| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the PPCISelLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCISelLowering.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCCCState.h" |
| #include "PPCCallingConv.h" |
| #include "PPCFrameLowering.h" |
| #include "PPCInstrInfo.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCPerfectShuffle.h" |
| #include "PPCRegisterInfo.h" |
| #include "PPCSubtarget.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsPowerPC.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSectionXCOFF.h" |
| #include "llvm/MC/MCSymbolXCOFF.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <list> |
| #include <optional> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppc-lowering" |
| |
| static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", |
| cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); |
| |
| static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", |
| cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); |
| |
| static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", |
| cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); |
| |
| static cl::opt<bool> DisableSCO("disable-ppc-sco", |
| cl::desc("disable sibling call optimization on ppc"), cl::Hidden); |
| |
| static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", |
| cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); |
| |
| static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", |
| cl::desc("use absolute jump tables on ppc"), cl::Hidden); |
| |
| static cl::opt<bool> EnableQuadwordAtomics( |
| "ppc-quadword-atomics", |
| cl::desc("enable quadword lock-free atomic operations"), cl::init(false), |
| cl::Hidden); |
| |
| static cl::opt<bool> |
| DisablePerfectShuffle("ppc-disable-perfect-shuffle", |
| cl::desc("disable vector permute decomposition"), |
| cl::init(true), cl::Hidden); |
| |
| cl::opt<bool> DisableAutoPairedVecSt( |
| "disable-auto-paired-vec-st", |
| cl::desc("disable automatically generated 32byte paired vector stores"), |
| cl::init(true), cl::Hidden); |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| STATISTIC(NumSiblingCalls, "Number of sibling calls"); |
| STATISTIC(ShufflesHandledWithVPERM, |
| "Number of shuffles lowered to a VPERM or XXPERM"); |
| STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); |
| |
| static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); |
| |
| static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); |
| |
| static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; |
| |
| // FIXME: Remove this once the bug has been fixed! |
| extern cl::opt<bool> ANDIGlueBug; |
| |
| PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, |
| const PPCSubtarget &STI) |
| : TargetLowering(TM), Subtarget(STI) { |
| // Initialize map that relates the PPC addressing modes to the computed flags |
| // of a load/store instruction. The map is used to determine the optimal |
| // addressing mode when selecting load and stores. |
| initializeAddrModeMap(); |
| // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all |
| // arguments are at least 4/8 bytes aligned. |
| bool isPPC64 = Subtarget.isPPC64(); |
| setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &PPC::GPRCRegClass); |
| if (!useSoftFloat()) { |
| if (hasSPE()) { |
| addRegisterClass(MVT::f32, &PPC::GPRCRegClass); |
| // EFPU2 APU only supports f32 |
| if (!Subtarget.hasEFPU2()) |
| addRegisterClass(MVT::f64, &PPC::SPERCRegClass); |
| } else { |
| addRegisterClass(MVT::f32, &PPC::F4RCRegClass); |
| addRegisterClass(MVT::f64, &PPC::F8RCRegClass); |
| } |
| } |
| |
| // Match BITREVERSE to customized fast code sequence in the td file. |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| |
| // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); |
| |
| // Custom lower inline assembly to check for special registers. |
| setOperationAction(ISD::INLINEASM, MVT::Other, Custom); |
| setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); |
| |
| // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); |
| } |
| |
| if (Subtarget.isISA3_0()) { |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); |
| setTruncStoreAction(MVT::f64, MVT::f16, Legal); |
| setTruncStoreAction(MVT::f32, MVT::f16, Legal); |
| } else { |
| // No extending loads from f16 or HW conversions back and forth. |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| } |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // PowerPC has pre-inc load and store's. |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); |
| if (!Subtarget.hasSPE()) { |
| setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); |
| setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); |
| setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); |
| } |
| |
| // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. |
| const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
| for (MVT VT : ScalarIntVTs) { |
| setOperationAction(ISD::ADDC, VT, Legal); |
| setOperationAction(ISD::ADDE, VT, Legal); |
| setOperationAction(ISD::SUBC, VT, Legal); |
| setOperationAction(ISD::SUBE, VT, Legal); |
| } |
| |
| if (Subtarget.useCRBits()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| if (isPPC64 || Subtarget.hasFPCVT()) { |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); |
| AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); |
| AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| |
| setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); |
| AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); |
| AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); |
| AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); |
| AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); |
| AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); |
| AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| } else { |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); |
| } |
| |
| // PowerPC does not support direct load/store of condition registers. |
| setOperationAction(ISD::LOAD, MVT::i1, Custom); |
| setOperationAction(ISD::STORE, MVT::i1, Custom); |
| |
| // FIXME: Remove this once the ANDI glue bug is fixed: |
| if (ANDIGlueBug) |
| setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setTruncStoreAction(VT, MVT::i1, Expand); |
| } |
| |
| addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); |
| } |
| |
| // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on |
| // PPC (the libcall is not available). |
| setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); |
| |
| // We do not currently implement these libm ops for PowerPC. |
| setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); |
| setOperationAction(ISD::FREM, MVT::ppcf128, Expand); |
| |
| // PowerPC has no SREM/UREM instructions unless we are on P9 |
| // On P9 we may use a hardware instruction to compute the remainder. |
| // When the result of both the remainder and the division is required it is |
| // more efficient to compute the remainder from the result of the division |
| // rather than use the remainder instruction. The instructions are legalized |
| // directly because the DivRemPairsPass performs the transformation at the IR |
| // level. |
| if (Subtarget.isISA3_0()) { |
| setOperationAction(ISD::SREM, MVT::i32, Legal); |
| setOperationAction(ISD::UREM, MVT::i32, Legal); |
| setOperationAction(ISD::SREM, MVT::i64, Legal); |
| setOperationAction(ISD::UREM, MVT::i64, Legal); |
| } else { |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| } |
| |
| // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| |
| // Handle constrained floating-point operations of scalar. |
| // TODO: Handle SPE specific operation. |
| setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); |
| |
| setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); |
| |
| if (!Subtarget.hasSPE()) { |
| setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); |
| } |
| |
| if (Subtarget.hasVSX()) { |
| setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); |
| } |
| |
| if (Subtarget.hasFSQRT()) { |
| setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); |
| } |
| |
| if (Subtarget.hasFPRND()) { |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); |
| |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); |
| } |
| |
| // We don't support sin/cos/sqrt/fmod/pow |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FPOW , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| setOperationAction(ISD::FPOW , MVT::f32, Expand); |
| |
| // MASS transformation for LLVM intrinsics with replicating fast-math flag |
| // to be consistent to PPCGenScalarMASSEntries pass |
| if (TM.getOptLevel() == CodeGenOpt::Aggressive) { |
| setOperationAction(ISD::FSIN , MVT::f64, Custom); |
| setOperationAction(ISD::FCOS , MVT::f64, Custom); |
| setOperationAction(ISD::FPOW , MVT::f64, Custom); |
| setOperationAction(ISD::FLOG, MVT::f64, Custom); |
| setOperationAction(ISD::FLOG10, MVT::f64, Custom); |
| setOperationAction(ISD::FEXP, MVT::f64, Custom); |
| setOperationAction(ISD::FSIN , MVT::f32, Custom); |
| setOperationAction(ISD::FCOS , MVT::f32, Custom); |
| setOperationAction(ISD::FPOW , MVT::f32, Custom); |
| setOperationAction(ISD::FLOG, MVT::f32, Custom); |
| setOperationAction(ISD::FLOG10, MVT::f32, Custom); |
| setOperationAction(ISD::FEXP, MVT::f32, Custom); |
| } |
| |
| if (Subtarget.hasSPE()) { |
| setOperationAction(ISD::FMA , MVT::f64, Expand); |
| setOperationAction(ISD::FMA , MVT::f32, Expand); |
| } else { |
| setOperationAction(ISD::FMA , MVT::f64, Legal); |
| setOperationAction(ISD::FMA , MVT::f32, Legal); |
| } |
| |
| if (Subtarget.hasSPE()) |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| |
| setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); |
| |
| // If we're enabling GP optimizations, use hardware square root |
| if (!Subtarget.hasFSQRT() && |
| !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && |
| Subtarget.hasFRE())) |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| |
| if (!Subtarget.hasFSQRT() && |
| !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && |
| Subtarget.hasFRES())) |
| setOperationAction(ISD::FSQRT, MVT::f32, Expand); |
| |
| if (Subtarget.hasFCPSGN()) { |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); |
| } else { |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| } |
| |
| if (Subtarget.hasFPRND()) { |
| setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Legal); |
| setOperationAction(ISD::FROUND, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::FROUND, MVT::f32, Legal); |
| } |
| |
| // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP |
| // instruction xxbrd to speed up scalar BSWAP64. |
| if (Subtarget.isISA3_1()) { |
| setOperationAction(ISD::BSWAP, MVT::i32, Legal); |
| setOperationAction(ISD::BSWAP, MVT::i64, Legal); |
| } else { |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| setOperationAction( |
| ISD::BSWAP, MVT::i64, |
| (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand); |
| } |
| |
| // CTPOP or CTTZ were introduced in P8/P9 respectively |
| if (Subtarget.isISA3_0()) { |
| setOperationAction(ISD::CTTZ , MVT::i32 , Legal); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Legal); |
| } else { |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i64 , Expand); |
| } |
| |
| if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { |
| setOperationAction(ISD::CTPOP, MVT::i32 , Legal); |
| setOperationAction(ISD::CTPOP, MVT::i64 , Legal); |
| } else { |
| setOperationAction(ISD::CTPOP, MVT::i32 , Expand); |
| setOperationAction(ISD::CTPOP, MVT::i64 , Expand); |
| } |
| |
| // PowerPC does not have ROTR |
| setOperationAction(ISD::ROTR, MVT::i32 , Expand); |
| setOperationAction(ISD::ROTR, MVT::i64 , Expand); |
| |
| if (!Subtarget.useCRBits()) { |
| // PowerPC does not have Select |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::i64, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| } |
| |
| // PowerPC wants to turn select_cc of FP into fsel when possible. |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| // PowerPC wants to optimize integer setcc a bit |
| if (!Subtarget.useCRBits()) |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| |
| if (Subtarget.hasFPU()) { |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); |
| |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); |
| } |
| |
| // PowerPC does not have BRCOND which requires SetCC |
| if (!Subtarget.useCRBits()) |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| |
| if (Subtarget.hasSPE()) { |
| // SPE has built-in conversions |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); |
| |
| // SPE supports signaling compare of f32/f64. |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); |
| } else { |
| // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| |
| // PowerPC does not have [U|S]INT_TO_FP |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| } |
| |
| if (Subtarget.hasDirectMove() && isPPC64) { |
| setOperationAction(ISD::BITCAST, MVT::f32, Legal); |
| setOperationAction(ISD::BITCAST, MVT::i32, Legal); |
| setOperationAction(ISD::BITCAST, MVT::i64, Legal); |
| setOperationAction(ISD::BITCAST, MVT::f64, Legal); |
| if (TM.Options.UnsafeFPMath) { |
| setOperationAction(ISD::LRINT, MVT::f64, Legal); |
| setOperationAction(ISD::LRINT, MVT::f32, Legal); |
| setOperationAction(ISD::LLRINT, MVT::f64, Legal); |
| setOperationAction(ISD::LLRINT, MVT::f32, Legal); |
| setOperationAction(ISD::LROUND, MVT::f64, Legal); |
| setOperationAction(ISD::LROUND, MVT::f32, Legal); |
| setOperationAction(ISD::LLROUND, MVT::f64, Legal); |
| setOperationAction(ISD::LLROUND, MVT::f32, Legal); |
| } |
| } else { |
| setOperationAction(ISD::BITCAST, MVT::f32, Expand); |
| setOperationAction(ISD::BITCAST, MVT::i32, Expand); |
| setOperationAction(ISD::BITCAST, MVT::i64, Expand); |
| setOperationAction(ISD::BITCAST, MVT::f64, Expand); |
| } |
| |
| // We cannot sextinreg(i1). Expand to shifts. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support |
| // SjLj exception handling but a light-weight setjmp/longjmp replacement to |
| // support continuation, user-level threading, and etc.. As a result, no |
| // other SjLj exception interfaces are implemented and please don't build |
| // your own exception handling based on them. |
| // LLVM/Clang supports zero-cost DWARF exception handling. |
| setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); |
| setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); |
| |
| // We want to legalize GlobalAddress and ConstantPool nodes into the |
| // appropriate instructions to materialize the address. |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i64, Custom); |
| setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| |
| // TRAP is legal. |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // TRAMPOLINE is custom lowered. |
| setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); |
| setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| if (Subtarget.is64BitELFABI()) { |
| // VAARG always uses double-word chunks, so promote anything smaller. |
| setOperationAction(ISD::VAARG, MVT::i1, Promote); |
| AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::i8, Promote); |
| AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::i16, Promote); |
| AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::i32, Promote); |
| AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| } else if (Subtarget.is32BitELFABI()) { |
| // VAARG is custom lowered with the 32-bit SVR4 ABI. |
| setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::i64, Custom); |
| } else |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| |
| // VACOPY is custom lowered with the 32-bit SVR4 ABI. |
| if (Subtarget.is32BitELFABI()) |
| setOperationAction(ISD::VACOPY , MVT::Other, Custom); |
| else |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); |
| setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); |
| setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); |
| setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); |
| setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); |
| |
| // To handle counter-based loop conditions. |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); |
| |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| |
| // Comparisons that require checking two conditions. |
| if (Subtarget.hasSPE()) { |
| setCondCodeAction(ISD::SETO, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETO, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUO, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUO, MVT::f64, Expand); |
| } |
| setCondCodeAction(ISD::SETULT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETULT, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::f64, Expand); |
| |
| setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); |
| |
| if (Subtarget.has64BitSupport()) { |
| // They also have instructions for converting between i64 and fp. |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); |
| // This is just the low 32 bits of a (signed) fp->i64 conversion. |
| // We cannot do this with Promote because i64 is not a legal type. |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| |
| if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); |
| } |
| } else { |
| // PowerPC does not have FP_TO_UINT on 32-bit implementations. |
| if (Subtarget.hasSPE()) { |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); |
| } else { |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| } |
| } |
| |
| // With the instructions enabled under FPCVT, we can do everything. |
| if (Subtarget.hasFPCVT()) { |
| if (Subtarget.has64BitSupport()) { |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| } |
| |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| } |
| |
| if (Subtarget.use64BitRegs()) { |
| // 64-bit PowerPC implementations can support i64 types directly |
| addRegisterClass(MVT::i64, &PPC::G8RCRegClass); |
| // BUILD_PAIR can't be handled natively, and should be expanded to shl/or |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| // 64-bit PowerPC wants to expand i128 shifts itself. |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); |
| } else { |
| // 32-bit PowerPC wants to expand i64 shifts itself. |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| } |
| |
| // PowerPC has better expansions for funnel shifts than the generic |
| // TargetLowering::expandFunnelShift. |
| if (Subtarget.has64BitSupport()) { |
| setOperationAction(ISD::FSHL, MVT::i64, Custom); |
| setOperationAction(ISD::FSHR, MVT::i64, Custom); |
| } |
| setOperationAction(ISD::FSHL, MVT::i32, Custom); |
| setOperationAction(ISD::FSHR, MVT::i32, Custom); |
| |
| if (Subtarget.hasVSX()) { |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); |
| setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); |
| setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); |
| } |
| |
| if (Subtarget.hasAltivec()) { |
| for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { |
| setOperationAction(ISD::SADDSAT, VT, Legal); |
| setOperationAction(ISD::SSUBSAT, VT, Legal); |
| setOperationAction(ISD::UADDSAT, VT, Legal); |
| setOperationAction(ISD::USUBSAT, VT, Legal); |
| } |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) { |
| // add/sub are legal for all supported vector VT's. |
| setOperationAction(ISD::ADD, VT, Legal); |
| setOperationAction(ISD::SUB, VT, Legal); |
| |
| // For v2i64, these are only valid with P8Vector. This is corrected after |
| // the loop. |
| if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { |
| setOperationAction(ISD::SMAX, VT, Legal); |
| setOperationAction(ISD::SMIN, VT, Legal); |
| setOperationAction(ISD::UMAX, VT, Legal); |
| setOperationAction(ISD::UMIN, VT, Legal); |
| } |
| else { |
| setOperationAction(ISD::SMAX, VT, Expand); |
| setOperationAction(ISD::SMIN, VT, Expand); |
| setOperationAction(ISD::UMAX, VT, Expand); |
| setOperationAction(ISD::UMIN, VT, Expand); |
| } |
| |
| if (Subtarget.hasVSX()) { |
| setOperationAction(ISD::FMAXNUM, VT, Legal); |
| setOperationAction(ISD::FMINNUM, VT, Legal); |
| } |
| |
| // Vector instructions introduced in P8 |
| if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { |
| setOperationAction(ISD::CTPOP, VT, Legal); |
| setOperationAction(ISD::CTLZ, VT, Legal); |
| } |
| else { |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| } |
| |
| // Vector instructions introduced in P9 |
| if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) |
| setOperationAction(ISD::CTTZ, VT, Legal); |
| else |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| |
| // We promote all shuffles to v16i8. |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); |
| AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); |
| |
| // We promote all non-typed operations to v4i32. |
| setOperationAction(ISD::AND , VT, Promote); |
| AddPromotedToType (ISD::AND , VT, MVT::v4i32); |
| setOperationAction(ISD::OR , VT, Promote); |
| AddPromotedToType (ISD::OR , VT, MVT::v4i32); |
| setOperationAction(ISD::XOR , VT, Promote); |
| AddPromotedToType (ISD::XOR , VT, MVT::v4i32); |
| setOperationAction(ISD::LOAD , VT, Promote); |
| AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); |
| setOperationAction(ISD::SELECT, VT, Promote); |
| AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); |
| setOperationAction(ISD::VSELECT, VT, Legal); |
| setOperationAction(ISD::SELECT_CC, VT, Promote); |
| AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); |
| setOperationAction(ISD::STORE, VT, Promote); |
| AddPromotedToType (ISD::STORE, VT, MVT::v4i32); |
| |
| // No other operations are legal. |
| setOperationAction(ISD::MUL , VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| setOperationAction(ISD::FNEG, VT, Expand); |
| setOperationAction(ISD::FSQRT, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FABS, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| |
| for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { |
| setTruncStoreAction(VT, InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); |
| } |
| } |
| setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); |
| if (!Subtarget.hasP8Vector()) { |
| setOperationAction(ISD::SMAX, MVT::v2i64, Expand); |
| setOperationAction(ISD::SMIN, MVT::v2i64, Expand); |
| setOperationAction(ISD::UMAX, MVT::v2i64, Expand); |
| setOperationAction(ISD::UMIN, MVT::v2i64, Expand); |
| } |
| |
| // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle |
| // with merges, splats, etc. |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); |
| |
| // Vector truncates to sub-word integer that fit in an Altivec/VSX register |
| // are cheap, so handle them before they get expanded to scalar. |
| setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); |
| setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); |
| |
| setOperationAction(ISD::AND , MVT::v4i32, Legal); |
| setOperationAction(ISD::OR , MVT::v4i32, Legal); |
| setOperationAction(ISD::XOR , MVT::v4i32, Legal); |
| setOperationAction(ISD::LOAD , MVT::v4i32, Legal); |
| setOperationAction(ISD::SELECT, MVT::v4i32, |
| Subtarget.useCRBits() ? Legal : Expand); |
| setOperationAction(ISD::STORE , MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); |
| |
| // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. |
| setOperationAction(ISD::ROTL, MVT::v1i128, Custom); |
| // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). |
| if (Subtarget.hasAltivec()) |
| for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) |
| setOperationAction(ISD::ROTL, VT, Legal); |
| // With hasP8Altivec set, we can lower ISD::ROTL to vrld. |
| if (Subtarget.hasP8Altivec()) |
| setOperationAction(ISD::ROTL, MVT::v2i64, Legal); |
| |
| addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); |
| |
| setOperationAction(ISD::MUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::FMA, MVT::v4f32, Legal); |
| |
| if (Subtarget.hasVSX()) { |
| setOperationAction(ISD::FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); |
| } |
| |
| if (Subtarget.hasP8Altivec()) |
| setOperationAction(ISD::MUL, MVT::v4i32, Legal); |
| else |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| |
| if (Subtarget.isISA3_1()) { |
| setOperationAction(ISD::MUL, MVT::v2i64, Legal); |
| setOperationAction(ISD::MULHS, MVT::v2i64, Legal); |
| setOperationAction(ISD::MULHU, MVT::v2i64, Legal); |
| setOperationAction(ISD::MULHS, MVT::v4i32, Legal); |
| setOperationAction(ISD::MULHU, MVT::v4i32, Legal); |
| setOperationAction(ISD::UDIV, MVT::v2i64, Legal); |
| setOperationAction(ISD::SDIV, MVT::v2i64, Legal); |
| setOperationAction(ISD::UDIV, MVT::v4i32, Legal); |
| setOperationAction(ISD::SDIV, MVT::v4i32, Legal); |
| setOperationAction(ISD::UREM, MVT::v2i64, Legal); |
| setOperationAction(ISD::SREM, MVT::v2i64, Legal); |
| setOperationAction(ISD::UREM, MVT::v4i32, Legal); |
| setOperationAction(ISD::SREM, MVT::v4i32, Legal); |
| setOperationAction(ISD::UREM, MVT::v1i128, Legal); |
| setOperationAction(ISD::SREM, MVT::v1i128, Legal); |
| setOperationAction(ISD::UDIV, MVT::v1i128, Legal); |
| setOperationAction(ISD::SDIV, MVT::v1i128, Legal); |
| setOperationAction(ISD::ROTL, MVT::v1i128, Legal); |
| } |
| |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v16i8, Custom); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| |
| // Altivec does not contain unordered floating-point compare instructions |
| setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); |
| |
| if (Subtarget.hasVSX()) { |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); |
| if (Subtarget.hasP8Vector()) { |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); |
| } |
| if (Subtarget.hasDirectMove() && isPPC64) { |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); |
| } |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); |
| |
| // The nearbyint variants are not allowed to raise the inexact exception |
| // so we can only code-gen them with unsafe math. |
| if (TM.Options.UnsafeFPMath) { |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); |
| } |
| |
| setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); |
| setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::FROUND, MVT::v2f64, Legal); |
| setOperationAction(ISD::FROUND, MVT::f64, Legal); |
| setOperationAction(ISD::FRINT, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::FROUND, MVT::v4f32, Legal); |
| setOperationAction(ISD::FROUND, MVT::f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| |
| setOperationAction(ISD::MUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::FMA, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); |
| |
| // Share the Altivec comparison restrictions. |
| setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); |
| setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); |
| |
| setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| setOperationAction(ISD::STORE, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| |
| if (Subtarget.hasP8Vector()) |
| addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); |
| |
| addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); |
| |
| addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); |
| addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); |
| addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); |
| |
| if (Subtarget.hasP8Altivec()) { |
| setOperationAction(ISD::SHL, MVT::v2i64, Legal); |
| setOperationAction(ISD::SRA, MVT::v2i64, Legal); |
| setOperationAction(ISD::SRL, MVT::v2i64, Legal); |
| |
| // 128 bit shifts can be accomplished via 3 instructions for SHL and |
| // SRL, but not for SRA because of the instructions available: |
| // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth |
| // doing |
| setOperationAction(ISD::SHL, MVT::v1i128, Expand); |
| setOperationAction(ISD::SRL, MVT::v1i128, Expand); |
| setOperationAction(ISD::SRA, MVT::v1i128, Expand); |
| |
| setOperationAction(ISD::SETCC, MVT::v2i64, Legal); |
| } |
| else { |
| setOperationAction(ISD::SHL, MVT::v2i64, Expand); |
| setOperationAction(ISD::SRA, MVT::v2i64, Expand); |
| setOperationAction(ISD::SRL, MVT::v2i64, Expand); |
| |
| setOperationAction(ISD::SETCC, MVT::v2i64, Custom); |
| |
| // VSX v2i64 only supports non-arithmetic operations. |
| setOperationAction(ISD::ADD, MVT::v2i64, Expand); |
| setOperationAction(ISD::SUB, MVT::v2i64, Expand); |
| } |
| |
| if (Subtarget.isISA3_1()) |
| setOperationAction(ISD::SETCC, MVT::v1i128, Legal); |
| else |
| setOperationAction(ISD::SETCC, MVT::v1i128, Expand); |
| |
| setOperationAction(ISD::LOAD, MVT::v2i64, Promote); |
| AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); |
| setOperationAction(ISD::STORE, MVT::v2i64, Promote); |
| AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); |
| |
| // Custom handling for partial vectors of integers converted to |
| // floating point. We already have optimal handling for v2i32 through |
| // the DAG combine, so those aren't necessary. |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); |
| setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); |
| setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); |
| |
| setOperationAction(ISD::FNEG, MVT::v4f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Legal); |
| setOperationAction(ISD::FABS, MVT::v4f32, Legal); |
| setOperationAction(ISD::FABS, MVT::v2f64, Legal); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| |
| // Handle constrained floating-point operations of vector. |
| // The predictor is `hasVSX` because altivec instruction has |
| // no exception but VSX vector instruction has. |
| setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); |
| |
| setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); |
| |
| addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); |
| addRegisterClass(MVT::f128, &PPC::VRRCRegClass); |
| |
| for (MVT FPT : MVT::fp_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); |
| |
| // Expand the SELECT to SELECT_CC |
| setOperationAction(ISD::SELECT, MVT::f128, Expand); |
| |
| setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| |
| // No implementation for these ops for PowerPC. |
| setOperationAction(ISD::FSIN, MVT::f128, Expand); |
| setOperationAction(ISD::FCOS, MVT::f128, Expand); |
| setOperationAction(ISD::FPOW, MVT::f128, Expand); |
| setOperationAction(ISD::FPOWI, MVT::f128, Expand); |
| setOperationAction(ISD::FREM, MVT::f128, Expand); |
| } |
| |
| if (Subtarget.hasP8Altivec()) { |
| addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); |
| addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); |
| } |
| |
| if (Subtarget.hasP9Vector()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // 128 bit shifts can be accomplished via 3 instructions for SHL and |
| // SRL, but not for SRA because of the instructions available: |
| // VS{RL} and VS{RL}O. |
| setOperationAction(ISD::SHL, MVT::v1i128, Legal); |
| setOperationAction(ISD::SRL, MVT::v1i128, Legal); |
| setOperationAction(ISD::SRA, MVT::v1i128, Expand); |
| |
| setOperationAction(ISD::FADD, MVT::f128, Legal); |
| setOperationAction(ISD::FSUB, MVT::f128, Legal); |
| setOperationAction(ISD::FDIV, MVT::f128, Legal); |
| setOperationAction(ISD::FMUL, MVT::f128, Legal); |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); |
| |
| setOperationAction(ISD::FMA, MVT::f128, Legal); |
| setCondCodeAction(ISD::SETULT, MVT::f128, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); |
| setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); |
| setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::f128, Expand); |
| |
| setOperationAction(ISD::FTRUNC, MVT::f128, Legal); |
| setOperationAction(ISD::FRINT, MVT::f128, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::f128, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f128, Legal); |
| setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); |
| setOperationAction(ISD::FROUND, MVT::f128, Legal); |
| |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); |
| setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); |
| setOperationAction(ISD::BITCAST, MVT::i128, Custom); |
| |
| // Handle constrained floating-point operations of fp128 |
| setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); |
| setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); |
| setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); |
| setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); |
| setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); |
| setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); |
| setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); |
| setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); |
| } else if (Subtarget.hasVSX()) { |
| setOperationAction(ISD::LOAD, MVT::f128, Promote); |
| setOperationAction(ISD::STORE, MVT::f128, Promote); |
| |
| AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); |
| AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); |
| |
| // Set FADD/FSUB as libcall to avoid the legalizer to expand the |
| // fp_to_uint and int_to_fp. |
| setOperationAction(ISD::FADD, MVT::f128, LibCall); |
| setOperationAction(ISD::FSUB, MVT::f128, LibCall); |
| |
| setOperationAction(ISD::FMUL, MVT::f128, Expand); |
| setOperationAction(ISD::FDIV, MVT::f128, Expand); |
| setOperationAction(ISD::FNEG, MVT::f128, Expand); |
| setOperationAction(ISD::FABS, MVT::f128, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f128, Expand); |
| setOperationAction(ISD::FMA, MVT::f128, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| |
| // Expand the fp_extend if the target type is fp128. |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); |
| setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); |
| |
| // Expand the fp_round if the source type is fp128. |
| for (MVT VT : {MVT::f32, MVT::f64}) { |
| setOperationAction(ISD::FP_ROUND, VT, Custom); |
| setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); |
| } |
| |
| setOperationAction(ISD::SETCC, MVT::f128, Custom); |
| setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); |
| setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f128, Expand); |
| |
| // Lower following f128 select_cc pattern: |
| // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE |
| setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| |
| // We need to handle f128 SELECT_CC with integer result type. |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); |
| } |
| |
| if (Subtarget.hasP9Altivec()) { |
| if (Subtarget.isISA3_1()) { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); |
| } else { |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); |
| } |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); |
| } |
| |
| if (Subtarget.hasP10Vector()) { |
| setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| } |
| } |
| |
| if (Subtarget.pairedVectorMemops()) { |
| addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); |
| setOperationAction(ISD::LOAD, MVT::v256i1, Custom); |
| setOperationAction(ISD::STORE, MVT::v256i1, Custom); |
| } |
| if (Subtarget.hasMMA()) { |
| if (Subtarget.isISAFuture()) |
| addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass); |
| else |
| addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); |
| setOperationAction(ISD::LOAD, MVT::v512i1, Custom); |
| setOperationAction(ISD::STORE, MVT::v512i1, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); |
| } |
| |
| if (Subtarget.has64BitSupport()) |
| setOperationAction(ISD::PREFETCH, MVT::Other, Legal); |
| |
| if (Subtarget.isISA3_1()) |
| setOperationAction(ISD::SRA, MVT::v1i128, Legal); |
| |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); |
| |
| if (!isPPC64) { |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); |
| } |
| |
| if (shouldInlineQuadwordAtomics()) { |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); |
| } |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| |
| if (Subtarget.hasAltivec()) { |
| // Altivec instructions set fields to all zeros or all ones. |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| } |
| |
