |
| BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) |
| .addConstantPoolIndex(Idx) |
| .addReg(VReg1, getKillRegState(true)) |
| .addMemOperand(MMO); |
| |
| Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); |
| |
| // Insert the toc load instructions into InsInstrs. |
| InsInstrs.insert(InsInstrs.begin(), Load); |
| InsInstrs.insert(InsInstrs.begin(), TOCOffset); |
| return VReg2; |
| } |
| |
| // This function returns the const value in constant pool if the \p I is a load |
| // from constant pool. |
| const Constant * |
| PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { |
| MachineFunction *MF = I->getMF(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| MachineConstantPool *MCP = MF->getConstantPool(); |
| assert(I->mayLoad() && "Should be a load instruction.\n"); |
| for (auto MO : I->uses()) { |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Reg == 0 || !Reg.isVirtual()) |
| continue; |
| // Find the toc address. |
| MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| for (auto MO2 : DefMI->uses()) |
| if (MO2.isCPI()) |
| return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; |
| } |
| return nullptr; |
| } |
| |
| bool PPCInstrInfo::getMachineCombinerPatterns( |
| MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, |
| bool DoRegPressureReduce) const { |
| // Using the machine combiner in this way is potentially expensive, so |
| // restrict to when aggressive optimizations are desired. |
| if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) |
| return false; |
| |
| if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) |
| return true; |
| |
| return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, |
| DoRegPressureReduce); |
| } |
| |
| void PPCInstrInfo::genAlternativeCodeSequence( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| switch (Pattern) { |
| case MachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| case MachineCombinerPattern::REASSOC_XY_BCA: |
| case MachineCombinerPattern::REASSOC_XY_BAC: |
| reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); |
| break; |
| default: |
| // Reassociate default patterns. |
| TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
| DelInstrs, InstrIdxForVirtReg); |
| break; |
| } |
| } |
| |
| void PPCInstrInfo::reassociateFMA( |
| MachineInstr &Root, MachineCombinerPattern Pattern, |
| SmallVectorImpl<MachineInstr *> &InsInstrs, |
| SmallVectorImpl<MachineInstr *> &DelInstrs, |
| DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { |
| MachineFunction *MF = Root.getMF(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineOperand &OpC = Root.getOperand(0); |
| Register RegC = OpC.getReg(); |
| const TargetRegisterClass *RC = MRI.getRegClass(RegC); |
| MRI.constrainRegClass(RegC, RC); |
| |
| unsigned FmaOp = Root.getOpcode(); |
| int16_t Idx = getFMAOpIdxInfo(FmaOp); |
| assert(Idx >= 0 && "Root must be a FMA instruction"); |
| |
| bool IsILPReassociate = |
| (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || |
| (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); |
| |
| uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; |
| uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| |
| MachineInstr *Prev = nullptr; |
| MachineInstr *Leaf = nullptr; |
| switch (Pattern) { |
| default: |
| llvm_unreachable("not recognized pattern!"); |
| case MachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); |
| Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); |
| break; |
| case MachineCombinerPattern::REASSOC_XY_BAC: { |
| Register MULReg = |
| TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); |
| Leaf = MRI.getVRegDef(MULReg); |
| break; |
| } |
| case MachineCombinerPattern::REASSOC_XY_BCA: { |
| Register MULReg = TRI->lookThruCopyLike( |
| Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); |
| Leaf = MRI.getVRegDef(MULReg); |
| break; |
| } |
| } |
| |
| uint16_t IntersectedFlags = 0; |
| if (IsILPReassociate) |
| IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); |
| else |
| IntersectedFlags = Root.getFlags() & Leaf->getFlags(); |
| |
| auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, |
| bool &KillFlag) { |
| Reg = Operand.getReg(); |
| MRI.constrainRegClass(Reg, RC); |
| KillFlag = Operand.isKill(); |
| }; |
| |
| auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, |
| Register &MulOp2, Register &AddOp, |
| bool &MulOp1KillFlag, bool &MulOp2KillFlag, |
| bool &AddOpKillFlag) { |
| GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); |
| GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); |
| GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); |
| }; |
| |
| Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, |
| RegA21, RegB; |
| bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, |
| KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, |
| KillA11 = false, KillA21 = false, KillB = false; |
| |
| GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); |
| |
| if (IsILPReassociate) |
| GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); |
| |
| if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { |
| GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); |
| GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); |
| } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { |
| GetOperandInfo(Leaf->getOperand(1), RegX, KillX); |
| GetOperandInfo(Leaf->getOperand(2), RegY, KillY); |
| } else { |
| // Get FSUB instruction info. |
| GetOperandInfo(Leaf->getOperand(1), RegX, KillX); |
| GetOperandInfo(Leaf->getOperand(2), RegY, KillY); |
| } |
| |
| // Create new virtual registers for the new results instead of |
| // recycling legacy ones because the MachineCombiner's computation of the |
| // critical path requires a new register definition rather than an existing |
| // one. |
| // For register pressure reassociation, we only need create one virtual |
| // register for the new fma. |
| Register NewVRA = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); |
| |
| Register NewVRB = 0; |
| if (IsILPReassociate) { |
| NewVRB = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); |
| } |
| |
| Register NewVRD = 0; |
| if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { |
| NewVRD = MRI.createVirtualRegister(RC); |
| InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); |
| } |
| |
| auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, |
| Register RegMul1, bool KillRegMul1, |
| Register RegMul2, bool KillRegMul2) { |
| MI->getOperand(AddOpIdx).setReg(RegAdd); |
| MI->getOperand(AddOpIdx).setIsKill(KillAdd); |
| MI->getOperand(FirstMulOpIdx).setReg(RegMul1); |
| MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); |
| MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); |
| MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); |
| }; |
| |
| MachineInstrBuilder NewARegPressure, NewCRegPressure; |
| switch (Pattern) { |
| default: |
| llvm_unreachable("not recognized pattern!"); |
| case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { |
| // Create new instructions for insertion. |
| MachineInstrBuilder MINewB = |
| BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(RegM21, getKillRegState(KillM21)) |
| .addReg(RegM22, getKillRegState(KillM22)); |
| MachineInstrBuilder MINewA = |
| BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) |
| .addReg(RegY, getKillRegState(KillY)) |
| .addReg(RegM31, getKillRegState(KillM31)) |
| .addReg(RegM32, getKillRegState(KillM32)); |
| // If AddOpIdx is not 1, adjust the order. |
| if (AddOpIdx != 1) { |
| AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); |
| AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); |
| } |
| |
| MachineInstrBuilder MINewC = |
| BuildMI(*MF, Root.getDebugLoc(), |
| get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) |
| .addReg(NewVRB, getKillRegState(true)) |
| .addReg(NewVRA, getKillRegState(true)); |
| |
| // Update flags for newly created instructions. |
| setSpecialOperandAttr(*MINewA, IntersectedFlags); |
| setSpecialOperandAttr(*MINewB, IntersectedFlags); |
| setSpecialOperandAttr(*MINewC, IntersectedFlags); |
| |
| // Record new instructions for insertion. |
| InsInstrs.push_back(MINewA); |
| InsInstrs.push_back(MINewB); |
| InsInstrs.push_back(MINewC); |
| break; |
| } |
| case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { |
| assert(NewVRD && "new FMA register not created!"); |
| // Create new instructions for insertion. |
| MachineInstrBuilder MINewA = |
| BuildMI(*MF, Leaf->getDebugLoc(), |
| get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) |
| .addReg(RegM11, getKillRegState(KillM11)) |
| .addReg(RegM12, getKillRegState(KillM12)); |
| MachineInstrBuilder MINewB = |
| BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(RegM21, getKillRegState(KillM21)) |
| .addReg(RegM22, getKillRegState(KillM22)); |
| MachineInstrBuilder MINewD = |
| BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) |
| .addReg(NewVRA, getKillRegState(true)) |
| .addReg(RegM31, getKillRegState(KillM31)) |
| .addReg(RegM32, getKillRegState(KillM32)); |
| // If AddOpIdx is not 1, adjust the order. |
| if (AddOpIdx != 1) { |
| AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); |
| AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, |
| KillM32); |
| } |
| |
| MachineInstrBuilder MINewC = |
| BuildMI(*MF, Root.getDebugLoc(), |
| get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) |
| .addReg(NewVRB, getKillRegState(true)) |
| .addReg(NewVRD, getKillRegState(true)); |
| |
| // Update flags for newly created instructions. |
| setSpecialOperandAttr(*MINewA, IntersectedFlags); |
| setSpecialOperandAttr(*MINewB, IntersectedFlags); |
| setSpecialOperandAttr(*MINewD, IntersectedFlags); |
| setSpecialOperandAttr(*MINewC, IntersectedFlags); |
| |
| // Record new instructions for insertion. |
| InsInstrs.push_back(MINewA); |
| InsInstrs.push_back(MINewB); |
| InsInstrs.push_back(MINewD); |
| InsInstrs.push_back(MINewC); |
| break; |
| } |
| case MachineCombinerPattern::REASSOC_XY_BAC: |
| case MachineCombinerPattern::REASSOC_XY_BCA: { |
| Register VarReg; |
| bool KillVarReg = false; |
| if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { |
| VarReg = RegM31; |
| KillVarReg = KillM31; |
| } else { |
| VarReg = RegM32; |
| KillVarReg = KillM32; |
| } |
| // We don't want to get negative const from memory pool too early, as the |
| // created entry will not be deleted even if it has no users. Since all |
| // operand of Leaf and Root are virtual register, we use zero register |
| // here as a placeholder. When the InsInstrs is selected in |
| // MachineCombiner, we call finalizeInsInstrs to replace the zero register |
| // with a virtual register which is a load from constant pool. |
| NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) |
| .addReg(RegB, getKillRegState(RegB)) |
| .addReg(RegY, getKillRegState(KillY)) |
| .addReg(PPC::ZERO8); |
| NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) |
| .addReg(NewVRA, getKillRegState(true)) |
| .addReg(RegX, getKillRegState(KillX)) |
| .addReg(VarReg, getKillRegState(KillVarReg)); |
| // For now, we only support xsmaddadp/xsmaddasp, their add operand are |
| // both at index 1, no need to adjust. |
| // FIXME: when add more fma instructions support, like fma/fmas, adjust |
| // the operand index here. |
| break; |
| } |
| } |
| |
| if (!IsILPReassociate) { |
| setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); |
| setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); |
| |
| InsInstrs.push_back(NewARegPressure); |
| InsInstrs.push_back(NewCRegPressure); |
| } |
| |
| assert(!InsInstrs.empty() && |
| "Insertion instructions set should not be empty!"); |
| |
| // Record old instructions for deletion. |
| DelInstrs.push_back(Leaf); |
| if (IsILPReassociate) |
| DelInstrs.push_back(Prev); |
| DelInstrs.push_back(&Root); |
| } |
| |
| // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. |
| bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| Register &SrcReg, Register &DstReg, |
| unsigned &SubIdx) const { |
| switch (MI.getOpcode()) { |
| default: return false; |
| case PPC::EXTSW: |
| case PPC::EXTSW_32: |
| case PPC::EXTSW_32_64: |
| SrcReg = MI.getOperand(1).getReg(); |
| DstReg = MI.getOperand(0).getReg(); |
| SubIdx = PPC::sub_32; |
| return true; |
| } |
| } |
| |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) { |
| // Check for the operands added by addFrameReference (the immediate is the |
| // offset which defaults to 0). |
| if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && |
| MI.getOperand(2).isFI()) { |
| FrameIndex = MI.getOperand(2).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| } |
| return 0; |
| } |
| |
| // For opcodes with the ReMaterializable flag set, this function is called to |
| // verify the instruction is really rematable. |
| bool PPCInstrInfo::isReallyTriviallyReMaterializable( |
| const MachineInstr &MI) const { |
| switch (MI.getOpcode()) { |
| default: |
| // This function should only be called for opcodes with the ReMaterializable |
| // flag set. |
| llvm_unreachable("Unknown rematerializable operation!"); |
| break; |
| case PPC::LI: |
| case PPC::LI8: |
| case PPC::PLI: |
| case PPC::PLI8: |
| case PPC::LIS: |
| case PPC::LIS8: |
| case PPC::ADDIStocHA: |
| case PPC::ADDIStocHA8: |
| case PPC::ADDItocL: |
| case PPC::LOAD_STACK_GUARD: |
| case PPC::XXLXORz: |
| case PPC::XXLXORspz: |
| case PPC::XXLXORdpz: |
| case PPC::XXLEQVOnes: |
| case PPC::XXSPLTI32DX: |
| case PPC::XXSPLTIW: |
| case PPC::XXSPLTIDP: |
| case PPC::V_SET0B: |
| case PPC::V_SET0H: |
| case PPC::V_SET0: |
| case PPC::V_SETALLONESB: |
| case PPC::V_SETALLONESH: |
| case PPC::V_SETALLONES: |
| case PPC::CRSET: |
| case PPC::CRUNSET: |
| case PPC::XXSETACCZ: |
| case PPC::XXSETACCZW: |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) { |
| if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && |
| MI.getOperand(2).isFI()) { |
| FrameIndex = MI.getOperand(2).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| } |
| return 0; |
| } |
| |
| MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| |
| // Normal instructions can be commuted the obvious way. |
| if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a |
| // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because |
| // changing the relative order of the mask operands might change what happens |
| // to the high-bits of the mask (and, thus, the result). |
| |
| // Cannot commute if it has a non-zero rotate count. |
| if (MI.getOperand(3).getImm() != 0) |
| return nullptr; |
| |
| // If we have a zero rotate count, we have: |
| // M = mask(MB,ME) |
| // Op0 = (Op1 & ~M) | (Op2 & M) |
| // Change this to: |
| // M = mask((ME+1)&31, (MB-1)&31) |
| // Op0 = (Op2 & ~M) | (Op1 & M) |
| |
| // Swap op1/op2 |
| assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && |
| "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); |
| Register Reg0 = MI.getOperand(0).getReg(); |
| Register Reg1 = MI.getOperand(1).getReg(); |
| Register Reg2 = MI.getOperand(2).getReg(); |
| unsigned SubReg1 = MI.getOperand(1).getSubReg(); |
| unsigned SubReg2 = MI.getOperand(2).getSubReg(); |
| bool Reg1IsKill = MI.getOperand(1).isKill(); |
| bool Reg2IsKill = MI.getOperand(2).isKill(); |
| bool ChangeReg0 = false; |
| // If machine instrs are no longer in two-address forms, update |
| // destination register as well. |
| if (Reg0 == Reg1) { |
| // Must be two address instruction! |
| assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); |
| Reg2IsKill = false; |
| ChangeReg0 = true; |
| } |
| |
| // Masks. |
| unsigned MB = MI.getOperand(4).getImm(); |
| unsigned ME = MI.getOperand(5).getImm(); |
| |
| // We can't commute a trivial mask (there is no way to represent an all-zero |
| // mask). |
| if (MB == 0 && ME == 31) |
| return nullptr; |
| |
| if (NewMI) { |
| // Create a new instruction. |
| Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); |
| bool Reg0IsDead = MI.getOperand(0).isDead(); |
| return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) |
| .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) |
| .addReg(Reg2, getKillRegState(Reg2IsKill)) |
| .addReg(Reg1, getKillRegState(Reg1IsKill)) |
| .addImm((ME + 1) & 31) |
| .addImm((MB - 1) & 31); |
| } |
| |
| if (ChangeReg0) { |
| MI.getOperand(0).setReg(Reg2); |
| MI.getOperand(0).setSubReg(SubReg2); |
| } |
| MI.getOperand(2).setReg(Reg1); |
| MI.getOperand(1).setReg(Reg2); |
| MI.getOperand(2).setSubReg(SubReg1); |
| MI.getOperand(1).setSubReg(SubReg2); |
| MI.getOperand(2).setIsKill(Reg1IsKill); |
| MI.getOperand(1).setIsKill(Reg2IsKill); |
| |
| // Swap the mask around. |
| MI.getOperand(4).setImm((ME + 1) & 31); |
| MI.getOperand(5).setImm((MB - 1) & 31); |
| return &MI; |
| } |
| |
| bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| // For VSX A-Type FMA instructions, it is the first two operands that can be |
| // commuted, however, because the non-encoded tied input operand is listed |
| // first, the operands to swap are actually the second and third. |
| |
| int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); |
| if (AltOpc == -1) |
| return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| |
| // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 |
| // and SrcOpIdx2. |
| return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); |
| } |
| |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| // This function is used for scheduling, and the nop wanted here is the type |
| // that terminates dispatch groups on the POWER cores. |
| unsigned Directive = Subtarget.getCPUDirective(); |
| unsigned Opcode; |
| switch (Directive) { |
| default: Opcode = PPC::NOP; break; |
| case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; |
| case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; |
| case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ |
| // FIXME: Update when POWER9 scheduling model is ready. |
| case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; |
| } |
| |
| DebugLoc DL; |
| BuildMI(MBB, MI, DL, get(Opcode)); |
| } |
| |
| /// Return the noop instruction to use for a noop. |
| MCInst PPCInstrInfo::getNop() const { |
| MCInst Nop; |
| Nop.setOpcode(PPC::NOP); |
| return Nop; |
| } |
| |
| // Branch analysis. |
| // Note: If the condition register is set to CTR or CTR8 then this is a |
| // BDNZ (imm == 1) or BDZ (imm == 0) branch. |
| bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return false; |
| |
| if (!isUnpredicatedTerminator(*I)) |
| return false; |
| |
| if (AllowModify) { |
| // If the BB ends with an unconditional branch to the fallthrough BB, |
| // we eliminate the branch instruction. |
| if (I->getOpcode() == PPC::B && |
| MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { |
| I->eraseFromParent(); |
| |
| // We update iterator after deleting the last branch. |
| I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end() || !isUnpredicatedTerminator(*I)) |
| return false; |
| } |
| } |
| |
| // Get the last instruction in the block. |
| MachineInstr &LastInst = *I; |
| |
| // If there is only one terminator instruction, process it. |
| if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { |
| if (LastInst.getOpcode() == PPC::B) { |
| if (!LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BCC) { |
| if (!LastInst.getOperand(2).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst.getOperand(2).getMBB(); |
| Cond.push_back(LastInst.getOperand(0)); |
| Cond.push_back(LastInst.getOperand(1)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BC) { |
| if (!LastInst.getOperand(1).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); |
| Cond.push_back(LastInst.getOperand(0)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BCn) { |
| if (!LastInst.getOperand(1).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); |
| Cond.push_back(LastInst.getOperand(0)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BDNZ8 || |
| LastInst.getOpcode() == PPC::BDNZ) { |
| if (!LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = LastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(1)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return false; |
| } else if (LastInst.getOpcode() == PPC::BDZ8 || |
| LastInst.getOpcode() == PPC::BDZ) { |
| if (!LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = LastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return false; |
| } |
| |
| // Otherwise, don't know what this is. |
| return true; |
| } |
| |
| // Get the instruction before it if it's a terminator. |
| MachineInstr &SecondLastInst = *I; |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) |
| return true; |
| |
| // If the block ends with PPC::B and PPC:BCC, handle it. |
| if (SecondLastInst.getOpcode() == PPC::BCC && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(2).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(2).getMBB(); |
| Cond.push_back(SecondLastInst.getOperand(0)); |
| Cond.push_back(SecondLastInst.getOperand(1)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if (SecondLastInst.getOpcode() == PPC::BC && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(1).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); |
| Cond.push_back(SecondLastInst.getOperand(0)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if (SecondLastInst.getOpcode() == PPC::BCn && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(1).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(1).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); |
| Cond.push_back(SecondLastInst.getOperand(0)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || |
| SecondLastInst.getOpcode() == PPC::BDNZ) && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(0).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = SecondLastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(1)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || |
| SecondLastInst.getOpcode() == PPC::BDZ) && |
| LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(0).isMBB() || |
| !LastInst.getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = SecondLastInst.getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| FBB = LastInst.getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two PPC:Bs, handle it. The second one is not |
| // executed, so remove it. |
| if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { |
| if (!SecondLastInst.getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst.getOperand(0).getMBB(); |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| assert(!BytesRemoved && "code size not handled"); |
| |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && |
| I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && |
| I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (I->getOpcode() != PPC::BCC && |
| I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && |
| I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "PPC branch conditions have two components!"); |
| assert(!BytesAdded && "code size not handled"); |
| |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| // One-way branch. |
| if (!FBB) { |
| if (Cond.empty()) // Unconditional branch |
| BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); |
| else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| BuildMI(&MBB, DL, get(Cond[0].getImm() ? |
| (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_SET) |
| BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) |
| BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); |
| else // Conditional branch |
| BuildMI(&MBB, DL, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]) |
| .addMBB(TBB); |
| return 1; |
| } |
| |
| // Two-way Conditional Branch. |
| if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| BuildMI(&MBB, DL, get(Cond[0].getImm() ? |
| (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_SET) |
| BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); |
| else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) |
| BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); |
| else |
| BuildMI(&MBB, DL, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]) |
| .addMBB(TBB); |
| BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); |
| return 2; |
| } |
| |
| // Select analysis. |
| bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, |
| ArrayRef<MachineOperand> Cond, |
| Register DstReg, Register TrueReg, |
| Register FalseReg, int &CondCycles, |
| int &TrueCycles, int &FalseCycles) const { |
| if (Cond.size() != 2) |
| return false; |
| |
| // If this is really a bdnz-like condition, then it cannot be turned into a |
| // select. |
| if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| return false; |
| |
| // If the conditional branch uses a physical register, then it cannot be |
| // turned into a select. |
| if (Cond[1].getReg().isPhysical()) |
| return false; |
| |
| // Check register classes. |
| const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = |
| RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); |
| if (!RC) |
| return false; |
| |
| // isel is for regular integer GPRs only. |
| if (!PPC::GPRCRegClass.hasSubClassEq(RC) && |
| !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && |
| !PPC::G8RCRegClass.hasSubClassEq(RC) && |
| !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) |
| return false; |
| |
| // FIXME: These numbers are for the A2, how well they work for other cores is |
| // an open question. On the A2, the isel instruction has a 2-cycle latency |
| // but single-cycle throughput. These numbers are used in combination with |
| // the MispredictPenalty setting from the active SchedMachineModel. |
| CondCycles = 1; |
| TrueCycles = 1; |
| FalseCycles = 1; |
| |
| return true; |
| } |
| |
| void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const DebugLoc &dl, Register DestReg, |
| ArrayRef<MachineOperand> Cond, Register TrueReg, |
| Register FalseReg) const { |
| assert(Cond.size() == 2 && |
| "PPC branch conditions have two components!"); |
| |
| // Get the register classes. |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = |
| RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); |
| assert(RC && "TrueReg and FalseReg must have overlapping register classes"); |
| |
| bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || |
| PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); |
| assert((Is64Bit || |
| PPC::GPRCRegClass.hasSubClassEq(RC) || |
| PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && |
| "isel is for regular integer GPRs only"); |
| |
| unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; |
| auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); |
| |
| unsigned SubIdx = 0; |
| bool SwapOps = false; |
| switch (SelectPred) { |
| case PPC::PRED_EQ: |
| case PPC::PRED_EQ_MINUS: |
| case PPC::PRED_EQ_PLUS: |
| SubIdx = PPC::sub_eq; SwapOps = false; break; |
| case PPC::PRED_NE: |
| case PPC::PRED_NE_MINUS: |
| case PPC::PRED_NE_PLUS: |
| SubIdx = PPC::sub_eq; SwapOps = true; break; |
| case PPC::PRED_LT: |
| case PPC::PRED_LT_MINUS: |
| case PPC::PRED_LT_PLUS: |
| SubIdx = PPC::sub_lt; SwapOps = false; break; |
| case PPC::PRED_GE: |
| case PPC::PRED_GE_MINUS: |
| case PPC::PRED_GE_PLUS: |
| SubIdx = PPC::sub_lt; SwapOps = true; break; |
| case PPC::PRED_GT: |
| case PPC::PRED_GT_MINUS: |
| case PPC::PRED_GT_PLUS: |
| SubIdx = PPC::sub_gt; SwapOps = false; break; |
| case PPC::PRED_LE: |
| case PPC::PRED_LE_MINUS: |
| case PPC::PRED_LE_PLUS: |
| SubIdx = PPC::sub_gt; SwapOps = true; break; |
| case PPC::PRED_UN: |
| case PPC::PRED_UN_MINUS: |
| case PPC::PRED_UN_PLUS: |
| SubIdx = PPC::sub_un; SwapOps = false; break; |
| case PPC::PRED_NU: |
| case PPC::PRED_NU_MINUS: |
| case PPC::PRED_NU_PLUS: |
| SubIdx = PPC::sub_un; SwapOps = true; break; |
| case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; |
| case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; |
| } |
| |
| Register FirstReg = SwapOps ? FalseReg : TrueReg, |
| SecondReg = SwapOps ? TrueReg : FalseReg; |
| |
| // The first input register of isel cannot be r0. If it is a member |
| // of a register class that can be r0, then copy it first (the |
| // register allocator should eliminate the copy). |
| if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || |
| MRI.getRegClass(FirstReg)->contains(PPC::X0)) { |
| const TargetRegisterClass *FirstRC = |
| MRI.getRegClass(FirstReg)->contains(PPC::X0) ? |
| &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; |
| Register OldFirstReg = FirstReg; |
| FirstReg = MRI.createVirtualRegister(FirstRC); |
| BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) |
| .addReg(OldFirstReg); |
| } |
| |
| BuildMI(MBB, MI, dl, get(OpCode), DestReg) |
| .addReg(FirstReg).addReg(SecondReg) |
| .addReg(Cond[1].getReg(), 0, SubIdx); |
| } |
| |
| static unsigned getCRBitValue(unsigned CRBit) { |
| unsigned Ret = 4; |
| if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || |
| CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || |
| CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || |
| CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) |
| Ret = 3; |
| if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || |
| CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || |
| CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || |
| CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) |
| Ret = 2; |
| if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || |
| CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || |
| CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || |
| CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) |
| Ret = 1; |
| if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || |
| CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || |
| CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || |
| CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) |
| Ret = 0; |
| |
| assert(Ret != 4 && "Invalid CR bit register"); |
| return Ret; |
| } |
| |
| void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, MCRegister DestReg, |
| MCRegister SrcReg, bool KillSrc) const { |
| // We can end up with self copies and similar things as a result of VSX copy |
| // legalization. Promote them here. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| if (PPC::F8RCRegClass.contains(DestReg) && |
| PPC::VSRCRegClass.contains(SrcReg)) { |
| MCRegister SuperReg = |
| TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); |
| |
| if (VSXSelfCopyCrash && SrcReg == SuperReg) |
| llvm_unreachable("nop VSX copy"); |
| |
| DestReg = SuperReg; |
| } else if (PPC::F8RCRegClass.contains(SrcReg) && |
| PPC::VSRCRegClass.contains(DestReg)) { |
| MCRegister SuperReg = |
| TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); |
| |
| if (VSXSelfCopyCrash && DestReg == SuperReg) |
| llvm_unreachable("nop VSX copy"); |
| |
| SrcReg = SuperReg; |
| } |
| |
| // Different class register copy |
| if (PPC::CRBITRCRegClass.contains(SrcReg) && |
| PPC::GPRCRegClass.contains(DestReg)) { |
| MCRegister CRReg = getCRFromCRBit(SrcReg); |
| BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); |
| getKillRegState(KillSrc); |
| // Rotate the CR bit in the CR fields to be the least significant bit and |
| // then mask with 0x1 (MB = ME = 31). |
| BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) |
| .addImm(31) |
| .addImm(31); |
| return; |
| } else if (PPC::CRRCRegClass.contains(SrcReg) && |
| (PPC::G8RCRegClass.contains(DestReg) || |
| PPC::GPRCRegClass.contains(DestReg))) { |
| bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); |
| unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; |
| unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; |
| unsigned CRNum = TRI->getEncodingValue(SrcReg); |
| BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| if (CRNum == 7) |
| return; |
| // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. |
| BuildMI(MBB, I, DL, get(ShCode), DestReg) |
| .addReg(DestReg, RegState::Kill) |
| .addImm(CRNum * 4 + 4) |
| .addImm(28) |
| .addImm(31); |
| return; |
| } else if (PPC::G8RCRegClass.contains(SrcReg) && |
| PPC::VSFRCRegClass.contains(DestReg)) { |
| assert(Subtarget.hasDirectMove() && |
| "Subtarget doesn't support directmove, don't know how to copy."); |
| BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); |
| NumGPRtoVSRSpill++; |
| getKillRegState(KillSrc); |
| return; |
| } else if (PPC::VSFRCRegClass.contains(SrcReg) && |
| PPC::G8RCRegClass.contains(DestReg)) { |
| assert(Subtarget.hasDirectMove() && |
| "Subtarget doesn't support directmove, don't know how to copy."); |
| BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| return; |
| } else if (PPC::SPERCRegClass.contains(SrcReg) && |
| PPC::GPRCRegClass.contains(DestReg)) { |
| BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| return; |
| } else if (PPC::GPRCRegClass.contains(SrcReg) && |
| PPC::SPERCRegClass.contains(DestReg)) { |
| BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); |
| getKillRegState(KillSrc); |
| return; |
| } |
| |
| unsigned Opc; |
| if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::OR; |
| else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::OR8; |
| else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::FMR; |
| else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::MCRF; |
| else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::VOR; |
| else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) |
| // There are two different ways this can be done: |
| // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only |
| // issue in VSU pipeline 0. |
| // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but |
| // can go to either pipeline. |
| // We'll always use xxlor here, because in practically all cases where |
| // copies are generated, they are close enough to some use that the |
| // lower-latency form is preferable. |
| Opc = PPC::XXLOR; |
| else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || |
| PPC::VSSRCRegClass.contains(DestReg, SrcReg)) |
| Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; |
| else if (Subtarget.pairedVectorMemops() && |
| PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { |
| if (SrcReg > PPC::VSRp15) |
| SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; |
| else |
| SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; |
| if (DestReg > PPC::VSRp15) |
| DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; |
| else |
| DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; |
| BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). |
| addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). |
| addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); |
| return; |
| } |
| else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::CROR; |
| else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::EVOR; |
| else if ((PPC::ACCRCRegClass.contains(DestReg) || |
| PPC::UACCRCRegClass.contains(DestReg)) && |
| (PPC::ACCRCRegClass.contains(SrcReg) || |
| PPC::UACCRCRegClass.contains(SrcReg))) { |
| // If primed, de-prime the source register, copy the individual registers |
| // and prime the destination if needed. The vector subregisters are |
| // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the |
| // source is primed, we need to re-prime it after the copy as well. |
| PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); |
| bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); |
| bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); |
| MCRegister VSLSrcReg = |
| PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; |
| MCRegister VSLDestReg = |
| PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; |
| if (SrcPrimed) |
| BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); |
| for (unsigned Idx = 0; Idx < 4; Idx++) |
| BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) |
| .addReg(VSLSrcReg + Idx) |
| .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); |
| if (DestPrimed) |
| BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); |
| if (SrcPrimed && !KillSrc) |
| BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); |
| return; |
| } else if (PPC::G8pRCRegClass.contains(DestReg) && |
| PPC::G8pRCRegClass.contains(SrcReg)) { |
| // TODO: Handle G8RC to G8pRC (and vice versa) copy. |
| unsigned DestRegIdx = DestReg - PPC::G8p0; |
| MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; |
| MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; |
| unsigned SrcRegIdx = SrcReg - PPC::G8p0; |
| MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; |
| MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; |
| BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) |
| .addReg(SrcRegSub0) |
| .addReg(SrcRegSub0, getKillRegState(KillSrc)); |
| BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) |
| .addReg(SrcRegSub1) |
| .addReg(SrcRegSub1, getKillRegState(KillSrc)); |
| return; |
| } else |
| llvm_unreachable("Impossible reg-to-reg copy"); |
| |
| const MCInstrDesc &MCID = get(Opc); |
| if (MCID.getNumOperands() == 3) |
| BuildMI(MBB, I, DL, MCID, DestReg) |
| .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| else |
| BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| |
| unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { |
| int OpcodeIndex = 0; |
| |
| if (PPC::GPRCRegClass.hasSubClassEq(RC) || |
| PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Int4Spill; |
| } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || |
| PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Int8Spill; |
| } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Float8Spill; |
| } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_Float4Spill; |
| } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_SPESpill; |
| } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_CRSpill; |
| } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_CRBitSpill; |
| } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VRVectorSpill; |
| } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VSXVectorSpill; |
| } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VectorFloat8Spill; |
| } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_VectorFloat4Spill; |
| } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_SpillToVSR; |
| } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_AccumulatorSpill; |
| } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_UAccumulatorSpill; |
| } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_WAccumulatorSpill; |
| } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { |
| assert(Subtarget.pairedVectorMemops() && |
| "Register unexpected when paired memops are disabled."); |
| OpcodeIndex = SOK_PairedVecSpill; |
| } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { |
| OpcodeIndex = SOK_PairedG8Spill; |
| } else { |
| llvm_unreachable("Unknown regclass!"); |
| } |
| return OpcodeIndex; |
| } |
| |
| unsigned |
| PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { |
| ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); |
| return OpcodesForSpill[getSpillIndex(RC)]; |
| } |
| |
| unsigned |
| PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { |
| ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); |
| return OpcodesForSpill[getSpillIndex(RC)]; |
| } |
| |
| void PPCInstrInfo::StoreRegToStackSlot( |
| MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr *> &NewMIs) const { |
| unsigned Opcode = getStoreOpcodeForSpill(RC); |
| DebugLoc DL; |
| |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setHasSpills(); |
| |
| NewMIs.push_back(addFrameReference( |
| BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), |
| FrameIdx)); |
| |
| if (PPC::CRRCRegClass.hasSubClassEq(RC) || |
| PPC::CRBITRCRegClass.hasSubClassEq(RC)) |
| FuncInfo->setSpillsCR(); |
| |
| if (isXFormMemOp(Opcode)) |
| FuncInfo->setHasNonRISpills(); |
| } |
| |
| void PPCInstrInfo::storeRegToStackSlotNoUpd( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, |
| bool isKill, int FrameIdx, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr *, 4> NewMIs; |
| |
| StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); |
| |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FrameIdx), |
| MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlign(FrameIdx)); |
| NewMIs.back()->addMemOperand(MF, MMO); |
| } |
| |
| void PPCInstrInfo::storeRegToStackSlot( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, |
| bool isKill, int FrameIdx, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, Register VReg) const { |
| // We need to avoid a situation in which the value from a VRRC register is |
| // spilled using an Altivec instruction and reloaded into a VSRC register |
| // using a VSX instruction. The issue with this is that the VSX |
| // load/store instructions swap the doublewords in the vector and the Altivec |
| // ones don't. The register classes on the spill/reload may be different if |
| // the register is defined using an Altivec instruction and is then used by a |
| // VSX instruction. |
| RC = updatedRC(RC); |
| storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); |
| } |
| |
| void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr *> &NewMIs) |
| const { |
| unsigned Opcode = getLoadOpcodeForSpill(RC); |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), |
| FrameIdx)); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| if (PPC::CRRCRegClass.hasSubClassEq(RC) || |
| PPC::CRBITRCRegClass.hasSubClassEq(RC)) |
| FuncInfo->setSpillsCR(); |
| |
| if (isXFormMemOp(Opcode)) |
| FuncInfo->setHasNonRISpills(); |
| } |
| |
| void PPCInstrInfo::loadRegFromStackSlotNoUpd( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, |
| int FrameIdx, const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| DebugLoc DL; |
| if (MI != MBB.end()) DL = MI->getDebugLoc(); |
| |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setHasSpills(); |
| |
| LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); |
| |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FrameIdx), |
| MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlign(FrameIdx)); |
| NewMIs.back()->addMemOperand(MF, MMO); |
| } |
| |
| void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| Register DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI, |
| Register VReg) const { |
| // We need to avoid a situation in which the value from a VRRC register is |
| // spilled using an Altivec instruction and reloaded into a VSRC register |
| // using a VSX instruction. The issue with this is that the VSX |