| setLibcallName(RTLIB::MULO_I128, nullptr); |
| if (!isPPC64) { |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, nullptr); |
| setLibcallName(RTLIB::SRL_I128, nullptr); |
| setLibcallName(RTLIB::SRA_I128, nullptr); |
| setLibcallName(RTLIB::MUL_I128, nullptr); |
| setLibcallName(RTLIB::MULO_I64, nullptr); |
| } |
| |
| if (!isPPC64) |
| setMaxAtomicSizeInBitsSupported(32); |
| else if (shouldInlineQuadwordAtomics()) |
| setMaxAtomicSizeInBitsSupported(128); |
| else |
| setMaxAtomicSizeInBitsSupported(64); |
| |
| setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL, |
| ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); |
| if (Subtarget.hasFPCVT()) |
| setTargetDAGCombine(ISD::UINT_TO_FP); |
| setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); |
| if (Subtarget.useCRBits()) |
| setTargetDAGCombine(ISD::BRCOND); |
| setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, |
| ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); |
| |
| setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); |
| |
| setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); |
| |
| if (Subtarget.useCRBits()) { |
| setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); |
| } |
| |
| if (Subtarget.hasP9Altivec()) { |
| setTargetDAGCombine({ISD::ABS, ISD::VSELECT}); |
| } |
| |
| setLibcallName(RTLIB::LOG_F128, "logf128"); |
| setLibcallName(RTLIB::LOG2_F128, "log2f128"); |
| setLibcallName(RTLIB::LOG10_F128, "log10f128"); |
| setLibcallName(RTLIB::EXP_F128, "expf128"); |
| setLibcallName(RTLIB::EXP2_F128, "exp2f128"); |
| setLibcallName(RTLIB::SIN_F128, "sinf128"); |
| setLibcallName(RTLIB::COS_F128, "cosf128"); |
| setLibcallName(RTLIB::POW_F128, "powf128"); |
| setLibcallName(RTLIB::FMIN_F128, "fminf128"); |
| setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); |
| setLibcallName(RTLIB::REM_F128, "fmodf128"); |
| setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); |
| setLibcallName(RTLIB::CEIL_F128, "ceilf128"); |
| setLibcallName(RTLIB::FLOOR_F128, "floorf128"); |
| setLibcallName(RTLIB::TRUNC_F128, "truncf128"); |
| setLibcallName(RTLIB::ROUND_F128, "roundf128"); |
| setLibcallName(RTLIB::LROUND_F128, "lroundf128"); |
| setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); |
| setLibcallName(RTLIB::RINT_F128, "rintf128"); |
| setLibcallName(RTLIB::LRINT_F128, "lrintf128"); |
| setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); |
| setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); |
| setLibcallName(RTLIB::FMA_F128, "fmaf128"); |
| |
| // With 32 condition bits, we don't need to sink (and duplicate) compares |
| // aggressively in CodeGenPrep. |
| if (Subtarget.useCRBits()) { |
| setHasMultipleConditionRegisters(); |
| setJumpIsExpensive(); |
| } |
| |
| setMinFunctionAlignment(Align(4)); |
| |
| switch (Subtarget.getCPUDirective()) { |
| default: break; |
| case PPC::DIR_970: |
| case PPC::DIR_A2: |
| case PPC::DIR_E500: |
| case PPC::DIR_E500mc: |
| case PPC::DIR_E5500: |
| case PPC::DIR_PWR4: |
| case PPC::DIR_PWR5: |
| case PPC::DIR_PWR5X: |
| case PPC::DIR_PWR6: |
| case PPC::DIR_PWR6X: |
| case PPC::DIR_PWR7: |
| case PPC::DIR_PWR8: |
| case PPC::DIR_PWR9: |
| case PPC::DIR_PWR10: |
| case PPC::DIR_PWR_FUTURE: |
| setPrefLoopAlignment(Align(16)); |
| setPrefFunctionAlignment(Align(16)); |
| break; |
| } |
| |
| if (Subtarget.enableMachineScheduler()) |
| setSchedulingPreference(Sched::Source); |
| else |
| setSchedulingPreference(Sched::Hybrid); |
| |
| computeRegisterProperties(STI.getRegisterInfo()); |
| |
| // The Freescale cores do better with aggressive inlining of memcpy and |
| // friends. GCC uses same threshold of 128 bytes (= 32 word stores). |
| if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || |
| Subtarget.getCPUDirective() == PPC::DIR_E5500) { |
| MaxStoresPerMemset = 32; |
| MaxStoresPerMemsetOptSize = 16; |
| MaxStoresPerMemcpy = 32; |
| MaxStoresPerMemcpyOptSize = 8; |
| MaxStoresPerMemmove = 32; |
| MaxStoresPerMemmoveOptSize = 8; |
| } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { |
| // The A2 also benefits from (very) aggressive inlining of memcpy and |
| // friends. The overhead of a the function call, even when warm, can be |
| // over one hundred cycles. |
| MaxStoresPerMemset = 128; |
| MaxStoresPerMemcpy = 128; |
| MaxStoresPerMemmove = 128; |
| MaxLoadsPerMemcmp = 128; |
| } else { |
| MaxLoadsPerMemcmp = 8; |
| MaxLoadsPerMemcmpOptSize = 4; |
| } |
| |
| IsStrictFPEnabled = true; |
| |
| // Let the subtarget (CPU) decide if a predictable select is more expensive |
| // than the corresponding branch. This information is used in CGP to decide |
| // when to convert selects into branches. |
| PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); |
| } |
| |
| // *********************************** NOTE ************************************ |
| // For selecting load and store instructions, the addressing modes are defined |
| // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD |
| // patterns to match the load the store instructions. |
| // |
| // The TD definitions for the addressing modes correspond to their respective |
| // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely |
| // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the |
| // address mode flags of a particular node. Afterwards, the computed address |
| // flags are passed into getAddrModeForFlags() in order to retrieve the optimal |
| // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement |
| // accordingly, based on the preferred addressing mode. |
| // |
| // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. |
| // MemOpFlags contains all the possible flags that can be used to compute the |
| // optimal addressing mode for load and store instructions. |
| // AddrMode contains all the possible load and store addressing modes available |
| // on Power (such as DForm, DSForm, DQForm, XForm, etc.) |
| // |
| // When adding new load and store instructions, it is possible that new address |
| // flags may need to be added into MemOpFlags, and a new addressing mode will |
| // need to be added to AddrMode. An entry of the new addressing mode (consisting |
| // of the minimal and main distinguishing address flags for the new load/store |
| // instructions) will need to be added into initializeAddrModeMap() below. |
| // Finally, when adding new addressing modes, the getAddrModeForFlags() will |
| // need to be updated to account for selecting the optimal addressing mode. |
| // ***************************************************************************** |
| /// Initialize the map that relates the different addressing modes of the load |
| /// and store instructions to a set of flags. This ensures the load/store |
| /// instruction is correctly matched during instruction selection. |
| void PPCTargetLowering::initializeAddrModeMap() { |
| AddrModesMap[PPC::AM_DForm] = { |
| // LWZ, STW |
| PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, |
| PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, |
| PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, |
| PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, |
| // LBZ, LHZ, STB, STH |
| PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, |
| PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, |
| PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, |
| PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, |
| // LHA |
| PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, |
| PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, |
| PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, |
| PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, |
| // LFS, LFD, STFS, STFD |
| PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, |
| PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, |
| PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, |
| PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, |
| }; |
| AddrModesMap[PPC::AM_DSForm] = { |
| // LWA |
| PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, |
| PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, |
| PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, |
| // LD, STD |
| PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, |
| PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, |
| PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, |
| // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 |
| PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, |
| PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, |
| PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, |
| }; |
| AddrModesMap[PPC::AM_DQForm] = { |
| // LXV, STXV |
| PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, |
| PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, |
| PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, |
| }; |
| AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | |
| PPC::MOF_SubtargetP10}; |
| // TODO: Add mapping for quadword load/store. |
| } |
| |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine |
| /// the desired ByVal argument alignment. |
| static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { |
| if (MaxAlign == MaxMaxAlign) |
| return; |
| if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
| if (MaxMaxAlign >= 32 && |
| VTy->getPrimitiveSizeInBits().getFixedValue() >= 256) |
| MaxAlign = Align(32); |
| else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 && |
| MaxAlign < 16) |
| MaxAlign = Align(16); |
| } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| Align EltAlign; |
| getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| } else if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (auto *EltTy : STy->elements()) { |
| Align EltAlign; |
| getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); |
| if (EltAlign > MaxAlign) |
| MaxAlign = EltAlign; |
| if (MaxAlign == MaxMaxAlign) |
| break; |
| } |
| } |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. |
| uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, |
| const DataLayout &DL) const { |
| // 16byte and wider vectors are passed on 16byte boundary. |
| // The rest is 8 on PPC64 and 4 on PPC32 boundary. |
| Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); |
| if (Subtarget.hasAltivec()) |
| getMaxByValAlign(Ty, Alignment, Align(16)); |
| return Alignment.value(); |
| } |
| |
| bool PPCTargetLowering::useSoftFloat() const { |
| return Subtarget.useSoftFloat(); |
| } |
| |
| bool PPCTargetLowering::hasSPE() const { |
| return Subtarget.hasSPE(); |
| } |
| |
| bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { |
| return VT.isScalarInteger(); |
| } |
| |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((PPCISD::NodeType)Opcode) { |
| case PPCISD::FIRST_NUMBER: break; |
| case PPCISD::FSEL: return "PPCISD::FSEL"; |
| case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; |
| case PPCISD::XSMINC: return "PPCISD::XSMINC"; |
| case PPCISD::FCFID: return "PPCISD::FCFID"; |
| case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; |
| case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; |
| case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; |
| case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; |
| case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; |
| case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; |
| case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; |
| case PPCISD::FP_TO_UINT_IN_VSR: |
| return "PPCISD::FP_TO_UINT_IN_VSR,"; |
| case PPCISD::FP_TO_SINT_IN_VSR: |
| return "PPCISD::FP_TO_SINT_IN_VSR"; |
| case PPCISD::FRE: return "PPCISD::FRE"; |
| case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; |
| case PPCISD::FTSQRT: |
| return "PPCISD::FTSQRT"; |
| case PPCISD::FSQRT: |
| return "PPCISD::FSQRT"; |
| case PPCISD::STFIWX: return "PPCISD::STFIWX"; |
| case PPCISD::VPERM: return "PPCISD::VPERM"; |
| case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; |
| case PPCISD::XXSPLTI_SP_TO_DP: |
| return "PPCISD::XXSPLTI_SP_TO_DP"; |
| case PPCISD::XXSPLTI32DX: |
| return "PPCISD::XXSPLTI32DX"; |
| case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; |
| case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; |
| case PPCISD::XXPERM: |
| return "PPCISD::XXPERM"; |
| case PPCISD::VECSHL: return "PPCISD::VECSHL"; |
| case PPCISD::CMPB: return "PPCISD::CMPB"; |
| case PPCISD::Hi: return "PPCISD::Hi"; |
| case PPCISD::Lo: return "PPCISD::Lo"; |
| case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; |
| case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; |
| case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; |
| case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; |
| case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; |
| case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; |
| case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; |
| case PPCISD::SRL: return "PPCISD::SRL"; |
| case PPCISD::SRA: return "PPCISD::SRA"; |
| case PPCISD::SHL: return "PPCISD::SHL"; |
| case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; |
| case PPCISD::CALL: return "PPCISD::CALL"; |
| case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; |
| case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; |
| case PPCISD::CALL_RM: |
| return "PPCISD::CALL_RM"; |
| case PPCISD::CALL_NOP_RM: |
| return "PPCISD::CALL_NOP_RM"; |
| case PPCISD::CALL_NOTOC_RM: |
| return "PPCISD::CALL_NOTOC_RM"; |
| case PPCISD::MTCTR: return "PPCISD::MTCTR"; |
| case PPCISD::BCTRL: return "PPCISD::BCTRL"; |
| case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; |
| case PPCISD::BCTRL_RM: |
| return "PPCISD::BCTRL_RM"; |
| case PPCISD::BCTRL_LOAD_TOC_RM: |
| return "PPCISD::BCTRL_LOAD_TOC_RM"; |
| case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; |
| case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; |
| case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; |
| case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; |
| case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; |
| case PPCISD::MFVSR: return "PPCISD::MFVSR"; |
| case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; |
| case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; |
| case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; |
| case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; |
| case PPCISD::SCALAR_TO_VECTOR_PERMUTED: |
| return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; |
| case PPCISD::ANDI_rec_1_EQ_BIT: |
| return "PPCISD::ANDI_rec_1_EQ_BIT"; |
| case PPCISD::ANDI_rec_1_GT_BIT: |
| return "PPCISD::ANDI_rec_1_GT_BIT"; |
| case PPCISD::VCMP: return "PPCISD::VCMP"; |
| case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; |
| case PPCISD::LBRX: return "PPCISD::LBRX"; |
| case PPCISD::STBRX: return "PPCISD::STBRX"; |
| case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; |
| case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; |
| case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; |
| case PPCISD::STXSIX: return "PPCISD::STXSIX"; |
| case PPCISD::VEXTS: return "PPCISD::VEXTS"; |
| case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; |
| case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; |
| case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; |
| case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; |
| case PPCISD::ST_VSR_SCAL_INT: |
| return "PPCISD::ST_VSR_SCAL_INT"; |
| case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; |
| case PPCISD::BDNZ: return "PPCISD::BDNZ"; |
| case PPCISD::BDZ: return "PPCISD::BDZ"; |
| case PPCISD::MFFS: return "PPCISD::MFFS"; |
| case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; |
| case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; |
| case PPCISD::CR6SET: return "PPCISD::CR6SET"; |
| case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; |
| case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; |
| case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; |
| case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; |
| case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; |
| case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; |
| case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; |
| case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; |
| case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; |
| case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; |
| case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; |
| case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; |
| case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; |
| case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; |
| case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; |
| case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; |
| case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; |
| case PPCISD::PADDI_DTPREL: |
| return "PPCISD::PADDI_DTPREL"; |
| case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; |
| case PPCISD::SC: return "PPCISD::SC"; |
| case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; |
| case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; |
| case PPCISD::RFEBB: return "PPCISD::RFEBB"; |
| case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; |
| case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; |
| case PPCISD::VABSD: return "PPCISD::VABSD"; |
| case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; |
| case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; |
| case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; |
| case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; |
| case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; |
| case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; |
| case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; |
| case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: |
| return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; |
| case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: |
| return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; |
| case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; |
| case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; |
| case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; |
| case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; |
| case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; |
| case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; |
| case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; |
| case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; |
| case PPCISD::STRICT_FADDRTZ: |
| return "PPCISD::STRICT_FADDRTZ"; |
| case PPCISD::STRICT_FCTIDZ: |
| return "PPCISD::STRICT_FCTIDZ"; |
| case PPCISD::STRICT_FCTIWZ: |
| return "PPCISD::STRICT_FCTIWZ"; |
| case PPCISD::STRICT_FCTIDUZ: |
| return "PPCISD::STRICT_FCTIDUZ"; |
| case PPCISD::STRICT_FCTIWUZ: |
| return "PPCISD::STRICT_FCTIWUZ"; |
| case PPCISD::STRICT_FCFID: |
| return "PPCISD::STRICT_FCFID"; |
| case PPCISD::STRICT_FCFIDU: |
| return "PPCISD::STRICT_FCFIDU"; |
| case PPCISD::STRICT_FCFIDS: |
| return "PPCISD::STRICT_FCFIDS"; |
| case PPCISD::STRICT_FCFIDUS: |
| return "PPCISD::STRICT_FCFIDUS"; |
| case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; |
| case PPCISD::STORE_COND: |
| return "PPCISD::STORE_COND"; |
| } |
| return nullptr; |
| } |
| |
| EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; |
| |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { |
| assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Node matching predicates, for use by the tblgen matching code. |
| //===----------------------------------------------------------------------===// |
| |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0. |
| static bool isFloatingPointZero(SDValue Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->getValueAPF().isZero(); |
| else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { |
| // Maybe this has already been legalized into the constant pool? |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->getValueAPF().isZero(); |
| } |
| return false; |
| } |
| |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if it matches the specified value. |
| static bool isConstantOrUndef(int Op, int Val) { |
| return Op < 0 || Op == Val; |
| } |
| |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| /// The ShuffleKind distinguishes between big-endian operations with |
| /// two different inputs (0), either-endian operations with two identical |
| /// inputs (1), and little-endian operations with two different inputs (2). |
| /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). |
| bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG) { |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| if (ShuffleKind == 0) { |
| if (IsLE) |
| return false; |
| for (unsigned i = 0; i != 16; ++i) |
| if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) |
| return false; |
| } else if (ShuffleKind == 2) { |
| if (!IsLE) |
| return false; |
| for (unsigned i = 0; i != 16; ++i) |
| if (!isConstantOrUndef(N->getMaskElt(i), i*2)) |
| return false; |
| } else if (ShuffleKind == 1) { |
| unsigned j = IsLE ? 0 : 1; |
| for (unsigned i = 0; i != 8; ++i) |
| if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || |
| !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| /// The ShuffleKind distinguishes between big-endian operations with |
| /// two different inputs (0), either-endian operations with two identical |
| /// inputs (1), and little-endian operations with two different inputs (2). |
| /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). |
| bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG) { |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| if (ShuffleKind == 0) { |
| if (IsLE) |
| return false; |
| for (unsigned i = 0; i != 16; i += 2) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) |
| return false; |
| } else if (ShuffleKind == 2) { |
| if (!IsLE) |
| return false; |
| for (unsigned i = 0; i != 16; i += 2) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) |
| return false; |
| } else if (ShuffleKind == 1) { |
| unsigned j = IsLE ? 0 : 2; |
| for (unsigned i = 0; i != 8; i += 2) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || |
| !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || |
| !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the |
| /// current subtarget. |
| /// |
| /// The ShuffleKind distinguishes between big-endian operations with |
| /// two different inputs (0), either-endian operations with two identical |
| /// inputs (1), and little-endian operations with two different inputs (2). |
| /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). |
| bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG) { |
| const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); |
| if (!Subtarget.hasP8Vector()) |
| return false; |
| |
| bool IsLE = DAG.getDataLayout().isLittleEndian(); |
| if (ShuffleKind == 0) { |
| if (IsLE) |
| return false; |
| for (unsigned i = 0; i != 16; i += 4) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || |
| !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || |
| !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) |
| return false; |
| } else if (ShuffleKind == 2) { |
| if (!IsLE) |
| return false; |
| for (unsigned i = 0; i != 16; i += 4) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || |
| !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || |
| !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) |
| return false; |
| } else if (ShuffleKind == 1) { |
| unsigned j = IsLE ? 0 : 4; |
| for (unsigned i = 0; i != 8; i += 4) |
| if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || |
| !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || |
| !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || |
| !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || |
| !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || |
| !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || |
| !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || |
| !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMerge - Common function, used to match vmrg* shuffles. |
| /// |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned LHSStart, unsigned RHSStart) { |
| if (N->getValueType(0) != MVT::v16i8) |
| return false; |
| assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && |
| "Unsupported merge size!"); |
| |
| for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units |
| for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit |
| if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), |
| LHSStart+j+i*UnitSize) || |
| !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), |
| RHSStart+j+i*UnitSize)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| /// The ShuffleKind distinguishes between big-endian merges with two |
| /// different inputs (0), either-endian merges with two identical inputs (1), |
| /// and little-endian merges with two different inputs (2). For the latter, |
| /// the input operands are swapped (see PPCInstrAltivec.td). |
| bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned ShuffleKind, SelectionDAG &DAG) { |
| if (DAG.getDataLayout().isLittleEndian()) { |
| if (ShuffleKind == 1) // unary |
| return isVMerge(N, UnitSize, 0, 0); |
| else if (ShuffleKind == 2) // swapped |
| return isVMerge(N, UnitSize, 0, 16); |
| else |
| return false; |
| } else { |
| if (ShuffleKind == 1) // unary |
| return isVMerge(N, UnitSize, 8, 8); |
| else if (ShuffleKind == 0) // normal |
| return isVMerge(N, UnitSize, 8, 24); |
| else |
| return false; |
| } |
| } |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| /// The ShuffleKind distinguishes between big-endian merges with two |
| /// different inputs (0), either-endian merges with two identical inputs (1), |
| /// and little-endian merges with two different inputs (2). For the latter, |
| /// the input operands are swapped (see PPCInstrAltivec.td). |
| bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned ShuffleKind, SelectionDAG &DAG) { |
| if (DAG.getDataLayout().isLittleEndian()) { |
| if (ShuffleKind == 1) // unary |
| return isVMerge(N, UnitSize, 8, 8); |
| else if (ShuffleKind == 2) // swapped |
| return isVMerge(N, UnitSize, 8, 24); |
| else |
| return false; |
| } else { |
| if (ShuffleKind == 1) // unary |
| return isVMerge(N, UnitSize, 0, 0); |
| else if (ShuffleKind == 0) // normal |
| return isVMerge(N, UnitSize, 0, 16); |
| else |
| return false; |
| } |
| } |
| |
| /** |
| * Common function used to match vmrgew and vmrgow shuffles |
| * |
| * The indexOffset determines whether to look for even or odd words in |
| * the shuffle mask. This is based on the of the endianness of the target |
| * machine. |
| * - Little Endian: |
| * - Use offset of 0 to check for odd elements |
| * - Use offset of 4 to check for even elements |
| * - Big Endian: |
| * - Use offset of 0 to check for even elements |
| * - Use offset of 4 to check for odd elements |
| * A detailed description of the vector element ordering for little endian and |
| * big endian can be found at |
| * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html |
| * Targeting your applications - what little endian and big endian IBM XL C/C++ |
| * compiler differences mean to you |
| * |
| * The mask to the shuffle vector instruction specifies the indices of the |
| * elements from the two input vectors to place in the result. The elements are |
| * numbered in array-access order, starting with the first vector. These vectors |
| * are always of type v16i8, thus each vector will contain 16 elements of size |
| * 8. More info on the shuffle vector can be found in the |
| * http://llvm.org/docs/LangRef.html#shufflevector-instruction |
| * Language Reference. |
| * |
| * The RHSStartValue indicates whether the same input vectors are used (unary) |
| * or two different input vectors are used, based on the following: |
| * - If the instruction uses the same vector for both inputs, the range of the |
| * indices will be 0 to 15. In this case, the RHSStart value passed should |
| * be 0. |
| * - If the instruction has two different vectors then the range of the |
| * indices will be 0 to 31. In this case, the RHSStart value passed should |
| * be 16 (indices 0-15 specify elements in the first vector while indices 16 |
| * to 31 specify elements in the second vector). |
| * |
| * \param[in] N The shuffle vector SD Node to analyze |
| * \param[in] IndexOffset Specifies whether to look for even or odd elements |
| * \param[in] RHSStartValue Specifies the starting index for the righthand input |
| * vector to the shuffle_vector instruction |
| * \return true iff this shuffle vector represents an even or odd word merge |
| */ |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, |
| unsigned RHSStartValue) { |
| if (N->getValueType(0) != MVT::v16i8) |
| return false; |
| |
| for (unsigned i = 0; i < 2; ++i) |
| for (unsigned j = 0; j < 4; ++j) |
| if (!isConstantOrUndef(N->getMaskElt(i*4+j), |
| i*RHSStartValue+j+IndexOffset) || |
| !isConstantOrUndef(N->getMaskElt(i*4+j+8), |
| i*RHSStartValue+j+IndexOffset+8)) |
| return false; |
| return true; |
| } |
| |
| /** |
| * Determine if the specified shuffle mask is suitable for the vmrgew or |
| * vmrgow instructions. |
| * |
| * \param[in] N The shuffle vector SD Node to analyze |
| * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) |
| * \param[in] ShuffleKind Identify the type of merge: |
| * - 0 = big-endian merge with two different inputs; |
| * - 1 = either-endian merge with two identical inputs; |
| * - 2 = little-endian merge with two different inputs (inputs are swapped for |
| * little-endian merges). |
| * \param[in] DAG The current SelectionDAG |
| * \return true iff this shuffle mask |
| */ |
| bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, |
| unsigned ShuffleKind, SelectionDAG &DAG) { |
| if (DAG.getDataLayout().isLittleEndian()) { |
| unsigned indexOffset = CheckEven ? 4 : 0; |
| if (ShuffleKind == 1) // Unary |
| return isVMerge(N, indexOffset, 0); |
| else if (ShuffleKind == 2) // swapped |
| return isVMerge(N, indexOffset, 16); |
| else |
| return false; |
| } |
| else { |
| unsigned indexOffset = CheckEven ? 0 : 4; |
| if (ShuffleKind == 1) // Unary |
| return isVMerge(N, indexOffset, 0); |
| else if (ShuffleKind == 0) // Normal |
| return isVMerge(N, indexOffset, 16); |
| else |
| return false; |
| } |
| return false; |
| } |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift |
| /// amount, otherwise return -1. |
| /// The ShuffleKind distinguishes between big-endian operations with two |
| /// different inputs (0), either-endian operations with two identical inputs |
| /// (1), and little-endian operations with two different inputs (2). For the |
| /// latter, the input operands are swapped (see PPCInstrAltivec.td). |
| int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG) { |
| if (N->getValueType(0) != MVT::v16i8) |
| return -1; |
| |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| |
| // Find the first non-undef value in the shuffle mask. |
| unsigned i; |
| for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) |
| /*search*/; |
| |
| if (i == 16) return -1; // all undef. |
| |
| // Otherwise, check to see if the rest of the elements are consecutively |
| // numbered from this value. |
| unsigned ShiftAmt = SVOp->getMaskElt(i); |
| if (ShiftAmt < i) return -1; |
| |
| ShiftAmt -= i; |
| bool isLE = DAG.getDataLayout().isLittleEndian(); |
| |
| if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { |
| // Check the rest of the elements to see if they are consecutive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) |
| return -1; |
| } else if (ShuffleKind == 1) { |
| // Check the rest of the elements to see if they are consecutive. |
| for (++i; i != 16; ++i) |
| if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) |
| return -1; |
| } else |
| return -1; |
| |
| if (isLE) |
| ShiftAmt = 16 - ShiftAmt; |
| |
| return ShiftAmt; |
| } |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). |
| bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::v2i64 || VT == MVT::v2f64) |
| return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1); |
| |
| assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) && |
| EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); |
| |
| // The consecutive indices need to specify an element, not part of two |
| // different elements. So abandon ship early if this isn't the case. |
| if (N->getMaskElt(0) % EltSize != 0) |
| return false; |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned ElementBase = N->getMaskElt(0); |
| |
| // FIXME: Handle UNDEF elements too! |
| if (ElementBase >= 16) |
| return false; |
| |
| // Check that the indices are consecutive, in the case of a multi-byte element |
| // splatted with a v16i8 mask. |
| for (unsigned i = 1; i != EltSize; ++i) |
| if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) |
| return false; |
| |
| for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { |
| if (N->getMaskElt(i) < 0) continue; |
| for (unsigned j = 0; j != EltSize; ++j) |
| if (N->getMaskElt(i+j) != N->getMaskElt(j)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Check that the mask is shuffling N byte elements. Within each N byte |
| /// element of the mask, the indices could be either in increasing or |
| /// decreasing order as long as they are consecutive. |
| /// \param[in] N the shuffle vector SD Node to analyze |
| /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ |
| /// Word/DoubleWord/QuadWord). |
| /// \param[in] StepLen the delta indices number among the N byte element, if |
| /// the mask is in increasing/decreasing order then it is 1/-1. |
| /// \return true iff the mask is shuffling N byte elements. |
| static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, |
| int StepLen) { |
| assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && |
| "Unexpected element width."); |
| assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); |
| |
| unsigned NumOfElem = 16 / Width; |
| unsigned MaskVal[16]; // Width is never greater than 16 |
| for (unsigned i = 0; i < NumOfElem; ++i) { |
| MaskVal[0] = N->getMaskElt(i * Width); |
| if ((StepLen == 1) && (MaskVal[0] % Width)) { |
| return false; |
| } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { |
| return false; |
| } |
| |
| for (unsigned int j = 1; j < Width; ++j) { |
| MaskVal[j] = N->getMaskElt(i * Width + j); |
| if (MaskVal[j] != MaskVal[j-1] + StepLen) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| unsigned &InsertAtByte, bool &Swap, bool IsLE) { |
| if (!isNByteElemShuffleMask(N, 4, 1)) |
| return false; |
| |
| // Now we look at mask elements 0,4,8,12 |
| unsigned M0 = N->getMaskElt(0) / 4; |
| unsigned M1 = N->getMaskElt(4) / 4; |
| unsigned M2 = N->getMaskElt(8) / 4; |
| unsigned M3 = N->getMaskElt(12) / 4; |
| unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; |
| unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; |
| |
| // Below, let H and L be arbitrary elements of the shuffle mask |
| // where H is in the range [4,7] and L is in the range [0,3]. |
| // H, 1, 2, 3 or L, 5, 6, 7 |
| if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || |
| (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { |
| ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; |
| InsertAtByte = IsLE ? 12 : 0; |
| Swap = M0 < 4; |
| return true; |
| } |
| // 0, H, 2, 3 or 4, L, 6, 7 |
| if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || |
| (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { |
| ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; |
| InsertAtByte = IsLE ? 8 : 4; |
| Swap = M1 < 4; |
| return true; |
| } |
| // 0, 1, H, 3 or 4, 5, L, 7 |
| if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || |
| (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { |
| ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; |
| InsertAtByte = IsLE ? 4 : 8; |
| Swap = M2 < 4; |
| return true; |
| } |
| // 0, 1, 2, H or 4, 5, 6, L |
| if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || |
| (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { |
| ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; |
| InsertAtByte = IsLE ? 0 : 12; |
| Swap = M3 < 4; |
| return true; |
| } |
| |
| // If both vector operands for the shuffle are the same vector, the mask will |
| // contain only elements from the first one and the second one will be undef. |
| if (N->getOperand(1).isUndef()) { |
| ShiftElts = 0; |
| Swap = true; |
| unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; |
| if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { |
| InsertAtByte = IsLE ? 12 : 0; |
| return true; |
| } |
| if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { |
| InsertAtByte = IsLE ? 8 : 4; |
| return true; |
| } |
| if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { |
| InsertAtByte = IsLE ? 4 : 8; |
| return true; |
| } |
| if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { |
| InsertAtByte = IsLE ? 0 : 12; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| bool &Swap, bool IsLE) { |
| assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); |
| // Ensure each byte index of the word is consecutive. |
| if (!isNByteElemShuffleMask(N, 4, 1)) |
| return false; |
| |
| // Now we look at mask elements 0,4,8,12, which are the beginning of words. |
| unsigned M0 = N->getMaskElt(0) / 4; |
| unsigned M1 = N->getMaskElt(4) / 4; |
| unsigned M2 = N->getMaskElt(8) / 4; |
| unsigned M3 = N->getMaskElt(12) / 4; |
| |
| // If both vector operands for the shuffle are the same vector, the mask will |
| // contain only elements from the first one and the second one will be undef. |
| if (N->getOperand(1).isUndef()) { |
| assert(M0 < 4 && "Indexing into an undef vector?"); |
| if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) |
| return false; |
| |
| ShiftElts = IsLE ? (4 - M0) % 4 : M0; |
| Swap = false; |
| return true; |
| } |
| |
| // Ensure each word index of the ShuffleVector Mask is consecutive. |
| if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) |
| return false; |
| |
| if (IsLE) { |
| if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { |
| // Input vectors don't need to be swapped if the leading element |
| // of the result is one of the 3 left elements of the second vector |
| // (or if there is no shift to be done at all). |
| Swap = false; |
| ShiftElts = (8 - M0) % 8; |
| } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { |
| // Input vectors need to be swapped if the leading element |
| // of the result is one of the 3 left elements of the first vector |
| // (or if we're shifting by 4 - thereby simply swapping the vectors). |
| Swap = true; |
| ShiftElts = (4 - M0) % 4; |
| } |
| |
| return true; |
| } else { // BE |
| if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { |
| // Input vectors don't need to be swapped if the leading element |
| // of the result is one of the 4 elements of the first vector. |
| Swap = false; |
| ShiftElts = M0; |
| } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { |
| // Input vectors need to be swapped if the leading element |
| // of the result is one of the 4 elements of the right vector. |
| Swap = true; |
| ShiftElts = M0 - 4; |
| } |
| |
| return true; |
| } |
| } |
| |
| bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { |
| assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); |
| |
| if (!isNByteElemShuffleMask(N, Width, -1)) |
| return false; |
| |
| for (int i = 0; i < 16; i += Width) |
| if (N->getMaskElt(i) != i + Width - 1) |
| return false; |
| |
| return true; |
| } |
| |
| bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { |
| return isXXBRShuffleMaskHelper(N, 2); |
| } |
| |
| bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { |
| return isXXBRShuffleMaskHelper(N, 4); |
| } |
| |
| bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { |
| return isXXBRShuffleMaskHelper(N, 8); |
| } |
| |
| bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { |
| return isXXBRShuffleMaskHelper(N, 16); |
| } |
| |
| /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap |
| /// if the inputs to the instruction should be swapped and set \p DM to the |
| /// value for the immediate. |
| /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI |
| /// AND element 0 of the result comes from the first input (LE) or second input |
| /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. |
| /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle |
| /// mask. |
| bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, |
| bool &Swap, bool IsLE) { |
| assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); |
| |
| // Ensure each byte index of the double word is consecutive. |
| if (!isNByteElemShuffleMask(N, 8, 1)) |
| return false; |
| |
| unsigned M0 = N->getMaskElt(0) / 8; |
| unsigned M1 = N->getMaskElt(8) / 8; |
| assert(((M0 | M1) < 4) && "A mask element out of bounds?"); |
| |
| // If both vector operands for the shuffle are the same vector, the mask will |
| // contain only elements from the first one and the second one will be undef. |
| if (N->getOperand(1).isUndef()) { |
| if ((M0 | M1) < 2) { |
| DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); |
| Swap = false; |
| return true; |
| } else |
| return false; |
| } |
| |
| if (IsLE) { |
| if (M0 > 1 && M1 < 2) { |
| Swap = false; |
| } else if (M0 < 2 && M1 > 1) { |
| M0 = (M0 + 2) % 4; |
| M1 = (M1 + 2) % 4; |
| Swap = true; |
| } else |
| return false; |
| |
| // Note: if control flow comes here that means Swap is already set above |
| DM = (((~M1) & 1) << 1) + ((~M0) & 1); |
| return true; |
| } else { // BE |
| if (M0 < 2 && M1 > 1) { |
| Swap = false; |
| } else if (M0 > 1 && M1 < 2) { |
| M0 = (M0 + 2) % 4; |
| M1 = (M1 + 2) % 4; |
| Swap = true; |
| } else |
| return false; |
| |
| // Note: if control flow comes here that means Swap is already set above |
| DM = (M0 << 1) + (M1 & 1); |
| return true; |
| } |
| } |
| |
| |
| /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is |
| /// appropriate for PPC mnemonics (which have a big endian bias - namely |
| /// elements are counted from the left of the vector register). |
| unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, |
| SelectionDAG &DAG) { |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); |
| assert(isSplatShuffleMask(SVOp, EltSize)); |
| EVT VT = SVOp->getValueType(0); |
| |
| if (VT == MVT::v2i64 || VT == MVT::v2f64) |
| return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0) |
| : SVOp->getMaskElt(0); |
| |
| if (DAG.getDataLayout().isLittleEndian()) |
| return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); |
| else |
| return SVOp->getMaskElt(0) / EltSize; |
| } |
| |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed |
| /// by using a vspltis[bhw] instruction of the specified element size, return |
| /// the constant being splatted. The ByteSize field indicates the number of |
| /// bytes of each element [124] -> [bhw]. |
| SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { |
| SDValue OpVal; |
| |
| // If ByteSize of the splat is bigger than the element size of the |
| // build_vector, then we have a case where we are checking for a splat where |
| // multiple elements of the buildvector are folded together into a single |
| // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). |
| unsigned EltSize = 16/N->getNumOperands(); |
| if (EltSize < ByteSize) { |
| unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. |
| SDValue UniquedVals[4]; |
| assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); |
| |
| // See if all of the elements in the buildvector agree across. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).isUndef()) continue; |
| // If the element isn't a constant, bail fully out. |
| if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); |
| |
| if (!UniquedVals[i&(Multiple-1)].getNode()) |
| UniquedVals[i&(Multiple-1)] = N->getOperand(i); |
| else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) |
| return SDValue(); // no match. |
| } |
| |
| // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains |
| // either constant or undef values that are identical for each chunk. See |
| // if these chunks can form into a larger vspltis*. |
| |
| // Check to see if all of the leading entries are either 0 or -1. If |
| // neither, then this won't fit into the immediate field. |
| bool LeadingZero = true; |
| bool LeadingOnes = true; |
| for (unsigned i = 0; i != Multiple-1; ++i) { |
| if (!UniquedVals[i].getNode()) continue; // Must have been undefs. |
| |
| LeadingZero &= isNullConstant(UniquedVals[i]); |
| LeadingOnes &= isAllOnesConstant(UniquedVals[i]); |
| } |
| // Finally, check the least significant entry. |
| if (LeadingZero) { |
| if (!UniquedVals[Multiple-1].getNode()) |
| return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef |
| int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); |
| if (Val < 16) // 0,0,0,4 -> vspltisw(4) |
| return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); |
| } |
| if (LeadingOnes) { |
| if (!UniquedVals[Multiple-1].getNode()) |
| return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef |
| int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); |
| if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) |
| return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); |
| } |
| |
| return SDValue(); |
| } |
| |
| // Check to see if this buildvec has a single non-undef value in its elements. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (N->getOperand(i).isUndef()) continue; |
| if (!OpVal.getNode()) |
| OpVal = N->getOperand(i); |
| else if (OpVal != N->getOperand(i)) |
| return SDValue(); |
| } |
| |
| if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. |
| |
| unsigned ValSizeInBytes = EltSize; |
| uint64_t Value = 0; |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { |
| Value = CN->getZExtValue(); |
| } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { |
| assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); |
| Value = FloatToBits(CN->getValueAPF().convertToFloat()); |
| } |
| |
| // If the splat value is larger than the element value, then we can never do |
| // this splat. The only case that we could fit the replicated bits into our |
| // immediate field for would be zero, and we prefer to use vxor for it. |
| if (ValSizeInBytes < ByteSize) return SDValue(); |
| |
| // If the element value is larger than the splat value, check if it consists |
| // of a repeated bit pattern of size ByteSize. |
| if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) |
| return SDValue(); |
| |
| // Properly sign extend the value. |
| int MaskVal = SignExtend32(Value, ByteSize * 8); |
| |
| // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. |
| if (MaskVal == 0) return SDValue(); |
| |
| // Finally, if this value fits in a 5 bit sext field, return it |
| if (SignExtend32<5>(MaskVal) == MaskVal) |
| return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Addressing Mode Selection |
| //===----------------------------------------------------------------------===// |
| |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit |
| /// or 64-bit immediate, and if the value can be accurately represented as a |
| /// sign extension from a 16-bit value. If so, this returns true and the |
| /// immediate. |
| bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { |
| if (!isa<ConstantSDNode>(N)) |
| return false; |
| |
| Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| if (N->getValueType(0) == MVT::i32) |
| return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| else |
| return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| } |
| bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { |
| return isIntS16Immediate(Op.getNode(), Imm); |
| } |
| |
| /// Used when computing address flags for selecting loads and stores. |
| /// If we have an OR, check if the LHS and RHS are provably disjoint. |
| /// An OR of two provably disjoint values is equivalent to an ADD. |
| /// Most PPC load/store instructions compute the effective address as a sum, |
| /// so doing this conversion is useful. |
| static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { |
| if (N.getOpcode() != ISD::OR) |
| return false; |
| KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); |
| if (!LHSKnown.Zero.getBoolValue()) |
| return false; |
| KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); |
| return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); |
| } |
| |
| /// SelectAddressEVXRegReg - Given the specified address, check to see if it can |
| /// be represented as an indexed [r+r] operation. |
| bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, |
| SDValue &Index, |
| SelectionDAG &DAG) const { |
| for (SDNode *U : N->uses()) { |
| if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) { |
| if (Memop->getMemoryVT() == MVT::f64) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// isIntS34Immediate - This method tests if value of node given can be |
| /// accurately represented as a sign extension from a 34-bit value. If so, |
| /// this returns true and the immediate. |
| bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { |
| if (!isa<ConstantSDNode>(N)) |
| return false; |
| |
| Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); |
| return isInt<34>(Imm); |
| } |
| bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { |
| return isIntS34Immediate(Op.getNode(), Imm); |
| } |
| |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it |
| /// can be represented as an indexed [r+r] operation. Returns false if it |
| /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is |
| /// non-zero and N can be represented by a base register plus a signed 16-bit |
| /// displacement, make a more precise judgement by checking (displacement % \p |
| /// EncodingAlignment). |
| bool PPCTargetLowering::SelectAddressRegReg( |
| SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, |
| MaybeAlign EncodingAlignment) const { |
| // If we have a PC Relative target flag don't select as [reg+reg]. It will be |
| // a [pc+imm]. |
| if (SelectAddressPCRel(N, Base)) |
| return false; |
| |
| int16_t Imm = 0; |
| if (N.getOpcode() == ISD::ADD) { |
| // Is there any SPE load/store (f64), which can't handle 16bit offset? |
| // SPE load/store can only handle 8-bit offsets. |
| if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) |
| return true; |
| if (isIntS16Immediate(N.getOperand(1), Imm) && |
| (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) |
| return false; // r+i |
| if (N.getOperand(1).getOpcode() == PPCISD::Lo) |
| return false; // r+i |
| |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } else if (N.getOpcode() == ISD::OR) { |
| if (isIntS16Immediate(N.getOperand(1), Imm) && |
| (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) |
| return false; // r+i can fold it if we can. |
| |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are provably |
| // disjoint. |
| KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); |
| |
| if (LHSKnown.Zero.getBoolValue()) { |
| KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // If we happen to be doing an i64 load or store into a stack slot that has |
| // less than a 4-byte alignment, then the frame-index elimination may need to |
| // use an indexed load or store instruction (because the offset may not be a |
| // multiple of 4). The extra register needed to hold the offset comes from the |
| // register scavenger, and it is possible that the scavenger will need to use |
| // an emergency spill slot. As a result, we need to make sure that a spill slot |
| // is allocated when doing an i64 load/store into a less-than-4-byte-aligned |
| // stack slot. |
| static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { |
| // FIXME: This does not handle the LWA case. |
| if (VT != MVT::i64) |
| return; |
| |
| // NOTE: We'll exclude negative FIs here, which come from argument |
| // lowering, because there are no known test cases triggering this problem |
| // using packed structures (or similar). We can remove this exclusion if |
| // we find such a test case. The reason why this is so test-case driven is |
| // because this entire 'fixup' is only to prevent crashes (from the |
| // register scavenger) on not-really-valid inputs. For example, if we have: |
| // %a = alloca i1 |
| // %b = bitcast i1* %a to i64* |
| // store i64* a, i64 b |
| // then the store should really be marked as 'align 1', but is not. If it |
| // were marked as 'align 1' then the indexed form would have been |
| // instruction-selected initially, and the problem this 'fixup' is preventing |
| // won't happen regardless. |
| if (FrameIdx < 0) |
| return; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| if (MFI.getObjectAlign(FrameIdx) >= Align(4)) |
| return; |
| |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setHasNonRISpills(); |
| } |
| |
| /// Returns true if the address N can be represented by a base register plus |
| /// a signed 16-bit displacement [r+imm], and if it is not better |
| /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept |
| /// displacements that are multiples of that value. |
| bool PPCTargetLowering::SelectAddressRegImm( |
| SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, |
| MaybeAlign EncodingAlignment) const { |
| // FIXME dl should come from parent load or store, not from address |
| SDLoc dl(N); |
| |
| // If we have a PC Relative target flag don't select as [reg+imm]. It will be |
| // a [pc+imm]. |
| if (SelectAddressPCRel(N, Base)) |
| return false; |
| |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| int16_t imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm) && |
| (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { |
| Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetGlobalTLSAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| int16_t imm = 0; |
| if (isIntS16Immediate(N.getOperand(1), imm) && |
| (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); |
| |
| if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); |
| } else { |
| Base = N.getOperand(0); |
| } |
| Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. |
| |
| // If this address fits entirely in a 16-bit sext immediate field, codegen |
| // this as "d, 0" |
| int16_t Imm; |
| if (isIntS16Immediate(CN, Imm) && |
| (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { |
| Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); |
| Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, |
| CN->getValueType(0)); |
| return true; |
| } |
| |
| // Handle 32-bit sext immediates with LIS + addr mode. |
| if ((CN->getValueType(0) == MVT::i32 || |
| (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && |
| (!EncodingAlignment || |
| isAligned(*EncodingAlignment, CN->getZExtValue()))) { |
| int Addr = (int)CN->getZExtValue(); |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); |
| |
| Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, |
| MVT::i32); |
| unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; |
| Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); |
| return true; |
| } |
| } |
| |
| Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); |
| } else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| /// Similar to the 16-bit case but for instructions that take a 34-bit |
| /// displacement field (prefixed loads/stores). |
| bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, |
| SDValue &Base, |
| SelectionDAG &DAG) const { |
| // Only on 64-bit targets. |
| if (N.getValueType() != MVT::i64) |
| return false; |
| |
| SDLoc dl(N); |
| int64_t Imm = 0; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| if (!isIntS34Immediate(N.getOperand(1), Imm)) |
| return false; |
| Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N.getOperand(0); |
| return true; |
| } |
| |
| if (N.getOpcode() == ISD::OR) { |
| if (!isIntS34Immediate(N.getOperand(1), Imm)) |
| return false; |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); |
| if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) |
| return false; |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N.getOperand(0); |
| Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); |
| return true; |
| } |
| |
| if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. |
| Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); |
| Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, |
| SDValue &Index, |
| SelectionDAG &DAG) const { |
| // Check to see if we can easily represent this as an [r+r] address. This |
| // will fail if it thinks that the address is more profitably represented as |
| // reg+imm, e.g. where imm = 0. |
| if (SelectAddressRegReg(N, Base, Index, DAG)) |
| return true; |
| |
| // If the address is the result of an add, we will utilize the fact that the |
| // address calculation includes an implicit add. However, we can reduce |
| // register pressure if we do not materialize a constant just for use as the |
| // index register. We only get rid of the add if it is not an add of a |
| // value and a 16-bit signed constant and both have a single use. |
| int16_t imm = 0; |
| if (N.getOpcode() == ISD::ADD && |
| (!isIntS16Immediate(N.getOperand(1), imm) || |
| !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| |
| // Otherwise, do it the hard way, using R0 as the base register. |
| Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, |
| N.getValueType()); |
| Index = N; |
| return true; |
| } |
| |
| template <typename Ty> static bool isValidPCRelNode(SDValue N) { |
| Ty *PCRelCand = dyn_cast<Ty>(N); |
| return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); |
| } |
| |
| /// Returns true if this address is a PC Relative address. |
| /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG |
| /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. |
| bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { |
| // This is a materialize PC Relative node. Always select this as PC Relative. |
| Base = N; |
| if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) |
| return true; |
| if (isValidPCRelNode<ConstantPoolSDNode>(N) || |
| isValidPCRelNode<GlobalAddressSDNode>(N) || |
| isValidPCRelNode<JumpTableSDNode>(N) || |
| isValidPCRelNode<BlockAddressSDNode>(N)) |
| return true; |
| return false; |
| } |
| |
| /// Returns true if we should use a direct load into vector instruction |
| /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. |
| static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { |
| |
| // If there are any other uses other than scalar to vector, then we should |
| // keep it as a scalar load -> direct move pattern to prevent multiple |
| // loads. |
| LoadSDNode *LD = dyn_cast<LoadSDNode>(N); |
| if (!LD) |
| return false; |
| |
| EVT MemVT = LD->getMemoryVT(); |
| if (!MemVT.isSimple()) |
| return false; |
| switch(MemVT.getSimpleVT().SimpleTy) { |
| case MVT::i64: |
| break; |
| case MVT::i32: |
| if (!ST.hasP8Vector()) |
| return false; |
| break; |
| case MVT::i16: |
| case MVT::i8: |
| if (!ST.hasP9Vector()) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| SDValue LoadedVal(N, 0); |
| if (!LoadedVal.hasOneUse()) |
| return false; |
| |
| for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); |
| UI != UE; ++UI) |
| if (UI.getUse().get().getResNo() == 0 && |
| UI->getOpcode() != ISD::SCALAR_TO_VECTOR && |
| UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) |
| return false; |
| |
| return true; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (DisablePPCPreinc) return false; |
| |
| bool isLoad = true; |
| SDValue Ptr; |
| EVT VT; |
| Align Alignment; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getMemoryVT(); |
| Alignment = LD->getAlign(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getMemoryVT(); |
| Alignment = ST->getAlign(); |
| isLoad = false; |
| } else |
| return false; |
| |
| // Do not generate pre-inc forms for specific loads that feed scalar_to_vector |
| // instructions because we can fold these into a more efficient instruction |
| // instead, (such as LXSD). |
| if (isLoad && usePartialVectorLoads(N, Subtarget)) { |
| return false; |
| } |
| |
| // PowerPC doesn't have preinc load/store instructions for vectors |
| if (VT.isVector()) |
| return false; |
| |
| if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { |
| // Common code will reject creating a pre-inc form if the base pointer |
| // is a frame index, or if N is a store and the base pointer is either |
| // the same as or a predecessor of the value being stored. Check for |
| // those situations here, and try with swapped Base/Offset instead. |
| bool Swap = false; |
| |
| if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) |
| Swap = true; |
| else if (!isLoad) { |
| SDValue Val = cast<StoreSDNode>(N)->getValue(); |
| if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) |
| Swap = true; |
| } |
| |
| if (Swap) |
| std::swap(Base, Offset); |
| |
| AM = ISD::PRE_INC; |
| return true; |
| } |
| |
| // LDU/STU can only handle immediates that are a multiple of 4. |
| if (VT != MVT::i64) { |
| if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt)) |
| return false; |
| } else { |
| // LDU/STU need an address with at least 4-byte alignment. |
| if (Alignment < Align(4)) |
| return false; |
| |
| if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) |
| return false; |
| } |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of |
| // sext i32 to i64 when addr mode is r+i. |
| if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && |
| LD->getExtensionType() == ISD::SEXTLOAD && |
| isa<ConstantSDNode>(Offset)) |
| return false; |
| } |
| |
| AM = ISD::PRE_INC; |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LowerOperation implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// Return true if we should reference labels using a PICBase, set the HiOpFlags |
| /// and LoOpFlags to the target MO flags. |
| static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, |
| unsigned &HiOpFlags, unsigned &LoOpFlags, |
| const GlobalValue *GV = nullptr) { |
| HiOpFlags = PPCII::MO_HA; |
| LoOpFlags = PPCII::MO_LO; |
| |
| // Don't use the pic base if not in PIC relocation model. |
| if (IsPIC) { |
| HiOpFlags |= PPCII::MO_PIC_FLAG; |
| LoOpFlags |= PPCII::MO_PIC_FLAG; |
| } |
| } |
| |
| static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, |
| SelectionDAG &DAG) { |
| SDLoc DL(HiPart); |
| EVT PtrVT = HiPart.getValueType(); |
| SDValue Zero = DAG.getConstant(0, DL, PtrVT); |
| |
| SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); |
| SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); |
| |
| // With PIC, the first instruction is actually "GR+hi(&G)". |
| if (isPIC) |
| Hi = DAG.getNode(ISD::ADD, DL, PtrVT, |
| DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); |
| |
| // Generate non-pic code that has direct accesses to the constant pool. |
| // The address of the global is just (hi(&g)+lo(&g)). |
| return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); |
| } |
| |
| static void setUsesTOCBasePtr(MachineFunction &MF) { |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setUsesTOCBasePtr(); |
| } |
| |
| static void setUsesTOCBasePtr(SelectionDAG &DAG) { |
| setUsesTOCBasePtr(DAG.getMachineFunction()); |
| } |
| |
| SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, |
| SDValue GA) const { |
| const bool Is64Bit = Subtarget.isPPC64(); |
| EVT VT = Is64Bit ? MVT::i64 : MVT::i32; |
| SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) |
| : Subtarget.isAIXABI() |
| ? DAG.getRegister(PPC::R2, VT) |
| : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); |
| SDValue Ops[] = { GA, Reg }; |
| return DAG.getMemIntrinsicNode( |
| PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt, |
| MachineMemOperand::MOLoad); |
| } |
| |
| SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| const Constant *C = CP->getConstVal(); |
| |
| // 64-bit SVR4 ABI and AIX ABI code are always position-independent. |
| // The actual address of the GlobalValue is stored in the TOC. |
| if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| SDLoc DL(CP); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| SDValue ConstPool = DAG.getTargetConstantPool( |
| C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); |
| return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); |
| } |
| setUsesTOCBasePtr(DAG); |
| SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); |
| return getTOCEntry(DAG, SDLoc(CP), GA); |
| } |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool IsPIC = isPositionIndependent(); |
| getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); |
| |
| if (IsPIC && Subtarget.isSVR4ABI()) { |
| SDValue GA = |
| DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); |
| return getTOCEntry(DAG, SDLoc(CP), GA); |
| } |
| |
| SDValue CPIHi = |
| DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); |
| SDValue CPILo = |
| DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); |
| return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); |
| } |
| |
| // For 64-bit PowerPC, prefer the more compact relative encodings. |
| // This trades 32 bits per jump table entry for one or two instructions |
| // on the jump site. |
| unsigned PPCTargetLowering::getJumpTableEncoding() const { |
| if (isJumpTableRelative()) |
| return MachineJumpTableInfo::EK_LabelDifference32; |
| |
| return TargetLowering::getJumpTableEncoding(); |
| } |
| |
| bool PPCTargetLowering::isJumpTableRelative() const { |
| if (UseAbsoluteJumpTables) |
| return false; |
| if (Subtarget.isPPC64() || Subtarget.isAIXABI()) |
| return true; |
| return TargetLowering::isJumpTableRelative(); |
| } |
| |
| SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) |
| return TargetLowering::getPICJumpTableRelocBase(Table, DAG); |
| |
| switch (getTargetMachine().getCodeModel()) { |
| case CodeModel::Small: |
| case CodeModel::Medium: |
| return TargetLowering::getPICJumpTableRelocBase(Table, DAG); |
| default: |
| return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), |
| getPointerTy(DAG.getDataLayout())); |
| } |
| } |
| |
| const MCExpr * |
| PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI, |
| MCContext &Ctx) const { |
| if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) |
| return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); |
| |
| switch (getTargetMachine().getCodeModel()) { |
| case CodeModel::Small: |
| case CodeModel::Medium: |
| return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); |
| default: |
| return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); |
| } |
| } |
| |
| SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| // isUsingPCRelativeCalls() returns true when PCRelative is enabled |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| SDLoc DL(JT); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| SDValue GA = |
| DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); |
| SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); |
| return MatAddr; |
| } |
| |
| // 64-bit SVR4 ABI and AIX ABI code are always position-independent. |
| // The actual address of the GlobalValue is stored in the TOC. |
| if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { |
| setUsesTOCBasePtr(DAG); |
| SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); |
| return getTOCEntry(DAG, SDLoc(JT), GA); |
| } |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool IsPIC = isPositionIndependent(); |
| getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); |
| |
| if (IsPIC && Subtarget.isSVR4ABI()) { |
| SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, |
| PPCII::MO_PIC_FLAG); |
| return getTOCEntry(DAG, SDLoc(GA), GA); |
| } |
| |
| SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); |
| SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); |
| return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); |
| const BlockAddress *BA = BASDN->getBlockAddress(); |
| |
| // isUsingPCRelativeCalls() returns true when PCRelative is enabled |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| SDLoc DL(BASDN); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), |
| PPCII::MO_PCREL_FLAG); |
| SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); |
| return MatAddr; |
| } |
| |
| // 64-bit SVR4 ABI and AIX ABI code are always position-independent. |
| // The actual BlockAddress is stored in the TOC. |
| if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { |
| setUsesTOCBasePtr(DAG); |
| SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); |
| return getTOCEntry(DAG, SDLoc(BASDN), GA); |
| } |
| |
| // 32-bit position-independent ELF stores the BlockAddress in the .got. |
| if (Subtarget.is32BitELFABI() && isPositionIndependent()) |
| return getTOCEntry( |
| DAG, SDLoc(BASDN), |
| DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool IsPIC = isPositionIndependent(); |
| getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); |
| SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); |
| SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); |
| return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Subtarget.isAIXABI()) |
| return LowerGlobalTLSAddressAIX(Op, DAG); |
| |
| return LowerGlobalTLSAddressLinux(Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, |
| SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| |
| if (DAG.getTarget().useEmulatedTLS()) |
| report_fatal_error("Emulated TLS is not yet supported on AIX"); |
| |
| SDLoc dl(GA); |
| const GlobalValue *GV = GA->getGlobal(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // The general-dynamic model is the only access model supported for now, so |
| // all the GlobalTLSAddress nodes are lowered with this model. |
| // We need to generate two TOC entries, one for the variable offset, one for |
| // the region handle. The global address for the TOC entry of the region |
| // handle is created with the MO_TLSGDM_FLAG flag and the global address |
| // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. |
| SDValue VariableOffsetTGA = |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); |
| SDValue RegionHandleTGA = |
| DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); |
| SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); |
| SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); |
| return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, |
| RegionHandle); |
| } |
| |
| SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, |
| SelectionDAG &DAG) const { |
| // FIXME: TLS addresses currently use medium model code sequences, |
| // which is the most useful form. Eventually support for small and |
| // large models could be added if users need it, at the cost of |
| // additional complexity. |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(GA, DAG); |
| |
| SDLoc dl(GA); |
| const GlobalValue *GV = GA->getGlobal(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| bool is64bit = Subtarget.isPPC64(); |
| const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
| PICLevel::Level picLevel = M->getPICLevel(); |
| |
| const TargetMachine &TM = getTargetMachine(); |
| TLSModel::Model Model = TM.getTLSModel(GV); |
| |
| if (Model == TLSModel::LocalExec) { |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); |
| SDValue TGA = DAG.getTargetGlobalAddress( |
| GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); |
| SDValue MatAddr = |
| DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); |
| return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); |
| } |
| |
| SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| PPCII::MO_TPREL_HA); |
| SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| PPCII::MO_TPREL_LO); |
| SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) |
| : DAG.getRegister(PPC::R2, MVT::i32); |
| |
| SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); |
| return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); |
| } |
| |
| if (Model == TLSModel::InitialExec) { |
| bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); |
| SDValue TGA = DAG.getTargetGlobalAddress( |
| GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); |
| SDValue TGATLS = DAG.getTargetGlobalAddress( |
| GV, dl, PtrVT, 0, |
| IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); |
| SDValue TPOffset; |
| if (IsPCRel) { |
| SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); |
| TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, |
| MachinePointerInfo()); |
| } else { |
| SDValue GOTPtr; |
| if (is64bit) { |
| setUsesTOCBasePtr(DAG); |
| SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); |
| GOTPtr = |
| DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); |
| } else { |
| if (!TM.isPositionIndependent()) |
| GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); |
| else if (picLevel == PICLevel::SmallPIC) |
| GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); |
| else |
| GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); |
| } |
| TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); |
| } |
| return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); |
| } |
| |
| if (Model == TLSModel::GeneralDynamic) { |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| PPCII::MO_GOT_TLSGD_PCREL_FLAG); |
| return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); |
| } |
| |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); |
| SDValue GOTPtr; |
| if (is64bit) { |
| setUsesTOCBasePtr(DAG); |
| SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); |
| GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, |
| GOTReg, TGA); |
| } else { |
| if (picLevel == PICLevel::SmallPIC) |
| GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); |
| else |
| GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); |
| } |
| return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, |
| GOTPtr, TGA, TGA); |
| } |
| |
| if (Model == TLSModel::LocalDynamic) { |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, |
| PPCII::MO_GOT_TLSLD_PCREL_FLAG); |
| SDValue MatPCRel = |
| DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); |
| return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); |
| } |
| |
| SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); |
| SDValue GOTPtr; |
| if (is64bit) { |
| setUsesTOCBasePtr(DAG); |
| SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); |
| GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, |
| GOTReg, TGA); |
| } else { |
| if (picLevel == PICLevel::SmallPIC) |
| GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); |
| else |
| GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); |
| } |
| SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, |
| PtrVT, GOTPtr, TGA, TGA); |
| SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, |
| PtrVT, TLSAddr, TGA); |
| return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); |
| } |
| |
| llvm_unreachable("Unknown TLS model!"); |
| } |
| |
| SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = Op.getValueType(); |
| GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); |
| SDLoc DL(GSDN); |
| const GlobalValue *GV = GSDN->getGlobal(); |
| |
| // 64-bit SVR4 ABI & AIX ABI code is always position-independent. |
| // The actual address of the GlobalValue is stored in the TOC. |
| if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { |
| if (Subtarget.isUsingPCRelativeCalls()) { |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| if (isAccessedAsGotIndirect(Op)) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), |
| PPCII::MO_PCREL_FLAG | |
| PPCII::MO_GOT_FLAG); |
| SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); |
| SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, |
| MachinePointerInfo()); |
| return Load; |
| } else { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), |
| PPCII::MO_PCREL_FLAG); |
| return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); |
| } |
| } |
| setUsesTOCBasePtr(DAG); |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); |
| return getTOCEntry(DAG, DL, GA); |
| } |
| |
| unsigned MOHiFlag, MOLoFlag; |
| bool IsPIC = isPositionIndependent(); |
| getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); |
| |
| if (IsPIC && Subtarget.isSVR4ABI()) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, |
| GSDN->getOffset(), |
| PPCII::MO_PIC_FLAG); |
| return getTOCEntry(DAG, DL, GA); |
| } |
| |
| SDValue GAHi = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); |
| SDValue GALo = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); |
| |
| return LowerLabelRef(GAHi, GALo, IsPIC, DAG); |
| } |
| |
| SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| bool IsStrict = Op->isStrictFPOpcode(); |
| ISD::CondCode CC = |
| cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); |
| SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); |
| SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); |
| SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); |
| EVT LHSVT = LHS.getValueType(); |
| SDLoc dl(Op); |
| |
| // Soften the setcc with libcall if it is fp128. |
| if (LHSVT == MVT::f128) { |
| assert(!Subtarget.hasP9Vector() && |
| "SETCC for f128 is already legal under Power9!"); |
| softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, |
| Op->getOpcode() == ISD::STRICT_FSETCCS); |
| if (RHS.getNode()) |
| LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, |
| DAG.getCondCode(CC)); |
| if (IsStrict) |
| return DAG.getMergeValues({LHS, Chain}, dl); |
| return LHS; |
| } |
| |
| assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); |
| |
| if (Op.getValueType() == MVT::v2i64) { |
| // When the operands themselves are v2i64 values, we need to do something |
| // special because VSX has no underlying comparison operations for these. |
| if (LHS.getValueType() == MVT::v2i64) { |
| // Equality can be handled by casting to the legal type for Altivec |
| // comparisons, everything else needs to be expanded. |
| if (CC != ISD::SETEQ && CC != ISD::SETNE) |
| return SDValue(); |
| SDValue SetCC32 = DAG.getSetCC( |
| dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), |
| DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); |
| int ShuffV[] = {1, 0, 3, 2}; |
| SDValue Shuff = |
| DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); |
| return DAG.getBitcast(MVT::v2i64, |
| DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, |
| dl, MVT::v4i32, Shuff, SetCC32)); |
| } |
| |
| // We handle most of these in the usual way. |
| return Op; |
| } |
| |
| // If we're comparing for equality to zero, expose the fact that this is |
| // implemented as a ctlz/srl pair on ppc, so that the dag combiner can |
| // fold the new nodes. |
| if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) |
| return V; |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { |
| // Leave comparisons against 0 and -1 alone for now, since they're usually |
| // optimized. FIXME: revisit this when we can custom lower all setcc |
| // optimizations. |
| if (C->isAllOnes() || C->isZero()) |
| return SDValue(); |
| } |
| |
| // If we have an integer seteq/setne, turn it into a compare against zero |
| // by xor'ing the rhs with the lhs, which is faster than setting a |
| // condition register, reading it back out, and masking the correct bit. The |
| // normal approach here uses sub to do this instead of xor. Using xor exposes |
| // the result to other bit-twiddling opportunities. |
| if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| EVT VT = Op.getValueType(); |
| SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); |
| return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); |
| } |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| EVT VT = Node->getValueType(0); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue InChain = Node->getOperand(0); |
| SDValue VAListPtr = Node->getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); |
| SDLoc dl(Node); |
| |
| assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); |
| |
| // gpr_index |
| SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, |
| VAListPtr, MachinePointerInfo(SV), MVT::i8); |
| InChain = GprIndex.getValue(1); |
| |
| if (VT == MVT::i64) { |
| // Check if GprIndex is even |
| SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, |
| DAG.getConstant(1, dl, MVT::i32)); |
| SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, |
| DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); |
| SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, |
| DAG.getConstant(1, dl, MVT::i32)); |
| // Align GprIndex to be even if it isn't |
| GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, |
| GprIndex); |
| } |
| |
| // fpr index is 1 byte after gpr |
| SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| // fpr |
| SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, |
| FprPtr, MachinePointerInfo(SV), MVT::i8); |
| InChain = FprIndex.getValue(1); |
| |
| SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, |
| DAG.getConstant(8, dl, MVT::i32)); |
| |
| SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, |
| DAG.getConstant(4, dl, MVT::i32)); |
| |
| // areas |
| SDValue OverflowArea = |
| DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); |
| InChain = OverflowArea.getValue(1); |
| |
| SDValue RegSaveArea = |
| DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); |
| InChain = RegSaveArea.getValue(1); |
| |
| // select overflow_area if index > 8 |
| SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, |
| DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); |
| |
| // adjustment constant gpr_index * 4/8 |
| SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, |
| VT.isInteger() ? GprIndex : FprIndex, |
| DAG.getConstant(VT.isInteger() ? 4 : 8, dl, |
| MVT::i32)); |
| |
| // OurReg = RegSaveArea + RegConstant |
| SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, |
| RegConstant); |
| |
| // Floating types are 32 bytes into RegSaveArea |
| if (VT.isFloatingPoint()) |
| OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, |
| DAG.getConstant(32, dl, MVT::i32)); |
| |
| // increase {f,g}pr_index by 1 (or 2 if VT is i64) |
| SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, |
| VT.isInteger() ? GprIndex : FprIndex, |
| DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, |
| MVT::i32)); |
| |
| InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, |
| VT.isInteger() ? VAListPtr : FprPtr, |
| MachinePointerInfo(SV), MVT::i8); |
| |
| // determine if we should load from reg_save_area or overflow_area |
| SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); |
| |
| // increase overflow_area by 4/8 if gpr/fpr > 8 |
| SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, |
| DAG.getConstant(VT.isInteger() ? 4 : 8, |
| dl, MVT::i32)); |
| |
| OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, |
| OverflowAreaPlusN); |
| |
| InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, |
| MachinePointerInfo(), MVT::i32); |
| |
| return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); |
| } |
| |
| SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { |
| assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); |
| |
| // We have to copy the entire va_list struct: |
| // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte |
| return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), |
| DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), |
| false, true, false, MachinePointerInfo(), |
| MachinePointerInfo()); |
| } |
| |
| SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Subtarget.isAIXABI()) |
| report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); |
| |
| return Op.getOperand(0); |
| } |
| |
| SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); |
| |
| assert((Op.getOpcode() == ISD::INLINEASM || |
| Op.getOpcode() == ISD::INLINEASM_BR) && |
| "Expecting Inline ASM node."); |
| |
| // If an LR store is already known to be required then there is not point in |
| // checking this ASM as well. |
| if (MFI.isLRStoreRequired()) |
| return Op; |
| |
| // Inline ASM nodes have an optional last operand that is an incoming Flag of |
| // type MVT::Glue. We want to ignore this last operand if that is the case. |
| unsigned NumOps = Op.getNumOperands(); |
| if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) |
| --NumOps; |
| |
| // Check all operands that may contain the LR. |
| for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
| unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); |
| unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); |
| ++i; // Skip the ID value. |
| |
| switch (InlineAsm::getKind(Flags)) { |
| default: |
| llvm_unreachable("Bad flags!"); |
| case InlineAsm::Kind_RegUse: |
| case InlineAsm::Kind_Imm: |
| case InlineAsm::Kind_Mem: |
| i += NumVals; |
| break; |
| case InlineAsm::Kind_Clobber: |
| case InlineAsm::Kind_RegDef: |
| case InlineAsm::Kind_RegDefEarlyClobber: { |
| for (; NumVals; --NumVals, ++i) { |
| Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); |
| if (Reg != PPC::LR && Reg != PPC::LR8) |
| continue; |
| MFI.setLRStoreRequired(); |
| return Op; |
| } |
| break; |
| } |
| } |
| } |
| |
| return Op; |
| } |
| |
| SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Subtarget.isAIXABI()) |
| report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue Trmp = Op.getOperand(1); // trampoline |
| SDValue FPtr = Op.getOperand(2); // nested function |
| SDValue Nest = Op.getOperand(3); // 'nest' parameter value |
| SDLoc dl(Op); |
| |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| bool isPPC64 = (PtrVT == MVT::i64); |
| Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); |
| |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| |
| Entry.Ty = IntPtrTy; |
| Entry.Node = Trmp; Args.push_back(Entry); |
| |
| // TrampSize == (isPPC64 ? 48 : 40); |
| Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| Args.push_back(Entry); |
| |
| Entry.Node = FPtr; Args.push_back(Entry); |
| Entry.Node = Nest; Args.push_back(Entry); |
| |
| // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( |
| CallingConv::C, Type::getVoidTy(*DAG.getContext()), |
| DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| return CallResult.second; |
| } |
| |
| SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| SDLoc dl(Op); |
| |
| if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. |
| // We suppose the given va_list is already allocated. |
| // |
| // typedef struct { |
| // char gpr; /* index into the array of 8 GPRs |
| // * stored in the register save area |
| // * gpr=0 corresponds to r3, |
| // * gpr=1 to r4, etc. |
| // */ |
| // char fpr; /* index into the array of 8 FPRs |
| // * stored in the register save area |
| // * fpr=0 corresponds to f1, |
| // * fpr=1 to f2, etc. |
| // */ |
| // char *overflow_arg_area; |
| // /* location on stack that holds |
| // * the next overflow argument |
| // */ |
| // char *reg_save_area; |
| // /* where r3:r10 and f1:f8 (if saved) |
| // * are stored |
| // */ |
| // } va_list[1]; |
| |
| SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); |
| SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); |
| SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), |
| PtrVT); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), |
| PtrVT); |
| |
| uint64_t FrameOffset = PtrVT.getSizeInBits()/8; |
| SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); |
| |
| uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; |
| SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); |
| |
| uint64_t FPROffset = 1; |
| SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); |
| |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| |
| // Store first byte : number of int regs |
| SDValue firstStore = |
| DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), |
| MachinePointerInfo(SV), MVT::i8); |
| uint64_t nextOffset = FPROffset; |
| SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), |
| ConstFPROffset); |
| |
| // Store second byte : number of float regs |
| SDValue secondStore = |
| DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, |
| MachinePointerInfo(SV, nextOffset), MVT::i8); |
| nextOffset += StackOffset; |
| nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); |
| |
| // Store second word : arguments given on stack |
| SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, |
| MachinePointerInfo(SV, nextOffset)); |
| nextOffset += FrameOffset; |
| nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); |
| |
| // Store third word : arguments given in registers |
| return DAG.getStore(thirdStore, dl, FR, nextPtr, |
| MachinePointerInfo(SV, nextOffset)); |
| } |
| |
| /// FPR - The set of FP registers that should be allocated for arguments |
| /// on Darwin and AIX. |
| static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, |
| PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, |
| PPC::F11, PPC::F12, PPC::F13}; |
| |
| /// CalculateStackSlotSize - Calculates the size reserved for this argument on |
| /// the stack. |
| static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, |
| unsigned PtrByteSize) { |
| unsigned ArgSize = ArgVT.getStoreSize(); |
| if (Flags.isByVal()) |
| ArgSize = Flags.getByValSize(); |
| |
| // Round up to multiples of the pointer size, except for array members, |
| // which are always packed. |
| if (!Flags.isInConsecutiveRegs()) |
| ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| |
| return ArgSize; |
| } |
| |
| /// CalculateStackSlotAlignment - Calculates the alignment of this argument |
| /// on the stack. |
| static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, |
| ISD::ArgFlagsTy Flags, |
| unsigned PtrByteSize) { |
| Align Alignment(PtrByteSize); |
| |
| // Altivec parameters are padded to a 16 byte boundary. |
| if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || |
| ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || |
| ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || |
| ArgVT == MVT::v1i128 || ArgVT == MVT::f128) |
| Alignment = Align(16); |
| |
| // ByVal parameters are aligned as requested. |
| if (Flags.isByVal()) { |
| auto BVAlign = Flags.getNonZeroByValAlign(); |
| if (BVAlign > PtrByteSize) { |
| if (BVAlign.value() % PtrByteSize != 0) |
| llvm_unreachable( |
| "ByVal alignment is not a multiple of the pointer size"); |
| |
| Alignment = BVAlign; |
| } |
| } |
| |
| // Array members are always packed to their original alignment. |
| if (Flags.isInConsecutiveRegs()) { |
| // If the array member was split into multiple registers, the first |
| // needs to be aligned to the size of the full type. (Except for |
| // ppcf128, which is only aligned as its f64 components.) |
| if (Flags.isSplit() && OrigVT != MVT::ppcf128) |
| Alignment = Align(OrigVT.getStoreSize()); |
| else |
| Alignment = Align(ArgVT.getStoreSize()); |
| } |
| |
| return Alignment; |
| } |
| |
| /// CalculateStackSlotUsed - Return whether this argument will use its |
| /// stack slot (instead of being passed in registers). ArgOffset, |
| /// AvailableFPRs, and AvailableVRs must hold the current argument |
| /// position, and will be updated to account for this argument. |
| static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, |
| unsigned PtrByteSize, unsigned LinkageSize, |
| unsigned ParamAreaSize, unsigned &ArgOffset, |
| unsigned &AvailableFPRs, |
| unsigned &AvailableVRs) { |
| bool UseMemory = false; |
| |
| // Respect alignment of argument on the stack. |
| Align Alignment = |
| CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); |
| ArgOffset = alignTo(ArgOffset, Alignment); |
| // If there's no space left in the argument save area, we must |
| // use memory (this check also catches zero-sized arguments). |
| if (ArgOffset >= LinkageSize + ParamAreaSize) |
| UseMemory = true; |
| |
| // Allocate argument on the stack. |
| ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); |
| if (Flags.isInConsecutiveRegsLast()) |
| ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| // If we overran the argument save area, we must use memory |
| // (this check catches arguments passed partially in memory) |
| if (ArgOffset > LinkageSize + ParamAreaSize) |
| UseMemory = true; |
| |
| // However, if the argument is actually passed in an FPR or a VR, |
| // we don't use memory after all. |
| if (!Flags.isByVal()) { |
| if (ArgVT == MVT::f32 || ArgVT == MVT::f64) |
| if (AvailableFPRs > 0) { |
| --AvailableFPRs; |
| return false; |
| } |
| if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || |
| ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || |
| ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || |
| ArgVT == MVT::v1i128 || ArgVT == MVT::f128) |
| if (AvailableVRs > 0) { |
| --AvailableVRs; |
| return false; |
| } |
| } |
| |
| return UseMemory; |
| } |
| |
| /// EnsureStackAlignment - Round stack frame size up from NumBytes to |
| /// ensure minimum alignment required for target. |
| static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, |
| unsigned NumBytes) { |
| return alignTo(NumBytes, Lowering->getStackAlign()); |
| } |
| |
| SDValue PPCTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| if (Subtarget.isAIXABI()) |
| return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, |
| InVals); |
| if (Subtarget.is64BitELFABI()) |
| return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, |
| InVals); |
| assert(Subtarget.is32BitELFABI()); |
| return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, |
| InVals); |
| } |
| |
| SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| |
| // 32-bit SVR4 ABI Stack Frame Layout: |
| // +-----------------------------------+ |
| // +--> | Back chain | |
| // | +-----------------------------------+ |
| // | | Floating-point register save area | |
| // | +-----------------------------------+ |
| // | | General register save area | |
| // | +-----------------------------------+ |
| // | | CR save word | |
| // | +-----------------------------------+ |
| // | | VRSAVE save word | |
| // | +-----------------------------------+ |
| // | | Alignment padding | |
| // | +-----------------------------------+ |
| // | | Vector register save area | |
| // | +-----------------------------------+ |
| // | | Local variable space | |
| // | +-----------------------------------+ |
| // | | Parameter list area | |
| // | +-----------------------------------+ |
| // | | LR save word | |
| // | +-----------------------------------+ |
| // SP--> +--- | Back chain | |
| // +-----------------------------------+ |
| // |
| // Specifications: |
| // System V Application Binary Interface PowerPC Processor Supplement |
| // AltiVec Technology Programming Interface Manual |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| // Potential tail calls could cause overwriting of argument stack slots. |
| bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && |
| (CallConv == CallingConv::Fast)); |
| const Align PtrAlign(4); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| // Reserve space for the linkage area on the stack. |
| unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); |
| CCInfo.AllocateStack(LinkageSize, PtrAlign); |
| if (useSoftFloat()) |
| CCInfo.PreAnalyzeFormalArguments(Ins); |
| |
| CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); |
| CCInfo.clearWasPPCF128(); |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments stored in registers. |
| if (VA.isRegLoc()) { |
| const TargetRegisterClass *RC; |
| EVT ValVT = VA.getValVT(); |
| |
| switch (ValVT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("ValVT not supported by formal arguments Lowering"); |
| case MVT::i1: |
| case MVT::i32: |
| RC = &PPC::GPRCRegClass; |
| break; |
| case MVT::f32: |
| if (Subtarget.hasP8Vector()) |
| RC = &PPC::VSSRCRegClass; |
| else if (Subtarget.hasSPE()) |
| RC = &PPC::GPRCRegClass; |
| else |
| RC = &PPC::F4RCRegClass; |
| break; |
| case MVT::f64: |
| if (Subtarget.hasVSX()) |
| RC = &PPC::VSFRCRegClass; |
| else if (Subtarget.hasSPE()) |
| // SPE passes doubles in GPR pairs. |
| RC = &PPC::GPRCRegClass; |
| else |
| RC = &PPC::F8RCRegClass; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| RC = &PPC::VRRCRegClass; |
| break; |
| case MVT::v4f32: |
| RC = &PPC::VRRCRegClass; |
| break; |
| case MVT::v2f64: |
| case MVT::v2i64: |
| RC = &PPC::VRRCRegClass; |
| break; |
| } |
| |
| SDValue ArgValue; |
| // Transform the arguments stored in physical registers into |
| // virtual ones. |
| if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { |
| assert(i + 1 < e && "No second half of double precision argument"); |
| Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); |
| Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); |
| SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); |
| SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); |
| if (!Subtarget.isLittleEndian()) |
| std::swap (ArgValueLo, ArgValueHi); |
| ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, |
| ArgValueHi); |
| } else { |
| Register Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, |
| ValVT == MVT::i1 ? MVT::i32 : ValVT); |
| if (ValVT == MVT::i1) |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); |
| } |
| |
| InVals.push_back(ArgValue); |
| } else { |
| // Argument stored in memory. |
| assert(VA.isMemLoc()); |
| |
| // Get the extended size of the argument type in stack |
| unsigned ArgSize = VA.getLocVT().getStoreSize(); |
| // Get the actual size of the argument type |
| unsigned ObjSize = VA.getValVT().getStoreSize(); |
| unsigned ArgOffset = VA.getLocMemOffset(); |
| // Stack objects in PPC32 are right justified. |
| ArgOffset += ArgSize - ObjSize; |
| int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back( |
| DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); |
| } |
| } |
| |
| // Assign locations to all of the incoming aggregate by value arguments. |
| // Aggregates passed by value are stored in the local variable space of the |
| // caller's stack frame, right above the parameter list area. |
| SmallVector<CCValAssign, 16> ByValArgLocs; |
| CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| ByValArgLocs, *DAG.getContext()); |
| |
| // Reserve stack space for the allocations in CCInfo. |
| CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); |
| |
| CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); |
| |
| // Area that is at least reserved in the caller of this function. |
| unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); |
| MinReservedArea = std::max(MinReservedArea, LinkageSize); |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized function's reserved stack space needs to be aligned so that |
| // taking the difference between two stack areas will result in an aligned |
| // stack. |
| MinReservedArea = |
| EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); |
| FuncInfo->setMinReservedArea(MinReservedArea); |
| |
| SmallVector<SDValue, 8> MemOps; |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (isVarArg) { |
| static const MCPhysReg GPArgRegs[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| const unsigned NumGPArgRegs = std::size(GPArgRegs); |
| |
| static const MCPhysReg FPArgRegs[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8 |
| }; |
| unsigned NumFPArgRegs = std::size(FPArgRegs); |
| |
| if (useSoftFloat() || hasSPE()) |
| NumFPArgRegs = 0; |
| |
| FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); |
| FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); |
| |
| // Make room for NumGPArgRegs and NumFPArgRegs. |
| int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + |
| NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; |
| |
| FuncInfo->setVarArgsStackOffset( |
| MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, |
| CCInfo.getNextStackOffset(), true)); |
| |
| FuncInfo->setVarArgsFrameIndex( |
| MFI.CreateStackObject(Depth, Align(8), false)); |
| SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| |
| // The fixed integer arguments of a variadic function are stored to the |
| // VarArgsFrameIndex on the stack so that they may be loaded by |
| // dereferencing the result of va_next. |
| for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { |
| // Get an existing live-in vreg, or add a new one. |
| Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); |
| if (!VReg) |
| VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| |
| // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 |
| // is set. |
| // The double arguments are stored to the VarArgsFrameIndex |
| // on the stack. |
| for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { |
| // Get an existing live-in vreg, or add a new one. |
| Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); |
| if (!VReg) |
| VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); |
| MemOps.push_back(Store); |
| // Increment the address by eight for the next argument to store |
| SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, |
| PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); |
| |
| return Chain; |
| } |
| |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote |
| // value to MVT::i64 and then truncate to the correct register size. |
| SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, |
| EVT ObjectVT, SelectionDAG &DAG, |
| SDValue ArgVal, |
| const SDLoc &dl) const { |
| if (Flags.isSExt()) |
| ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, |
| DAG.getValueType(ObjectVT)); |
| else if (Flags.isZExt()) |
| ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, |
| DAG.getValueType(ObjectVT)); |
| |
| return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); |
| } |
| |
| SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| // TODO: add description of PPC stack frame format, or at least some docs. |
| // |
| bool isELFv2ABI = Subtarget.isELFv2ABI(); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| |
| assert(!(CallConv == CallingConv::Fast && isVarArg) && |
| "fastcc not supported on varargs functions"); |
| |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| // Potential tail calls could cause overwriting of argument stack slots. |
| bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && |
| (CallConv == CallingConv::Fast)); |
| unsigned PtrByteSize = 8; |
| unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); |
| |
| static const MCPhysReg GPR[] = { |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| static const MCPhysReg VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| |
| const unsigned Num_GPR_Regs = std::size(GPR); |
| const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; |
| const unsigned Num_VR_Regs = std::size(VR); |
| |
| // Do a first pass over the arguments to determine whether the ABI |
| // guarantees that our caller has allocated the parameter save area |
| // on its stack frame. In the ELFv1 ABI, this is always the case; |
| // in the ELFv2 ABI, it is true if this is a vararg function or if |
| // any parameter is located in a stack slot. |
| |
| bool HasParameterArea = !isELFv2ABI || isVarArg; |
| unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; |
| unsigned NumBytes = LinkageSize; |
| unsigned AvailableFPRs = Num_FPR_Regs; |
| unsigned AvailableVRs = Num_VR_Regs; |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| if (Ins[i].Flags.isNest()) |
| continue; |
| |
| if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, |
| PtrByteSize, LinkageSize, ParamAreaSize, |
| NumBytes, AvailableFPRs, AvailableVRs)) |
| HasParameterArea = true; |
| } |
| |
| // Add DAG nodes to load the arguments or copy them out of registers. On |
| // entry to a function on PPC, the arguments start after the linkage area, |
| // although the first ones are often in registers. |
| |
| unsigned ArgOffset = LinkageSize; |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| SmallVector<SDValue, 8> MemOps; |
| Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); |
| unsigned CurArgIdx = 0; |
| for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { |
| SDValue ArgVal; |
| bool needsLoad = false; |
| EVT ObjectVT = Ins[ArgNo].VT; |
| EVT OrigVT = Ins[ArgNo].ArgVT; |
| unsigned ObjSize = ObjectVT.getStoreSize(); |
| unsigned ArgSize = ObjSize; |
| ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; |
| if (Ins[ArgNo].isOrigArg()) { |
| std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); |
| CurArgIdx = Ins[ArgNo].getOrigArgIndex(); |
| } |
| // We re-align the argument offset for each argument, except when using the |
| // fast calling convention, when we need to make sure we do that only when |
| // we'll actually use a stack slot. |
| unsigned CurArgOffset; |
| Align Alignment; |
| auto ComputeArgOffset = [&]() { |
| /* Respect alignment of argument on the stack. */ |
| Alignment = |
| CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); |
| ArgOffset = alignTo(ArgOffset, Alignment); |
| CurArgOffset = ArgOffset; |
| }; |
| |
| if (CallConv != CallingConv::Fast) { |
| ComputeArgOffset(); |
| |
| /* Compute GPR index associated with argument offset. */ |
| GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; |
| GPR_idx = std::min(GPR_idx, Num_GPR_Regs); |
| } |
| |
| // FIXME the codegen can be much improved in some cases. |
| // We do not have to keep everything in memory. |
| if (Flags.isByVal()) { |
| assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); |
| |
| if (CallConv == CallingConv::Fast) |
| ComputeArgOffset(); |
| |
| // ObjSize is the true size, ArgSize rounded up to multiple of registers. |
| ObjSize = Flags.getByValSize(); |
| ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| // Empty aggregate parameters do not take up registers. Examples: |
| // struct { } a; |
| // union { } b; |
| // int c[0]; |
| // etc. However, we have to provide a place-holder in InVals, so |
| // pretend we have an 8-byte item at the current address for that |
| // purpose. |
| if (!ObjSize) { |
| int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(FIN); |
| continue; |
| } |
| |
| // Create a stack object covering all stack doublewords occupied |
| // by the argument. If the argument is (fully or partially) on |
| // the stack, or if the argument is fully in registers but the |
| // caller has allocated the parameter save anyway, we can refer |
| // directly to the caller's stack frame. Otherwise, create a |
| // local copy in our own frame. |
| int FI; |
| if (HasParameterArea || |
| ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) |
| FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); |
| else |
| FI = MFI.CreateStackObject(ArgSize, Alignment, false); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| |
| // Handle aggregates smaller than 8 bytes. |
| if (ObjSize < PtrByteSize) { |
| // The value of the object is its address, which differs from the |
| // address of the enclosing doubleword on big-endian systems. |
| SDValue Arg = FIN; |
| if (!isLittleEndian) { |
| SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); |
| Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); |
| } |
| InVals.push_back(Arg); |
| |
| if (GPR_idx != Num_GPR_Regs) { |
| Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); |
| FuncInfo->addLiveInAttr(VReg, Flags); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); |
| SDValue Store = |
| DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, |
| MachinePointerInfo(&*FuncArg), ObjType); |
| MemOps.push_back(Store); |
| } |
| // Whether we copied from a register or not, advance the offset |
| // into the parameter save area by a full doubleword. |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| |
| // The value of the object is its address, which is the address of |
| // its first stack doubleword. |
| InVals.push_back(FIN); |
| |
| // Store whatever pieces of the object are in registers to memory. |
| for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { |
| if (GPR_idx == Num_GPR_Regs) |
| break; |
| |
| Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| FuncInfo->addLiveInAttr(VReg, Flags); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Addr = FIN; |