| // load/store instructions swap the doublewords in the vector and the Altivec |
| // ones don't. The register classes on the spill/reload may be different if |
| // the register is defined using an Altivec instruction and is then used by a |
| // VSX instruction. |
| RC = updatedRC(RC); |
| |
| loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); |
| } |
| |
| bool PPCInstrInfo:: |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); |
| if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) |
| Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); |
| else |
| // Leave the CR# the same, but invert the condition. |
| Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); |
| return false; |
| } |
| |
| // For some instructions, it is legal to fold ZERO into the RA register field. |
| // This function performs that fold by replacing the operand with PPC::ZERO, |
| // it does not consider whether the load immediate zero is no longer in use. |
| bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| Register Reg) const { |
| // A zero immediate should always be loaded with a single li. |
| unsigned DefOpc = DefMI.getOpcode(); |
| if (DefOpc != PPC::LI && DefOpc != PPC::LI8) |
| return false; |
| if (!DefMI.getOperand(1).isImm()) |
| return false; |
| if (DefMI.getOperand(1).getImm() != 0) |
| return false; |
| |
| // Note that we cannot here invert the arguments of an isel in order to fold |
| // a ZERO into what is presented as the second argument. All we have here |
| // is the condition bit, and that might come from a CR-logical bit operation. |
| |
| const MCInstrDesc &UseMCID = UseMI.getDesc(); |
| |
| // Only fold into real machine instructions. |
| if (UseMCID.isPseudo()) |
| return false; |
| |
| // We need to find which of the User's operands is to be folded, that will be |
| // the operand that matches the given register ID. |
| unsigned UseIdx; |
| for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) |
| if (UseMI.getOperand(UseIdx).isReg() && |
| UseMI.getOperand(UseIdx).getReg() == Reg) |
| break; |
| |
| assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); |
| assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); |
| |
| const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; |
| |
| // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 |
| // register (which might also be specified as a pointer class kind). |
| if (UseInfo->isLookupPtrRegClass()) { |
| if (UseInfo->RegClass /* Kind */ != 1) |
| return false; |
| } else { |
| if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && |
| UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) |
| return false; |
| } |
| |
| // Make sure this is not tied to an output register (or otherwise |
| // constrained). This is true for ST?UX registers, for example, which |
| // are tied to their output registers. |
| if (UseInfo->Constraints != 0) |
| return false; |
| |
| MCRegister ZeroReg; |
| if (UseInfo->isLookupPtrRegClass()) { |
| bool isPPC64 = Subtarget.isPPC64(); |
| ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; |
| } else { |
| ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? |
| PPC::ZERO8 : PPC::ZERO; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Folded immediate zero for: "); |
| LLVM_DEBUG(UseMI.dump()); |
| UseMI.getOperand(UseIdx).setReg(ZeroReg); |
| LLVM_DEBUG(dbgs() << "Into: "); |
| LLVM_DEBUG(UseMI.dump()); |
| return true; |
| } |
| |
| // Folds zero into instructions which have a load immediate zero as an operand |
| // but also recognize zero as immediate zero. If the definition of the load |
| // has no more users it is deleted. |
| bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| Register Reg, MachineRegisterInfo *MRI) const { |
| bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); |
| if (MRI->use_nodbg_empty(Reg)) |
| DefMI.eraseFromParent(); |
| return Changed; |
| } |
| |
| static bool MBBDefinesCTR(MachineBasicBlock &MBB) { |
| for (MachineInstr &MI : MBB) |
| if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8)) |
| return true; |
| return false; |
| } |
| |
| // We should make sure that, if we're going to predicate both sides of a |
| // condition (a diamond), that both sides don't define the counter register. We |
| // can predicate counter-decrement-based branches, but while that predicates |
| // the branching, it does not predicate the counter decrement. If we tried to |
| // merge the triangle into one predicated block, we'd decrement the counter |
| // twice. |
| bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| unsigned NumT, unsigned ExtraT, |
| MachineBasicBlock &FMBB, |
| unsigned NumF, unsigned ExtraF, |
| BranchProbability Probability) const { |
| return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); |
| } |
| |
| |
| bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { |
| // The predicated branches are identified by their type, not really by the |
| // explicit presence of a predicate. Furthermore, some of them can be |
| // predicated more than once. Because if conversion won't try to predicate |
| // any instruction which already claims to be predicated (by returning true |
| // here), always return false. In doing so, we let isPredicable() be the |
| // final word on whether not the instruction can be (further) predicated. |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion |
| // across them, since some FP operations may change content of FPSCR. |
| // TODO: Model FPSCR in PPC instruction definitions and remove the workaround |
| if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) |
| return true; |
| return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); |
| } |
| |
| bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, |
| ArrayRef<MachineOperand> Pred) const { |
| unsigned OpC = MI.getOpcode(); |
| if (OpC == PPC::BLR || OpC == PPC::BLR8) { |
| if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { |
| bool isPPC64 = Subtarget.isPPC64(); |
| MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) |
| : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); |
| // Need add Def and Use for CTR implicit operand. |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(Pred[1].getReg(), RegState::Implicit) |
| .addReg(Pred[1].getReg(), RegState::ImplicitDefine); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| MI.setDesc(get(PPC::BCLR)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| MI.setDesc(get(PPC::BCLRn)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else { |
| MI.setDesc(get(PPC::BCCLR)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .add(Pred[1]); |
| } |
| |
| return true; |
| } else if (OpC == PPC::B) { |
| if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { |
| bool isPPC64 = Subtarget.isPPC64(); |
| MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) |
| : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); |
| // Need add Def and Use for CTR implicit operand. |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(Pred[1].getReg(), RegState::Implicit) |
| .addReg(Pred[1].getReg(), RegState::ImplicitDefine); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); |
| MI.removeOperand(0); |
| |
| MI.setDesc(get(PPC::BC)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .add(Pred[1]) |
| .addMBB(MBB); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); |
| MI.removeOperand(0); |
| |
| MI.setDesc(get(PPC::BCn)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .add(Pred[1]) |
| .addMBB(MBB); |
| } else { |
| MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); |
| MI.removeOperand(0); |
| |
| MI.setDesc(get(PPC::BCC)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .add(Pred[1]) |
| .addMBB(MBB); |
| } |
| |
| return true; |
| } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || |
| OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || |
| OpC == PPC::BCTRL8_RM) { |
| if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) |
| llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); |
| |
| bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || |
| OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) |
| : (setLR ? PPC::BCCTRL : PPC::BCCTR))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) |
| : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); |
| } else { |
| MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) |
| : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .add(Pred[1]); |
| } |
| |
| // Need add Def and Use for LR implicit operand. |
| if (setLR) |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) |
| .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); |
| if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addReg(PPC::RM, RegState::ImplicitDefine); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| ArrayRef<MachineOperand> Pred2) const { |
| assert(Pred1.size() == 2 && "Invalid PPC first predicate"); |
| assert(Pred2.size() == 2 && "Invalid PPC second predicate"); |
| |
| if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) |
| return false; |
| if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) |
| return false; |
| |
| // P1 can only subsume P2 if they test the same condition register. |
| if (Pred1[1].getReg() != Pred2[1].getReg()) |
| return false; |
| |
| PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); |
| PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); |
| |
| if (P1 == P2) |
| return true; |
| |
| // Does P1 subsume P2, e.g. GE subsumes GT. |
| if (P1 == PPC::PRED_LE && |
| (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) |
| return true; |
| if (P1 == PPC::PRED_GE && |
| (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) |
| return true; |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, |
| std::vector<MachineOperand> &Pred, |
| bool SkipDead) const { |
| // Note: At the present time, the contents of Pred from this function is |
| // unused by IfConversion. This implementation follows ARM by pushing the |
| // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of |
| // predicate, instructions defining CTR or CTR8 are also included as |
| // predicate-defining instructions. |
| |
| const TargetRegisterClass *RCs[] = |
| { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, |
| &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; |
| |
| bool Found = false; |
| for (const MachineOperand &MO : MI.operands()) { |
| for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { |
| const TargetRegisterClass *RC = RCs[c]; |
| if (MO.isReg()) { |
| if (MO.isDef() && RC->contains(MO.getReg())) { |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } else if (MO.isRegMask()) { |
| for (MCPhysReg R : *RC) |
| if (MO.clobbersPhysReg(R)) { |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } |
| } |
| } |
| |
| return Found; |
| } |
| |
| bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| Register &SrcReg2, int64_t &Mask, |
| int64_t &Value) const { |
| unsigned Opc = MI.getOpcode(); |
| |
| switch (Opc) { |
| default: return false; |
| case PPC::CMPWI: |
| case PPC::CMPLWI: |
| case PPC::CMPDI: |
| case PPC::CMPLDI: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = 0; |
| Value = MI.getOperand(2).getImm(); |
| Mask = 0xFFFF; |
| return true; |
| case PPC::CMPW: |
| case PPC::CMPLW: |
| case PPC::CMPD: |
| case PPC::CMPLD: |
| case PPC::FCMPUS: |
| case PPC::FCMPUD: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = MI.getOperand(2).getReg(); |
| Value = 0; |
| Mask = 0; |
| return true; |
| } |
| } |
| |
| bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, |
| Register SrcReg2, int64_t Mask, |
| int64_t Value, |
| const MachineRegisterInfo *MRI) const { |
| if (DisableCmpOpt) |
| return false; |
| |
| int OpC = CmpInstr.getOpcode(); |
| Register CRReg = CmpInstr.getOperand(0).getReg(); |
| |
| // FP record forms set CR1 based on the exception status bits, not a |
| // comparison with zero. |
| if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| // The record forms set the condition register based on a signed comparison |
| // with zero (so says the ISA manual). This is not as straightforward as it |
| // seems, however, because this is always a 64-bit comparison on PPC64, even |
| // for instructions that are 32-bit in nature (like slw for example). |
| // So, on PPC32, for unsigned comparisons, we can use the record forms only |
| // for equality checks (as those don't depend on the sign). On PPC64, |
| // we are restricted to equality for unsigned 64-bit comparisons and for |
| // signed 32-bit comparisons the applicability is more restricted. |
| bool isPPC64 = Subtarget.isPPC64(); |
| bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; |
| bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; |
| bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; |
| |
| // Look through copies unless that gets us to a physical register. |
| Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); |
| if (ActualSrc.isVirtual()) |
| SrcReg = ActualSrc; |
| |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) return false; |
| |
| bool equalityOnly = false; |
| bool noSub = false; |
| if (isPPC64) { |
| if (is32BitSignedCompare) { |
| // We can perform this optimization only if SrcReg is sign-extending. |
| if (isSignExtended(SrcReg, MRI)) |
| noSub = true; |
| else |
| return false; |
| } else if (is32BitUnsignedCompare) { |
| // We can perform this optimization, equality only, if SrcReg is |
| // zero-extending. |
| if (isZeroExtended(SrcReg, MRI)) { |
| noSub = true; |
| equalityOnly = true; |
| } else |
| return false; |
| } else |
| equalityOnly = is64BitUnsignedCompare; |
| } else |
| equalityOnly = is32BitUnsignedCompare; |
| |
| if (equalityOnly) { |
| // We need to check the uses of the condition register in order to reject |
| // non-equality comparisons. |
| for (MachineRegisterInfo::use_instr_iterator |
| I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); |
| I != IE; ++I) { |
| MachineInstr *UseMI = &*I; |
| if (UseMI->getOpcode() == PPC::BCC) { |
| PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| // We ignore hint bits when checking for non-equality comparisons. |
| if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) |
| return false; |
| } else if (UseMI->getOpcode() == PPC::ISEL || |
| UseMI->getOpcode() == PPC::ISEL8) { |
| unsigned SubIdx = UseMI->getOperand(3).getSubReg(); |
| if (SubIdx != PPC::sub_eq) |
| return false; |
| } else |
| return false; |
| } |
| } |
| |
| MachineBasicBlock::iterator I = CmpInstr; |
| |
| // Scan forward to find the first use of the compare. |
| for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; |
| ++I) { |
| bool FoundUse = false; |
| for (MachineRegisterInfo::use_instr_iterator |
| J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); |
| J != JE; ++J) |
| if (&*J == &*I) { |
| FoundUse = true; |
| break; |
| } |
| |
| if (FoundUse) |
| break; |
| } |
| |
| SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; |
| SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; |
| |
| // There are two possible candidates which can be changed to set CR[01]. |
| // One is MI, the other is a SUB instruction. |
| // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). |
| MachineInstr *Sub = nullptr; |
| if (SrcReg2 != 0) |
| // MI is not a candidate for CMPrr. |
| MI = nullptr; |
| // FIXME: Conservatively refuse to convert an instruction which isn't in the |
| // same BB as the comparison. This is to allow the check below to avoid calls |
| // (and other explicit clobbers); instead we should really check for these |
| // more explicitly (in at least a few predecessors). |
| else if (MI->getParent() != CmpInstr.getParent()) |
| return false; |
| else if (Value != 0) { |
| // The record-form instructions set CR bit based on signed comparison |
| // against 0. We try to convert a compare against 1 or -1 into a compare |
| // against 0 to exploit record-form instructions. For example, we change |
| // the condition "greater than -1" into "greater than or equal to 0" |
| // and "less than 1" into "less than or equal to 0". |
| |
| // Since we optimize comparison based on a specific branch condition, |
| // we don't optimize if condition code is used by more than once. |
| if (equalityOnly || !MRI->hasOneUse(CRReg)) |
| return false; |
| |
| MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); |
| if (UseMI->getOpcode() != PPC::BCC) |
| return false; |
| |
| PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| unsigned PredHint = PPC::getPredicateHint(Pred); |
| int16_t Immed = (int16_t)Value; |
| |
| // When modifying the condition in the predicate, we propagate hint bits |
| // from the original predicate to the new one. |
| if (Immed == -1 && PredCond == PPC::PRED_GT) |
| // We convert "greater than -1" into "greater than or equal to 0", |
| // since we are assuming signed comparison by !equalityOnly |
| Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); |
| else if (Immed == -1 && PredCond == PPC::PRED_LE) |
| // We convert "less than or equal to -1" into "less than 0". |
| Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); |
| else if (Immed == 1 && PredCond == PPC::PRED_LT) |
| // We convert "less than 1" into "less than or equal to 0". |
| Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); |
| else if (Immed == 1 && PredCond == PPC::PRED_GE) |
| // We convert "greater than or equal to 1" into "greater than 0". |
| Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); |
| else |
| return false; |
| |
| // Convert the comparison and its user to a compare against zero with the |
| // appropriate predicate on the branch. Zero comparison might provide |
| // optimization opportunities post-RA (see optimization in |
| // PPCPreEmitPeephole.cpp). |
| UseMI->getOperand(0).setImm(Pred); |
| CmpInstr.getOperand(2).setImm(0); |
| } |
| |
| // Search for Sub. |
| --I; |
| |
| // Get ready to iterate backward from CmpInstr. |
| MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); |
| |
| for (; I != E && !noSub; --I) { |
| const MachineInstr &Instr = *I; |
| unsigned IOpC = Instr.getOpcode(); |
| |
| if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || |
| Instr.readsRegister(PPC::CR0, TRI))) |
| // This instruction modifies or uses the record condition register after |
| // the one we want to change. While we could do this transformation, it |
| // would likely not be profitable. This transformation removes one |
| // instruction, and so even forcing RA to generate one move probably |
| // makes it unprofitable. |
| return false; |
| |
| // Check whether CmpInstr can be made redundant by the current instruction. |
| if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || |
| OpC == PPC::CMPD || OpC == PPC::CMPLD) && |
| (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && |
| ((Instr.getOperand(1).getReg() == SrcReg && |
| Instr.getOperand(2).getReg() == SrcReg2) || |
| (Instr.getOperand(1).getReg() == SrcReg2 && |
| Instr.getOperand(2).getReg() == SrcReg))) { |
| Sub = &*I; |
| break; |
| } |
| |
| if (I == B) |
| // The 'and' is below the comparison instruction. |
| return false; |
| } |
| |
| // Return false if no candidates exist. |
| if (!MI && !Sub) |
| return false; |
| |
| // The single candidate is called MI. |
| if (!MI) MI = Sub; |
| |
| int NewOpC = -1; |
| int MIOpC = MI->getOpcode(); |
| if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || |
| MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) |
| NewOpC = MIOpC; |
| else { |
| NewOpC = PPC::getRecordFormOpcode(MIOpC); |
| if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) |
| NewOpC = MIOpC; |
| } |
| |
| // FIXME: On the non-embedded POWER architectures, only some of the record |
| // forms are fast, and we should use only the fast ones. |
| |
| // The defining instruction has a record form (or is already a record |
| // form). It is possible, however, that we'll need to reverse the condition |
| // code of the users. |
| if (NewOpC == -1) |
| return false; |
| |
| // This transformation should not be performed if `nsw` is missing and is not |
| // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in |
| // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in |
| // CRReg can reflect if compared values are equal, this optz is still valid. |
| if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && |
| Sub && !Sub->getFlag(MachineInstr::NoSWrap)) |
| return false; |
| |
| // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP |
| // needs to be updated to be based on SUB. Push the condition code |
| // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the |
| // condition code of these operands will be modified. |
| // Here, Value == 0 means we haven't converted comparison against 1 or -1 to |
| // comparison against 0, which may modify predicate. |
| bool ShouldSwap = false; |
| if (Sub && Value == 0) { |
| ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && |
| Sub->getOperand(2).getReg() == SrcReg; |
| |
| // The operands to subf are the opposite of sub, so only in the fixed-point |
| // case, invert the order. |
| ShouldSwap = !ShouldSwap; |
| } |
| |
| if (ShouldSwap) |
| for (MachineRegisterInfo::use_instr_iterator |
| I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); |
| I != IE; ++I) { |
| MachineInstr *UseMI = &*I; |
| if (UseMI->getOpcode() == PPC::BCC) { |
| PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| assert((!equalityOnly || |
| PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && |
| "Invalid predicate for equality-only optimization"); |
| (void)PredCond; // To suppress warning in release build. |
| PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), |
| PPC::getSwappedPredicate(Pred))); |
| } else if (UseMI->getOpcode() == PPC::ISEL || |
| UseMI->getOpcode() == PPC::ISEL8) { |
| unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); |
| assert((!equalityOnly || NewSubReg == PPC::sub_eq) && |
| "Invalid CR bit for equality-only optimization"); |
| |
| if (NewSubReg == PPC::sub_lt) |
| NewSubReg = PPC::sub_gt; |
| else if (NewSubReg == PPC::sub_gt) |
| NewSubReg = PPC::sub_lt; |
| |
| SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), |
| NewSubReg)); |
| } else // We need to abort on a user we don't understand. |
| return false; |
| } |
| assert(!(Value != 0 && ShouldSwap) && |
| "Non-zero immediate support and ShouldSwap" |
| "may conflict in updating predicate"); |
| |
| // Create a new virtual register to hold the value of the CR set by the |
| // record-form instruction. If the instruction was not previously in |
| // record form, then set the kill flag on the CR. |
| CmpInstr.eraseFromParent(); |
| |
| MachineBasicBlock::iterator MII = MI; |
| BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), |
| get(TargetOpcode::COPY), CRReg) |
| .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); |
| |
| // Even if CR0 register were dead before, it is alive now since the |
| // instruction we just built uses it. |
| MI->clearRegisterDeads(PPC::CR0); |
| |
| if (MIOpC != NewOpC) { |
| // We need to be careful here: we're replacing one instruction with |
| // another, and we need to make sure that we get all of the right |
| // implicit uses and defs. On the other hand, the caller may be holding |
| // an iterator to this instruction, and so we can't delete it (this is |
| // specifically the case if this is the instruction directly after the |
| // compare). |
| |
| // Rotates are expensive instructions. If we're emitting a record-form |
| // rotate that can just be an andi/andis, we should just emit that. |
| if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { |
| Register GPRRes = MI->getOperand(0).getReg(); |
| int64_t SH = MI->getOperand(2).getImm(); |
| int64_t MB = MI->getOperand(3).getImm(); |
| int64_t ME = MI->getOperand(4).getImm(); |
| // We can only do this if both the start and end of the mask are in the |
| // same halfword. |
| bool MBInLoHWord = MB >= 16; |
| bool MEInLoHWord = ME >= 16; |
| uint64_t Mask = ~0LLU; |
| |
| if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { |
| Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); |
| // The mask value needs to shift right 16 if we're emitting andis. |
| Mask >>= MBInLoHWord ? 0 : 16; |
| NewOpC = MIOpC == PPC::RLWINM |
| ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) |
| : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); |
| } else if (MRI->use_empty(GPRRes) && (ME == 31) && |
| (ME - MB + 1 == SH) && (MB >= 16)) { |
| // If we are rotating by the exact number of bits as are in the mask |
| // and the mask is in the least significant bits of the register, |
| // that's just an andis. (as long as the GPR result has no uses). |
| Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); |
| Mask >>= 16; |
| NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; |
| } |
| // If we've set the mask, we can transform. |
| if (Mask != ~0LLU) { |
| MI->removeOperand(4); |
| MI->removeOperand(3); |
| MI->getOperand(2).setImm(Mask); |
| NumRcRotatesConvertedToRcAnd++; |
| } |
| } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { |
| int64_t MB = MI->getOperand(3).getImm(); |
| if (MB >= 48) { |
| uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; |
| NewOpC = PPC::ANDI8_rec; |
| MI->removeOperand(3); |
| MI->getOperand(2).setImm(Mask); |
| NumRcRotatesConvertedToRcAnd++; |
| } |
| } |
| |
| const MCInstrDesc &NewDesc = get(NewOpC); |
| MI->setDesc(NewDesc); |
| |
| for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { |
| if (!MI->definesRegister(ImpDef)) { |
| MI->addOperand(*MI->getParent()->getParent(), |
| MachineOperand::CreateReg(ImpDef, true, true)); |
| } |
| } |
| for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { |
| if (!MI->readsRegister(ImpUse)) { |
| MI->addOperand(*MI->getParent()->getParent(), |
| MachineOperand::CreateReg(ImpUse, false, true)); |
| } |
| } |
| } |
| assert(MI->definesRegister(PPC::CR0) && |
| "Record-form instruction does not define cr0?"); |
| |
| // Modify the condition code of operands in OperandsToUpdate. |
| // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to |
| // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. |
| for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) |
| PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); |
| |
| for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) |
| SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); |
| |
| return true; |
| } |
| |
| bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { |
| MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); |
| if (MRI->isSSA()) |
| return false; |
| |
| Register SrcReg, SrcReg2; |
| int64_t CmpMask, CmpValue; |
| if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue)) |
| return false; |
| |
| // Try to optimize the comparison against 0. |
| if (CmpValue || !CmpMask || SrcReg2) |
| return false; |
| |
| // The record forms set the condition register based on a signed comparison |
| // with zero (see comments in optimizeCompareInstr). Since we can't do the |
| // equality checks in post-RA, we are more restricted on a unsigned |
| // comparison. |
| unsigned Opc = CmpMI.getOpcode(); |
| if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) |
| return false; |
| |
| // The record forms are always based on a 64-bit comparison on PPC64 |
| // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit |
| // comparison. Since we can't do the equality checks in post-RA, we bail out |
| // the case. |
| if (Subtarget.isPPC64() && Opc == PPC::CMPWI) |
| return false; |
| |
| // CmpMI can't be deleted if it has implicit def. |
| if (CmpMI.hasImplicitDef()) |
| return false; |
| |
| bool SrcRegHasOtherUse = false; |
| MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse); |
| if (!SrcMI || !SrcMI->definesRegister(SrcReg)) |
| return false; |
| |
| MachineOperand RegMO = CmpMI.getOperand(0); |
| Register CRReg = RegMO.getReg(); |
| if (CRReg != PPC::CR0) |
| return false; |
| |
| // Make sure there is no def/use of CRReg between SrcMI and CmpMI. |
| bool SeenUseOfCRReg = false; |
| bool IsCRRegKilled = false; |
| if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled, |
| SeenUseOfCRReg) || |
| SrcMI->definesRegister(CRReg) || SeenUseOfCRReg) |
| return false; |
| |
| int SrcMIOpc = SrcMI->getOpcode(); |
| int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc); |
| if (NewOpC == -1) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Replace Instr: "); |
| LLVM_DEBUG(SrcMI->dump()); |
| |
| const MCInstrDesc &NewDesc = get(NewOpC); |
| SrcMI->setDesc(NewDesc); |
| MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) |
| .addReg(CRReg, RegState::ImplicitDefine); |
| SrcMI->clearRegisterDeads(CRReg); |
| |
| // Fix up killed/dead flag for SrcReg after transformation. |
| if (SrcRegHasOtherUse || CmpMI.getOperand(1).isKill()) |
| fixupIsDeadOrKill(SrcMI, &CmpMI, SrcReg); |
| |
| assert(SrcMI->definesRegister(PPC::CR0) && |
| "Record-form instruction does not define cr0?"); |
| |
| LLVM_DEBUG(dbgs() << "with: "); |
| LLVM_DEBUG(SrcMI->dump()); |
| LLVM_DEBUG(dbgs() << "Delete dead instruction: "); |
| LLVM_DEBUG(CmpMI.dump()); |
| return true; |
| } |
| |
| bool PPCInstrInfo::getMemOperandsWithOffsetWidth( |
| const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, |
| int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, |
| const TargetRegisterInfo *TRI) const { |
| const MachineOperand *BaseOp; |
| OffsetIsScalable = false; |
| if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) |
| return false; |
| BaseOps.push_back(BaseOp); |
| return true; |
| } |
| |
| static bool isLdStSafeToCluster(const MachineInstr &LdSt, |
| const TargetRegisterInfo *TRI) { |
| // If this is a volatile load/store, don't mess with it. |
| if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) |
| return false; |
| |
| if (LdSt.getOperand(2).isFI()) |
| return true; |
| |
| assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); |
| // Can't cluster if the instruction modifies the base register |
| // or it is update form. e.g. ld r2,3(r2) |
| if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) |
| return false; |
| |
| return true; |
| } |
| |
| // Only cluster instruction pair that have the same opcode, and they are |
| // clusterable according to PowerPC specification. |
| static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, |
| const PPCSubtarget &Subtarget) { |
| switch (FirstOpc) { |
| default: |
| return false; |
| case PPC::STD: |
| case PPC::STFD: |
| case PPC::STXSD: |
| case PPC::DFSTOREf64: |
| return FirstOpc == SecondOpc; |
| // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with |
| // 32bit and 64bit instruction selection. They are clusterable pair though |
| // they are different opcode. |
| case PPC::STW: |
| case PPC::STW8: |
| return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; |
| } |
| } |
| |
| bool PPCInstrInfo::shouldClusterMemOps( |
| ArrayRef<const MachineOperand *> BaseOps1, |
| ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, |
| unsigned NumBytes) const { |
| |
| assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); |
| const MachineOperand &BaseOp1 = *BaseOps1.front(); |
| const MachineOperand &BaseOp2 = *BaseOps2.front(); |
| assert((BaseOp1.isReg() || BaseOp1.isFI()) && |
| "Only base registers and frame indices are supported."); |
| |
| // The NumLoads means the number of loads that has been clustered. |
| // Don't cluster memory op if there are already two ops clustered at least. |
| if (NumLoads > 2) |
| return false; |
| |
| // Cluster the load/store only when they have the same base |
| // register or FI. |
| if ((BaseOp1.isReg() != BaseOp2.isReg()) || |
| (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || |
| (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) |
| return false; |
| |
| // Check if the load/store are clusterable according to the PowerPC |
| // specification. |
| const MachineInstr &FirstLdSt = *BaseOp1.getParent(); |
| const MachineInstr &SecondLdSt = *BaseOp2.getParent(); |
| unsigned FirstOpc = FirstLdSt.getOpcode(); |
| unsigned SecondOpc = SecondLdSt.getOpcode(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| // Cluster the load/store only when they have the same opcode, and they are |
| // clusterable opcode according to PowerPC specification. |
| if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) |
| return false; |
| |
| // Can't cluster load/store that have ordered or volatile memory reference. |
| if (!isLdStSafeToCluster(FirstLdSt, TRI) || |
| !isLdStSafeToCluster(SecondLdSt, TRI)) |
| return false; |
| |
| int64_t Offset1 = 0, Offset2 = 0; |
| unsigned Width1 = 0, Width2 = 0; |
| const MachineOperand *Base1 = nullptr, *Base2 = nullptr; |
| if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || |
| !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || |
| Width1 != Width2) |
| return false; |
| |
| assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && |
| "getMemOperandWithOffsetWidth return incorrect base op"); |
| // The caller should already have ordered FirstMemOp/SecondMemOp by offset. |
| assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); |
| return Offset1 + Width1 == Offset2; |
| } |
| |
| /// GetInstSize - Return the number of bytes of code the specified |
| /// instruction may be. This returns the maximum number of bytes. |
| /// |
| unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
| unsigned Opcode = MI.getOpcode(); |
| |
| if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const char *AsmStr = MI.getOperand(0).getSymbolName(); |
| return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); |
| } else if (Opcode == TargetOpcode::STACKMAP) { |
| StackMapOpers Opers(&MI); |
| return Opers.getNumPatchBytes(); |
| } else if (Opcode == TargetOpcode::PATCHPOINT) { |
| PatchPointOpers Opers(&MI); |
| return Opers.getNumPatchBytes(); |
| } else { |
| return get(Opcode).getSize(); |
| } |
| } |
| |
| std::pair<unsigned, unsigned> |
| PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| const unsigned Mask = PPCII::MO_ACCESS_MASK; |
| return std::make_pair(TF & Mask, TF & ~Mask); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| using namespace PPCII; |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_LO, "ppc-lo"}, |
| {MO_HA, "ppc-ha"}, |
| {MO_TPREL_LO, "ppc-tprel-lo"}, |
| {MO_TPREL_HA, "ppc-tprel-ha"}, |
| {MO_DTPREL_LO, "ppc-dtprel-lo"}, |
| {MO_TLSLD_LO, "ppc-tlsld-lo"}, |
| {MO_TOC_LO, "ppc-toc-lo"}, |
| {MO_TLS, "ppc-tls"}}; |
| return ArrayRef(TargetFlags); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { |
| using namespace PPCII; |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_PLT, "ppc-plt"}, |
| {MO_PIC_FLAG, "ppc-pic"}, |
| {MO_PCREL_FLAG, "ppc-pcrel"}, |
| {MO_GOT_FLAG, "ppc-got"}, |
| {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, |
| {MO_TLSGD_FLAG, "ppc-tlsgd"}, |
| {MO_TLSLD_FLAG, "ppc-tlsld"}, |
| {MO_TPREL_FLAG, "ppc-tprel"}, |
| {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, |
| {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, |
| {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, |
| {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; |
| return ArrayRef(TargetFlags); |
| } |
| |
| // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. |
| // The VSX versions have the advantage of a full 64-register target whereas |
| // the FP ones have the advantage of lower latency and higher throughput. So |
| // what we are after is using the faster instructions in low register pressure |
| // situations and using the larger register file in high register pressure |
| // situations. |
| bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { |
| unsigned UpperOpcode, LowerOpcode; |
| switch (MI.getOpcode()) { |
| case PPC::DFLOADf32: |
| UpperOpcode = PPC::LXSSP; |
| LowerOpcode = PPC::LFS; |
| break; |
| case PPC::DFLOADf64: |
| UpperOpcode = PPC::LXSD; |
| LowerOpcode = PPC::LFD; |
| break; |
| case PPC::DFSTOREf32: |
| UpperOpcode = PPC::STXSSP; |
| LowerOpcode = PPC::STFS; |
| break; |
| case PPC::DFSTOREf64: |
| UpperOpcode = PPC::STXSD; |
| LowerOpcode = PPC::STFD; |
| break; |
| case PPC::XFLOADf32: |
| UpperOpcode = PPC::LXSSPX; |
| LowerOpcode = PPC::LFSX; |
| break; |
| case PPC::XFLOADf64: |
| UpperOpcode = PPC::LXSDX; |
| LowerOpcode = PPC::LFDX; |
| break; |
| case PPC::XFSTOREf32: |
| UpperOpcode = PPC::STXSSPX; |
| LowerOpcode = PPC::STFSX; |
| break; |
| case PPC::XFSTOREf64: |
| UpperOpcode = PPC::STXSDX; |
| LowerOpcode = PPC::STFDX; |
| break; |
| case PPC::LIWAX: |
| UpperOpcode = PPC::LXSIWAX; |
| LowerOpcode = PPC::LFIWAX; |
| break; |
| case PPC::LIWZX: |
| UpperOpcode = PPC::LXSIWZX; |
| LowerOpcode = PPC::LFIWZX; |
| break; |
| case PPC::STIWX: |
| UpperOpcode = PPC::STXSIWX; |
| LowerOpcode = PPC::STFIWX; |
| break; |
| default: |
| llvm_unreachable("Unknown Operation!"); |
| } |
| |
| Register TargetReg = MI.getOperand(0).getReg(); |
| unsigned Opcode; |
| if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || |
| (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) |
| Opcode = LowerOpcode; |
| else |
| Opcode = UpperOpcode; |
| MI.setDesc(get(Opcode)); |
| return true; |
| } |
| |
| static bool isAnImmediateOperand(const MachineOperand &MO) { |
| return MO.isCPI() || MO.isGlobal() || MO.isImm(); |
| } |
| |
| bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| auto &MBB = *MI.getParent(); |
| auto DL = MI.getDebugLoc(); |
| |
| switch (MI.getOpcode()) { |
| case PPC::BUILD_UACC: { |
| MCRegister ACC = MI.getOperand(0).getReg(); |
| MCRegister UACC = MI.getOperand(1).getReg(); |
| if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { |
| MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; |
| MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; |
| // FIXME: This can easily be improved to look up to the top of the MBB |
| // to see if the inputs are XXLOR's. If they are and SrcReg is killed, |
| // we can just re-target any such XXLOR's to DstVSR + offset. |
| for (int VecNo = 0; VecNo < 4; VecNo++) |
| BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) |
| .addReg(SrcVSR + VecNo) |
| .addReg(SrcVSR + VecNo); |
| } |
| // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. |
| // So after building the 4 copies, we can replace the BUILD_UACC instruction |
| // with a NOP. |
| [[fallthrough]]; |
| } |
| case PPC::KILL_PAIR: { |
| MI.setDesc(get(PPC::UNENCODED_NOP)); |
| MI.removeOperand(1); |
| MI.removeOperand(0); |
| return true; |
| } |
| case TargetOpcode::LOAD_STACK_GUARD: { |
| assert(Subtarget.isTargetLinux() && |
| "Only Linux target is expected to contain LOAD_STACK_GUARD"); |
| const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; |
| const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; |
| MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Offset) |
| .addReg(Reg); |
| return true; |
| } |
| case PPC::DFLOADf32: |
| case PPC::DFLOADf64: |
| case PPC::DFSTOREf32: |
| case PPC::DFSTOREf64: { |
| assert(Subtarget.hasP9Vector() && |
| "Invalid D-Form Pseudo-ops on Pre-P9 target."); |
| assert(MI.getOperand(2).isReg() && |
| isAnImmediateOperand(MI.getOperand(1)) && |
| "D-form op must have register and immediate operands"); |
| return expandVSXMemPseudo(MI); |
| } |
| case PPC::XFLOADf32: |
| case PPC::XFSTOREf32: |
| case PPC::LIWAX: |
| case PPC::LIWZX: |
| case PPC::STIWX: { |
| assert(Subtarget.hasP8Vector() && |
| "Invalid X-Form Pseudo-ops on Pre-P8 target."); |
| assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && |
| "X-form op must have register and register operands"); |
| return expandVSXMemPseudo(MI); |
| } |
| case PPC::XFLOADf64: |
| case PPC::XFSTOREf64: { |
| assert(Subtarget.hasVSX() && |
| "Invalid X-Form Pseudo-ops on target that has no VSX."); |
| assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && |
| "X-form op must have register and register operands"); |
| return expandVSXMemPseudo(MI); |
| } |
| case PPC::SPILLTOVSR_LD: { |
| Register TargetReg = MI.getOperand(0).getReg(); |
| if (PPC::VSFRCRegClass.contains(TargetReg)) { |
| MI.setDesc(get(PPC::DFLOADf64)); |
| return expandPostRAPseudo(MI); |
| } |
| else |
| MI.setDesc(get(PPC::LD)); |
| return true; |
| } |
| case PPC::SPILLTOVSR_ST: { |
| Register SrcReg = MI.getOperand(0).getReg(); |
| if (PPC::VSFRCRegClass.contains(SrcReg)) { |
| NumStoreSPILLVSRRCAsVec++; |
| MI.setDesc(get(PPC::DFSTOREf64)); |
| return expandPostRAPseudo(MI); |
| } else { |
| NumStoreSPILLVSRRCAsGpr++; |
| MI.setDesc(get(PPC::STD)); |
| } |
| return true; |
| } |
| case PPC::SPILLTOVSR_LDX: { |
| Register TargetReg = MI.getOperand(0).getReg(); |
| if (PPC::VSFRCRegClass.contains(TargetReg)) |
| MI.setDesc(get(PPC::LXSDX)); |
| else |
| MI.setDesc(get(PPC::LDX)); |
| return true; |
| } |
| case PPC::SPILLTOVSR_STX: { |
| Register SrcReg = MI.getOperand(0).getReg(); |
| if (PPC::VSFRCRegClass.contains(SrcReg)) { |
| NumStoreSPILLVSRRCAsVec++; |
| MI.setDesc(get(PPC::STXSDX)); |
| } else { |
| NumStoreSPILLVSRRCAsGpr++; |
| MI.setDesc(get(PPC::STDX)); |
| } |
| return true; |
| } |
| |
| // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. |
| case PPC::CFENCE8: { |
| auto Val = MI.getOperand(0).getReg(); |
| BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); |
| BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) |
| .addImm(PPC::PRED_NE_MINUS) |
| .addReg(PPC::CR7) |
| .addImm(1); |
| MI.setDesc(get(PPC::ISYNC)); |
| MI.removeOperand(0); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Essentially a compile-time implementation of a compare->isel sequence. |
| // It takes two constants to compare, along with the true/false registers |
| // and the comparison type (as a subreg to a CR field) and returns one |
| // of the true/false registers, depending on the comparison results. |
| static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, |
| unsigned TrueReg, unsigned FalseReg, |
| unsigned CRSubReg) { |
| // Signed comparisons. The immediates are assumed to be sign-extended. |
| if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { |
| switch (CRSubReg) { |
| default: llvm_unreachable("Unknown integer comparison type."); |
| case PPC::sub_lt: |
| return Imm1 < Imm2 ? TrueReg : FalseReg; |
| case PPC::sub_gt: |
| return Imm1 > Imm2 ? TrueReg : FalseReg; |
| case PPC::sub_eq: |
| return Imm1 == Imm2 ? TrueReg : FalseReg; |
| } |
| } |
| // Unsigned comparisons. |
| else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { |
| switch (CRSubReg) { |
| default: llvm_unreachable("Unknown integer comparison type."); |
| case PPC::sub_lt: |
| return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; |