| if (j) { |
| SDValue Off = DAG.getConstant(j, dl, PtrVT); |
| Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); |
| } |
| unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; |
| EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); |
| SDValue Store = |
| DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, |
| MachinePointerInfo(&*FuncArg, j), ObjType); |
| MemOps.push_back(Store); |
| ++GPR_idx; |
| } |
| ArgOffset += ArgSize; |
| continue; |
| } |
| |
| switch (ObjectVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i32: |
| case MVT::i64: |
| if (Flags.isNest()) { |
| // The 'nest' parameter, if any, is passed in R11. |
| Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| |
| if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) |
| ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); |
| |
| break; |
| } |
| |
| // These can be scalar arguments or elements of an integer array type |
| // passed directly. Clang may use those instead of "byval" aggregate |
| // types to avoid forcing arguments to memory unnecessarily. |
| if (GPR_idx != Num_GPR_Regs) { |
| Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); |
| FuncInfo->addLiveInAttr(VReg, Flags); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| |
| if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote |
| // value to MVT::i64 and then truncate to the correct register size. |
| ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); |
| } else { |
| if (CallConv == CallingConv::Fast) |
| ComputeArgOffset(); |
| |
| needsLoad = true; |
| ArgSize = PtrByteSize; |
| } |
| if (CallConv != CallingConv::Fast || needsLoad) |
| ArgOffset += 8; |
| break; |
| |
| case MVT::f32: |
| case MVT::f64: |
| // These can be scalar arguments or elements of a float array type |
| // passed directly. The latter are used to implement ELFv2 homogenous |
| // float aggregates. |
| if (FPR_idx != Num_FPR_Regs) { |
| unsigned VReg; |
| |
| if (ObjectVT == MVT::f32) |
| VReg = MF.addLiveIn(FPR[FPR_idx], |
| Subtarget.hasP8Vector() |
| ? &PPC::VSSRCRegClass |
| : &PPC::F4RCRegClass); |
| else |
| VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() |
| ? &PPC::VSFRCRegClass |
| : &PPC::F8RCRegClass); |
| |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); |
| ++FPR_idx; |
| } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { |
| // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 |
| // once we support fp <-> gpr moves. |
| |
| // This can only ever happen in the presence of f32 array types, |
| // since otherwise we never run out of FPRs before running out |
| // of GPRs. |
| Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); |
| FuncInfo->addLiveInAttr(VReg, Flags); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); |
| |
| if (ObjectVT == MVT::f32) { |
| if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) |
| ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, |
| DAG.getConstant(32, dl, MVT::i32)); |
| ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); |
| } |
| |
| ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); |
| } else { |
| if (CallConv == CallingConv::Fast) |
| ComputeArgOffset(); |
| |
| needsLoad = true; |
| } |
| |
| // When passing an array of floats, the array occupies consecutive |
| // space in the argument area; only round up to the next doubleword |
| // at the end of the array. Otherwise, each float takes 8 bytes. |
| if (CallConv != CallingConv::Fast || needsLoad) { |
| ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; |
| ArgOffset += ArgSize; |
| if (Flags.isInConsecutiveRegsLast()) |
| ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| } |
| break; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| case MVT::v2f64: |
| case MVT::v2i64: |
| case MVT::v1i128: |
| case MVT::f128: |
| // These can be scalar arguments or elements of a vector array type |
| // passed directly. The latter are used to implement ELFv2 homogenous |
| // vector aggregates. |
| if (VR_idx != Num_VR_Regs) { |
| Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); |
| ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); |
| ++VR_idx; |
| } else { |
| if (CallConv == CallingConv::Fast) |
| ComputeArgOffset(); |
| needsLoad = true; |
| } |
| if (CallConv != CallingConv::Fast || needsLoad) |
| ArgOffset += 16; |
| break; |
| } |
| |
| // We need to load the argument to a virtual register if we determined |
| // above that we ran out of physical registers of the appropriate type. |
| if (needsLoad) { |
| if (ObjSize < ArgSize && !isLittleEndian) |
| CurArgOffset += ArgSize - ObjSize; |
| int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); |
| } |
| |
| InVals.push_back(ArgVal); |
| } |
| |
| // Area that is at least reserved in the caller of this function. |
| unsigned MinReservedArea; |
| if (HasParameterArea) |
| MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); |
| else |
| MinReservedArea = LinkageSize; |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized functions' reserved stack space needs to be aligned so that |
| // taking the difference between two stack areas will result in an aligned |
| // stack. |
| MinReservedArea = |
| EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); |
| FuncInfo->setMinReservedArea(MinReservedArea); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| // On ELFv2ABI spec, it writes: |
| // C programs that are intended to be *portable* across different compilers |
| // and architectures must use the header file <stdarg.h> to deal with variable |
| // argument lists. |
| if (isVarArg && MFI.hasVAStart()) { |
| int Depth = ArgOffset; |
| |
| FuncInfo->setVarArgsFrameIndex( |
| MFI.CreateFixedObject(PtrByteSize, Depth, true)); |
| SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by dereferencing |
| // the result of va_next. |
| for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; |
| GPR_idx < Num_GPR_Regs; ++GPR_idx) { |
| Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); |
| MemOps.push_back(Store); |
| // Increment the address by four for the next argument to store |
| SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); |
| |
| return Chain; |
| } |
| |
| /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be |
| /// adjusted to accommodate the arguments for the tailcall. |
| static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, |
| unsigned ParamSize) { |
| |
| if (!isTailCall) return 0; |
| |
| PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); |
| unsigned CallerMinReservedArea = FI->getMinReservedArea(); |
| int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; |
| // Remember only if the new adjustment is bigger. |
| if (SPDiff < FI->getTailCallSPDelta()) |
| FI->setTailCallSPDelta(SPDiff); |
| |
| return SPDiff; |
| } |
| |
| static bool isFunctionGlobalAddress(SDValue Callee); |
| |
| static bool callsShareTOCBase(const Function *Caller, SDValue Callee, |
| const TargetMachine &TM) { |
| // It does not make sense to call callsShareTOCBase() with a caller that |
| // is PC Relative since PC Relative callers do not have a TOC. |
| #ifndef NDEBUG |
| const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); |
| assert(!STICaller->isUsingPCRelativeCalls() && |
| "PC Relative callers do not have a TOC and cannot share a TOC Base"); |
| #endif |
| |
| // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols |
| // don't have enough information to determine if the caller and callee share |
| // the same TOC base, so we have to pessimistically assume they don't for |
| // correctness. |
| GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| if (!G) |
| return false; |
| |
| const GlobalValue *GV = G->getGlobal(); |
| |
| // If the callee is preemptable, then the static linker will use a plt-stub |
| // which saves the toc to the stack, and needs a nop after the call |
| // instruction to convert to a toc-restore. |
| if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) |
| return false; |
| |
| // Functions with PC Relative enabled may clobber the TOC in the same DSO. |
| // We may need a TOC restore in the situation where the caller requires a |
| // valid TOC but the callee is PC Relative and does not. |
| const Function *F = dyn_cast<Function>(GV); |
| const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); |
| |
| // If we have an Alias we can try to get the function from there. |
| if (Alias) { |
| const GlobalObject *GlobalObj = Alias->getAliaseeObject(); |
| F = dyn_cast<Function>(GlobalObj); |
| } |
| |
| // If we still have no valid function pointer we do not have enough |
| // information to determine if the callee uses PC Relative calls so we must |
| // assume that it does. |
| if (!F) |
| return false; |
| |
| // If the callee uses PC Relative we cannot guarantee that the callee won't |
| // clobber the TOC of the caller and so we must assume that the two |
| // functions do not share a TOC base. |
| const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); |
| if (STICallee->isUsingPCRelativeCalls()) |
| return false; |
| |
| // If the GV is not a strong definition then we need to assume it can be |
| // replaced by another function at link time. The function that replaces |
| // it may not share the same TOC as the caller since the callee may be |
| // replaced by a PC Relative version of the same function. |
| if (!GV->isStrongDefinitionForLinker()) |
| return false; |
| |
| // The medium and large code models are expected to provide a sufficiently |
| // large TOC to provide all data addressing needs of a module with a |
| // single TOC. |
| if (CodeModel::Medium == TM.getCodeModel() || |
| CodeModel::Large == TM.getCodeModel()) |
| return true; |
| |
| // Any explicitly-specified sections and section prefixes must also match. |
| // Also, if we're using -ffunction-sections, then each function is always in |
| // a different section (the same is true for COMDAT functions). |
| if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || |
| GV->getSection() != Caller->getSection()) |
| return false; |
| if (const auto *F = dyn_cast<Function>(GV)) { |
| if (F->getSectionPrefix() != Caller->getSectionPrefix()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| needStackSlotPassParameters(const PPCSubtarget &Subtarget, |
| const SmallVectorImpl<ISD::OutputArg> &Outs) { |
| assert(Subtarget.is64BitELFABI()); |
| |
| const unsigned PtrByteSize = 8; |
| const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); |
| |
| static const MCPhysReg GPR[] = { |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| static const MCPhysReg VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| |
| const unsigned NumGPRs = std::size(GPR); |
| const unsigned NumFPRs = 13; |
| const unsigned NumVRs = std::size(VR); |
| const unsigned ParamAreaSize = NumGPRs * PtrByteSize; |
| |
| unsigned NumBytes = LinkageSize; |
| unsigned AvailableFPRs = NumFPRs; |
| unsigned AvailableVRs = NumVRs; |
| |
| for (const ISD::OutputArg& Param : Outs) { |
| if (Param.Flags.isNest()) continue; |
| |
| if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, |
| LinkageSize, ParamAreaSize, NumBytes, |
| AvailableFPRs, AvailableVRs)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { |
| if (CB.arg_size() != CallerFn->arg_size()) |
| return false; |
| |
| auto CalleeArgIter = CB.arg_begin(); |
| auto CalleeArgEnd = CB.arg_end(); |
| Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); |
| |
| for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { |
| const Value* CalleeArg = *CalleeArgIter; |
| const Value* CallerArg = &(*CallerArgIter); |
| if (CalleeArg == CallerArg) |
| continue; |
| |
| // e.g. @caller([4 x i64] %a, [4 x i64] %b) { |
| // tail call @callee([4 x i64] undef, [4 x i64] %b) |
| // } |
| // 1st argument of callee is undef and has the same type as caller. |
| if (CalleeArg->getType() == CallerArg->getType() && |
| isa<UndefValue>(CalleeArg)) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Returns true if TCO is possible between the callers and callees |
| // calling conventions. |
| static bool |
| areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, |
| CallingConv::ID CalleeCC) { |
| // Tail calls are possible with fastcc and ccc. |
| auto isTailCallableCC = [] (CallingConv::ID CC){ |
| return CC == CallingConv::C || CC == CallingConv::Fast; |
| }; |
| if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) |
| return false; |
| |
| // We can safely tail call both fastcc and ccc callees from a c calling |
| // convention caller. If the caller is fastcc, we may have less stack space |
| // than a non-fastcc caller with the same signature so disable tail-calls in |
| // that case. |
| return CallerCC == CallingConv::C || CallerCC == CalleeCC; |
| } |
| |
| bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( |
| SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
| bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; |
| |
| if (DisableSCO && !TailCallOpt) return false; |
| |
| // Variadic argument functions are not supported. |
| if (isVarArg) return false; |
| |
| auto &Caller = DAG.getMachineFunction().getFunction(); |
| // Check that the calling conventions are compatible for tco. |
| if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) |
| return false; |
| |
| // Caller contains any byval parameter is not supported. |
| if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) |
| return false; |
| |
| // Callee contains any byval parameter is not supported, too. |
| // Note: This is a quick work around, because in some cases, e.g. |
| // caller's stack size > callee's stack size, we are still able to apply |
| // sibling call optimization. For example, gcc is able to do SCO for caller1 |
| // in the following example, but not for caller2. |
| // struct test { |
| // long int a; |
| // char ary[56]; |
| // } gTest; |
| // __attribute__((noinline)) int callee(struct test v, struct test *b) { |
| // b->a = v.a; |
| // return 0; |
| // } |
| // void caller1(struct test a, struct test c, struct test *b) { |
| // callee(gTest, b); } |
| // void caller2(struct test *b) { callee(gTest, b); } |
| if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) |
| return false; |
| |
| // If callee and caller use different calling conventions, we cannot pass |
| // parameters on stack since offsets for the parameter area may be different. |
| if (Caller.getCallingConv() != CalleeCC && |
| needStackSlotPassParameters(Subtarget, Outs)) |
| return false; |
| |
| // All variants of 64-bit ELF ABIs without PC-Relative addressing require that |
| // the caller and callee share the same TOC for TCO/SCO. If the caller and |
| // callee potentially have different TOC bases then we cannot tail call since |
| // we need to restore the TOC pointer after the call. |
| // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 |
| // We cannot guarantee this for indirect calls or calls to external functions. |
| // When PC-Relative addressing is used, the concept of the TOC is no longer |
| // applicable so this check is not required. |
| // Check first for indirect calls. |
| if (!Subtarget.isUsingPCRelativeCalls() && |
| !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) |
| return false; |
| |
| // Check if we share the TOC base. |
| if (!Subtarget.isUsingPCRelativeCalls() && |
| !callsShareTOCBase(&Caller, Callee, getTargetMachine())) |
| return false; |
| |
| // TCO allows altering callee ABI, so we don't have to check further. |
| if (CalleeCC == CallingConv::Fast && TailCallOpt) |
| return true; |
| |
| if (DisableSCO) return false; |
| |
| // If callee use the same argument list that caller is using, then we can |
| // apply SCO on this case. If it is not, then we need to check if callee needs |
| // stack for passing arguments. |
| // PC Relative tail calls may not have a CallBase. |
| // If there is no CallBase we cannot verify if we have the same argument |
| // list so assume that we don't have the same argument list. |
| if (CB && !hasSameArgumentList(&Caller, *CB) && |
| needStackSlotPassParameters(Subtarget, Outs)) |
| return false; |
| else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) |
| return false; |
| |
| return true; |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| if (!getTargetMachine().Options.GuaranteedTailCallOpt) |
| return false; |
| |
| // Variable argument functions are not supported. |
| if (isVarArg) |
| return false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); |
| if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { |
| // Functions containing by val parameters are not supported. |
| for (unsigned i = 0; i != Ins.size(); i++) { |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| if (Flags.isByVal()) return false; |
| } |
| |
| // Non-PIC/GOT tail calls are supported. |
| if (getTargetMachine().getRelocationModel() != Reloc::PIC_) |
| return true; |
| |
| // At the moment we can only do local tail calls (in same module, hidden |
| // or protected) if we are generating PIC. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| return G->getGlobal()->hasHiddenVisibility() |
| || G->getGlobal()->hasProtectedVisibility(); |
| } |
| |
| return false; |
| } |
| |
| /// isCallCompatibleAddress - Return the immediate to use if the specified |
| /// 32-bit value is representable in the immediate field of a BxA instruction. |
| static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) return nullptr; |
| |
| int Addr = C->getZExtValue(); |
| if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. |
| SignExtend32<26>(Addr) != Addr) |
| return nullptr; // Top 6 bits have to be sext of immediate. |
| |
| return DAG |
| .getConstant( |
| (int)C->getZExtValue() >> 2, SDLoc(Op), |
| DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) |
| .getNode(); |
| } |
| |
| namespace { |
| |
| struct TailCallArgumentInfo { |
| SDValue Arg; |
| SDValue FrameIdxOp; |
| int FrameIdx = 0; |
| |
| TailCallArgumentInfo() = default; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. |
| static void StoreTailCallArgumentsToStackSlot( |
| SelectionDAG &DAG, SDValue Chain, |
| const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, |
| SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { |
| for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { |
| SDValue Arg = TailCallArgs[i].Arg; |
| SDValue FIN = TailCallArgs[i].FrameIdxOp; |
| int FI = TailCallArgs[i].FrameIdx; |
| // Store relative to framepointer. |
| MemOpChains.push_back(DAG.getStore( |
| Chain, dl, Arg, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); |
| } |
| } |
| |
| /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to |
| /// the appropriate stack slot for the tail call optimized function call. |
| static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, |
| SDValue OldRetAddr, SDValue OldFP, |
| int SPDiff, const SDLoc &dl) { |
| if (SPDiff) { |
| // Calculate the new stack slot for the return address. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); |
| const PPCFrameLowering *FL = Subtarget.getFrameLowering(); |
| bool isPPC64 = Subtarget.isPPC64(); |
| int SlotSize = isPPC64 ? 8 : 4; |
| int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); |
| int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, |
| NewRetAddrLoc, true); |
| EVT VT = isPPC64 ? MVT::i64 : MVT::i32; |
| SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); |
| Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, |
| MachinePointerInfo::getFixedStack(MF, NewRetAddr)); |
| } |
| return Chain; |
| } |
| |
| /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate |
| /// the position of the argument. |
| static void |
| CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, |
| SDValue Arg, int SPDiff, unsigned ArgOffset, |
| SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { |
| int Offset = ArgOffset + SPDiff; |
| uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; |
| int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); |
| EVT VT = isPPC64 ? MVT::i64 : MVT::i32; |
| SDValue FIN = DAG.getFrameIndex(FI, VT); |
| TailCallArgumentInfo Info; |
| Info.Arg = Arg; |
| Info.FrameIdxOp = FIN; |
| Info.FrameIdx = FI; |
| TailCallArguments.push_back(Info); |
| } |
| |
| /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address |
| /// stack slot. Returns the chain as result and the loaded frame pointers in |
| /// LROpOut/FPOpout. Used when tail calling. |
| SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( |
| SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, |
| SDValue &FPOpOut, const SDLoc &dl) const { |
| if (SPDiff) { |
| // Load the LR and FP stack slot for later adjusting. |
| EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; |
| LROpOut = getReturnAddrFrameIndex(DAG); |
| LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); |
| Chain = SDValue(LROpOut.getNode(), 1); |
| } |
| return Chain; |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" of size "Size". Alignment information is |
| /// specified by the specific parameter attribute. The copy will be passed as |
| /// a byval function parameter. |
| /// Sometimes what we are copying is the end of a larger object, the part that |
| /// does not fit in registers. |
| static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, |
| SDValue Chain, ISD::ArgFlagsTy Flags, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, |
| Flags.getNonZeroByValAlign(), false, false, false, |
| MachinePointerInfo(), MachinePointerInfo()); |
| } |
| |
| /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of |
| /// tail calls. |
| static void LowerMemOpCallTo( |
| SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, |
| SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, |
| bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, |
| SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
| if (!isTailCall) { |
| if (isVector) { |
| SDValue StackPtr; |
| if (isPPC64) |
| StackPtr = DAG.getRegister(PPC::X1, MVT::i64); |
| else |
| StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, |
| DAG.getConstant(ArgOffset, dl, PtrVT)); |
| } |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); |
| // Calculate and remember argument location. |
| } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, |
| TailCallArguments); |
| } |
| |
| static void |
| PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, |
| const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, |
| SDValue FPOp, |
| SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { |
| // Emit a sequence of copyto/copyfrom virtual registers for arguments that |
| // might overwrite each other in case of tail call optimization. |
| SmallVector<SDValue, 8> MemOpChains2; |
| // Do not flag preceding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, |
| MemOpChains2, dl); |
| if (!MemOpChains2.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); |
| |
| // Store the return address to the appropriate stack slot. |
| Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); |
| |
| // Emit callseq_end just before tailcall node. |
| Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, dl); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Is this global address that of a function that can be called by name? (as |
| // opposed to something that must hold a descriptor for an indirect call). |
| static bool isFunctionGlobalAddress(SDValue Callee) { |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| if (Callee.getOpcode() == ISD::GlobalTLSAddress || |
| Callee.getOpcode() == ISD::TargetGlobalTLSAddress) |
| return false; |
| |
| return G->getGlobal()->getValueType()->isFunctionTy(); |
| } |
| |
| return false; |
| } |
| |
| SDValue PPCTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| CCRetInfo.AnalyzeCallResult( |
| Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) |
| ? RetCC_PPC_Cold |
| : RetCC_PPC); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Val; |
| |
| if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { |
| SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| if (!Subtarget.isLittleEndian()) |
| std::swap (Lo, Hi); |
| Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); |
| } else { |
| Val = DAG.getCopyFromReg(Chain, dl, |
| VA.getLocReg(), VA.getLocVT(), InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget, bool isPatchPoint) { |
| // PatchPoint calls are not indirect. |
| if (isPatchPoint) |
| return false; |
| |
| if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) |
| return false; |
| |
| // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not |
| // becuase the immediate function pointer points to a descriptor instead of |
| // a function entry point. The ELFv2 ABI cannot use a BLA because the function |
| // pointer immediate points to the global entry point, while the BLA would |
| // need to jump to the local entry point (see rL211174). |
| if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && |
| isBLACompatibleAddress(Callee, DAG)) |
| return false; |
| |
| return true; |
| } |
| |
| // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. |
| static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { |
| return Subtarget.isAIXABI() || |
| (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); |
| } |
| |
| static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, |
| const Function &Caller, const SDValue &Callee, |
| const PPCSubtarget &Subtarget, |
| const TargetMachine &TM, |
| bool IsStrictFPCall = false) { |
| if (CFlags.IsTailCall) |
| return PPCISD::TC_RETURN; |
| |
| unsigned RetOpc = 0; |
| // This is a call through a function pointer. |
| if (CFlags.IsIndirect) { |
| // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross |
| // indirect calls. The save of the caller's TOC pointer to the stack will be |
| // inserted into the DAG as part of call lowering. The restore of the TOC |
| // pointer is modeled by using a pseudo instruction for the call opcode that |
| // represents the 2 instruction sequence of an indirect branch and link, |
| // immediately followed by a load of the TOC pointer from the the stack save |
| // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC |
| // as it is not saved or used. |
| RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC |
| : PPCISD::BCTRL; |
| } else if (Subtarget.isUsingPCRelativeCalls()) { |
| assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); |
| RetOpc = PPCISD::CALL_NOTOC; |
| } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) |
| // The ABIs that maintain a TOC pointer accross calls need to have a nop |
| // immediately following the call instruction if the caller and callee may |
| // have different TOC bases. At link time if the linker determines the calls |
| // may not share a TOC base, the call is redirected to a trampoline inserted |
| // by the linker. The trampoline will (among other things) save the callers |
| // TOC pointer at an ABI designated offset in the linkage area and the |
| // linker will rewrite the nop to be a load of the TOC pointer from the |
| // linkage area into gpr2. |
| RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL |
| : PPCISD::CALL_NOP; |
| else |
| RetOpc = PPCISD::CALL; |
| if (IsStrictFPCall) { |
| switch (RetOpc) { |
| default: |
| llvm_unreachable("Unknown call opcode"); |
| case PPCISD::BCTRL_LOAD_TOC: |
| RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; |
| break; |
| case PPCISD::BCTRL: |
| RetOpc = PPCISD::BCTRL_RM; |
| break; |
| case PPCISD::CALL_NOTOC: |
| RetOpc = PPCISD::CALL_NOTOC_RM; |
| break; |
| case PPCISD::CALL: |
| RetOpc = PPCISD::CALL_RM; |
| break; |
| case PPCISD::CALL_NOP: |
| RetOpc = PPCISD::CALL_NOP_RM; |
| break; |
| } |
| } |
| return RetOpc; |
| } |
| |
| static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, |
| const SDLoc &dl, const PPCSubtarget &Subtarget) { |
| if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) |
| if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) |
| return SDValue(Dest, 0); |
| |
| // Returns true if the callee is local, and false otherwise. |
| auto isLocalCallee = [&]() { |
| const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); |
| const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); |
| const GlobalValue *GV = G ? G->getGlobal() : nullptr; |
| |
| return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && |
| !isa_and_nonnull<GlobalIFunc>(GV); |
| }; |
| |
| // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in |
| // a static relocation model causes some versions of GNU LD (2.17.50, at |
| // least) to force BSS-PLT, instead of secure-PLT, even if all objects are |
| // built with secure-PLT. |
| bool UsePlt = |
| Subtarget.is32BitELFABI() && !isLocalCallee() && |
| Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; |
| |
| const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { |
| const TargetMachine &TM = Subtarget.getTargetMachine(); |
| const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); |
| MCSymbolXCOFF *S = |
| cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); |
| |
| MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
| return DAG.getMCSymbol(S, PtrVT); |
| }; |
| |
| if (isFunctionGlobalAddress(Callee)) { |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); |
| |
| if (Subtarget.isAIXABI()) { |
| assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); |
| return getAIXFuncEntryPointSymbolSDNode(GV); |
| } |
| return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, |
| UsePlt ? PPCII::MO_PLT : 0); |
| } |
| |
| if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const char *SymName = S->getSymbol(); |
| if (Subtarget.isAIXABI()) { |
| // If there exists a user-declared function whose name is the same as the |
| // ExternalSymbol's, then we pick up the user-declared version. |
| const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); |
| if (const Function *F = |
| dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) |
| return getAIXFuncEntryPointSymbolSDNode(F); |
| |
| // On AIX, direct function calls reference the symbol for the function's |
| // entry point, which is named by prepending a "." before the function's |
| // C-linkage name. A Qualname is returned here because an external |
| // function entry point is a csect with XTY_ER property. |
| const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { |
| auto &Context = DAG.getMachineFunction().getMMI().getContext(); |
| MCSectionXCOFF *Sec = Context.getXCOFFSection( |
| (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), |
| XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); |
| return Sec->getQualNameSymbol(); |
| }; |
| |
| SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); |
| } |
| return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), |
| UsePlt ? PPCII::MO_PLT : 0); |
| } |
| |
| // No transformation needed. |
| assert(Callee.getNode() && "What no callee?"); |
| return Callee; |
| } |
| |
| static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { |
| assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && |
| "Expected a CALLSEQ_STARTSDNode."); |
| |
| // The last operand is the chain, except when the node has glue. If the node |
| // has glue, then the last operand is the glue, and the chain is the second |
| // last operand. |
| SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); |
| if (LastValue.getValueType() != MVT::Glue) |
| return LastValue; |
| |
| return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); |
| } |
| |
| // Creates the node that moves a functions address into the count register |
| // to prepare for an indirect call instruction. |
| static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, |
| SDValue &Glue, SDValue &Chain, |
| const SDLoc &dl) { |
| SDValue MTCTROps[] = {Chain, Callee, Glue}; |
| EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; |
| Chain = DAG.getNode(PPCISD::MTCTR, dl, ArrayRef(ReturnTypes, 2), |
| ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); |
| // The glue is the second value produced. |
| Glue = Chain.getValue(1); |
| } |
| |
| static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, |
| SDValue &Glue, SDValue &Chain, |
| SDValue CallSeqStart, |
| const CallBase *CB, const SDLoc &dl, |
| bool hasNest, |
| const PPCSubtarget &Subtarget) { |
| // Function pointers in the 64-bit SVR4 ABI do not point to the function |
| // entry point, but to the function descriptor (the function entry point |
| // address is part of the function descriptor though). |
| // The function descriptor is a three doubleword structure with the |
| // following fields: function entry point, TOC base address and |
| // environment pointer. |
| // Thus for a call through a function pointer, the following actions need |
| // to be performed: |
| // 1. Save the TOC of the caller in the TOC save area of its stack |
| // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). |
| // 2. Load the address of the function entry point from the function |
| // descriptor. |
| // 3. Load the TOC of the callee from the function descriptor into r2. |
| // 4. Load the environment pointer from the function descriptor into |
| // r11. |
| // 5. Branch to the function entry point address. |
| // 6. On return of the callee, the TOC of the caller needs to be |
| // restored (this is done in FinishCall()). |
| // |
| // The loads are scheduled at the beginning of the call sequence, and the |
| // register copies are flagged together to ensure that no other |
| // operations can be scheduled in between. E.g. without flagging the |
| // copies together, a TOC access in the caller could be scheduled between |
| // the assignment of the callee TOC and the branch to the callee, which leads |
| // to incorrect code. |
| |
| // Start by loading the function address from the descriptor. |
| SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); |
| auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() |
| ? (MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant) |
| : MachineMemOperand::MONone; |
| |
| MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); |
| |
| // Registers used in building the DAG. |
| const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); |
| const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); |
| |
| // Offsets of descriptor members. |
| const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); |
| const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); |
| |
| const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; |
| const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); |
| |
| // One load for the functions entry point address. |
| SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, |
| Alignment, MMOFlags); |
| |
| // One for loading the TOC anchor for the module that contains the called |
| // function. |
| SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); |
| SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); |
| SDValue TOCPtr = |
| DAG.getLoad(RegVT, dl, LDChain, AddTOC, |
| MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); |
| |
| // One for loading the environment pointer. |
| SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); |
| SDValue LoadEnvPtr = |
| DAG.getLoad(RegVT, dl, LDChain, AddPtr, |
| MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); |
| |
| |
| // Then copy the newly loaded TOC anchor to the TOC pointer. |
| SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); |
| Chain = TOCVal.getValue(0); |
| Glue = TOCVal.getValue(1); |
| |
| // If the function call has an explicit 'nest' parameter, it takes the |
| // place of the environment pointer. |
| assert((!hasNest || !Subtarget.isAIXABI()) && |
| "Nest parameter is not supported on AIX."); |
| if (!hasNest) { |
| SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); |
| Chain = EnvVal.getValue(0); |
| Glue = EnvVal.getValue(1); |
| } |
| |
| // The rest of the indirect call sequence is the same as the non-descriptor |
| // DAG. |
| prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); |
| } |
| |
| static void |
| buildCallOperands(SmallVectorImpl<SDValue> &Ops, |
| PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, |
| SelectionDAG &DAG, |
| SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, |
| SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, |
| const PPCSubtarget &Subtarget) { |
| const bool IsPPC64 = Subtarget.isPPC64(); |
| // MVT for a general purpose register. |
| const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; |
| |
| // First operand is always the chain. |
| Ops.push_back(Chain); |
| |
| // If it's a direct call pass the callee as the second operand. |
| if (!CFlags.IsIndirect) |
| Ops.push_back(Callee); |
| else { |
| assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); |
| |
| // For the TOC based ABIs, we have saved the TOC pointer to the linkage area |
| // on the stack (this would have been done in `LowerCall_64SVR4` or |
| // `LowerCall_AIX`). The call instruction is a pseudo instruction that |
| // represents both the indirect branch and a load that restores the TOC |
| // pointer from the linkage area. The operand for the TOC restore is an add |
| // of the TOC save offset to the stack pointer. This must be the second |
| // operand: after the chain input but before any other variadic arguments. |
| // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not |
| // saved or used. |
| if (isTOCSaveRestoreRequired(Subtarget)) { |
| const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); |
| |
| SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); |
| unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); |
| SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); |
| SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); |
| Ops.push_back(AddTOC); |
| } |
| |
| // Add the register used for the environment pointer. |
| if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) |
| Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), |
| RegVT)); |
| |
| |
| // Add CTR register as callee so a bctr can be emitted later. |
| if (CFlags.IsTailCall) |
| Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); |
| } |
| |
| // If this is a tail call add stack pointer delta. |
| if (CFlags.IsTailCall) |
| Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is |
| // no way to mark dependencies as implicit here. |
| // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. |
| if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && |
| !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) |
| Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); |
| |
| // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls |
| if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) |
| Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| const uint32_t *Mask = |
| TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| // If the glue is valid, it is the last operand. |
| if (Glue.getNode()) |
| Ops.push_back(Glue); |
| } |
| |
| SDValue PPCTargetLowering::FinishCall( |
| CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, |
| SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, |
| SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, |
| unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, |
| SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { |
| |
| if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || |
| Subtarget.isAIXABI()) |
| setUsesTOCBasePtr(DAG); |
| |
| unsigned CallOpc = |
| getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, |
| Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); |
| |
| if (!CFlags.IsIndirect) |
| Callee = transformCallee(Callee, DAG, dl, Subtarget); |
| else if (Subtarget.usesFunctionDescriptors()) |
| prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, |
| dl, CFlags.HasNest, Subtarget); |
| else |
| prepareIndirectCall(DAG, Callee, Glue, Chain, dl); |
| |
| // Build the operand list for the call instruction. |
| SmallVector<SDValue, 8> Ops; |
| buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, |
| SPDiff, Subtarget); |
| |
| // Emit tail call. |
| if (CFlags.IsTailCall) { |
| // Indirect tail call when using PC Relative calls do not have the same |
| // constraints. |
| assert(((Callee.getOpcode() == ISD::Register && |
| cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || |
| Callee.getOpcode() == ISD::TargetExternalSymbol || |
| Callee.getOpcode() == ISD::TargetGlobalAddress || |
| isa<ConstantSDNode>(Callee) || |
| (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && |
| "Expecting a global address, external symbol, absolute value, " |
| "register or an indirect tail call when PC Relative calls are " |
| "used."); |
| // PC Relative calls also use TC_RETURN as the way to mark tail calls. |
| assert(CallOpc == PPCISD::TC_RETURN && |
| "Unexpected call opcode for a tail call."); |
| DAG.getMachineFunction().getFrameInfo().setHasTailCall(); |
| return DAG.getNode(CallOpc, dl, MVT::Other, Ops); |
| } |
| |
| std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; |
| Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); |
| DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); |
| Glue = Chain.getValue(1); |
| |
| // When performing tail call optimization the callee pops its arguments off |
| // the stack. Account for this here so these bytes can be pushed back on in |
| // PPCFrameLowering::eliminateCallFramePseudoInstr. |
| int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && |
| getTargetMachine().Options.GuaranteedTailCallOpt) |
| ? NumBytes |
| : 0; |
| |
| Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl); |
| Glue = Chain.getValue(1); |
| |
| return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, |
| DAG, InVals); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool isVarArg = CLI.IsVarArg; |
| bool isPatchPoint = CLI.IsPatchPoint; |
| const CallBase *CB = CLI.CB; |
| |
| if (isTailCall) { |
| if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) |
| isTailCall = false; |
| else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) |
| isTailCall = IsEligibleForTailCallOptimization_64SVR4( |
| Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); |
| else |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, |
| Ins, DAG); |
| if (isTailCall) { |
| ++NumTailCalls; |
| if (!getTargetMachine().Options.GuaranteedTailCallOpt) |
| ++NumSiblingCalls; |
| |
| // PC Relative calls no longer guarantee that the callee is a Global |
| // Address Node. The callee could be an indirect tail call in which |
| // case the SDValue for the callee could be a load (to load the address |
| // of a function pointer) or it may be a register copy (to move the |
| // address of the callee from a function parameter into a virtual |
| // register). It may also be an ExternalSymbolSDNode (ex memcopy). |
| assert((Subtarget.isUsingPCRelativeCalls() || |
| isa<GlobalAddressSDNode>(Callee)) && |
| "Callee should be an llvm::Function object."); |
| |
| LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() |
| << "\nTCO callee: "); |
| LLVM_DEBUG(Callee.dump()); |
| } |
| } |
| |
| if (!isTailCall && CB && CB->isMustTailCall()) |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| |
| // When long calls (i.e. indirect calls) are always used, calls are always |
| // made via function pointer. If we have a function name, first translate it |
| // into a pointer. |
| if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && |
| !isTailCall) |
| Callee = LowerGlobalAddress(Callee, DAG); |
| |
| CallFlags CFlags( |
| CallConv, isTailCall, isVarArg, isPatchPoint, |
| isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), |
| // hasNest |
| Subtarget.is64BitELFABI() && |
| any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), |
| CLI.NoMerge); |
| |
| if (Subtarget.isAIXABI()) |
| return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, |
| InVals, CB); |
| |
| assert(Subtarget.isSVR4ABI()); |
| if (Subtarget.isPPC64()) |
| return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, |
| InVals, CB); |
| return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, |
| InVals, CB); |
| } |
| |
| SDValue PPCTargetLowering::LowerCall_32SVR4( |
| SDValue Chain, SDValue Callee, CallFlags CFlags, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const { |
| // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description |
| // of the 32-bit SVR4 ABI stack frame layout. |
| |
| const CallingConv::ID CallConv = CFlags.CallConv; |
| const bool IsVarArg = CFlags.IsVarArg; |
| const bool IsTailCall = CFlags.IsTailCall; |
| |
| assert((CallConv == CallingConv::C || |
| CallConv == CallingConv::Cold || |
| CallConv == CallingConv::Fast) && "Unknown calling convention!"); |
| |
| const Align PtrAlign(4); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Mark this function as potentially containing a function that contains a |
| // tail call. As a consequence the frame pointer will be used for dynamicalloc |
| // and restoring the callers stack pointer in this functions epilog. This is |
| // done because by tail calling the called function might overwrite the value |
| // in this function's (MF) stack pointer stack slot 0(SP). |
| if (getTargetMachine().Options.GuaranteedTailCallOpt && |
| CallConv == CallingConv::Fast) |
| MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, parameter list area and the part of the local variable space which |
| // contains copies of aggregates which are passed by value. |
| |
| // Assign locations to all of the outgoing arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| // Reserve space for the linkage area on the stack. |
| CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), |
| PtrAlign); |
| if (useSoftFloat()) |
| CCInfo.PreAnalyzeCallOperands(Outs); |
| |
| if (IsVarArg) { |
| // Handle fixed and variable vector arguments differently. |
| // Fixed vector arguments go into registers as long as registers are |
| // available. Variable vector arguments always go into memory. |
| unsigned NumArgs = Outs.size(); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ArgVT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| bool Result; |
| |
| if (Outs[i].IsFixed) { |
| Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, |
| CCInfo); |
| } else { |
| Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, |
| ArgFlags, CCInfo); |
| } |
| |
| if (Result) { |
| #ifndef NDEBUG |
| errs() << "Call operand #" << i << " has unhandled type " |
| << EVT(ArgVT).getEVTString() << "\n"; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| } |
| } else { |
| // All arguments are treated the same. |
| CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); |
| } |
| CCInfo.clearWasPPCF128(); |
| |
| // Assign locations to all of the outgoing aggregate by value arguments. |
| SmallVector<CCValAssign, 16> ByValArgLocs; |
| CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); |
| |
| // Reserve stack space for the allocations in CCInfo. |
| CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); |
| |
| CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); |
| |
| // Size of the linkage area, parameter list area and the part of the local |
| // space variable where copies of aggregates which are passed by value are |
| // stored. |
| unsigned NumBytes = CCByValInfo.getNextStackOffset(); |
| |
| // Calculate by how many bytes the stack has to be adjusted in case of tail |
| // call optimization. |
| int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); |
| SDValue CallSeqStart = Chain; |
| |
| // Load the return address and frame pointer so it can be moved somewhere else |
| // later. |
| SDValue LROp, FPOp; |
| Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<TailCallArgumentInfo, 8> TailCallArguments; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| bool seenFloatArg = false; |
| // Walk the register/memloc assignments, inserting copies/loads. |
| // i - Tracks the index into the list of registers allocated for the call |
| // RealArgIdx - Tracks the index into the list of actual function arguments |
| // j - Tracks the index into the list of byval arguments |
| for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++RealArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[RealArgIdx]; |
| ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; |
| |
| if (Flags.isByVal()) { |
| // Argument is an aggregate which is passed by value, thus we need to |
| // create a copy of it in the local variable space of the current stack |
| // frame (which is the stack frame of the caller) and pass the address of |
| // this copy to the callee. |
| assert((j < ByValArgLocs.size()) && "Index out of bounds!"); |
| CCValAssign &ByValVA = ByValArgLocs[j++]; |
| assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); |
| |
| // Memory reserved in the local variable space of the callers stack frame. |
| unsigned LocMemOffset = ByValVA.getLocMemOffset(); |
| |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), |
| StackPtr, PtrOff); |
| |
| // Create a copy of the argument in the local area of the current |
| // stack frame. |
| SDValue MemcpyCall = |
| CreateCopyOfByValArgument(Arg, PtrOff, |
| CallSeqStart.getNode()->getOperand(0), |
| Flags, DAG, dl); |
| |
| // This must go outside the CALLSEQ_START..END. |
| SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, |
| SDLoc(MemcpyCall)); |
| DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), |
| NewCallSeqStart.getNode()); |
| Chain = CallSeqStart = NewCallSeqStart; |
| |
| // Pass the address of the aggregate copy on the stack either in a |
| // physical register or in the parameter list area of the current stack |
| // frame to the callee. |
| Arg = PtrOff; |
| } |
| |
| // When useCRBits() is true, there can be i1 arguments. |
| // It is because getRegisterType(MVT::i1) => MVT::i1, |
| // and for other integer types getRegisterType() => MVT::i32. |
| // Extend i1 and ensure callee will get i32. |
| if (Arg.getValueType() == MVT::i1) |
| Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, |
| dl, MVT::i32, Arg); |
| |
| if (VA.isRegLoc()) { |
| seenFloatArg |= VA.getLocVT().isFloatingPoint(); |
| // Put argument in a physical register. |
| if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { |
| bool IsLE = Subtarget.isLittleEndian(); |
| SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, |
| DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); |
| SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, |
| DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); |
| RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), |
| SVal.getValue(0))); |
| } else |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| // Put argument in the parameter list area of the current stack frame. |
| assert(VA.isMemLoc()); |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| |
| if (!IsTailCall) { |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), |
| StackPtr, PtrOff); |
| |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); |
| } else { |
| // Calculate and remember argument location. |
| CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, |
| TailCallArguments); |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // Set CR bit 6 to true if this is a vararg call with floating args passed in |
| // registers. |
| if (IsVarArg) { |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, InFlag }; |
| |
| Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl, |
| VTs, ArrayRef(Ops, InFlag.getNode() ? 2 : 1)); |
| |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (IsTailCall) |
| PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, |
| TailCallArguments); |
| |
| return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, |
| Callee, SPDiff, NumBytes, Ins, InVals, CB); |
| } |
| |
| // Copy an argument into memory, being careful to do this outside the |
| // call sequence for the call to which the argument belongs. |
| SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( |
| SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, |
| SelectionDAG &DAG, const SDLoc &dl) const { |
| SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, |
| CallSeqStart.getNode()->getOperand(0), |
| Flags, DAG, dl); |
| // The MEMCPY must go outside the CALLSEQ_START..END. |
| int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); |
| SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, |
| SDLoc(MemcpyCall)); |
| DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), |
| NewCallSeqStart.getNode()); |
| return NewCallSeqStart; |
| } |
| |
| SDValue PPCTargetLowering::LowerCall_64SVR4( |
| SDValue Chain, SDValue Callee, CallFlags CFlags, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const { |
| bool isELFv2ABI = Subtarget.isELFv2ABI(); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| unsigned NumOps = Outs.size(); |
| bool IsSibCall = false; |
| bool IsFastCall = CFlags.CallConv == CallingConv::Fast; |
| |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| unsigned PtrByteSize = 8; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) |
| IsSibCall = true; |
| |
| // Mark this function as potentially containing a function that contains a |
| // tail call. As a consequence the frame pointer will be used for dynamicalloc |
| // and restoring the callers stack pointer in this functions epilog. This is |
| // done because by tail calling the called function might overwrite the value |
| // in this function's (MF) stack pointer stack slot 0(SP). |
| if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) |
| MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); |
| |
| assert(!(IsFastCall && CFlags.IsVarArg) && |
| "fastcc not supported on varargs functions"); |
| |
| // Count how many bytes are to be pushed on the stack, including the linkage |
| // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes |
| // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage |
| // area is 32 bytes reserved space for [SP][CR][LR][TOC]. |
| unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); |
| unsigned NumBytes = LinkageSize; |
| unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; |
| |
| static const MCPhysReg GPR[] = { |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10, |
| }; |
| static const MCPhysReg VR[] = { |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, |
| PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 |
| }; |
| |
| const unsigned NumGPRs = std::size(GPR); |
| const unsigned NumFPRs = useSoftFloat() ? 0 : 13; |
| const unsigned NumVRs = std::size(VR); |
| |
| // On ELFv2, we can avoid allocating the parameter area if all the arguments |
| // can be passed to the callee in registers. |
| // For the fast calling convention, there is another check below. |
| // Note: We should keep consistent with LowerFormalArguments_64SVR4() |
| bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; |
| if (!HasParameterArea) { |
| unsigned ParamAreaSize = NumGPRs * PtrByteSize; |
| unsigned AvailableFPRs = NumFPRs; |
| unsigned AvailableVRs = NumVRs; |
| unsigned NumBytesTmp = NumBytes; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| if (Outs[i].Flags.isNest()) continue; |
| if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, |
| PtrByteSize, LinkageSize, ParamAreaSize, |
| NumBytesTmp, AvailableFPRs, AvailableVRs)) |
| HasParameterArea = true; |
| } |
| } |
| |
| // When using the fast calling convention, we don't provide backing for |
| // arguments that will be in registers. |
| unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; |
| |
| // Avoid allocating parameter area for fastcc functions if all the arguments |
| // can be passed in the registers. |
| if (IsFastCall) |
| HasParameterArea = false; |
| |
| // Add up all the space actually used. |
| for (unsigned i = 0; i != NumOps; ++i) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| EVT ArgVT = Outs[i].VT; |
| EVT OrigVT = Outs[i].ArgVT; |
| |
| if (Flags.isNest()) |
| continue; |
| |
| if (IsFastCall) { |
| if (Flags.isByVal()) { |
| NumGPRsUsed += (Flags.getByValSize()+7)/8; |
| if (NumGPRsUsed > NumGPRs) |
| HasParameterArea = true; |
| } else { |
| switch (ArgVT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i32: |
| case MVT::i64: |
| if (++NumGPRsUsed <= NumGPRs) |
| continue; |
| break; |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| case MVT::v2f64: |
| case MVT::v2i64: |
| case MVT::v1i128: |
| case MVT::f128: |
| if (++NumVRsUsed <= NumVRs) |
| continue; |
| break; |
| case MVT::v4f32: |
| if (++NumVRsUsed <= NumVRs) |
| continue; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (++NumFPRsUsed <= NumFPRs) |
| continue; |
| break; |
| } |
| HasParameterArea = true; |
| } |
| } |
| |
| /* Respect alignment of argument on the stack. */ |
| auto Alignement = |
| CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); |
| NumBytes = alignTo(NumBytes, Alignement); |
| |
| NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); |
| if (Flags.isInConsecutiveRegsLast()) |
| NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| } |
| |
| unsigned NumBytesActuallyUsed = NumBytes; |
| |
| // In the old ELFv1 ABI, |
| // the prolog code of the callee may store up to 8 GPR argument registers to |
| // the stack, allowing va_start to index over them in memory if its varargs. |
| // Because we cannot tell if this is needed on the caller side, we have to |
| // conservatively assume that it is needed. As such, make sure we have at |
| // least enough stack space for the caller to store the 8 GPRs. |
| // In the ELFv2 ABI, we allocate the parameter area iff a callee |
| // really requires memory operands, e.g. a vararg function. |
| if (HasParameterArea) |
| NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); |
| else |
| NumBytes = LinkageSize; |
| |
| // Tail call needs the stack to be aligned. |
| if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) |
| NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); |
| |
| int SPDiff = 0; |
| |
| // Calculate by how many bytes the stack has to be adjusted in case of tail |
| // call optimization. |
| if (!IsSibCall) |
| SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); |
| |
| // To protect arguments on the stack from being clobbered in a tail call, |
| // force all the loads to happen before doing any other lowering. |
| if (CFlags.IsTailCall) |
| Chain = DAG.getStackArgumentTokenFactor(Chain); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!IsSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); |
| SDValue CallSeqStart = Chain; |
| |
| // Load the return address and frame pointer so it can be move somewhere else |
| // later. |
| SDValue LROp, FPOp; |
| Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); |
| |
| // Set up a copy of the stack pointer for use loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); |
| |
| // Figure out which arguments are going to go in registers, and which in |
| // memory. Also, if this is a vararg function, floating point operations |
| // must be stored to our stack, and loaded into integer regs as well, if |
| // any integer regs are available for argument passing. |
| unsigned ArgOffset = LinkageSize; |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<TailCallArgumentInfo, 8> TailCallArguments; |
| |
| SmallVector<SDValue, 8> MemOpChains; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| EVT ArgVT = Outs[i].VT; |
| EVT OrigVT = Outs[i].ArgVT; |
| |
| // PtrOff will be used to store the current argument to the stack if a |
| // register cannot be found for it. |
| SDValue PtrOff; |
| |
| // We re-align the argument offset for each argument, except when using the |
| // fast calling convention, when we need to make sure we do that only when |
| // we'll actually use a stack slot. |
| auto ComputePtrOff = [&]() { |
| /* Respect alignment of argument on the stack. */ |
| auto Alignment = |
| CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); |
| ArgOffset = alignTo(ArgOffset, Alignment); |
| |
| PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); |
| |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| }; |
| |
| if (!IsFastCall) { |
| ComputePtrOff(); |
| |
| /* Compute GPR index associated with argument offset. */ |
| GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; |
| GPR_idx = std::min(GPR_idx, NumGPRs); |
| } |
| |
| // Promote integers to 64-bit values. |
| if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { |
| // FIXME: Should this use ANY_EXTEND if neither sext nor zext? |
| unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); |
| } |
| |
| // FIXME memcpy is used way more than necessary. Correctness first. |
| // Note: "by value" is code for passing a structure by value, not |
| // basic types. |
| if (Flags.isByVal()) { |
| // Note: Size includes alignment padding, so |
| // struct x { short a; char b; } |
| // will have Size = 4. With #pragma pack(1), it will have Size = 3. |
| // These are the proper values we need for right-justifying the |
| // aggregate in a parameter register. |
| unsigned Size = Flags.getByValSize(); |
| |
| // An empty aggregate parameter takes up no storage and no |
| // registers. |
| if (Size == 0) |
| continue; |
| |
| if (IsFastCall) |
| ComputePtrOff(); |
| |
| // All aggregates smaller than 8 bytes must be passed right-justified. |
| if (Size==1 || Size==2 || Size==4) { |
| EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); |
| if (GPR_idx != NumGPRs) { |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, |
| MachinePointerInfo(), VT); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| } |
| |
| if (GPR_idx == NumGPRs && Size < 8) { |
| SDValue AddPtr = PtrOff; |
| if (!isLittleEndian) { |
| SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, |
| PtrOff.getValueType()); |
| AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); |
| } |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, |
| CallSeqStart, |
| Flags, DAG, dl); |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| // Copy the object to parameter save area if it can not be entirely passed |
| // by registers. |
| // FIXME: we only need to copy the parts which need to be passed in |
| // parameter save area. For the parts passed by registers, we don't need |
| // to copy them to the stack although we need to allocate space for them |
| // in parameter save area. |
| if ((NumGPRs - GPR_idx) * PtrByteSize < Size) |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, |
| CallSeqStart, |
| Flags, DAG, dl); |
| |
| // When a register is available, pass a small aggregate right-justified. |
| if (Size < 8 && GPR_idx != NumGPRs) { |
| // The easiest way to get this right-justified in a register |
| // is to copy the structure into the rightmost portion of a |
| // local variable slot, then load the whole slot into the |
| // register. |
| // FIXME: The memcpy seems to produce pretty awful code for |
| // small aggregates, particularly for packed ones. |
| // FIXME: It would be preferable to use the slot in the |
| // parameter save area instead of a new local variable. |
| SDValue AddPtr = PtrOff; |
| if (!isLittleEndian) { |
| SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); |
| AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); |
| } |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, |
| CallSeqStart, |
| Flags, DAG, dl); |
| |
| // Load the slot into the register. |
| SDValue Load = |
| DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| |
| // Done with this argument. |
| ArgOffset += PtrByteSize; |
| continue; |
| } |
| |
| // For aggregates larger than PtrByteSize, copy the pieces of the |
| // object that fit into registers from the parameter save area. |
| for (unsigned j=0; j<Size; j+=PtrByteSize) { |
| SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); |
| SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); |
| if (GPR_idx != NumGPRs) { |
| unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8; |
| EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits); |
| SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg, |
| MachinePointerInfo(), ObjType); |
| |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| ArgOffset += PtrByteSize; |
| } else { |
| ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; |
| break; |
| } |
| } |
| continue; |
| } |
| |
| switch (Arg.getSimpleValueType().SimpleTy) { |
| default: llvm_unreachable("Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i32: |
| case MVT::i64: |
| if (Flags.isNest()) { |
| // The 'nest' parameter, if any, is passed in R11. |
| RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); |
| break; |
| } |
| |
| // These can be scalar arguments or elements of an integer array type |
| // passed directly. Clang may use those instead of "byval" aggregate |
| // types to avoid forcing arguments to memory unnecessarily. |
| if (GPR_idx != NumGPRs) { |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); |
| } else { |
| if (IsFastCall) |
| ComputePtrOff(); |
| |
| assert(HasParameterArea && |
| "Parameter area must exist to pass an argument in memory."); |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| true, CFlags.IsTailCall, false, MemOpChains, |
| TailCallArguments, dl); |
| if (IsFastCall) |
| ArgOffset += PtrByteSize; |
| } |
| if (!IsFastCall) |
| ArgOffset += PtrByteSize; |
| break; |
| case MVT::f32: |
| case MVT::f64: { |
| // These can be scalar arguments or elements of a float array type |
| // passed directly. The latter are used to implement ELFv2 homogenous |
| // float aggregates. |
| |
| // Named arguments go into FPRs first, and once they overflow, the |
| // remaining arguments go into GPRs and then the parameter save area. |
| // Unnamed arguments for vararg functions always go to GPRs and |
| // then the parameter save area. For now, put all arguments to vararg |
| // routines always in both locations (FPR *and* GPR or stack slot). |
| bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; |
| bool NeededLoad = false; |
| |
| // First load the argument into the next available FPR. |
| if (FPR_idx != NumFPRs) |
| RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); |
| |
| // Next, load the argument into GPR or stack slot if needed. |
| if (!NeedGPROrStack) |
| ; |
| else if (GPR_idx != NumGPRs && !IsFastCall) { |
| // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 |
| // once we support fp <-> gpr moves. |
| |
| // In the non-vararg case, this can only ever happen in the |
| // presence of f32 array types, since otherwise we never run |
| // out of FPRs before running out of GPRs. |
| SDValue ArgVal; |
| |
| // Double values are always passed in a single GPR. |
| if (Arg.getValueType() != MVT::f32) { |
| ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); |
| |
| // Non-array float values are extended and passed in a GPR. |
| } else if (!Flags.isInConsecutiveRegs()) { |
| ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); |
| ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); |
| |
| // If we have an array of floats, we collect every odd element |
| // together with its predecessor into one GPR. |
| } else if (ArgOffset % PtrByteSize != 0) { |
| SDValue Lo, Hi; |
| Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); |
| Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); |
| if (!isLittleEndian) |
| std::swap(Lo, Hi); |
| ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| |
| // The final element, if even, goes into the first half of a GPR. |
| } else if (Flags.isInConsecutiveRegsLast()) { |
| ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); |
| ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); |
| if (!isLittleEndian) |
| ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, |
| DAG.getConstant(32, dl, MVT::i32)); |
| |
| // Non-final even elements are skipped; they will be handled |
| // together the with subsequent argument on the next go-around. |
| } else |
| ArgVal = SDValue(); |
| |
| if (ArgVal.getNode()) |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); |
| } else { |
| if (IsFastCall) |
| ComputePtrOff(); |
| |
| // Single-precision floating-point values are mapped to the |
| // second (rightmost) word of the stack doubleword. |
| if (Arg.getValueType() == MVT::f32 && |
| !isLittleEndian && !Flags.isInConsecutiveRegs()) { |
| SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); |
| } |
| |
| assert(HasParameterArea && |
| "Parameter area must exist to pass an argument in memory."); |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| true, CFlags.IsTailCall, false, MemOpChains, |
| TailCallArguments, dl); |
| |
| NeededLoad = true; |
| } |
| // When passing an array of floats, the array occupies consecutive |
| // space in the argument area; only round up to the next doubleword |
| // at the end of the array. Otherwise, each float takes 8 bytes. |
| if (!IsFastCall || NeededLoad) { |
| ArgOffset += (Arg.getValueType() == MVT::f32 && |
| Flags.isInConsecutiveRegs()) ? 4 : 8; |
| if (Flags.isInConsecutiveRegsLast()) |
| ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; |
| } |
| break; |
| } |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| case MVT::v2f64: |
| case MVT::v2i64: |
| case MVT::v1i128: |
| case MVT::f128: |
| // These can be scalar arguments or elements of a vector array type |
| // passed directly. The latter are used to implement ELFv2 homogenous |
| // vector aggregates. |
| |
| // For a varargs call, named arguments go into VRs or on the stack as |
| // usual; unnamed arguments always go to the stack or the corresponding |
| // GPRs when within range. For now, we always put the value in both |
| // locations (or even all three). |
| if (CFlags.IsVarArg) { |
| assert(HasParameterArea && |
| "Parameter area must exist if we have a varargs call."); |
| // We could elide this store in the case where the object fits |
| // entirely in R registers. Maybe later. |
| SDValue Store = |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); |
| MemOpChains.push_back(Store); |
| if (VR_idx != NumVRs) { |
| SDValue Load = |
| DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); |
| } |
| ArgOffset += 16; |
| for (unsigned i=0; i<16; i+=PtrByteSize) { |
| if (GPR_idx == NumGPRs) |
| break; |
| SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, |
| DAG.getConstant(i, dl, PtrVT)); |
| SDValue Load = |
| DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); |
| } |
| break; |
| } |
| |
| // Non-varargs Altivec params go into VRs or on the stack. |
| if (VR_idx != NumVRs) { |
| RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); |
| } else { |
| if (IsFastCall) |
| ComputePtrOff(); |
| |
| assert(HasParameterArea && |
| "Parameter area must exist to pass an argument in memory."); |
| LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, |
| true, CFlags.IsTailCall, true, MemOpChains, |
| TailCallArguments, dl); |
| if (IsFastCall) |
| ArgOffset += 16; |
| } |
| |
| if (!IsFastCall) |
| ArgOffset += 16; |
| break; |
| } |
| } |
| |
| assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && |
| "mismatch in size of parameter area"); |
| (void)NumBytesActuallyUsed; |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| // Check if this is an indirect call (MTCTR/BCTRL). |
| // See prepareDescriptorIndirectCall and buildCallOperands for more |
| // information about calls through function pointers in the 64-bit SVR4 ABI. |
| if (CFlags.IsIndirect) { |
| // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the |
| // caller in the TOC save area. |
| if (isTOCSaveRestoreRequired(Subtarget)) { |
| assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); |
| // Load r2 into a virtual register and store it to the TOC save area. |
| setUsesTOCBasePtr(DAG); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); |
| // TOC save area offset. |
| unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, |
| MachinePointerInfo::getStack( |
| DAG.getMachineFunction(), TOCSaveOffset)); |
| } |
| // In the ELFv2 ABI, R12 must contain the address of an indirect callee. |
| // This does not mean the MTCTR instruction must use R12; it's easier |
| // to model this as an extra parameter, so do that. |
| if (isELFv2ABI && !CFlags.IsPatchPoint) |
| RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| if (CFlags.IsTailCall && !IsSibCall) |
| PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, |
| TailCallArguments); |
| |
| return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, |
| Callee, SPDiff, NumBytes, Ins, InVals, CB); |
| } |
| |
| // Returns true when the shadow of a general purpose argument register |
| // in the parameter save area is aligned to at least 'RequiredAlign'. |
| static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { |
| assert(RequiredAlign.value() <= 16 && |
| "Required alignment greater than stack alignment."); |
| switch (Reg) { |
| default: |
| report_fatal_error("called on invalid register."); |
| case PPC::R5: |
| case PPC::R9: |
| case PPC::X3: |
| case PPC::X5: |
| case PPC::X7: |
| case PPC::X9: |
| // These registers are 16 byte aligned which is the most strict aligment |
| // we can support. |
| return true; |
| case PPC::R3: |
| case PPC::R7: |
| case PPC::X4: |
| case PPC::X6: |
| case PPC::X8: |
| case PPC::X10: |
| // The shadow of these registers in the PSA is 8 byte aligned. |
| return RequiredAlign <= 8; |
| case PPC::R4: |
| case PPC::R6: |
| case PPC::R8: |
| case PPC::R10: |
| return RequiredAlign <= 4; |
| } |
| } |
| |
| static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, |
| CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, |
| CCState &S) { |
| AIXCCState &State = static_cast<AIXCCState &>(S); |
| const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( |
| State.getMachineFunction().getSubtarget()); |
| const bool IsPPC64 = Subtarget.isPPC64(); |
| const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); |
| const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; |
| |
| if (ValVT == MVT::f128) |
| report_fatal_error("f128 is unimplemented on AIX."); |
| |
| if (ArgFlags.isNest()) |
| report_fatal_error("Nest arguments are unimplemented."); |
| |
| static const MCPhysReg GPR_32[] = {// 32-bit registers. |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10}; |
| static const MCPhysReg GPR_64[] = {// 64-bit registers. |
| PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10}; |
| |
| static const MCPhysReg VR[] = {// Vector registers. |
| PPC::V2, PPC::V3, PPC::V4, PPC::V5, |
| PPC::V6, PPC::V7, PPC::V8, PPC::V9, |
| PPC::V10, PPC::V11, PPC::V12, PPC::V13}; |
| |
| if (ArgFlags.isByVal()) { |
| if (ArgFlags.getNonZeroByValAlign() > PtrAlign) |
| report_fatal_error("Pass-by-value arguments with alignment greater than " |
| "register width are not supported."); |
| |
| const unsigned ByValSize = ArgFlags.getByValSize(); |
| |
| // An empty aggregate parameter takes up no storage and no registers, |
| // but needs a MemLoc for a stack slot for the formal arguments side. |
| if (ByValSize == 0) { |
| State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, |
| State.getNextStackOffset(), RegVT, |
| LocInfo)); |
| return false; |
| } |
| |
| const unsigned StackSize = alignTo(ByValSize, PtrAlign); |
| unsigned Offset = State.AllocateStack(StackSize, PtrAlign); |
| for (const unsigned E = Offset + StackSize; Offset < E; |
| Offset += PtrAlign.value()) { |
| if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); |
| else { |
| State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, |
| Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, |
| LocInfo)); |
| break; |
| } |
| } |
| return false; |
| } |
| |
| // Arguments always reserve parameter save area. |
| switch (ValVT.SimpleTy) { |
| default: |
| report_fatal_error("Unhandled value type for argument."); |
| case MVT::i64: |
| // i64 arguments should have been split to i32 for PPC32. |
| assert(IsPPC64 && "PPC32 should have split i64 values."); |
| [[fallthrough]]; |
| case MVT::i1: |
| case MVT::i32: { |
| const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); |
| // AIX integer arguments are always passed in register width. |
| if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) |
| LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt |
| : CCValAssign::LocInfo::ZExt; |
| if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); |
| else |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); |
| |
| return false; |
| } |
| case MVT::f32: |
| case MVT::f64: { |
| // Parameter save area (PSA) is reserved even if the float passes in fpr. |
| const unsigned StoreSize = LocVT.getStoreSize(); |
| // Floats are always 4-byte aligned in the PSA on AIX. |
| // This includes f64 in 64-bit mode for ABI compatibility. |
| const unsigned Offset = |
| State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); |
| unsigned FReg = State.AllocateReg(FPR); |
| if (FReg) |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); |
| |
| // Reserve and initialize GPRs or initialize the PSA as required. |
| for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { |
| if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { |
| assert(FReg && "An FPR should be available when a GPR is reserved."); |
| if (State.isVarArg()) { |
| // Successfully reserved GPRs are only initialized for vararg calls. |
| // Custom handling is required for: |
| // f64 in PPC32 needs to be split into 2 GPRs. |
| // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. |
| State.addLoc( |
| CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); |
| } |
| } else { |
| // If there are insufficient GPRs, the PSA needs to be initialized. |
| // Initialization occurs even if an FPR was initialized for |
| // compatibility with the AIX XL compiler. The full memory for the |
| // argument will be initialized even if a prior word is saved in GPR. |
| // A custom memLoc is used when the argument also passes in FPR so |
| // that the callee handling can skip over it easily. |
| State.addLoc( |
| FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, |
| LocInfo) |
| : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| case MVT::v2i64: |
| case MVT::v2f64: |
| case MVT::v1i128: { |
| const unsigned VecSize = 16; |
| const Align VecAlign(VecSize); |
| |
| if (!State.isVarArg()) { |
| // If there are vector registers remaining we don't consume any stack |
| // space. |
| if (unsigned VReg = State.AllocateReg(VR)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); |
| return false; |
| } |
| // Vectors passed on the stack do not shadow GPRs or FPRs even though they |
| // might be allocated in the portion of the PSA that is shadowed by the |
| // GPRs. |
| const unsigned Offset = State.AllocateStack(VecSize, VecAlign); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| const unsigned PtrSize = IsPPC64 ? 8 : 4; |
| ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; |
| |
| unsigned NextRegIndex = State.getFirstUnallocated(GPRs); |
| // Burn any underaligned registers and their shadowed stack space until |
| // we reach the required alignment. |
| while (NextRegIndex != GPRs.size() && |
| !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { |
| // Shadow allocate register and its stack shadow. |
| unsigned Reg = State.AllocateReg(GPRs); |
| State.AllocateStack(PtrSize, PtrAlign); |
| assert(Reg && "Allocating register unexpectedly failed."); |
| (void)Reg; |
| NextRegIndex = State.getFirstUnallocated(GPRs); |
| } |
| |
| // Vectors that are passed as fixed arguments are handled differently. |
| // They are passed in VRs if any are available (unlike arguments passed |
| // through ellipses) and shadow GPRs (unlike arguments to non-vaarg |
| // functions) |
| if (State.isFixed(ValNo)) { |
| if (unsigned VReg = State.AllocateReg(VR)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); |
| // Shadow allocate GPRs and stack space even though we pass in a VR. |
| for (unsigned I = 0; I != VecSize; I += PtrSize) |
| State.AllocateReg(GPRs); |
| State.AllocateStack(VecSize, VecAlign); |
| return false; |
| } |
| // No vector registers remain so pass on the stack. |
| const unsigned Offset = State.AllocateStack(VecSize, VecAlign); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| // If all GPRS are consumed then we pass the argument fully on the stack. |
| if (NextRegIndex == GPRs.size()) { |
| const unsigned Offset = State.AllocateStack(VecSize, VecAlign); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| // Corner case for 32-bit codegen. We have 2 registers to pass the first |
| // half of the argument, and then need to pass the remaining half on the |
| // stack. |
| if (GPRs[NextRegIndex] == PPC::R9) { |
| const unsigned Offset = State.AllocateStack(VecSize, VecAlign); |
| State.addLoc( |
| CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| |
| const unsigned FirstReg = State.AllocateReg(PPC::R9); |
| const unsigned SecondReg = State.AllocateReg(PPC::R10); |
| assert(FirstReg && SecondReg && |
| "Allocating R9 or R10 unexpectedly failed."); |
| State.addLoc( |
| CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); |
| State.addLoc( |
| CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); |
| return false; |
| } |
| |
| // We have enough GPRs to fully pass the vector argument, and we have |
| // already consumed any underaligned registers. Start with the custom |
| // MemLoc and then the custom RegLocs. |
| const unsigned Offset = State.AllocateStack(VecSize, VecAlign); |
| State.addLoc( |
| CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| for (unsigned I = 0; I != VecSize; I += PtrSize) { |
| const unsigned Reg = State.AllocateReg(GPRs); |
| assert(Reg && "Failed to allocated register for vararg vector argument"); |
| State.addLoc( |
| CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); |
| } |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // So far, this function is only used by LowerFormalArguments_AIX() |
| static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, |
| bool IsPPC64, |
| bool HasP8Vector, |
| bool HasVSX) { |
| assert((IsPPC64 || SVT != MVT::i64) && |
| "i64 should have been split for 32-bit codegen."); |
| |
| switch (SVT) { |
| default: |
| report_fatal_error("Unexpected value type for formal argument"); |
| case MVT::i1: |
| case MVT::i32: |
| case MVT::i64: |
| return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| case MVT::f32: |
| return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; |
| case MVT::f64: |
| return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; |
| case MVT::v4f32: |
| case MVT::v4i32: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| case MVT::v2i64: |
| case MVT::v2f64: |
| case MVT::v1i128: |
| return &PPC::VRRCRegClass; |
| } |
| } |
| |
| static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, |
| SelectionDAG &DAG, SDValue ArgValue, |
| MVT LocVT, const SDLoc &dl) { |
| assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); |
| assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); |
| |
| if (Flags.isSExt()) |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, |
| DAG.getValueType(ValVT)); |
| else if (Flags.isZExt()) |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, |
| DAG.getValueType(ValVT)); |
| |
| return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); |
| } |
| |
| static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { |
| const unsigned LASize = FL->getLinkageSize(); |
| |
| if (PPC::GPRCRegClass.contains(Reg)) { |
| assert(Reg >= PPC::R3 && Reg <= PPC::R10 && |
| "Reg must be a valid argument register!"); |
| return LASize + 4 * (Reg - PPC::R3); |
| } |
| |
| if (PPC::G8RCRegClass.contains(Reg)) { |
| assert(Reg >= PPC::X3 && Reg <= PPC::X10 && |
| "Reg must be a valid argument register!"); |
| return LASize + 8 * (Reg - PPC::X3); |
| } |
| |
| llvm_unreachable("Only general purpose registers expected."); |
| } |
| |
| // AIX ABI Stack Frame Layout: |
| // |
| // Low Memory +--------------------------------------------+ |
| // SP +---> | Back chain | ---+ |
| // | +--------------------------------------------+ | |
| // | | Saved Condition Register | | |
| // | +--------------------------------------------+ | |
| // | | Saved Linkage Register | | |
| // | +--------------------------------------------+ | Linkage Area |
| // | | Reserved for compilers | | |
| // | +--------------------------------------------+ | |
| // | | Reserved for binders | | |
| // | +--------------------------------------------+ | |
| // | | Saved TOC pointer | ---+ |
| // | +--------------------------------------------+ |
| // | | Parameter save area | |
| // | +--------------------------------------------+ |
| // | | Alloca space | |
| // | +--------------------------------------------+ |
| // | | Local variable space | |
| // | +--------------------------------------------+ |
| // | | Float/int conversion temporary | |
| // | +--------------------------------------------+ |
| // | | Save area for AltiVec registers | |
| // | +--------------------------------------------+ |
| // | | AltiVec alignment padding | |
| // | +--------------------------------------------+ |
| // | | Save area for VRSAVE register | |
| // | +--------------------------------------------+ |
| // | | Save area for General Purpose registers | |
| // | +--------------------------------------------+ |
| // | | Save area for Floating Point registers | |
| // | +--------------------------------------------+ |
| // +---- | Back chain | |
| // High Memory +--------------------------------------------+ |
| // |
| // Specifications: |
| // AIX 7.2 Assembler Language Reference |
| // Subroutine linkage convention |
| |
| SDValue PPCTargetLowering::LowerFormalArguments_AIX( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| |
| assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || |
| CallConv == CallingConv::Fast) && |
| "Unexpected calling convention!"); |
| |
| if (getTargetMachine().Options.GuaranteedTailCallOpt) |
| report_fatal_error("Tail call support is unimplemented on AIX."); |
| |
| if (useSoftFloat()) |
| report_fatal_error("Soft float support is unimplemented on AIX."); |
| |
| const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); |
| |
| const bool IsPPC64 = Subtarget.isPPC64(); |
| const unsigned PtrByteSize = IsPPC64 ? 8 : 4; |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| const EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| // Reserve space for the linkage area on the stack. |
| const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); |
| CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); |
| CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); |
| |
| SmallVector<SDValue, 8> MemOps; |
| |
| for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { |
| CCValAssign &VA = ArgLocs[I++]; |
| MVT LocVT = VA.getLocVT(); |
| MVT ValVT = VA.getValVT(); |
| ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; |
| // For compatibility with the AIX XL compiler, the float args in the |
| // parameter save area are initialized even if the argument is available |
| // in register. The caller is required to initialize both the register |
| // and memory, however, the callee can choose to expect it in either. |
| // The memloc is dismissed here because the argument is retrieved from |
| // the register. |
| if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) |
| continue; |
| |
| auto HandleMemLoc = [&]() { |
| const unsigned LocSize = LocVT.getStoreSize(); |
| const unsigned ValSize = ValVT.getStoreSize(); |
| assert((ValSize <= LocSize) && |
| "Object size is larger than size of MemLoc"); |
| int CurArgOffset = VA.getLocMemOffset(); |
| // Objects are right-justified because AIX is big-endian. |
| if (LocSize > ValSize) |
| CurArgOffset += LocSize - ValSize; |
| // Potential tail calls could cause overwriting of argument stack slots. |
| const bool IsImmutable = |
| !(getTargetMachine().Options.GuaranteedTailCallOpt && |
| (CallConv == CallingConv::Fast)); |
| int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| SDValue ArgValue = |
| DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); |
| InVals.push_back(ArgValue); |
| }; |
| |
| // Vector arguments to VaArg functions are passed both on the stack, and |
| // in any available GPRs. Load the value from the stack and add the GPRs |
| // as live ins. |
| if (VA.isMemLoc() && VA.needsCustom()) { |
| assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); |
| assert(isVarArg && "Only use custom memloc for vararg."); |
| // ValNo of the custom MemLoc, so we can compare it to the ValNo of the |
| // matching custom RegLocs. |
| const unsigned OriginalValNo = VA.getValNo(); |
| (void)OriginalValNo; |
| |
| auto HandleCustomVecRegLoc = [&]() { |
| assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && |
| "Missing custom RegLoc."); |
| VA = ArgLocs[I++]; |
| assert(VA.getValVT().isVector() && |
| "Unexpected Val type for custom RegLoc."); |
| assert(VA.getValNo() == OriginalValNo && |
| "ValNo mismatch between custom MemLoc and RegLoc."); |
| MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; |
| MF.addLiveIn(VA.getLocReg(), |
| getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), |
| Subtarget.hasVSX())); |
| }; |
| |
| HandleMemLoc(); |
| // In 64-bit there will be exactly 2 custom RegLocs that follow, and in |
| // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and |
| // R10. |
| HandleCustomVecRegLoc(); |
| HandleCustomVecRegLoc(); |
| |
| // If we are targeting 32-bit, there might be 2 extra custom RegLocs if |
| // we passed the vector in R5, R6, R7 and R8. |
| if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { |
| assert(!IsPPC64 && |
| "Only 2 custom RegLocs expected for 64-bit codegen."); |
| HandleCustomVecRegLoc(); |
| HandleCustomVecRegLoc(); |
| } |
| |
| continue; |
| } |
| |
| if (VA.isRegLoc()) { |
| if (VA.getValVT().isScalarInteger()) |
| FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); |
| else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { |
| switch (VA.getValVT().SimpleTy) { |
| default: |
| report_fatal_error("Unhandled value type for argument."); |
| case MVT::f32: |
| FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); |
| break; |
| case MVT::f64: |
| FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); |
| break; |
| } |
| } else if (VA.getValVT().isVector()) { |
| switch (VA.getValVT().SimpleTy) { |
| default: |
| report_fatal_error("Unhandled value type for argument."); |
| case MVT::v16i8: |
| FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); |
| break; |
| case MVT::v8i16: |
| FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); |
| break; |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v1i128: |
| FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); |
| break; |
| case MVT::v4f32: |
| case MVT::v2f64: |
| FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); |
| break; |
| } |
| } |
| } |
| |
| if (Flags.isByVal() && VA.isMemLoc()) { |
| const unsigned Size = |
| alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, |
| PtrByteSize); |
| const int FI = MF.getFrameInfo().CreateFixedObject( |
| Size, VA.getLocMemOffset(), /* IsImmutable */ false, |
| /* IsAliased */ true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(FIN); |
| |
| continue; |
| } |
| |
| if (Flags.isByVal()) { |
| assert(VA.isRegLoc() && "MemLocs should already be handled."); |
| |
| const MCPhysReg ArgReg = VA.getLocReg(); |
| const PPCFrameLowering *FL = Subtarget.getFrameLowering(); |
| |
| if (Flags.getNonZeroByValAlign() > PtrByteSize) |
| report_fatal_error("Over aligned byvals not supported yet."); |
| |
| const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); |
| const int FI = MF.getFrameInfo().CreateFixedObject( |
| StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, |
| /* IsAliased */ true); |
| SDValue FIN = DAG.getFrameIndex(FI, PtrVT); |
| InVals.push_back(FIN); |
| |
| // Add live ins for all the RegLocs for the same ByVal. |
| const TargetRegisterClass *RegClass = |
| IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| |
| auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, |
| unsigned Offset) { |
| const Register VReg = MF.addLiveIn(PhysReg, RegClass); |
| // Since the callers side has left justified the aggregate in the |
| // register, we can simply store the entire register into the stack |
| // slot. |
| SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); |
| // The store to the fixedstack object is needed becuase accessing a |
| // field of the ByVal will use a gep and load. Ideally we will optimize |
| // to extracting the value from the register directly, and elide the |
| // stores when the arguments address is not taken, but that will need to |
| // be future work. |
| SDValue Store = DAG.getStore( |
| CopyFrom.getValue(1), dl, CopyFrom, |
| DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), |
| MachinePointerInfo::getFixedStack(MF, FI, Offset)); |
| |
| MemOps.push_back(Store); |
| }; |
| |
| unsigned Offset = 0; |
| HandleRegLoc(VA.getLocReg(), Offset); |
| Offset += PtrByteSize; |
| for (; Offset != StackSize && ArgLocs[I].isRegLoc(); |
| Offset += PtrByteSize) { |
| assert(ArgLocs[I].getValNo() == VA.getValNo() && |
| "RegLocs should be for ByVal argument."); |
| |
| const CCValAssign RL = ArgLocs[I++]; |
| HandleRegLoc(RL.getLocReg(), Offset); |
| FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); |
| } |
| |
| if (Offset != StackSize) { |
| assert(ArgLocs[I].getValNo() == VA.getValNo() && |
| "Expected MemLoc for remaining bytes."); |
| assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); |
| // Consume the MemLoc.The InVal has already been emitted, so nothing |
| // more needs to be done. |
| ++I; |
| } |
| |
| continue; |
| } |
| |
| if (VA.isRegLoc() && !VA.needsCustom()) { |
| MVT::SimpleValueType SVT = ValVT.SimpleTy; |
| Register VReg = |
| MF.addLiveIn(VA.getLocReg(), |
| getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), |
| Subtarget.hasVSX())); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); |
| if (ValVT.isScalarInteger() && |
| (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { |
| ArgValue = |
| truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); |
| } |
| InVals.push_back(ArgValue); |
| continue; |
| } |
| if (VA.isMemLoc()) { |
| HandleMemLoc(); |
| continue; |
| } |
| } |
| |
| // On AIX a minimum of 8 words is saved to the parameter save area. |
| const unsigned MinParameterSaveArea = 8 * PtrByteSize; |
| // Area that is at least reserved in the caller of this function. |
| unsigned CallerReservedArea = |
| std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); |
| |
| // Set the size that is at least reserved in caller of this function. Tail |
| // call optimized function's reserved stack space needs to be aligned so |
| // that taking the difference between two stack areas will result in an |
| // aligned stack. |
| CallerReservedArea = |
| EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); |
| FuncInfo->setMinReservedArea(CallerReservedArea); |
| |
| if (isVarArg) { |
| FuncInfo->setVarArgsFrameIndex( |
| MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); |
| SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| |
| static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10}; |
| |
| static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, |
| PPC::X7, PPC::X8, PPC::X9, PPC::X10}; |
| const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32); |
| |
| // The fixed integer arguments of a variadic function are stored to the |
| // VarArgsFrameIndex on the stack so that they may be loaded by |
| // dereferencing the result of va_next. |
| for (unsigned GPRIndex = |
| (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; |
| GPRIndex < NumGPArgRegs; ++GPRIndex) { |
| |
| const Register VReg = |
| IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) |
| : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); |
| |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); |
| MemOps.push_back(Store); |
| // Increment the address for the next argument to store. |
| SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); |
| FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); |
| |
| return Chain; |
| } |
| |
| SDValue PPCTargetLowering::LowerCall_AIX( |
| SDValue Chain, SDValue Callee, CallFlags CFlags, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| const CallBase *CB) const { |
| // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the |
| // AIX ABI stack frame layout. |
| |
| assert((CFlags.CallConv == CallingConv::C || |
| CFlags.CallConv == CallingConv::Cold || |
| CFlags.CallConv == CallingConv::Fast) && |
| "Unexpected calling convention!"); |
| |
| if (CFlags.IsPatchPoint) |
| report_fatal_error("This call type is unimplemented on AIX."); |
| |
| const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SmallVector<CCValAssign, 16> ArgLocs; |
| AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, |
| *DAG.getContext()); |
| |
| // Reserve space for the linkage save area (LSA) on the stack. |
| // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: |
| // [SP][CR][LR][2 x reserved][TOC]. |
| // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. |
| const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); |
| const bool IsPPC64 = Subtarget.isPPC64(); |
| const EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| const unsigned PtrByteSize = IsPPC64 ? 8 : 4; |
| CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); |
| CCInfo.AnalyzeCallOperands(Outs, CC_AIX); |
| |
| // The prolog code of the callee may store up to 8 GPR argument registers to |
| // the stack, allowing va_start to index over them in memory if the callee |
| // is variadic. |
| // Because we cannot tell if this is needed on the caller side, we have to |
| // conservatively assume that it is needed. As such, make sure we have at |
| // least enough stack space for the caller to store the 8 GPRs. |
| const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; |
| const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, |
| CCInfo.getNextStackOffset()); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass. |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); |
| SDValue CallSeqStart = Chain; |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Set up a copy of the stack pointer for loading and storing any |
| // arguments that may not fit in the registers available for argument |
| // passing. |
| const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) |
| : DAG.getRegister(PPC::R1, MVT::i32); |
| |
| for (unsigned I = 0, E = ArgLocs.size(); I != E;) { |
| const unsigned ValNo = ArgLocs[I].getValNo(); |
| SDValue Arg = OutVals[ValNo]; |
| ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; |
| |
| if (Flags.isByVal()) { |
| const unsigned ByValSize = Flags.getByValSize(); |
| |
| // Nothing to do for zero-sized ByVals on the caller side. |
| if (!ByValSize) { |
| ++I; |
| continue; |
| } |
| |
| auto GetLoad = [&](EVT VT, unsigned LoadOffset) { |
| return DAG.getExtLoad( |
| ISD::ZEXTLOAD, dl, PtrVT, Chain, |
| (LoadOffset != 0) |
| ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) |
| : Arg, |
| MachinePointerInfo(), VT); |
| }; |
| |
| unsigned LoadOffset = 0; |
| |
| // Initialize registers, which are fully occupied by the by-val argument. |
| while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { |
| SDValue Load = GetLoad(PtrVT, LoadOffset); |
| MemOpChains.push_back(Load.getValue(1)); |
| LoadOffset += PtrByteSize; |
| const CCValAssign &ByValVA = ArgLocs[I++]; |
| assert(ByValVA.getValNo() == ValNo && |
| "Unexpected location for pass-by-value argument."); |
| RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); |
| } |
| |
| if (LoadOffset == ByValSize) |
| continue; |
| |
| // There must be one more loc to handle the remainder. |
| assert(ArgLocs[I].getValNo() == ValNo && |
| "Expected additional location for by-value argument."); |
| |
| if (ArgLocs[I].isMemLoc()) { |
| assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); |
| const CCValAssign &ByValVA = ArgLocs[I++]; |
| ISD::ArgFlagsTy MemcpyFlags = Flags; |
| // Only memcpy the bytes that don't pass in register. |
| MemcpyFlags.setByValSize(ByValSize - LoadOffset); |
| Chain = CallSeqStart = createMemcpyOutsideCallSeq( |
| (LoadOffset != 0) |
| ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) |
| : Arg, |
| DAG.getObjectPtrOffset(dl, StackPtr, |
| TypeSize::Fixed(ByValVA.getLocMemOffset())), |
| CallSeqStart, MemcpyFlags, DAG, dl); |
| continue; |
| } |
| |
| // Initialize the final register residue. |
| // Any residue that occupies the final by-val arg register must be |
| // left-justified on AIX. Loads must be a power-of-2 size and cannot be |
| // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, |
| // 2 and 1 byte loads. |
| const unsigned ResidueBytes = ByValSize % PtrByteSize; |
| assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && |
| "Unexpected register residue for by-value argument."); |
| SDValue ResidueVal; |
| for (unsigned Bytes = 0; Bytes != ResidueBytes;) { |
| const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); |
| const MVT VT = |
| N == 1 ? MVT::i8 |
| : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); |
| SDValue Load = GetLoad(VT, LoadOffset); |
| MemOpChains.push_back(Load.getValue(1)); |
| LoadOffset += N; |
| Bytes += N; |
| |
| // By-val arguments are passed left-justfied in register. |
| // Every load here needs to be shifted, otherwise a full register load |
| // should have been used. |
| assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && |
| "Unexpected load emitted during handling of pass-by-value " |
| "argument."); |
| unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); |
| EVT ShiftAmountTy = |
| getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); |
| SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); |
| SDValue ShiftedLoad = |
| DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); |
| ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, |
| ShiftedLoad) |
| : ShiftedLoad; |
| } |
| |
| const CCValAssign &ByValVA = ArgLocs[I++]; |
| RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); |
| continue; |
| } |
| |
| CCValAssign &VA = ArgLocs[I++]; |
| const MVT LocVT = VA.getLocVT(); |
| const MVT ValVT = VA.getValVT(); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| report_fatal_error("Unexpected argument extension type."); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isRegLoc() && !VA.needsCustom()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| continue; |
| } |
| |
| // Vector arguments passed to VarArg functions need custom handling when |
| // they are passed (at least partially) in GPRs. |
| if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { |
| assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); |
| // Store value to its stack slot. |
| SDValue PtrOff = |
| DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| SDValue Store = |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); |
| MemOpChains.push_back(Store); |
| const unsigned OriginalValNo = VA.getValNo(); |
| // Then load the GPRs from the stack |
| unsigned LoadOffset = 0; |
| auto HandleCustomVecRegLoc = [&]() { |
| assert(I != E && "Unexpected end of CCvalAssigns."); |
| assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && |
| "Expected custom RegLoc."); |
| CCValAssign RegVA = ArgLocs[I++]; |
| assert(RegVA.getValNo() == OriginalValNo && |
| "Custom MemLoc ValNo and custom RegLoc ValNo must match."); |
| SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, |
| DAG.getConstant(LoadOffset, dl, PtrVT)); |
| SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); |
| MemOpChains.push_back(Load.getValue(1)); |
| RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); |
| LoadOffset += PtrByteSize; |
| }; |
| |
| // In 64-bit there will be exactly 2 custom RegLocs that follow, and in |
| // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and |
| // R10. |
| HandleCustomVecRegLoc(); |
| HandleCustomVecRegLoc(); |
| |
| if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && |
| ArgLocs[I].getValNo() == OriginalValNo) { |
| assert(!IsPPC64 && |
| "Only 2 custom RegLocs expected for 64-bit codegen."); |
| HandleCustomVecRegLoc(); |
| HandleCustomVecRegLoc(); |
| } |
| |
| continue; |
| } |
| |
| if (VA.isMemLoc()) { |
| SDValue PtrOff = |
| DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| MemOpChains.push_back( |
| DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); |
| |
| continue; |
| } |
| |
| if (!ValVT.isFloatingPoint()) |
| report_fatal_error( |
| "Unexpected register handling for calling convention."); |
| |
| // Custom handling is used for GPR initializations for vararg float |
| // arguments. |
| assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && |
| LocVT.isInteger() && |
| "Custom register handling only expected for VarArg."); |
| |
| SDValue ArgAsInt = |
| DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); |
| |
| if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) |
| // f32 in 32-bit GPR |
| // f64 in 64-bit GPR |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); |
| else if (Arg.getValueType().getFixedSizeInBits() < |
| LocVT.getFixedSizeInBits()) |
| // f32 in 64-bit GPR. |
| RegsToPass.push_back(std::make_pair( |
| VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); |
| else { |
| // f64 in two 32-bit GPRs |
| // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. |
| assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && |
| "Unexpected custom register for argument!"); |
| CCValAssign &GPR1 = VA; |
| SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, |
| DAG.getConstant(32, dl, MVT::i8)); |
| RegsToPass.push_back(std::make_pair( |
| GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); |
| |
| if (I != E) { |
| // If only 1 GPR was available, there will only be one custom GPR and |
| // the argument will also pass in memory. |
| CCValAssign &PeekArg = ArgLocs[I]; |
| if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { |
| assert(PeekArg.needsCustom() && "A second custom GPR is expected."); |
| CCValAssign &GPR2 = ArgLocs[I++]; |
| RegsToPass.push_back(std::make_pair( |
| GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); |
| } |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); |
| |
| // For indirect calls, we need to save the TOC base to the stack for |
| // restoration after the call. |
| if (CFlags.IsIndirect) { |
| assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); |
| const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); |
| const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); |
| const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; |
| const unsigned TOCSaveOffset = |
| Subtarget.getFrameLowering()->getTOCSaveOffset(); |
| |
| setUsesTOCBasePtr(DAG); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); |
| SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); |
| SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); |
| SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); |
| Chain = DAG.getStore( |
| Val.getValue(1), dl, Val, AddPtr, |
| MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (auto Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| const int SPDiff = 0; |
| return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, |
| Callee, SPDiff, NumBytes, Ins, InVals, CB); |
| } |
| |
| bool |
| PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, |
| MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn( |
| Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) |
| ? RetCC_PPC_Cold |
| : RetCC_PPC); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeReturn(Outs, |
| (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) |
| ? RetCC_PPC_Cold |
| : RetCC_PPC); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Arg = OutVals[RealResIdx]; |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| // Legalize ret f64 -> ret 2 x i32. |
| SDValue SVal = |
| DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, |
| DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, |
| DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); |
| Flag = Chain.getValue(1); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); |