| case PPC::sub_gt: |
| return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; |
| case PPC::sub_eq: |
| return Imm1 == Imm2 ? TrueReg : FalseReg; |
| } |
| } |
| return PPC::NoRegister; |
| } |
| |
| void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, |
| unsigned OpNo, |
| int64_t Imm) const { |
| assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); |
| // Replace the REG with the Immediate. |
| Register InUseReg = MI.getOperand(OpNo).getReg(); |
| MI.getOperand(OpNo).ChangeToImmediate(Imm); |
| |
| // We need to make sure that the MI didn't have any implicit use |
| // of this REG any more. We don't call MI.implicit_operands().empty() to |
| // return early, since MI's MCID might be changed in calling context, as a |
| // result its number of explicit operands may be changed, thus the begin of |
| // implicit operand is changed. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); |
| if (UseOpIdx >= 0) { |
| MachineOperand &MO = MI.getOperand(UseOpIdx); |
| if (MO.isImplicit()) |
| // The operands must always be in the following order: |
| // - explicit reg defs, |
| // - other explicit operands (reg uses, immediates, etc.), |
| // - implicit reg defs |
| // - implicit reg uses |
| // Therefore, removing the implicit operand won't change the explicit |
| // operands layout. |
| MI.removeOperand(UseOpIdx); |
| } |
| } |
| |
| // Replace an instruction with one that materializes a constant (and sets |
| // CR0 if the original instruction was a record-form instruction). |
| void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, |
| const LoadImmediateInfo &LII) const { |
| // Remove existing operands. |
| int OperandToKeep = LII.SetCR ? 1 : 0; |
| for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) |
| MI.removeOperand(i); |
| |
| // Replace the instruction. |
| if (LII.SetCR) { |
| MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); |
| // Set the immediate. |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); |
| return; |
| } |
| else |
| MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); |
| |
| // Set the immediate. |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(LII.Imm); |
| } |
| |
| MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, |
| bool &SeenIntermediateUse) const { |
| assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && |
| "Should be called after register allocation."); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; |
| It++; |
| SeenIntermediateUse = false; |
| for (; It != E; ++It) { |
| if (It->modifiesRegister(Reg, TRI)) |
| return &*It; |
| if (It->readsRegister(Reg, TRI)) |
| SeenIntermediateUse = true; |
| } |
| return nullptr; |
| } |
| |
| void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL, Register Reg, |
| int64_t Imm) const { |
| assert(!MBB.getParent()->getRegInfo().isSSA() && |
| "Register should be in non-SSA form after RA"); |
| bool isPPC64 = Subtarget.isPPC64(); |
| // FIXME: Materialization here is not optimal. |
| // For some special bit patterns we can use less instructions. |
| // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. |
| if (isInt<16>(Imm)) { |
| BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm); |
| } else if (isInt<32>(Imm)) { |
| BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg) |
| .addImm(Imm >> 16); |
| if (Imm & 0xFFFF) |
| BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm(Imm & 0xFFFF); |
| } else { |
| assert(isPPC64 && "Materializing 64-bit immediate to single register is " |
| "only supported in PPC64"); |
| BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48); |
| if ((Imm >> 32) & 0xFFFF) |
| BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm((Imm >> 32) & 0xFFFF); |
| BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm(32) |
| .addImm(31); |
| BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm((Imm >> 16) & 0xFFFF); |
| if (Imm & 0xFFFF) |
| BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) |
| .addReg(Reg, RegState::Kill) |
| .addImm(Imm & 0xFFFF); |
| } |
| } |
| |
| MachineInstr *PPCInstrInfo::getForwardingDefMI( |
| MachineInstr &MI, |
| unsigned &OpNoForForwarding, |
| bool &SeenIntermediateUse) const { |
| OpNoForForwarding = ~0U; |
| MachineInstr *DefMI = nullptr; |
| MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| // If we're in SSA, get the defs through the MRI. Otherwise, only look |
| // within the basic block to see if the register is defined using an |
| // LI/LI8/ADDI/ADDI8. |
| if (MRI->isSSA()) { |
| for (int i = 1, e = MI.getNumOperands(); i < e; i++) { |
| if (!MI.getOperand(i).isReg()) |
| continue; |
| Register Reg = MI.getOperand(i).getReg(); |
| if (!Reg.isVirtual()) |
| continue; |
| Register TrueReg = TRI->lookThruCopyLike(Reg, MRI); |
| if (TrueReg.isVirtual()) { |
| MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg); |
| if (DefMIForTrueReg->getOpcode() == PPC::LI || |
| DefMIForTrueReg->getOpcode() == PPC::LI8 || |
| DefMIForTrueReg->getOpcode() == PPC::ADDI || |
| DefMIForTrueReg->getOpcode() == PPC::ADDI8) { |
| OpNoForForwarding = i; |
| DefMI = DefMIForTrueReg; |
| // The ADDI and LI operand maybe exist in one instruction at same |
| // time. we prefer to fold LI operand as LI only has one Imm operand |
| // and is more possible to be converted. So if current DefMI is |
| // ADDI/ADDI8, we continue to find possible LI/LI8. |
| if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) |
| break; |
| } |
| } |
| } |
| } else { |
| // Looking back through the definition for each operand could be expensive, |
| // so exit early if this isn't an instruction that either has an immediate |
| // form or is already an immediate form that we can handle. |
| ImmInstrInfo III; |
| unsigned Opc = MI.getOpcode(); |
| bool ConvertibleImmForm = |
| Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || |
| Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || |
| Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || |
| Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || |
| Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || |
| Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || |
| Opc == PPC::RLWINM8_rec; |
| bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) |
| ? isVFRegister(MI.getOperand(0).getReg()) |
| : false; |
| if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) |
| return nullptr; |
| |
| // Don't convert or %X, %Y, %Y since that's just a register move. |
| if ((Opc == PPC::OR || Opc == PPC::OR8) && |
| MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) |
| return nullptr; |
| for (int i = 1, e = MI.getNumOperands(); i < e; i++) { |
| MachineOperand &MO = MI.getOperand(i); |
| SeenIntermediateUse = false; |
| if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { |
| Register Reg = MI.getOperand(i).getReg(); |
| // If we see another use of this reg between the def and the MI, |
| // we want to flag it so the def isn't deleted. |
| MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); |
| if (DefMI) { |
| // Is this register defined by some form of add-immediate (including |
| // load-immediate) within this basic block? |
| switch (DefMI->getOpcode()) { |
| default: |
| break; |
| case PPC::LI: |
| case PPC::LI8: |
| case PPC::ADDItocL: |
| case PPC::ADDI: |
| case PPC::ADDI8: |
| OpNoForForwarding = i; |
| return DefMI; |
| } |
| } |
| } |
| } |
| } |
| return OpNoForForwarding == ~0U ? nullptr : DefMI; |
| } |
| |
| unsigned PPCInstrInfo::getSpillTarget() const { |
| // With P10, we may need to spill paired vector registers or accumulator |
| // registers. MMA implies paired vectors, so we can just check that. |
| bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); |
| return Subtarget.isISAFuture() ? 3 : IsP10Variant ? |
| 2 : Subtarget.hasP9Vector() ? |
| 1 : 0; |
| } |
| |
| ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { |
| return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; |
| } |
| |
| ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { |
| return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; |
| } |
| |
| void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, |
| unsigned RegNo) const { |
| // Conservatively clear kill flag for the register if the instructions are in |
| // different basic blocks and in SSA form, because the kill flag may no longer |
| // be right. There is no need to bother with dead flags since defs with no |
| // uses will be handled by DCE. |
| MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); |
| if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { |
| MRI.clearKillFlags(RegNo); |
| return; |
| } |
| |
| // Instructions between [StartMI, EndMI] should be in same basic block. |
| assert((StartMI->getParent() == EndMI->getParent()) && |
| "Instructions are not in same basic block"); |
| |
| // If before RA, StartMI may be def through COPY, we need to adjust it to the |
| // real def. See function getForwardingDefMI. |
| if (MRI.isSSA()) { |
| bool Reads, Writes; |
| std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); |
| if (!Reads && !Writes) { |
| assert(Register::isVirtualRegister(RegNo) && |
| "Must be a virtual register"); |
| // Get real def and ignore copies. |
| StartMI = MRI.getVRegDef(RegNo); |
| } |
| } |
| |
| bool IsKillSet = false; |
| |
| auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { |
| MachineOperand &MO = MI.getOperand(Index); |
| if (MO.isReg() && MO.isUse() && MO.isKill() && |
| getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) |
| MO.setIsKill(false); |
| }; |
| |
| // Set killed flag for EndMI. |
| // No need to do anything if EndMI defines RegNo. |
| int UseIndex = |
| EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); |
| if (UseIndex != -1) { |
| EndMI->getOperand(UseIndex).setIsKill(true); |
| IsKillSet = true; |
| // Clear killed flag for other EndMI operands related to RegNo. In some |
| // upexpected cases, killed may be set multiple times for same register |
| // operand in same MI. |
| for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) |
| if (i != UseIndex) |
| clearOperandKillInfo(*EndMI, i); |
| } |
| |
| // Walking the inst in reverse order (EndMI -> StartMI]. |
| MachineBasicBlock::reverse_iterator It = *EndMI; |
| MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); |
| // EndMI has been handled above, skip it here. |
| It++; |
| MachineOperand *MO = nullptr; |
| for (; It != E; ++It) { |
| // Skip insturctions which could not be a def/use of RegNo. |
| if (It->isDebugInstr() || It->isPosition()) |
| continue; |
| |
| // Clear killed flag for all It operands related to RegNo. In some |
| // upexpected cases, killed may be set multiple times for same register |
| // operand in same MI. |
| for (int i = 0, e = It->getNumOperands(); i != e; ++i) |
| clearOperandKillInfo(*It, i); |
| |
| // If killed is not set, set killed for its last use or set dead for its def |
| // if no use found. |
| if (!IsKillSet) { |
| if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { |
| // Use found, set it killed. |
| IsKillSet = true; |
| MO->setIsKill(true); |
| continue; |
| } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, |
| &getRegisterInfo()))) { |
| // No use found, set dead for its def. |
| assert(&*It == StartMI && "No new def between StartMI and EndMI."); |
| MO->setIsDead(true); |
| break; |
| } |
| } |
| |
| if ((&*It) == StartMI) |
| break; |
| } |
| // Ensure RegMo liveness is killed after EndMI. |
| assert((IsKillSet || (MO && MO->isDead())) && |
| "RegNo should be killed or dead"); |
| } |
| |
| // This opt tries to convert the following imm form to an index form to save an |
| // add for stack variables. |
| // Return false if no such pattern found. |
| // |
| // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi |
| // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg |
| // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) |
| // |
| // can be converted to: |
| // |
| // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) |
| // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) |
| // |
| // In order to eliminate ADD instr, make sure that: |
| // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in |
| // new ADDI instr and ADDI can only take int16 Imm. |
| // 2: ToBeChangedReg must be killed in ADD instr and there is no other use |
| // between ADDI and ADD instr since its original def in ADDI will be changed |
| // in new ADDI instr. And also there should be no new def for it between |
| // ADD and Imm instr as ToBeChangedReg will be used in Index instr. |
| // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use |
| // between ADD and Imm instr since ADD instr will be eliminated. |
| // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be |
| // moved to Index instr. |
| bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| bool PostRA = !MRI->isSSA(); |
| // Do this opt after PEI which is after RA. The reason is stack slot expansion |
| // in PEI may expose such opportunities since in PEI, stack slot offsets to |
| // frame base(OffsetAddi) are determined. |
| if (!PostRA) |
| return false; |
| unsigned ToBeDeletedReg = 0; |
| int64_t OffsetImm = 0; |
| unsigned XFormOpcode = 0; |
| ImmInstrInfo III; |
| |
| // Check if Imm instr meets requirement. |
| if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, |
| III)) |
| return false; |
| |
| bool OtherIntermediateUse = false; |
| MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); |
| |
| // Exit if there is other use between ADD and Imm instr or no def found. |
| if (OtherIntermediateUse || !ADDMI) |
| return false; |
| |
| // Check if ADD instr meets requirement. |
| if (!isADDInstrEligibleForFolding(*ADDMI)) |
| return false; |
| |
| unsigned ScaleRegIdx = 0; |
| int64_t OffsetAddi = 0; |
| MachineInstr *ADDIMI = nullptr; |
| |
| // Check if there is a valid ToBeChangedReg in ADDMI. |
| // 1: It must be killed. |
| // 2: Its definition must be a valid ADDIMI. |
| // 3: It must satify int16 offset requirement. |
| if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) |
| ScaleRegIdx = 2; |
| else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) |
| ScaleRegIdx = 1; |
| else |
| return false; |
| |
| assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); |
| Register ToBeChangedReg = ADDIMI->getOperand(0).getReg(); |
| Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); |
| auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, |
| MachineBasicBlock::iterator End) { |
| for (auto It = ++Start; It != End; It++) |
| if (It->modifiesRegister(Reg, &getRegisterInfo())) |
| return true; |
| return false; |
| }; |
| |
| // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is |
| // treated as special zero when ScaleReg is R0/X0 register. |
| if (III.ZeroIsSpecialOrig == III.ImmOpNo && |
| (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) |
| return false; |
| |
| // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr |
| // and Imm Instr. |
| if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) |
| return false; |
| |
| // Now start to do the transformation. |
| LLVM_DEBUG(dbgs() << "Replace instruction: " |
| << "\n"); |
| LLVM_DEBUG(ADDIMI->dump()); |
| LLVM_DEBUG(ADDMI->dump()); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "with: " |
| << "\n"); |
| |
| // Update ADDI instr. |
| ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); |
| |
| // Update Imm instr. |
| MI.setDesc(get(XFormOpcode)); |
| MI.getOperand(III.ImmOpNo) |
| .ChangeToRegister(ScaleReg, false, false, |
| ADDMI->getOperand(ScaleRegIdx).isKill()); |
| |
| MI.getOperand(III.OpNoForForwarding) |
| .ChangeToRegister(ToBeChangedReg, false, false, true); |
| |
| // Eliminate ADD instr. |
| ADDMI->eraseFromParent(); |
| |
| LLVM_DEBUG(ADDIMI->dump()); |
| LLVM_DEBUG(MI.dump()); |
| |
| return true; |
| } |
| |
| bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, |
| int64_t &Imm) const { |
| unsigned Opc = ADDIMI.getOpcode(); |
| |
| // Exit if the instruction is not ADDI. |
| if (Opc != PPC::ADDI && Opc != PPC::ADDI8) |
| return false; |
| |
| // The operand may not necessarily be an immediate - it could be a relocation. |
| if (!ADDIMI.getOperand(2).isImm()) |
| return false; |
| |
| Imm = ADDIMI.getOperand(2).getImm(); |
| |
| return true; |
| } |
| |
| bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { |
| unsigned Opc = ADDMI.getOpcode(); |
| |
| // Exit if the instruction is not ADD. |
| return Opc == PPC::ADD4 || Opc == PPC::ADD8; |
| } |
| |
| bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, |
| unsigned &ToBeDeletedReg, |
| unsigned &XFormOpcode, |
| int64_t &OffsetImm, |
| ImmInstrInfo &III) const { |
| // Only handle load/store. |
| if (!MI.mayLoadOrStore()) |
| return false; |
| |
| unsigned Opc = MI.getOpcode(); |
| |
| XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); |
| |
| // Exit if instruction has no index form. |
| if (XFormOpcode == PPC::INSTRUCTION_LIST_END) |
| return false; |
| |
| // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. |
| if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), |
| III, true)) |
| return false; |
| |
| if (!III.IsSummingOperands) |
| return false; |
| |
| MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); |
| MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); |
| // Only support imm operands, not relocation slots or others. |
| if (!ImmOperand.isImm()) |
| return false; |
| |
| assert(RegOperand.isReg() && "Instruction format is not right"); |
| |
| // There are other use for ToBeDeletedReg after Imm instr, can not delete it. |
| if (!RegOperand.isKill()) |
| return false; |
| |
| ToBeDeletedReg = RegOperand.getReg(); |
| OffsetImm = ImmOperand.getImm(); |
| |
| return true; |
| } |
| |
| bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, |
| MachineInstr *&ADDIMI, |
| int64_t &OffsetAddi, |
| int64_t OffsetImm) const { |
| assert((Index == 1 || Index == 2) && "Invalid operand index for add."); |
| MachineOperand &MO = ADDMI->getOperand(Index); |
| |
| if (!MO.isKill()) |
| return false; |
| |
| bool OtherIntermediateUse = false; |
| |
| ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); |
| // Currently handle only one "add + Imminstr" pair case, exit if other |
| // intermediate use for ToBeChangedReg found. |
| // TODO: handle the cases where there are other "add + Imminstr" pairs |
| // with same offset in Imminstr which is like: |
| // |
| // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi |
| // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 |
| // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) |
| // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 |
| // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) |
| // |
| // can be converted to: |
| // |
| // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, |
| // (OffsetAddi + OffsetImm) |
| // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg |
| // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) |
| |
| if (OtherIntermediateUse || !ADDIMI) |
| return false; |
| // Check if ADDI instr meets requirement. |
| if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) |
| return false; |
| |
| if (isInt<16>(OffsetAddi + OffsetImm)) |
| return true; |
| return false; |
| } |
| |
| // If this instruction has an immediate form and one of its operands is a |
| // result of a load-immediate or an add-immediate, convert it to |
| // the immediate form if the constant is in range. |
| bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, |
| MachineInstr **KilledDef) const { |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| bool PostRA = !MRI->isSSA(); |
| bool SeenIntermediateUse = true; |
| unsigned ForwardingOperand = ~0U; |
| MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, |
| SeenIntermediateUse); |
| if (!DefMI) |
| return false; |
| assert(ForwardingOperand < MI.getNumOperands() && |
| "The forwarding operand needs to be valid at this point"); |
| bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); |
| bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; |
| if (KilledDef && KillFwdDefMI) |
| *KilledDef = DefMI; |
| |
| // If this is a imm instruction and its register operands is produced by ADDI, |
| // put the imm into imm inst directly. |
| if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != |
| PPC::INSTRUCTION_LIST_END && |
| transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) |
| return true; |
| |
| ImmInstrInfo III; |
| bool IsVFReg = MI.getOperand(0).isReg() |
| ? isVFRegister(MI.getOperand(0).getReg()) |
| : false; |
| bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); |
| // If this is a reg+reg instruction that has a reg+imm form, |
| // and one of the operands is produced by an add-immediate, |
| // try to convert it. |
| if (HasImmForm && |
| transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, |
| KillFwdDefMI)) |
| return true; |
| |
| // If this is a reg+reg instruction that has a reg+imm form, |
| // and one of the operands is produced by LI, convert it now. |
| if (HasImmForm && |
| transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) |
| return true; |
| |
| // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI |
| // can be simpified to LI. |
| if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) |
| return true; |
| |
| return false; |
| } |
| |
| bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, |
| MachineInstr **ToErase) const { |
| MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); |
| Register FoldingReg = MI.getOperand(1).getReg(); |
| if (!FoldingReg.isVirtual()) |
| return false; |
| MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); |
| if (SrcMI->getOpcode() != PPC::RLWINM && |
| SrcMI->getOpcode() != PPC::RLWINM_rec && |
| SrcMI->getOpcode() != PPC::RLWINM8 && |
| SrcMI->getOpcode() != PPC::RLWINM8_rec) |
| return false; |
| assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && |
| MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && |
| SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && |
| "Invalid PPC::RLWINM Instruction!"); |
| uint64_t SHSrc = SrcMI->getOperand(2).getImm(); |
| uint64_t SHMI = MI.getOperand(2).getImm(); |
| uint64_t MBSrc = SrcMI->getOperand(3).getImm(); |
| uint64_t MBMI = MI.getOperand(3).getImm(); |
| uint64_t MESrc = SrcMI->getOperand(4).getImm(); |
| uint64_t MEMI = MI.getOperand(4).getImm(); |
| |
| assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && |
| "Invalid PPC::RLWINM Instruction!"); |
| // If MBMI is bigger than MEMI, we always can not get run of ones. |
| // RotatedSrcMask non-wrap: |
| // 0........31|32........63 |
| // RotatedSrcMask: B---E B---E |
| // MaskMI: -----------|--E B------ |
| // Result: ----- --- (Bad candidate) |
| // |
| // RotatedSrcMask wrap: |
| // 0........31|32........63 |
| // RotatedSrcMask: --E B----|--E B---- |
| // MaskMI: -----------|--E B------ |
| // Result: --- -----|--- ----- (Bad candidate) |
| // |
| // One special case is RotatedSrcMask is a full set mask. |
| // RotatedSrcMask full: |
| // 0........31|32........63 |
| // RotatedSrcMask: ------EB---|-------EB--- |
| // MaskMI: -----------|--E B------ |
| // Result: -----------|--- ------- (Good candidate) |
| |
| // Mark special case. |
| bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); |
| |
| // For other MBMI > MEMI cases, just return. |
| if ((MBMI > MEMI) && !SrcMaskFull) |
| return false; |
| |
| // Handle MBMI <= MEMI cases. |
| APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); |
| // In MI, we only need low 32 bits of SrcMI, just consider about low 32 |
| // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, |
| // while in PowerPC ISA, lowerest bit is at index 63. |
| APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); |
| |
| APInt RotatedSrcMask = MaskSrc.rotl(SHMI); |
| APInt FinalMask = RotatedSrcMask & MaskMI; |
| uint32_t NewMB, NewME; |
| bool Simplified = false; |
| |
| // If final mask is 0, MI result should be 0 too. |
| if (FinalMask.isZero()) { |
| bool Is64Bit = |
| (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); |
| Simplified = true; |
| LLVM_DEBUG(dbgs() << "Replace Instr: "); |
| LLVM_DEBUG(MI.dump()); |
| |
| if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { |
| // Replace MI with "LI 0" |
| MI.removeOperand(4); |
| MI.removeOperand(3); |
| MI.removeOperand(2); |
| MI.getOperand(1).ChangeToImmediate(0); |
| MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); |
| } else { |
| // Replace MI with "ANDI_rec reg, 0" |
| MI.removeOperand(4); |
| MI.removeOperand(3); |
| MI.getOperand(2).setImm(0); |
| MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); |
| MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); |
| if (SrcMI->getOperand(1).isKill()) { |
| MI.getOperand(1).setIsKill(true); |
| SrcMI->getOperand(1).setIsKill(false); |
| } else |
| // About to replace MI.getOperand(1), clear its kill flag. |
| MI.getOperand(1).setIsKill(false); |
| } |
| |
| LLVM_DEBUG(dbgs() << "With: "); |
| LLVM_DEBUG(MI.dump()); |
| |
| } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && |
| NewMB <= NewME) || |
| SrcMaskFull) { |
| // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger |
| // than NewME. Otherwise we get a 64 bit value after folding, but MI |
| // return a 32 bit value. |
| Simplified = true; |
| LLVM_DEBUG(dbgs() << "Converting Instr: "); |
| LLVM_DEBUG(MI.dump()); |
| |
| uint16_t NewSH = (SHSrc + SHMI) % 32; |
| MI.getOperand(2).setImm(NewSH); |
| // If SrcMI mask is full, no need to update MBMI and MEMI. |
| if (!SrcMaskFull) { |
| MI.getOperand(3).setImm(NewMB); |
| MI.getOperand(4).setImm(NewME); |
| } |
| MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); |
| if (SrcMI->getOperand(1).isKill()) { |
| MI.getOperand(1).setIsKill(true); |
| SrcMI->getOperand(1).setIsKill(false); |
| } else |
| // About to replace MI.getOperand(1), clear its kill flag. |
| MI.getOperand(1).setIsKill(false); |
| |
| LLVM_DEBUG(dbgs() << "To: "); |
| LLVM_DEBUG(MI.dump()); |
| } |
| if (Simplified & MRI->use_nodbg_empty(FoldingReg) && |
| !SrcMI->hasImplicitDef()) { |
| // If FoldingReg has no non-debug use and it has no implicit def (it |
| // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. |
| // Otherwise keep it. |
| *ToErase = SrcMI; |
| LLVM_DEBUG(dbgs() << "Delete dead instruction: "); |
| LLVM_DEBUG(SrcMI->dump()); |
| } |
| return Simplified; |
| } |
| |
| bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, |
| ImmInstrInfo &III, bool PostRA) const { |
| // The vast majority of the instructions would need their operand 2 replaced |
| // with an immediate when switching to the reg+imm form. A marked exception |
| // are the update form loads/stores for which a constant operand 2 would need |
| // to turn into a displacement and move operand 1 to the operand 2 position. |
| III.ImmOpNo = 2; |
| III.OpNoForForwarding = 2; |
| III.ImmWidth = 16; |
| III.ImmMustBeMultipleOf = 1; |
| III.TruncateImmTo = 0; |
| III.IsSummingOperands = false; |
| switch (Opc) { |
| default: return false; |
| case PPC::ADD4: |
| case PPC::ADD8: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 1; |
| III.IsCommutative = true; |
| III.IsSummingOperands = true; |
| III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; |
| break; |
| case PPC::ADDC: |
| case PPC::ADDC8: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = true; |
| III.IsSummingOperands = true; |
| III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; |
| break; |
| case PPC::ADDC_rec: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = true; |
| III.IsSummingOperands = true; |
| III.ImmOpcode = PPC::ADDIC_rec; |
| break; |
| case PPC::SUBFC: |
| case PPC::SUBFC8: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = false; |
| III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; |
| break; |
| case PPC::CMPW: |
| case PPC::CMPD: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = false; |
| III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; |
| break; |
| case PPC::CMPLW: |
| case PPC::CMPLD: |
| III.SignedImm = false; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = false; |
| III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; |
| break; |
| case PPC::AND_rec: |
| case PPC::AND8_rec: |
| case PPC::OR: |
| case PPC::OR8: |
| case PPC::XOR: |
| case PPC::XOR8: |
| III.SignedImm = false; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = true; |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode"); |
| case PPC::AND_rec: |
| III.ImmOpcode = PPC::ANDI_rec; |
| break; |
| case PPC::AND8_rec: |
| III.ImmOpcode = PPC::ANDI8_rec; |
| break; |
| case PPC::OR: III.ImmOpcode = PPC::ORI; break; |
| case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; |
| case PPC::XOR: III.ImmOpcode = PPC::XORI; break; |
| case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; |
| } |
| break; |
| case PPC::RLWNM: |
| case PPC::RLWNM8: |
| case PPC::RLWNM_rec: |
| case PPC::RLWNM8_rec: |
| case PPC::SLW: |
| case PPC::SLW8: |
| case PPC::SLW_rec: |
| case PPC::SLW8_rec: |
| case PPC::SRW: |
| case PPC::SRW8: |
| case PPC::SRW_rec: |
| case PPC::SRW8_rec: |
| case PPC::SRAW: |
| case PPC::SRAW_rec: |
| III.SignedImm = false; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = false; |
| // This isn't actually true, but the instructions ignore any of the |
| // upper bits, so any immediate loaded with an LI is acceptable. |
| // This does not apply to shift right algebraic because a value |
| // out of range will produce a -1/0. |
| III.ImmWidth = 16; |
| if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || |
| Opc == PPC::RLWNM8_rec) |
| III.TruncateImmTo = 5; |
| else |
| III.TruncateImmTo = 6; |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode"); |
| case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; |
| case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; |
| case PPC::RLWNM_rec: |
| III.ImmOpcode = PPC::RLWINM_rec; |
| break; |
| case PPC::RLWNM8_rec: |
| III.ImmOpcode = PPC::RLWINM8_rec; |
| break; |
| case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; |
| case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; |
| case PPC::SLW_rec: |
| III.ImmOpcode = PPC::RLWINM_rec; |
| break; |
| case PPC::SLW8_rec: |
| III.ImmOpcode = PPC::RLWINM8_rec; |
| break; |
| case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; |
| case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; |
| case PPC::SRW_rec: |
| III.ImmOpcode = PPC::RLWINM_rec; |
| break; |
| case PPC::SRW8_rec: |
| III.ImmOpcode = PPC::RLWINM8_rec; |
| break; |
| case PPC::SRAW: |
| III.ImmWidth = 5; |
| III.TruncateImmTo = 0; |
| III.ImmOpcode = PPC::SRAWI; |
| break; |
| case PPC::SRAW_rec: |
| III.ImmWidth = 5; |
| III.TruncateImmTo = 0; |
| III.ImmOpcode = PPC::SRAWI_rec; |
| break; |
| } |
| break; |
| case PPC::RLDCL: |
| case PPC::RLDCL_rec: |
| case PPC::RLDCR: |
| case PPC::RLDCR_rec: |
| case PPC::SLD: |
| case PPC::SLD_rec: |
| case PPC::SRD: |
| case PPC::SRD_rec: |
| case PPC::SRAD: |
| case PPC::SRAD_rec: |
| III.SignedImm = false; |
| III.ZeroIsSpecialOrig = 0; |
| III.ZeroIsSpecialNew = 0; |
| III.IsCommutative = false; |
| // This isn't actually true, but the instructions ignore any of the |
| // upper bits, so any immediate loaded with an LI is acceptable. |
| // This does not apply to shift right algebraic because a value |
| // out of range will produce a -1/0. |
| III.ImmWidth = 16; |
| if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || |
| Opc == PPC::RLDCR_rec) |
| III.TruncateImmTo = 6; |
| else |
| III.TruncateImmTo = 7; |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode"); |
| case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; |
| case PPC::RLDCL_rec: |
| III.ImmOpcode = PPC::RLDICL_rec; |
| break; |
| case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; |
| case PPC::RLDCR_rec: |
| III.ImmOpcode = PPC::RLDICR_rec; |
| break; |
| case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; |
| case PPC::SLD_rec: |
| III.ImmOpcode = PPC::RLDICR_rec; |
| break; |
| case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; |
| case PPC::SRD_rec: |
| III.ImmOpcode = PPC::RLDICL_rec; |
| break; |
| case PPC::SRAD: |
| III.ImmWidth = 6; |
| III.TruncateImmTo = 0; |
| III.ImmOpcode = PPC::SRADI; |
| break; |
| case PPC::SRAD_rec: |
| III.ImmWidth = 6; |
| III.TruncateImmTo = 0; |
| III.ImmOpcode = PPC::SRADI_rec; |
| break; |
| } |
| break; |
| // Loads and stores: |
| case PPC::LBZX: |
| case PPC::LBZX8: |
| case PPC::LHZX: |
| case PPC::LHZX8: |
| case PPC::LHAX: |
| case PPC::LHAX8: |
| case PPC::LWZX: |
| case PPC::LWZX8: |
| case PPC::LWAX: |
| case PPC::LDX: |
| case PPC::LFSX: |
| case PPC::LFDX: |
| case PPC::STBX: |
| case PPC::STBX8: |
| case PPC::STHX: |
| case PPC::STHX8: |
| case PPC::STWX: |
| case PPC::STWX8: |
| case PPC::STDX: |
| case PPC::STFSX: |
| case PPC::STFDX: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 1; |
| III.ZeroIsSpecialNew = 2; |
| III.IsCommutative = true; |
| III.IsSummingOperands = true; |
| III.ImmOpNo = 1; |
| III.OpNoForForwarding = 2; |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode"); |
| case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; |
| case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; |
| case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; |
| case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; |
| case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; |
| case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; |
| case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; |
| case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; |
| case PPC::LWAX: |
| III.ImmOpcode = PPC::LWA; |
| III.ImmMustBeMultipleOf = 4; |
| break; |
| case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; |
| case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; |
| case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; |
| case PPC::STBX: III.ImmOpcode = PPC::STB; break; |
| case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; |
| case PPC::STHX: III.ImmOpcode = PPC::STH; break; |
| case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; |
| case PPC::STWX: III.ImmOpcode = PPC::STW; break; |
| case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; |
| case PPC::STDX: |
| III.ImmOpcode = PPC::STD; |
| III.ImmMustBeMultipleOf = 4; |
| break; |
| case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; |
| case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; |
| } |
| break; |
| case PPC::LBZUX: |
| case PPC::LBZUX8: |
| case PPC::LHZUX: |
| case PPC::LHZUX8: |
| case PPC::LHAUX: |
| case PPC::LHAUX8: |
| case PPC::LWZUX: |
| case PPC::LWZUX8: |
| case PPC::LDUX: |
| case PPC::LFSUX: |
| case PPC::LFDUX: |
| case PPC::STBUX: |
| case PPC::STBUX8: |
| case PPC::STHUX: |
| case PPC::STHUX8: |
| case PPC::STWUX: |
| case PPC::STWUX8: |
| case PPC::STDUX: |
| case PPC::STFSUX: |
| case PPC::STFDUX: |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 2; |
| III.ZeroIsSpecialNew = 3; |
| III.IsCommutative = false; |
| III.IsSummingOperands = true; |
| III.ImmOpNo = 2; |
| III.OpNoForForwarding = 3; |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode"); |
| case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; |
| case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; |
| case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; |
| case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; |
| case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; |
| case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; |
| case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; |
| case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; |
| case PPC::LDUX: |
| III.ImmOpcode = PPC::LDU; |
| III.ImmMustBeMultipleOf = 4; |
| break; |
| case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; |
| case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; |
| case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; |
| case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; |
| case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; |
| case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; |
| case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; |
| case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; |
| case PPC::STDUX: |
| III.ImmOpcode = PPC::STDU; |
| III.ImmMustBeMultipleOf = 4; |
| break; |
| case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; |
| case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; |
| } |
| break; |
| // Power9 and up only. For some of these, the X-Form version has access to all |
| // 64 VSR's whereas the D-Form only has access to the VR's. We replace those |
| // with pseudo-ops pre-ra and for post-ra, we check that the register loaded |
| // into or stored from is one of the VR registers. |
| case PPC::LXVX: |
| case PPC::LXSSPX: |
| case PPC::LXSDX: |
| case PPC::STXVX: |
| case PPC::STXSSPX: |
| case PPC::STXSDX: |
| case PPC::XFLOADf32: |
| case PPC::XFLOADf64: |
| case PPC::XFSTOREf32: |
| case PPC::XFSTOREf64: |
| if (!Subtarget.hasP9Vector()) |
| return false; |
| III.SignedImm = true; |
| III.ZeroIsSpecialOrig = 1; |
| III.ZeroIsSpecialNew = 2; |
| III.IsCommutative = true; |
| III.IsSummingOperands = true; |
| III.ImmOpNo = 1; |
| III.OpNoForForwarding = 2; |
| III.ImmMustBeMultipleOf = 4; |
| switch(Opc) { |
| default: llvm_unreachable("Unknown opcode"); |
| case PPC::LXVX: |
| III.ImmOpcode = PPC::LXV; |
| III.ImmMustBeMultipleOf = 16; |
| break; |
| case PPC::LXSSPX: |
| if (PostRA) { |
| if (IsVFReg) |
| III.ImmOpcode = PPC::LXSSP; |
| else { |
| III.ImmOpcode = PPC::LFS; |
| III.ImmMustBeMultipleOf = 1; |
| } |
| break; |
| } |
| [[fallthrough]]; |
| case PPC::XFLOADf32: |
| III.ImmOpcode = PPC::DFLOADf32; |
| break; |
| case PPC::LXSDX: |
| if (PostRA) { |
| if (IsVFReg) |
| III.ImmOpcode = PPC::LXSD; |
| else { |
| III.ImmOpcode = PPC::LFD; |
| III.ImmMustBeMultipleOf = 1; |
| } |
| break; |
| } |
| [[fallthrough]]; |
| case PPC::XFLOADf64: |
| III.ImmOpcode = PPC::DFLOADf64; |
| break; |
| case PPC::STXVX: |
| III.ImmOpcode = PPC::STXV; |
| III.ImmMustBeMultipleOf = 16; |
| break; |
| case PPC::STXSSPX: |
| if (PostRA) { |
| if (IsVFReg) |
| III.ImmOpcode = PPC::STXSSP; |
| else { |
| III.ImmOpcode = PPC::STFS; |
| III.ImmMustBeMultipleOf = 1; |
| } |
| break; |
| } |
| [[fallthrough]]; |
| case PPC::XFSTOREf32: |
| III.ImmOpcode = PPC::DFSTOREf32; |
| break; |
| case PPC::STXSDX: |
| if (PostRA) { |
| if (IsVFReg) |
| III.ImmOpcode = PPC::STXSD; |
| else { |
| III.ImmOpcode = PPC::STFD; |
| III.ImmMustBeMultipleOf = 1; |
| } |
| break; |
| } |
| [[fallthrough]]; |
| case PPC::XFSTOREf64: |
| III.ImmOpcode = PPC::DFSTOREf64; |
| break; |
| } |
| break; |
| } |
| return true; |
| } |
| |
| // Utility function for swaping two arbitrary operands of an instruction. |
| static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { |
| assert(Op1 != Op2 && "Cannot swap operand with itself."); |
| |
| unsigned MaxOp = std::max(Op1, Op2); |
| unsigned MinOp = std::min(Op1, Op2); |
| MachineOperand MOp1 = MI.getOperand(MinOp); |
| MachineOperand MOp2 = MI.getOperand(MaxOp); |
| MI.removeOperand(std::max(Op1, Op2)); |
| MI.removeOperand(std::min(Op1, Op2)); |
| |
| // If the operands we are swapping are the two at the end (the common case) |
| // we can just remove both and add them in the opposite order. |
| if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { |
| MI.addOperand(MOp2); |
| MI.addOperand(MOp1); |
| } else { |
| // Store all operands in a temporary vector, remove them and re-add in the |
| // right order. |
| SmallVector<MachineOperand, 2> MOps; |
| unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. |
| for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { |
| MOps.push_back(MI.getOperand(i)); |
| MI.removeOperand(i); |
| } |
| // MOp2 needs to be added next. |
| MI.addOperand(MOp2); |
| // Now add the rest. |
| for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { |
| if (i == MaxOp) |
| MI.addOperand(MOp1); |
| else { |
| MI.addOperand(MOps.back()); |
| MOps.pop_back(); |
| } |
| } |
| } |
| } |
| |
| // Check if the 'MI' that has the index OpNoForForwarding |
| // meets the requirement described in the ImmInstrInfo. |
| bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, |
| const ImmInstrInfo &III, |
| unsigned OpNoForForwarding |
| ) const { |
| // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 |
| // would not work pre-RA, we can only do the check post RA. |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| if (MRI.isSSA()) |
| return false; |
| |
| // Cannot do the transform if MI isn't summing the operands. |
| if (!III.IsSummingOperands) |
| return false; |
| |
| // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. |
| if (!III.ZeroIsSpecialOrig) |
| return false; |
| |
| // We cannot do the transform if the operand we are trying to replace |
| // isn't the same as the operand the instruction allows. |
| if (OpNoForForwarding != III.OpNoForForwarding) |
| return false; |
| |
| // Check if the instruction we are trying to transform really has |
| // the special zero register as its operand. |
| if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && |
| MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) |
| return false; |
| |
| // This machine instruction is convertible if it is, |
| // 1. summing the operands. |
| // 2. one of the operands is special zero register. |
| // 3. the operand we are trying to replace is allowed by the MI. |
| return true; |
| } |
| |
| // Check if the DefMI is the add inst and set the ImmMO and RegMO |
| // accordingly. |
| bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, |
| const ImmInstrInfo &III, |
| MachineOperand *&ImmMO, |
| MachineOperand *&RegMO) const { |
| unsigned Opc = DefMI.getOpcode(); |
| if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) |
| return false; |
| |
| assert(DefMI.getNumOperands() >= 3 && |
| "Add inst must have at least three operands"); |
| RegMO = &DefMI.getOperand(1); |
| ImmMO = &DefMI.getOperand(2); |
| |
| // Before RA, ADDI first operand could be a frame index. |
| if (!RegMO->isReg()) |
| return false; |
| |
| // This DefMI is elgible for forwarding if it is: |
| // 1. add inst |
| // 2. one of the operands is Imm/CPI/Global. |
| return isAnImmediateOperand(*ImmMO); |
| } |
| |
| bool PPCInstrInfo::isRegElgibleForForwarding( |
| const MachineOperand &RegMO, const MachineInstr &DefMI, |
| const MachineInstr &MI, bool KillDefMI, |
| bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { |
| // x = addi y, imm |
| // ... |
| // z = lfdx 0, x -> z = lfd imm(y) |
| // The Reg "y" can be forwarded to the MI(z) only when there is no DEF |
| // of "y" between the DEF of "x" and "z". |
| // The query is only valid post RA. |
| const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| if (MRI.isSSA()) |
| return false; |
| |
| Register Reg = RegMO.getReg(); |
| |
| // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. |
| MachineBasicBlock::const_reverse_iterator It = MI; |
| MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); |
| It++; |
| for (; It != E; ++It) { |
| if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) |
| return false; |
| else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) |
| IsFwdFeederRegKilled = true; |
| if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) |
| SeenIntermediateUse = true; |
| // Made it to DefMI without encountering a clobber. |
| if ((&*It) == &DefMI) |
| break; |
| } |
| assert((&*It) == &DefMI && "DefMI is missing"); |
| |
| // If DefMI also defines the register to be forwarded, we can only forward it |
| // if DefMI is being erased. |
| if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) |
| return KillDefMI; |
| |
| return true; |
| } |
| |
| bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, |
| const MachineInstr &DefMI, |
| const ImmInstrInfo &III, |
| int64_t &Imm, |
| int64_t BaseImm) const { |
| assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); |
| if (DefMI.getOpcode() == PPC::ADDItocL) { |
| // The operand for ADDItocL is CPI, which isn't imm at compiling time, |
| // However, we know that, it is 16-bit width, and has the alignment of 4. |
| // Check if the instruction met the requirement. |
| if (III.ImmMustBeMultipleOf > 4 || |
| III.TruncateImmTo || III.ImmWidth != 16) |
| return false; |
| |
| // Going from XForm to DForm loads means that the displacement needs to be |
| // not just an immediate but also a multiple of 4, or 16 depending on the |
| // load. A DForm load cannot be represented if it is a multiple of say 2. |
| // XForm loads do not have this restriction. |
| if (ImmMO.isGlobal()) { |
| const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); |
| if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| if (ImmMO.isImm()) { |
| // It is Imm, we need to check if the Imm fit the range. |
| // Sign-extend to 64-bits. |
| // DefMI may be folded with another imm form instruction, the result Imm is |
| // the sum of Imm of DefMI and BaseImm which is from imm form instruction. |
| APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); |
| if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) |
| return false; |
| if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) |
| return false; |
| Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); |
| |
| if (Imm % III.ImmMustBeMultipleOf) |
| return false; |
| if (III.TruncateImmTo) |
| Imm &= ((1 << III.TruncateImmTo) - 1); |
| } |
| else |
| return false; |
| |
| // This ImmMO is forwarded if it meets the requriement describle |
| // in ImmInstrInfo |
| return true; |
| } |
| |
| bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, |
| unsigned OpNoForForwarding, |
| MachineInstr **KilledDef) const { |
| if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || |
| !DefMI.getOperand(1).isImm()) |
| return false; |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| bool PostRA = !MRI->isSSA(); |
| |
| int64_t Immediate = DefMI.getOperand(1).getImm(); |
| // Sign-extend to 64-bits. |
| int64_t SExtImm = SignExtend64<16>(Immediate); |
| |
| bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); |
| Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); |
| |
| bool ReplaceWithLI = false; |
| bool Is64BitLI = false; |
| int64_t NewImm = 0; |
| bool SetCR = false; |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| default: |
| return false; |
| |
| // FIXME: Any branches conditional on such a comparison can be made |
| // unconditional. At this time, this happens too infrequently to be worth |
| // the implementation effort, but if that ever changes, we could convert |
| // such a pattern here. |
| case PPC::CMPWI: |
| case PPC::CMPLWI: |
| case PPC::CMPDI: |
| case PPC::CMPLDI: { |
| // Doing this post-RA would require dataflow analysis to reliably find uses |
| // of the CR register set by the compare. |
| // No need to fixup killed/dead flag since this transformation is only valid |
| // before RA. |
| if (PostRA) |
| return false; |
| // If a compare-immediate is fed by an immediate and is itself an input of |
| // an ISEL (the most common case) into a COPY of the correct register. |
| bool Changed = false; |
| Register DefReg = MI.getOperand(0).getReg(); |
| int64_t Comparand = MI.getOperand(2).getImm(); |
| int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 |
| ? (Comparand | 0xFFFFFFFFFFFF0000) |
| : Comparand; |
| |
| for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { |
| unsigned UseOpc = CompareUseMI.getOpcode(); |
| if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) |
| continue; |
| unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); |
| Register TrueReg = CompareUseMI.getOperand(1).getReg(); |
| Register FalseReg = CompareUseMI.getOperand(2).getReg(); |
| unsigned RegToCopy = |
| selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); |
| if (RegToCopy == PPC::NoRegister) |
| continue; |
| // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. |
| if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { |
| CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); |
| replaceInstrOperandWithImm(CompareUseMI, 1, 0); |
| CompareUseMI.removeOperand(3); |
| CompareUseMI.removeOperand(2); |
| continue; |
| } |
| LLVM_DEBUG( |
| dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); |
| LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); |
| LLVM_DEBUG(dbgs() << "Is converted to:\n"); |
| // Convert to copy and remove unneeded operands. |
| CompareUseMI.setDesc(get(PPC::COPY)); |
| CompareUseMI.removeOperand(3); |
| CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1); |
| CmpIselsConverted++; |
| Changed = true; |
| LLVM_DEBUG(CompareUseMI.dump()); |
| } |
| if (Changed) |
| return true; |
| // This may end up incremented multiple times since this function is called |
| // during a fixed-point transformation, but it is only meant to indicate the |
| // presence of this opportunity. |
| MissedConvertibleImmediateInstrs++; |
| return false; |
| } |
| |
| // Immediate forms - may simply be convertable to an LI. |
| case PPC::ADDI: |
| case PPC::ADDI8: { |
| // Does the sum fit in a 16-bit signed field? |
| int64_t Addend = MI.getOperand(2).getImm(); |
| if (isInt<16>(Addend + SExtImm)) { |
| ReplaceWithLI = true; |
| Is64BitLI = Opc == PPC::ADDI8; |
| NewImm = Addend + SExtImm; |
| break; |
| } |
| return false; |
| } |
| case PPC::SUBFIC: |
| case PPC::SUBFIC8: { |
| // Only transform this if the CARRY implicit operand is dead. |
| if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) |
| return false; |
| int64_t Minuend = MI.getOperand(2).getImm(); |
| if (isInt<16>(Minuend - SExtImm)) { |
| ReplaceWithLI = true; |
| Is64BitLI = Opc == PPC::SUBFIC8; |
| NewImm = Minuend - SExtImm; |
| break; |
| } |
| return false; |
| } |
| case PPC::RLDICL: |
| case PPC::RLDICL_rec: |
| case PPC::RLDICL_32: |
| case PPC::RLDICL_32_64: { |
| // Use APInt's rotate function. |
| int64_t SH = MI.getOperand(2).getImm(); |
| int64_t MB = MI.getOperand(3).getImm(); |
| APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, |
| SExtImm, true); |
| InVal = InVal.rotl(SH); |
| uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; |
| InVal &= Mask; |
| // Can't replace negative values with an LI as that will sign-extend |
| // and not clear the left bits. If we're setting the CR bit, we will use |
| // ANDI_rec which won't sign extend, so that's safe. |
| if (isUInt<15>(InVal.getSExtValue()) || |
| (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { |
| ReplaceWithLI = true; |
| Is64BitLI = Opc != PPC::RLDICL_32; |
| NewImm = InVal.getSExtValue(); |
| SetCR = Opc == PPC::RLDICL_rec; |
| break; |
| } |
| return false; |
| } |
| case PPC::RLWINM: |
| case PPC::RLWINM8: |
| case PPC::RLWINM_rec: |
| case PPC::RLWINM8_rec: { |
| int64_t SH = MI.getOperand(2).getImm(); |
| int64_t MB = MI.getOperand(3).getImm(); |
| int64_t ME = MI.getOperand(4).getImm(); |
| APInt InVal(32, SExtImm, true); |
| InVal = InVal.rotl(SH); |
| APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); |
| InVal &= Mask; |
| // Can't replace negative values with an LI as that will sign-extend |
| // and not clear the left bits. If we're setting the CR bit, we will use |
| // ANDI_rec which won't sign extend, so that's safe. |
| bool ValueFits = isUInt<15>(InVal.getSExtValue()); |
| ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && |
| isUInt<16>(InVal.getSExtValue())); |
| if (ValueFits) { |
| ReplaceWithLI = true; |
| Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; |
| NewImm = InVal.getSExtValue(); |
| SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; |
| break; |
| } |
| return false; |
| } |
| case PPC::ORI: |
| case PPC::ORI8: |
| case PPC::XORI: |
| case PPC::XORI8: { |
| int64_t LogicalImm = MI.getOperand(2).getImm(); |
| int64_t Result = 0; |
| if (Opc == PPC::ORI || Opc == PPC::ORI8) |
| Result = LogicalImm | SExtImm; |
| else |
| Result = LogicalImm ^ SExtImm; |
| if (isInt<16>(Result)) { |
| ReplaceWithLI = true; |
| Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; |
| NewImm = Result; |
| break; |
| } |
| return false; |
| } |
| } |
| |
| if (ReplaceWithLI) { |
| // We need to be careful with CR-setting instructions we're replacing. |
| if (SetCR) { |
| // We don't know anything about uses when we're out of SSA, so only |
| // replace if the new immediate will be reproduced. |
| bool ImmChanged = (SExtImm & NewImm) != NewImm; |
| if (PostRA && ImmChanged) |
| return false; |
| |
| if (!PostRA) { |
| // If the defining load-immediate has no other uses, we can just replace |
| // the immediate with the new immediate. |
| if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) |
| DefMI.getOperand(1).setImm(NewImm); |
| |
| // If we're not using the GPR result of the CR-setting instruction, we |
| // just need to and with zero/non-zero depending on the new immediate. |
| else if (MRI->use_empty(MI.getOperand(0).getReg())) { |
| if (NewImm) { |
| assert(Immediate && "Transformation converted zero to non-zero?"); |
| NewImm = Immediate; |
| } |
| } else if (ImmChanged) |
| return false; |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n"); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "Fed by:\n"); |
| LLVM_DEBUG(DefMI.dump()); |
| LoadImmediateInfo LII; |
| LII.Imm = NewImm; |
| LII.Is64Bit = Is64BitLI; |
| LII.SetCR = SetCR; |
| // If we're setting the CR, the original load-immediate must be kept (as an |
| // operand to ANDI_rec/ANDI8_rec). |
| if (KilledDef && SetCR) |
| *KilledDef = nullptr; |
| replaceInstrWithLI(MI, LII); |
| |
| // Fixup killed/dead flag after transformation. |
| // Pattern: |
| // ForwardingOperandReg = LI imm1 |
| // y = op2 imm2, ForwardingOperandReg(killed) |
| if (IsForwardingOperandKilled) |
| fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); |
| |
| LLVM_DEBUG(dbgs() << "With:\n"); |
| LLVM_DEBUG(MI.dump()); |
| return true; |
| } |
| return false; |
| } |
| |
| bool PPCInstrInfo::transformToNewImmFormFedByAdd( |
| MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { |
| MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); |
| bool PostRA = !MRI->isSSA(); |
| // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI |
| // for post-ra. |
| if (PostRA) |
| return false; |
| |
| // Only handle load/store. |
| if (!MI.mayLoadOrStore()) |
| return false; |
| |
| unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); |
| |
| assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && |
| "MI must have x-form opcode"); |
| |
| // get Imm Form info. |
| ImmInstrInfo III; |
| bool IsVFReg = MI.getOperand(0).isReg() |
| ? isVFRegister(MI.getOperand(0).getReg()) |
| : false; |
| |
| if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) |
| return false; |
| |
| if (!III.IsSummingOperands) |
| return false; |
| |
| if (OpNoForForwarding != III.OpNoForForwarding) |
| return false; |
| |
| MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); |
| if (!ImmOperandMI.isImm()) |
| return false; |
| |
| // Check DefMI. |
| MachineOperand *ImmMO = nullptr; |
| MachineOperand *RegMO = nullptr; |
| if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) |
| return false; |
| assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); |
| |
| // Check Imm. |
| // Set ImmBase from imm instruction as base and get new Imm inside |
| // isImmElgibleForForwarding. |
| int64_t ImmBase = ImmOperandMI.getImm(); |
| int64_t Imm = 0; |
| if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) |
| return false; |
| |
| // Get killed info in case fixup needed after transformation. |
| unsigned ForwardKilledOperandReg = ~0U; |
| if (MI.getOperand(III.OpNoForForwarding).isKill()) |
| ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); |
| |
| // Do the transform |
| LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n"); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "Fed by:\n"); |
| LLVM_DEBUG(DefMI.dump()); |
| |
| MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); |
| if (RegMO->isKill()) { |
| MI.getOperand(III.OpNoForForwarding).setIsKill(true); |
| // Clear the killed flag in RegMO. Doing this here can handle some cases |
| // that DefMI and MI are not in same basic block. |
| RegMO->setIsKill(false); |
| } |
| MI.getOperand(III.ImmOpNo).setImm(Imm); |
| |
| // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. |
| if (DefMI.getParent() == MI.getParent()) { |
| // Check if reg is killed between MI and DefMI. |
| auto IsKilledFor = [&](unsigned Reg) { |
| MachineBasicBlock::const_reverse_iterator It = MI; |
| MachineBasicBlock::const_reverse_iterator E = DefMI; |
| It++; |
| for (; It != E; ++It) { |
| if (It->killsRegister(Reg)) |
| return true; |
| } |
| return false; |
| }; |
| |
| // Update kill flag |
| if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) |
| fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); |
| if (ForwardKilledOperandReg != ~0U) |
| fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); |
| } |
| |
| LLVM_DEBUG(dbgs() << "With:\n"); |
| LLVM_DEBUG(MI.dump()); |
| return true; |
| } |
| |
| // If an X-Form instruction is fed by an add-immediate and one of its operands |
| // is the literal zero, attempt to forward the source of the add-immediate to |
| // the corresponding D-Form instruction with the displacement coming from |
| // the immediate being added. |
| bool PPCInstrInfo::transformToImmFormFedByAdd( |
| MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, |
| MachineInstr &DefMI, bool KillDefMI) const { |
| // RegMO ImmMO |
| // | | |
| // x = addi reg, imm <----- DefMI |
| // y = op 0 , x <----- MI |
| // | |
| // OpNoForForwarding |
| // Check if the MI meet the requirement described in the III. |
| if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) |
| return false; |
| |
| // Check if the DefMI meet the requirement |
| // described in the III. If yes, set the ImmMO and RegMO accordingly. |
| MachineOperand *ImmMO = nullptr; |
| MachineOperand *RegMO = nullptr; |
| if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) |
| return false; |
| assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); |
| |
| // As we get the Imm operand now, we need to check if the ImmMO meet |
| // the requirement described in the III. If yes set the Imm. |
| int64_t Imm = 0; |
| if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) |
| return false; |
| |
| bool IsFwdFeederRegKilled = false; |
| bool SeenIntermediateUse = false; |
| // Check if the RegMO can be forwarded to MI. |
| if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, |
| IsFwdFeederRegKilled, SeenIntermediateUse)) |
| return false; |
| |
| // Get killed info in case fixup needed after transformation. |
| unsigned ForwardKilledOperandReg = ~0U; |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| bool PostRA = !MRI.isSSA(); |
| if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) |
| ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); |
| |
| // We know that, the MI and DefMI both meet the pattern, and |
| // the Imm also meet the requirement with the new Imm-form. |
| // It is safe to do the transformation now. |
| LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n"); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "Fed by:\n"); |
| LLVM_DEBUG(DefMI.dump()); |
| |
| // Update the base reg first. |
| MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), |
| false, false, |
| RegMO->isKill()); |
| |
| // Then, update the imm. |
| if (ImmMO->isImm()) { |
| // If the ImmMO is Imm, change the operand that has ZERO to that Imm |
| // directly. |
| replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); |
| } |
| else { |
| // Otherwise, it is Constant Pool Index(CPI) or Global, |
| // which is relocation in fact. We need to replace the special zero |
| // register with ImmMO. |
| // Before that, we need to fixup the target flags for imm. |
| // For some reason, we miss to set the flag for the ImmMO if it is CPI. |
| if (DefMI.getOpcode() == PPC::ADDItocL) |
| ImmMO->setTargetFlags(PPCII::MO_TOC_LO); |
| |
| // MI didn't have the interface such as MI.setOperand(i) though |
| // it has MI.getOperand(i). To repalce the ZERO MachineOperand with |
| // ImmMO, we need to remove ZERO operand and all the operands behind it, |
| // and, add the ImmMO, then, move back all the operands behind ZERO. |
| SmallVector<MachineOperand, 2> MOps; |
| for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { |
| MOps.push_back(MI.getOperand(i)); |
| MI.removeOperand(i); |
| } |
| |
| // Remove the last MO in the list, which is ZERO operand in fact. |
| MOps.pop_back(); |
| // Add the imm operand. |
| MI.addOperand(*ImmMO); |
| // Now add the rest back. |
| for (auto &MO : MOps) |
| MI.addOperand(MO); |
| } |
| |
| // Update the opcode. |
| MI.setDesc(get(III.ImmOpcode)); |
| |
| // Fix up killed/dead flag after transformation. |
| // Pattern 1: |
| // x = ADD KilledFwdFeederReg, imm |
| // n = opn KilledFwdFeederReg(killed), regn |
| // y = XOP 0, x |
| // Pattern 2: |
| // x = ADD reg(killed), imm |
| // y = XOP 0, x |
| if (IsFwdFeederRegKilled || RegMO->isKill()) |
| fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); |
| // Pattern 3: |
| // ForwardKilledOperandReg = ADD reg, imm |
| // y = XOP 0, ForwardKilledOperandReg(killed) |
| if (ForwardKilledOperandReg != ~0U) |
| fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); |
| |
| LLVM_DEBUG(dbgs() << "With:\n"); |
| LLVM_DEBUG(MI.dump()); |
| |
| return true; |
| } |
| |
| bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, |
| const ImmInstrInfo &III, |
| unsigned ConstantOpNo, |
| MachineInstr &DefMI) const { |
| // DefMI must be LI or LI8. |
| if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || |
| !DefMI.getOperand(1).isImm()) |
| return false; |
| |
| // Get Imm operand and Sign-extend to 64-bits. |
| int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); |
| |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| bool PostRA = !MRI.isSSA(); |
| // Exit early if we can't convert this. |
| if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) |
| return false; |
| if (Imm % III.ImmMustBeMultipleOf) |
| return false; |
| if (III.TruncateImmTo) |
| Imm &= ((1 << III.TruncateImmTo) - 1); |
| if (III.SignedImm) { |
| APInt ActualValue(64, Imm, true); |
| if (!ActualValue.isSignedIntN(III.ImmWidth)) |
| return false; |
| } else { |
| uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; |
| if ((uint64_t)Imm > UnsignedMax) |
| return false; |
| } |
| |
| // If we're post-RA, the instructions don't agree on whether register zero is |
| // special, we can transform this as long as the register operand that will |
| // end up in the location where zero is special isn't R0. |
| if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { |
| unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : |
| III.ZeroIsSpecialNew + 1; |
| Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); |
| Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); |
| // If R0 is in the operand where zero is special for the new instruction, |
| // it is unsafe to transform if the constant operand isn't that operand. |
| if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && |
| ConstantOpNo != III.ZeroIsSpecialNew) |
| return false; |
| if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && |
| ConstantOpNo != PosForOrigZero) |
| return false; |
| } |
| |
| // Get killed info in case fixup needed after transformation. |
| unsigned ForwardKilledOperandReg = ~0U; |
| if (PostRA && MI.getOperand(ConstantOpNo).isKill()) |
| ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); |
| |
| unsigned Opc = MI.getOpcode(); |
| bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || |
| Opc == PPC::SRW || Opc == PPC::SRW_rec || |
| Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || |
| Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; |
| bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || |
| Opc == PPC::SRD || Opc == PPC::SRD_rec; |
| bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || |
| Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; |
| bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || |
| Opc == PPC::SRD_rec; |
| |
| LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: "); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "Fed by load-immediate: "); |
| LLVM_DEBUG(DefMI.dump()); |
| MI.setDesc(get(III.ImmOpcode)); |
| if (ConstantOpNo == III.OpNoForForwarding) { |
| // Converting shifts to immediate form is a bit tricky since they may do |
| // one of three things: |
| // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero |
| // 2. If the shift amount is zero, the result is unchanged (save for maybe |
| // setting CR0) |
| // 3. If the shift amount is in [1, OpSize), it's just a shift |
| if (SpecialShift32 || SpecialShift64) { |
| LoadImmediateInfo LII; |
| LII.Imm = 0; |
| LII.SetCR = SetCR; |
| LII.Is64Bit = SpecialShift64; |
| uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); |
| if (Imm & (SpecialShift32 ? 0x20 : 0x40)) |
| replaceInstrWithLI(MI, LII); |
| // Shifts by zero don't change the value. If we don't need to set CR0, |
| // just convert this to a COPY. Can't do this post-RA since we've already |
| // cleaned up the copies. |
| else if (!SetCR && ShAmt == 0 && !PostRA) { |
| MI.removeOperand(2); |
| MI.setDesc(get(PPC::COPY)); |
| } else { |
| // The 32 bit and 64 bit instructions are quite different. |
| if (SpecialShift32) { |
| // Left shifts use (N, 0, 31-N). |
| // Right shifts use (32-N, N, 31) if 0 < N < 32. |
| // use (0, 0, 31) if N == 0. |
| uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; |
| uint64_t MB = RightShift ? ShAmt : 0; |
| uint64_t ME = RightShift ? 31 : 31 - ShAmt; |
| replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) |
| .addImm(ME); |
| } else { |
| // Left shifts use (N, 63-N). |
| // Right shifts use (64-N, N) if 0 < N < 64. |
| // use (0, 0) if N == 0. |
| uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; |
| uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; |
| replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); |
| } |
| } |
| } else |
| replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); |
| } |
| // Convert commutative instructions (switch the operands and convert the |
| // desired one to an immediate. |
| else if (III.IsCommutative) { |
| replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); |
| swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); |
| } else |
| llvm_unreachable("Should have exited early!"); |
| |
| // For instructions for which the constant register replaces a different |
| // operand than where the immediate goes, we need to swap them. |
| if (III.OpNoForForwarding != III.ImmOpNo) |
| swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); |
| |
| // If the special R0/X0 register index are different for original instruction |
| // and new instruction, we need to fix up the register class in new |
| // instruction. |
| if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { |
| if (III.ZeroIsSpecialNew) { |
| // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no |
| // need to fix up register class. |
| Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); |
| if (RegToModify.isVirtual()) { |
| const TargetRegisterClass *NewRC = |
| MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? |
| &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; |
| MRI.setRegClass(RegToModify, NewRC); |
| } |
| } |
| } |
| |
| // Fix up killed/dead flag after transformation. |
| // Pattern: |
| // ForwardKilledOperandReg = LI imm |
| // y = XOP reg, ForwardKilledOperandReg(killed) |
| if (ForwardKilledOperandReg != ~0U) |
| fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); |
| |
| LLVM_DEBUG(dbgs() << "With: "); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "\n"); |
| return true; |
| } |
| |
| const TargetRegisterClass * |
| PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { |
| if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) |
| return &PPC::VSRCRegClass; |
| return RC; |
| } |
| |
| int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { |
| return PPC::getRecordFormOpcode(Opcode); |
| } |
| |
| static bool isOpZeroOfSubwordPreincLoad(int Opcode) { |
| return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || |
| Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || |
| Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || |
| Opcode == PPC::LHZUX8); |
| } |
| |
| // This function checks for sign extension from 32 bits to 64 bits. |
| static bool definedBySignExtendingOp(const unsigned Reg, |
| const MachineRegisterInfo *MRI) { |
| if (!Register::isVirtualRegister(Reg)) |
| return false; |
| |
| MachineInstr *MI = MRI->getVRegDef(Reg); |
| if (!MI) |
| return false; |
| |
| int Opcode = MI->getOpcode(); |
| const PPCInstrInfo *TII = |
| MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| if (TII->isSExt32To64(Opcode)) |
| return true; |
| |
| // The first def of LBZU/LHZU is sign extended. |
| if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg) |
| return true; |
| |
| // RLDICL generates sign-extended output if it clears at least |
| // 33 bits from the left (MSB). |
| if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33) |
| return true; |
| |
| // If at least one bit from left in a lower word is masked out, |
| // all of 0 to 32-th bits of the output are cleared. |
| // Hence the output is already sign extended. |
| if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || |
| Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && |
| MI->getOperand(3).getImm() > 0 && |
| MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) |
| return true; |
| |
| // If the most significant bit of immediate in ANDIS is zero, |
| // all of 0 to 32-th bits are cleared. |
| if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { |
| uint16_t Imm = MI->getOperand(2).getImm(); |
| if ((Imm & 0x8000) == 0) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks the machine instruction that defines the input register |
| // Reg. If that machine instruction always outputs a value that has only zeros |
| // in the higher 32 bits then this function will return true. |
| static bool definedByZeroExtendingOp(const unsigned Reg, |
| const MachineRegisterInfo *MRI) { |
| if (!Register::isVirtualRegister(Reg)) |
| return false; |
| |
| MachineInstr *MI = MRI->getVRegDef(Reg); |
| if (!MI) |
| return false; |
| |
| int Opcode = MI->getOpcode(); |
| const PPCInstrInfo *TII = |
| MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| if (TII->isZExt32To64(Opcode)) |
| return true; |
| |
| // The first def of LBZU/LHZU/LWZU are zero extended. |
| if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || |
| Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && |
| MI->getOperand(0).getReg() == Reg) |
| return true; |
| |
| // The 16-bit immediate is sign-extended in li/lis. |
| // If the most significant bit is zero, all higher bits are zero. |
| if (Opcode == PPC::LI || Opcode == PPC::LI8 || |
| Opcode == PPC::LIS || Opcode == PPC::LIS8) { |
| int64_t Imm = MI->getOperand(1).getImm(); |
| if (((uint64_t)Imm & ~0x7FFFuLL) == 0) |
| return true; |
| } |
| |
| // We have some variations of rotate-and-mask instructions |
| // that clear higher 32-bits. |
| if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || |
| Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || |
| Opcode == PPC::RLDICL_32_64) && |
| MI->getOperand(3).getImm() >= 32) |
| return true; |
| |
| if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && |
| MI->getOperand(3).getImm() >= 32 && |
| MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) |
| return true; |
| |
| if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || |
| Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || |
| Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && |
| MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) |
| return true; |
| |
| return false; |
| } |
| |
| // This function returns true if the input MachineInstr is a TOC save |
| // instruction. |
| bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { |
| if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) |
| return false; |
| unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); |
| unsigned StackOffset = MI.getOperand(1).getImm(); |
| Register StackReg = MI.getOperand(2).getReg(); |
| Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; |
| if (StackReg == SPReg && StackOffset == TOCSaveOffset) |
| return true; |
| |
| return false; |
| } |
| |
| // We limit the max depth to track incoming values of PHIs or binary ops |
| // (e.g. AND) to avoid excessive cost. |
| const unsigned MAX_BINOP_DEPTH = 1; |
| // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth |
| // does not count all of the recursions. The parameter BinOpDepth is incremented |
| // only when isSignOrZeroExtended calls itself more than once. This is done to |
| // prevent expontential recursion. There is no parameter to track linear |
| // recursion. |
| std::pair<bool, bool> |
| PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, |
| const unsigned BinOpDepth, |
| const MachineRegisterInfo *MRI) const { |
| if (!Register::isVirtualRegister(Reg)) |
| return std::pair<bool, bool>(false, false); |
| |
| MachineInstr *MI = MRI->getVRegDef(Reg); |
| if (!MI) |
| return std::pair<bool, bool>(false, false); |
| |
| bool IsSExt = definedBySignExtendingOp(Reg, MRI); |
| bool IsZExt = definedByZeroExtendingOp(Reg, MRI); |
| |
| // If we know the instruction always returns sign- and zero-extended result, |
| // return here. |
| if (IsSExt && IsZExt) |
| return std::pair<bool, bool>(IsSExt, IsZExt); |
| |
| switch (MI->getOpcode()) { |
| case PPC::COPY: { |
| Register SrcReg = MI->getOperand(1).getReg(); |
| |
| // In both ELFv1 and v2 ABI, method parameters and the return value |
| // are sign- or zero-extended. |
| const MachineFunction *MF = MI->getMF(); |
| |
| if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { |
| // If this is a copy from another register, we recursively check source. |
| auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); |
| return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| SrcExt.second || IsZExt); |
| } |
| |
| // From here on everything is SVR4ABI |
| const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); |
| // We check the ZExt/SExt flags for a method parameter. |
| if (MI->getParent()->getBasicBlock() == |
| &MF->getFunction().getEntryBlock()) { |
| Register VReg = MI->getOperand(0).getReg(); |
| if (MF->getRegInfo().isLiveIn(VReg)) { |
| IsSExt |= FuncInfo->isLiveInSExt(VReg); |
| IsZExt |= FuncInfo->isLiveInZExt(VReg); |
| return std::pair<bool, bool>(IsSExt, IsZExt); |
| } |
| } |
| |
| if (SrcReg != PPC::X3) { |
| // If this is a copy from another register, we recursively check source. |
| auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); |
| return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| SrcExt.second || IsZExt); |
| } |
| |
| // For a method return value, we check the ZExt/SExt flags in attribute. |
| // We assume the following code sequence for method call. |
| // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 |
| // BL8_NOP @func,... |
| // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 |
| // %5 = COPY %x3; G8RC:%5 |
| const MachineBasicBlock *MBB = MI->getParent(); |
| std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); |
| MachineBasicBlock::const_instr_iterator II = |
| MachineBasicBlock::const_instr_iterator(MI); |
| if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) |
| return IsExtendPair; |
| |
| const MachineInstr &CallMI = *(--II); |
| if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal()) |
| return IsExtendPair; |
| |
| const Function *CalleeFn = |
| dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal()); |
| if (!CalleeFn) |
| return IsExtendPair; |
| const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType()); |
| if (IntTy && IntTy->getBitWidth() <= 32) { |
| const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); |
| IsSExt |= Attrs.hasAttribute(Attribute::SExt); |
| IsZExt |= Attrs.hasAttribute(Attribute::ZExt); |
| return std::pair<bool, bool>(IsSExt, IsZExt); |
| } |
| |
| return IsExtendPair; |
| } |
| |
| // OR, XOR with 16-bit immediate does not change the upper 48 bits. |
| // So, we track the operand register as we do for register copy. |
| case PPC::ORI: |
| case PPC::XORI: |
| case PPC::ORI8: |
| case PPC::XORI8: { |
| Register SrcReg = MI->getOperand(1).getReg(); |
| auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); |
| return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| SrcExt.second || IsZExt); |
| } |
| |
| // OR, XOR with shifted 16-bit immediate does not change the upper |
| // 32 bits. So, we track the operand register for zero extension. |
| // For sign extension when the MSB of the immediate is zero, we also |
| // track the operand register since the upper 33 bits are unchanged. |
| case PPC::ORIS: |
| case PPC::XORIS: |
| case PPC::ORIS8: |
| case PPC::XORIS8: { |
| Register SrcReg = MI->getOperand(1).getReg(); |
| auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); |
| uint16_t Imm = MI->getOperand(2).getImm(); |
| if (Imm & 0x8000) |
| return std::pair<bool, bool>(false, SrcExt.second || IsZExt); |
| else |
| return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| SrcExt.second || IsZExt); |
| } |
| |
| // If all incoming values are sign-/zero-extended, |
| // the output of OR, ISEL or PHI is also sign-/zero-extended. |
| case PPC::OR: |
| case PPC::OR8: |
| case PPC::ISEL: |
| case PPC::PHI: { |
| if (BinOpDepth >= MAX_BINOP_DEPTH) |
| return std::pair<bool, bool>(false, false); |
| |
| // The input registers for PHI are operand 1, 3, ... |
| // The input registers for others are operand 1 and 2. |
| unsigned OperandEnd = 3, OperandStride = 1; |
| if (MI->getOpcode() == PPC::PHI) { |
| OperandEnd = MI->getNumOperands(); |
| OperandStride = 2; |
| } |
| |
| IsSExt = true; |
| IsZExt = true; |
| for (unsigned I = 1; I != OperandEnd; I += OperandStride) { |
| if (!MI->getOperand(I).isReg()) |
| return std::pair<bool, bool>(false, false); |
| |
| Register SrcReg = MI->getOperand(I).getReg(); |
| auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI); |
| IsSExt &= SrcExt.first; |
| IsZExt &= SrcExt.second; |
| } |
| return std::pair<bool, bool>(IsSExt, IsZExt); |
| } |
| |
| // If at least one of the incoming values of an AND is zero extended |
| // then the output is also zero-extended. If both of the incoming values |
| // are sign-extended then the output is also sign extended. |
| case PPC::AND: |
| case PPC::AND8: { |
| if (BinOpDepth >= MAX_BINOP_DEPTH) |
| return std::pair<bool, bool>(false, false); |
| |
| Register SrcReg1 = MI->getOperand(1).getReg(); |
| Register SrcReg2 = MI->getOperand(2).getReg(); |
| auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI); |
| auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI); |
| return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, |
| Src1Ext.second || Src2Ext.second); |
| } |
| |
| default: |
| break; |
| } |
| return std::pair<bool, bool>(IsSExt, IsZExt); |
| } |
| |
| bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { |
| return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); |
| } |
| |
| namespace { |
| class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { |
| MachineInstr *Loop, *EndLoop, *LoopCount; |
| MachineFunction *MF; |
| const TargetInstrInfo *TII; |
| int64_t TripCount; |
| |
| public: |
| PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, |
| MachineInstr *LoopCount) |
| : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), |
| MF(Loop->getParent()->getParent()), |
| TII(MF->getSubtarget().getInstrInfo()) { |
| // Inspect the Loop instruction up-front, as it may be deleted when we call |
| // createTripCountGreaterCondition. |
| if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) |
| TripCount = LoopCount->getOperand(1).getImm(); |
| else |
| TripCount = -1; |
| } |
| |
| bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { |
| // Only ignore the terminator. |
| return MI == EndLoop; |
| } |
| |
| std::optional<bool> createTripCountGreaterCondition( |
| int TC, MachineBasicBlock &MBB, |
| SmallVectorImpl<MachineOperand> &Cond) override { |
| if (TripCount == -1) { |
| // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, |
| // so we don't need to generate any thing here. |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg( |
| MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return {}; |
| } |
| |
| return TripCount > TC; |
| } |
| |
| void setPreheader(MachineBasicBlock *NewPreheader) override { |
| // Do nothing. We want the LOOP setup instruction to stay in the *old* |
| // preheader, so we can use BDZ in the prologs to adapt the loop trip count. |
| } |
| |
| void adjustTripCount(int TripCountAdjust) override { |
| // If the loop trip count is a compile-time value, then just change the |
| // value. |
| if (LoopCount->getOpcode() == PPC::LI8 || |
| LoopCount->getOpcode() == PPC::LI) { |
| int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; |
| LoopCount->getOperand(1).setImm(TripCount); |
| return; |
| } |
| |
| // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, |
| // so we don't need to generate any thing here. |
| } |
| |
| void disposed() override { |
| Loop->eraseFromParent(); |
| // Ensure the loop setup instruction is deleted too. |
| LoopCount->eraseFromParent(); |
| } |
| }; |
| } // namespace |
| |
| std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> |
| PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { |
| // We really "analyze" only hardware loops right now. |
| MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); |
| MachineBasicBlock *Preheader = *LoopBB->pred_begin(); |
| if (Preheader == LoopBB) |
| Preheader = *std::next(LoopBB->pred_begin()); |
| MachineFunction *MF = Preheader->getParent(); |
| |
| if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { |
| SmallPtrSet<MachineBasicBlock *, 8> Visited; |
| if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { |
| Register LoopCountReg = LoopInst->getOperand(0).getReg(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); |
| return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); |
| } |
| } |
| return nullptr; |
| } |
| |
| MachineInstr *PPCInstrInfo::findLoopInstr( |
| MachineBasicBlock &PreHeader, |
| SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { |
| |
| unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); |
| |
| // The loop set-up instruction should be in preheader |
| for (auto &I : PreHeader.instrs()) |
| if (I.getOpcode() == LOOPi) |
| return &I; |
| return nullptr; |
| } |
| |
| // Return true if get the base operand, byte offset of an instruction and the |
| // memory width. Width is the size of memory that is being loaded/stored. |
| bool PPCInstrInfo::getMemOperandWithOffsetWidth( |
| const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, |
| unsigned &Width, const TargetRegisterInfo *TRI) const { |
| if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) |
| return false; |
| |
| // Handle only loads/stores with base register followed by immediate offset. |
| if (!LdSt.getOperand(1).isImm() || |
| (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) |
| return false; |
| if (!LdSt.getOperand(1).isImm() || |
| (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) |
| return false; |
| |
| if (!LdSt.hasOneMemOperand()) |
| return false; |
| |
| Width = (*LdSt.memoperands_begin())->getSize(); |
| Offset = LdSt.getOperand(1).getImm(); |
| BaseReg = &LdSt.getOperand(2); |
| return true; |
| } |
| |
| bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( |
| const MachineInstr &MIa, const MachineInstr &MIb) const { |
| assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); |
| assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); |
| |
| if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
| MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
| return false; |
| |
| // Retrieve the base register, offset from the base register and width. Width |
| // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If |
| // base registers are identical, and the offset of a lower memory access + |
| // the width doesn't overlap the offset of a higher memory access, |
| // then the memory accesses are different. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; |
| int64_t OffsetA = 0, OffsetB = 0; |
| unsigned int WidthA = 0, WidthB = 0; |
| if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && |
| getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { |
| if (BaseOpA->isIdenticalTo(*BaseOpB)) { |
| int LowOffset = std::min(OffsetA, OffsetB); |
| int HighOffset = std::max(OffsetA, OffsetB); |
| int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; |
| if (LowOffset + LowWidth <= HighOffset) |
| return true; |
| } |
| } |
| return false; |
| } |