| } else |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); |
| } |
| |
| SDValue |
| PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| |
| // Get the correct type for integers. |
| EVT IntVT = Op.getValueType(); |
| |
| // Get the inputs. |
| SDValue Chain = Op.getOperand(0); |
| SDValue FPSIdx = getFramePointerFrameIndex(DAG); |
| // Build a DYNAREAOFFSET node. |
| SDValue Ops[2] = {Chain, FPSIdx}; |
| SDVTList VTs = DAG.getVTList(IntVT); |
| return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); |
| } |
| |
| SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| // When we pop the dynamic allocation we need to restore the SP link. |
| SDLoc dl(Op); |
| |
| // Get the correct type for pointers. |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Construct the stack pointer operand. |
| bool isPPC64 = Subtarget.isPPC64(); |
| unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; |
| SDValue StackPtr = DAG.getRegister(SP, PtrVT); |
| |
| // Get the operands for the STACKRESTORE. |
| SDValue Chain = Op.getOperand(0); |
| SDValue SaveSP = Op.getOperand(1); |
| |
| // Load the old link SP. |
| SDValue LoadLinkSP = |
| DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); |
| |
| // Restore the stack pointer. |
| Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); |
| |
| // Store the old link SP. |
| return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); |
| } |
| |
| SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool isPPC64 = Subtarget.isPPC64(); |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| // Get current frame pointer save index. The users of this index will be |
| // primarily DYNALLOC instructions. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| int RASI = FI->getReturnAddrSaveIndex(); |
| |
| // If the frame pointer save index hasn't been defined yet. |
| if (!RASI) { |
| // Find out what the fix offset of the frame pointer save area. |
| int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); |
| // Allocate the frame index for frame pointer save area. |
| RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); |
| // Save the result. |
| FI->setReturnAddrSaveIndex(RASI); |
| } |
| return DAG.getFrameIndex(RASI, PtrVT); |
| } |
| |
| SDValue |
| PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool isPPC64 = Subtarget.isPPC64(); |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| // Get current frame pointer save index. The users of this index will be |
| // primarily DYNALLOC instructions. |
| PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); |
| int FPSI = FI->getFramePointerSaveIndex(); |
| |
| // If the frame pointer save index hasn't been defined yet. |
| if (!FPSI) { |
| // Find out what the fix offset of the frame pointer save area. |
| int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); |
| // Allocate the frame index for frame pointer save area. |
| FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); |
| // Save the result. |
| FI->setFramePointerSaveIndex(FPSI); |
| } |
| return DAG.getFrameIndex(FPSI, PtrVT); |
| } |
| |
| SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| // Get the inputs. |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| SDLoc dl(Op); |
| |
| // Get the correct type for pointers. |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| // Negate the size. |
| SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, |
| DAG.getConstant(0, dl, PtrVT), Size); |
| // Construct a node for the frame pointer save index. |
| SDValue FPSIdx = getFramePointerFrameIndex(DAG); |
| SDValue Ops[3] = { Chain, NegSize, FPSIdx }; |
| SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); |
| if (hasInlineStackProbe(MF)) |
| return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); |
| return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); |
| } |
| |
| SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| bool isPPC64 = Subtarget.isPPC64(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); |
| return DAG.getFrameIndex(FI, PtrVT); |
| } |
| |
| SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, |
| DAG.getVTList(MVT::i32, MVT::Other), |
| Op.getOperand(0), Op.getOperand(1)); |
| } |
| |
| SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, |
| Op.getOperand(0), Op.getOperand(1)); |
| } |
| |
| SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| if (Op.getValueType().isVector()) |
| return LowerVectorLoad(Op, DAG); |
| |
| assert(Op.getValueType() == MVT::i1 && |
| "Custom lowering only for i1 loads"); |
| |
| // First, load 8 bits into 32 bits, then truncate to 1 bit. |
| |
| SDLoc dl(Op); |
| LoadSDNode *LD = cast<LoadSDNode>(Op); |
| |
| SDValue Chain = LD->getChain(); |
| SDValue BasePtr = LD->getBasePtr(); |
| MachineMemOperand *MMO = LD->getMemOperand(); |
| |
| SDValue NewLD = |
| DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, |
| BasePtr, MVT::i8, MMO); |
| SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); |
| |
| SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| if (Op.getOperand(1).getValueType().isVector()) |
| return LowerVectorStore(Op, DAG); |
| |
| assert(Op.getOperand(1).getValueType() == MVT::i1 && |
| "Custom lowering only for i1 stores"); |
| |
| // First, zero extend to 32 bits, then use a truncating store to 8 bits. |
| |
| SDLoc dl(Op); |
| StoreSDNode *ST = cast<StoreSDNode>(Op); |
| |
| SDValue Chain = ST->getChain(); |
| SDValue BasePtr = ST->getBasePtr(); |
| SDValue Value = ST->getValue(); |
| MachineMemOperand *MMO = ST->getMemOperand(); |
| |
| Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), |
| Value); |
| return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); |
| } |
| |
| // FIXME: Remove this once the ANDI glue bug is fixed: |
| SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::i1 && |
| "Custom lowering only for i1 results"); |
| |
| SDLoc DL(Op); |
| return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); |
| } |
| |
| SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| // Implements a vector truncate that fits in a vector register as a shuffle. |
| // We want to legalize vector truncates down to where the source fits in |
| // a vector register (and target is therefore smaller than vector register |
| // size). At that point legalization will try to custom lower the sub-legal |
| // result and get here - where we can contain the truncate as a single target |
| // operation. |
| |
| // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: |
| // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> |
| // |
| // We will implement it for big-endian ordering as this (where x denotes |
| // undefined): |
| // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to |
| // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> |
| // |
| // The same operation in little-endian ordering will be: |
| // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to |
| // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> |
| |
| EVT TrgVT = Op.getValueType(); |
| assert(TrgVT.isVector() && "Vector type expected."); |
| unsigned TrgNumElts = TrgVT.getVectorNumElements(); |
| EVT EltVT = TrgVT.getVectorElementType(); |
| if (!isOperationCustom(Op.getOpcode(), TrgVT) || |
| TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || |
| !isPowerOf2_32(EltVT.getSizeInBits())) |
| return SDValue(); |
| |
| SDValue N1 = Op.getOperand(0); |
| EVT SrcVT = N1.getValueType(); |
| unsigned SrcSize = SrcVT.getSizeInBits(); |
| if (SrcSize > 256 || |
| !isPowerOf2_32(SrcVT.getVectorNumElements()) || |
| !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) |
| return SDValue(); |
| if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) |
| return SDValue(); |
| |
| unsigned WideNumElts = 128 / EltVT.getSizeInBits(); |
| EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); |
| |
| SDLoc DL(Op); |
| SDValue Op1, Op2; |
| if (SrcSize == 256) { |
| EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); |
| EVT SplitVT = |
| N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); |
| unsigned SplitNumElts = SplitVT.getVectorNumElements(); |
| Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, |
| DAG.getConstant(0, DL, VecIdxTy)); |
| Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, |
| DAG.getConstant(SplitNumElts, DL, VecIdxTy)); |
| } |
| else { |
| Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); |
| Op2 = DAG.getUNDEF(WideVT); |
| } |
| |
| // First list the elements we want to keep. |
| unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); |
| SmallVector<int, 16> ShuffV; |
| if (Subtarget.isLittleEndian()) |
| for (unsigned i = 0; i < TrgNumElts; ++i) |
| ShuffV.push_back(i * SizeMult); |
| else |
| for (unsigned i = 1; i <= TrgNumElts; ++i) |
| ShuffV.push_back(i * SizeMult - 1); |
| |
| // Populate the remaining elements with undefs. |
| for (unsigned i = TrgNumElts; i < WideNumElts; ++i) |
| // ShuffV.push_back(i + WideNumElts); |
| ShuffV.push_back(WideNumElts + 1); |
| |
| Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); |
| Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); |
| return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); |
| } |
| |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when |
| /// possible. |
| SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| EVT ResVT = Op.getValueType(); |
| EVT CmpVT = Op.getOperand(0).getValueType(); |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); |
| SDLoc dl(Op); |
| |
| // Without power9-vector, we don't have native instruction for f128 comparison. |
| // Following transformation to libcall is needed for setcc: |
| // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE |
| if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { |
| SDValue Z = DAG.getSetCC( |
| dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), |
| LHS, RHS, CC); |
| SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); |
| return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); |
| } |
| |
| // Not FP, or using SPE? Not a fsel. |
| if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || |
| Subtarget.hasSPE()) |
| return Op; |
| |
| SDNodeFlags Flags = Op.getNode()->getFlags(); |
| |
| // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the |
| // presence of infinities. |
| if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETOGT: |
| case ISD::SETGT: |
| return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); |
| case ISD::SETOLT: |
| case ISD::SETLT: |
| return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); |
| } |
| } |
| |
| // We might be able to do better than this under some circumstances, but in |
| // general, fsel-based lowering of select is a finite-math-only optimization. |
| // For more information, see section F.3 of the 2.06 ISA specification. |
| // With ISA 3.0 |
| if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || |
| (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) |
| return Op; |
| |
| // If the RHS of the comparison is a 0.0, we don't need to do the |
| // subtraction at all. |
| SDValue Sel1; |
| if (isFloatingPointZero(RHS)) |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETNE: |
| std::swap(TV, FV); |
| [[fallthrough]]; |
| case ISD::SETEQ: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); |
| Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); |
| if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, |
| DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); |
| case ISD::SETULT: |
| case ISD::SETLT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| [[fallthrough]]; |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| std::swap(TV, FV); // fsel is natively setge, swap operands for setlt |
| [[fallthrough]]; |
| case ISD::SETOLE: |
| case ISD::SETLE: |
| if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, |
| DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); |
| } |
| |
| SDValue Cmp; |
| switch (CC) { |
| default: break; // SETUO etc aren't handled by fsel. |
| case ISD::SETNE: |
| std::swap(TV, FV); |
| [[fallthrough]]; |
| case ISD::SETEQ: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); |
| if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, |
| DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); |
| case ISD::SETULT: |
| case ISD::SETLT: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); |
| case ISD::SETOGE: |
| case ISD::SETGE: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); |
| case ISD::SETUGT: |
| case ISD::SETGT: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); |
| case ISD::SETOLE: |
| case ISD::SETLE: |
| Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); |
| if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits |
| Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); |
| return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); |
| } |
| return Op; |
| } |
| |
| static unsigned getPPCStrictOpcode(unsigned Opc) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("No strict version of this opcode!"); |
| case PPCISD::FCTIDZ: |
| return PPCISD::STRICT_FCTIDZ; |
| case PPCISD::FCTIWZ: |
| return PPCISD::STRICT_FCTIWZ; |
| case PPCISD::FCTIDUZ: |
| return PPCISD::STRICT_FCTIDUZ; |
| case PPCISD::FCTIWUZ: |
| return PPCISD::STRICT_FCTIWUZ; |
| case PPCISD::FCFID: |
| return PPCISD::STRICT_FCFID; |
| case PPCISD::FCFIDU: |
| return PPCISD::STRICT_FCFIDU; |
| case PPCISD::FCFIDS: |
| return PPCISD::STRICT_FCFIDS; |
| case PPCISD::FCFIDUS: |
| return PPCISD::STRICT_FCFIDUS; |
| } |
| } |
| |
| static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| SDLoc dl(Op); |
| bool IsStrict = Op->isStrictFPOpcode(); |
| bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || |
| Op.getOpcode() == ISD::STRICT_FP_TO_SINT; |
| |
| // TODO: Any other flags to propagate? |
| SDNodeFlags Flags; |
| Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); |
| |
| // For strict nodes, source is the second operand. |
| SDValue Src = Op.getOperand(IsStrict ? 1 : 0); |
| SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); |
| assert(Src.getValueType().isFloatingPoint()); |
| if (Src.getValueType() == MVT::f32) { |
| if (IsStrict) { |
| Src = |
| DAG.getNode(ISD::STRICT_FP_EXTEND, dl, |
| DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); |
| Chain = Src.getValue(1); |
| } else |
| Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); |
| } |
| SDValue Conv; |
| unsigned Opc = ISD::DELETED_NODE; |
| switch (Op.getSimpleValueType().SimpleTy) { |
| default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); |
| case MVT::i32: |
| Opc = IsSigned ? PPCISD::FCTIWZ |
| : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); |
| break; |
| case MVT::i64: |
| assert((IsSigned || Subtarget.hasFPCVT()) && |
| "i64 FP_TO_UINT is supported only with FPCVT"); |
| Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; |
| } |
| if (IsStrict) { |
| Opc = getPPCStrictOpcode(Opc); |
| Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), |
| {Chain, Src}, Flags); |
| } else { |
| Conv = DAG.getNode(Opc, dl, MVT::f64, Src); |
| } |
| return Conv; |
| } |
| |
| void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, |
| SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); |
| bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || |
| Op.getOpcode() == ISD::STRICT_FP_TO_SINT; |
| bool IsStrict = Op->isStrictFPOpcode(); |
| |
| // Convert the FP value to an int value through memory. |
| bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && |
| (IsSigned || Subtarget.hasFPCVT()); |
| SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); |
| int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); |
| MachinePointerInfo MPI = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); |
| |
| // Emit a store to the stack slot. |
| SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); |
| Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); |
| if (i32Stack) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| Alignment = Align(4); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); |
| SDValue Ops[] = { Chain, Tmp, FIPtr }; |
| Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, |
| DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); |
| } else |
| Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); |
| |
| // Result is a load from the stack slot. If loading 4 bytes, make sure to |
| // add in a bias on big endian. |
| if (Op.getValueType() == MVT::i32 && !i32Stack) { |
| FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, |
| DAG.getConstant(4, dl, FIPtr.getValueType())); |
| MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); |
| } |
| |
| RLI.Chain = Chain; |
| RLI.Ptr = FIPtr; |
| RLI.MPI = MPI; |
| RLI.Alignment = Alignment; |
| } |
| |
| /// Custom lowers floating point to integer conversions to use |
| /// the direct move instructions available in ISA 2.07 to avoid the |
| /// need for load/store combinations. |
| SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, |
| SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| SDValue Conv = convertFPToInt(Op, DAG, Subtarget); |
| SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); |
| if (Op->isStrictFPOpcode()) |
| return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); |
| else |
| return Mov; |
| } |
| |
| SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| bool IsStrict = Op->isStrictFPOpcode(); |
| bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || |
| Op.getOpcode() == ISD::STRICT_FP_TO_SINT; |
| SDValue Src = Op.getOperand(IsStrict ? 1 : 0); |
| EVT SrcVT = Src.getValueType(); |
| EVT DstVT = Op.getValueType(); |
| |
| // FP to INT conversions are legal for f128. |
| if (SrcVT == MVT::f128) |
| return Subtarget.hasP9Vector() ? Op : SDValue(); |
| |
| // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on |
| // PPC (the libcall is not available). |
| if (SrcVT == MVT::ppcf128) { |
| if (DstVT == MVT::i32) { |
| // TODO: Conservatively pass only nofpexcept flag here. Need to check and |
| // set other fast-math flags to FP operations in both strict and |
| // non-strict cases. (FP_TO_SINT, FSUB) |
| SDNodeFlags Flags; |
| Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); |
| |
| if (IsSigned) { |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, |
| DAG.getIntPtrConstant(0, dl)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, |
| DAG.getIntPtrConstant(1, dl)); |
| |
| // Add the two halves of the long double in round-to-zero mode, and use |
| // a smaller FP_TO_SINT. |
| if (IsStrict) { |
| SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, |
| DAG.getVTList(MVT::f64, MVT::Other), |
| {Op.getOperand(0), Lo, Hi}, Flags); |
| return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, |
| DAG.getVTList(MVT::i32, MVT::Other), |
| {Res.getValue(1), Res}, Flags); |
| } else { |
| SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); |
| return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); |
| } |
| } else { |
| const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; |
| APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); |
| SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); |
| SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); |
| if (IsStrict) { |
| // Sel = Src < 0x80000000 |
| // FltOfs = select Sel, 0.0, 0x80000000 |
| // IntOfs = select Sel, 0, 0x80000000 |
| // Result = fp_to_sint(Src - FltOfs) ^ IntOfs |
| SDValue Chain = Op.getOperand(0); |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); |
| EVT DstSetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); |
| SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, |
| Chain, true); |
| Chain = Sel.getValue(1); |
| |
| SDValue FltOfs = DAG.getSelect( |
| dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); |
| Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); |
| |
| SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, |
| DAG.getVTList(SrcVT, MVT::Other), |
| {Chain, Src, FltOfs}, Flags); |
| Chain = Val.getValue(1); |
| SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, |
| DAG.getVTList(DstVT, MVT::Other), |
| {Chain, Val}, Flags); |
| Chain = SInt.getValue(1); |
| SDValue IntOfs = DAG.getSelect( |
| dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); |
| SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); |
| return DAG.getMergeValues({Result, Chain}, dl); |
| } else { |
| // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X |
| // FIXME: generated code sucks. |
| SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); |
| True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); |
| True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); |
| SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); |
| return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) |
| return LowerFP_TO_INTDirectMove(Op, DAG, dl); |
| |
| ReuseLoadInfo RLI; |
| LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); |
| |
| return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, |
| RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); |
| } |
| |
| // We're trying to insert a regular store, S, and then a load, L. If the |
| // incoming value, O, is a load, we might just be able to have our load use the |
| // address used by O. However, we don't know if anything else will store to |
| // that address before we can load from it. To prevent this situation, we need |
| // to insert our load, L, into the chain as a peer of O. To do this, we give L |
| // the same chain operand as O, we create a token factor from the chain results |
| // of O and L, and we replace all uses of O's chain result with that token |
| // factor (see spliceIntoChain below for this last part). |
| bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, |
| ReuseLoadInfo &RLI, |
| SelectionDAG &DAG, |
| ISD::LoadExtType ET) const { |
| // Conservatively skip reusing for constrained FP nodes. |
| if (Op->isStrictFPOpcode()) |
| return false; |
| |
| SDLoc dl(Op); |
| bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && |
| (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); |
| if (ET == ISD::NON_EXTLOAD && |
| (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && |
| isOperationLegalOrCustom(Op.getOpcode(), |
| Op.getOperand(0).getValueType())) { |
| |
| LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); |
| return true; |
| } |
| |
| LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); |
| if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || |
| LD->isNonTemporal()) |
| return false; |
| if (LD->getMemoryVT() != MemVT) |
| return false; |
| |
| // If the result of the load is an illegal type, then we can't build a |
| // valid chain for reuse since the legalised loads and token factor node that |
| // ties the legalised loads together uses a different output chain then the |
| // illegal load. |
| if (!isTypeLegal(LD->getValueType(0))) |
| return false; |
| |
| RLI.Ptr = LD->getBasePtr(); |
| if (LD->isIndexed() && !LD->getOffset().isUndef()) { |
| assert(LD->getAddressingMode() == ISD::PRE_INC && |
| "Non-pre-inc AM on PPC?"); |
| RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, |
| LD->getOffset()); |
| } |
| |
| RLI.Chain = LD->getChain(); |
| RLI.MPI = LD->getPointerInfo(); |
| RLI.IsDereferenceable = LD->isDereferenceable(); |
| RLI.IsInvariant = LD->isInvariant(); |
| RLI.Alignment = LD->getAlign(); |
| RLI.AAInfo = LD->getAAInfo(); |
| RLI.Ranges = LD->getRanges(); |
| |
| RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); |
| return true; |
| } |
| |
| // Given the head of the old chain, ResChain, insert a token factor containing |
| // it and NewResChain, and make users of ResChain now be users of that token |
| // factor. |
| // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. |
| void PPCTargetLowering::spliceIntoChain(SDValue ResChain, |
| SDValue NewResChain, |
| SelectionDAG &DAG) const { |
| if (!ResChain) |
| return; |
| |
| SDLoc dl(NewResChain); |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| NewResChain, DAG.getUNDEF(MVT::Other)); |
| assert(TF.getNode() != NewResChain.getNode() && |
| "A new TF really is required here"); |
| |
| DAG.ReplaceAllUsesOfValueWith(ResChain, TF); |
| DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); |
| } |
| |
| /// Analyze profitability of direct move |
| /// prefer float load to int load plus direct move |
| /// when there is no integer use of int load |
| bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { |
| SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode(); |
| if (Origin->getOpcode() != ISD::LOAD) |
| return true; |
| |
| // If there is no LXSIBZX/LXSIHZX, like Power8, |
| // prefer direct move if the memory size is 1 or 2 bytes. |
| MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); |
| if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) |
| return true; |
| |
| for (SDNode::use_iterator UI = Origin->use_begin(), |
| UE = Origin->use_end(); |
| UI != UE; ++UI) { |
| |
| // Only look at the users of the loaded value. |
| if (UI.getUse().get().getResNo() != 0) |
| continue; |
| |
| if (UI->getOpcode() != ISD::SINT_TO_FP && |
| UI->getOpcode() != ISD::UINT_TO_FP && |
| UI->getOpcode() != ISD::STRICT_SINT_TO_FP && |
| UI->getOpcode() != ISD::STRICT_UINT_TO_FP) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget, |
| SDValue Chain = SDValue()) { |
| bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || |
| Op.getOpcode() == ISD::STRICT_SINT_TO_FP; |
| SDLoc dl(Op); |
| |
| // TODO: Any other flags to propagate? |
| SDNodeFlags Flags; |
| Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); |
| |
| // If we have FCFIDS, then use it when converting to single-precision. |
| // Otherwise, convert to double-precision and then round. |
| bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); |
| unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) |
| : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); |
| EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; |
| if (Op->isStrictFPOpcode()) { |
| if (!Chain) |
| Chain = Op.getOperand(0); |
| return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, |
| DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); |
| } else |
| return DAG.getNode(ConvOpc, dl, ConvTy, Src); |
| } |
| |
| /// Custom lowers integer to floating point conversions to use |
| /// the direct move instructions available in ISA 2.07 to avoid the |
| /// need for load/store combinations. |
| SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, |
| SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| assert((Op.getValueType() == MVT::f32 || |
| Op.getValueType() == MVT::f64) && |
| "Invalid floating point type as target of conversion"); |
| assert(Subtarget.hasFPCVT() && |
| "Int to FP conversions with direct moves require FPCVT"); |
| SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); |
| bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; |
| bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || |
| Op.getOpcode() == ISD::STRICT_SINT_TO_FP; |
| unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; |
| SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); |
| return convertIntToFP(Op, Mov, DAG, Subtarget); |
| } |
| |
| static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { |
| |
| EVT VecVT = Vec.getValueType(); |
| assert(VecVT.isVector() && "Expected a vector type."); |
| assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); |
| |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned WideNumElts = 128 / EltVT.getSizeInBits(); |
| EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); |
| |
| unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); |
| SmallVector<SDValue, 16> Ops(NumConcat); |
| Ops[0] = Vec; |
| SDValue UndefVec = DAG.getUNDEF(VecVT); |
| for (unsigned i = 1; i < NumConcat; ++i) |
| Ops[i] = UndefVec; |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); |
| } |
| |
| SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const { |
| bool IsStrict = Op->isStrictFPOpcode(); |
| unsigned Opc = Op.getOpcode(); |
| SDValue Src = Op.getOperand(IsStrict ? 1 : 0); |
| assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || |
| Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && |
| "Unexpected conversion type"); |
| assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && |
| "Supports conversions to v2f64/v4f32 only."); |
| |
| // TODO: Any other flags to propagate? |
| SDNodeFlags Flags; |
| Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); |
| |
| bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; |
| bool FourEltRes = Op.getValueType() == MVT::v4f32; |
| |
| SDValue Wide = widenVec(DAG, Src, dl); |
| EVT WideVT = Wide.getValueType(); |
| unsigned WideNumElts = WideVT.getVectorNumElements(); |
| MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; |
| |
| SmallVector<int, 16> ShuffV; |
| for (unsigned i = 0; i < WideNumElts; ++i) |
| ShuffV.push_back(i + WideNumElts); |
| |
| int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; |
| int SaveElts = FourEltRes ? 4 : 2; |
| if (Subtarget.isLittleEndian()) |
| for (int i = 0; i < SaveElts; i++) |
| ShuffV[i * Stride] = i; |
| else |
| for (int i = 1; i <= SaveElts; i++) |
| ShuffV[i * Stride - 1] = i - 1; |
| |
| SDValue ShuffleSrc2 = |
| SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); |
| SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); |
| |
| SDValue Extend; |
| if (SignedConv) { |
| Arrange = DAG.getBitcast(IntermediateVT, Arrange); |
| EVT ExtVT = Src.getValueType(); |
| if (Subtarget.hasP9Altivec()) |
| ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), |
| IntermediateVT.getVectorNumElements()); |
| |
| Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, |
| DAG.getValueType(ExtVT)); |
| } else |
| Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); |
| |
| if (IsStrict) |
| return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), |
| {Op.getOperand(0), Extend}, Flags); |
| |
| return DAG.getNode(Opc, dl, Op.getValueType(), Extend); |
| } |
| |
| SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || |
| Op.getOpcode() == ISD::STRICT_SINT_TO_FP; |
| bool IsStrict = Op->isStrictFPOpcode(); |
| SDValue Src = Op.getOperand(IsStrict ? 1 : 0); |
| SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); |
| |
| // TODO: Any other flags to propagate? |
| SDNodeFlags Flags; |
| Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); |
| |
| EVT InVT = Src.getValueType(); |
| EVT OutVT = Op.getValueType(); |
| if (OutVT.isVector() && OutVT.isFloatingPoint() && |
| isOperationCustom(Op.getOpcode(), InVT)) |
| return LowerINT_TO_FPVector(Op, DAG, dl); |
| |
| // Conversions to f128 are legal. |
| if (Op.getValueType() == MVT::f128) |
| return Subtarget.hasP9Vector() ? Op : SDValue(); |
| |
| // Don't handle ppc_fp128 here; let it be lowered to a libcall. |
| if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) |
| return SDValue(); |
| |
| if (Src.getValueType() == MVT::i1) { |
| SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, |
| DAG.getConstantFP(1.0, dl, Op.getValueType()), |
| DAG.getConstantFP(0.0, dl, Op.getValueType())); |
| if (IsStrict) |
| return DAG.getMergeValues({Sel, Chain}, dl); |
| else |
| return Sel; |
| } |
| |
| // If we have direct moves, we can do all the conversion, skip the store/load |
| // however, without FPCVT we can't do most conversions. |
| if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && |
| Subtarget.isPPC64() && Subtarget.hasFPCVT()) |
| return LowerINT_TO_FPDirectMove(Op, DAG, dl); |
| |
| assert((IsSigned || Subtarget.hasFPCVT()) && |
| "UINT_TO_FP is supported only with FPCVT"); |
| |
| if (Src.getValueType() == MVT::i64) { |
| SDValue SINT = Src; |
| // When converting to single-precision, we actually need to convert |
| // to double-precision first and then round to single-precision. |
| // To avoid double-rounding effects during that operation, we have |
| // to prepare the input operand. Bits that might be truncated when |
| // converting to double-precision are replaced by a bit that won't |
| // be lost at this stage, but is below the single-precision rounding |
| // position. |
| // |
| // However, if -enable-unsafe-fp-math is in effect, accept double |
| // rounding to avoid the extra overhead. |
| if (Op.getValueType() == MVT::f32 && |
| !Subtarget.hasFPCVT() && |
| !DAG.getTarget().Options.UnsafeFPMath) { |
| |
| // Twiddle input to make sure the low 11 bits are zero. (If this |
| // is the case, we are guaranteed the value will fit into the 53 bit |
| // mantissa of an IEEE double-precision value without rounding.) |
| // If any of those low 11 bits were not zero originally, make sure |
| // bit 12 (value 2048) is set instead, so that the final rounding |
| // to single-precision gets the correct result. |
| SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, |
| SINT, DAG.getConstant(2047, dl, MVT::i64)); |
| Round = DAG.getNode(ISD::ADD, dl, MVT::i64, |
| Round, DAG.getConstant(2047, dl, MVT::i64)); |
| Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); |
| Round = DAG.getNode(ISD::AND, dl, MVT::i64, |
| Round, DAG.getConstant(-2048, dl, MVT::i64)); |
| |
| // However, we cannot use that value unconditionally: if the magnitude |
| // of the input value is small, the bit-twiddling we did above might |
| // end up visibly changing the output. Fortunately, in that case, we |
| // don't need to twiddle bits since the original input will convert |
| // exactly to double-precision floating-point already. Therefore, |
| // construct a conditional to use the original value if the top 11 |
| // bits are all sign-bit copies, and use the rounded value computed |
| // above otherwise. |
| SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, |
| SINT, DAG.getConstant(53, dl, MVT::i32)); |
| Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, |
| Cond, DAG.getConstant(1, dl, MVT::i64)); |
| Cond = DAG.getSetCC( |
| dl, |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), |
| Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); |
| |
| SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); |
| } |
| |
| ReuseLoadInfo RLI; |
| SDValue Bits; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { |
| Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, |
| RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); |
| spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); |
| } else if (Subtarget.hasLFIWAX() && |
| canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, |
| RLI.Alignment, RLI.AAInfo, RLI.Ranges); |
| SDValue Ops[] = { RLI.Chain, RLI.Ptr }; |
| Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, |
| DAG.getVTList(MVT::f64, MVT::Other), |
| Ops, MVT::i32, MMO); |
| spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); |
| } else if (Subtarget.hasFPCVT() && |
| canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, |
| RLI.Alignment, RLI.AAInfo, RLI.Ranges); |
| SDValue Ops[] = { RLI.Chain, RLI.Ptr }; |
| Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, |
| DAG.getVTList(MVT::f64, MVT::Other), |
| Ops, MVT::i32, MMO); |
| spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); |
| } else if (((Subtarget.hasLFIWAX() && |
| SINT.getOpcode() == ISD::SIGN_EXTEND) || |
| (Subtarget.hasFPCVT() && |
| SINT.getOpcode() == ISD::ZERO_EXTEND)) && |
| SINT.getOperand(0).getValueType() == MVT::i32) { |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| int FrameIdx = MFI.CreateStackObject(4, Align(4), false); |
| SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, |
| MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), FrameIdx)); |
| Chain = Store; |
| |
| assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && |
| "Expected an i32 store"); |
| |
| RLI.Ptr = FIdx; |
| RLI.Chain = Chain; |
| RLI.MPI = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); |
| RLI.Alignment = Align(4); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, |
| RLI.Alignment, RLI.AAInfo, RLI.Ranges); |
| SDValue Ops[] = { RLI.Chain, RLI.Ptr }; |
| Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? |
| PPCISD::LFIWZX : PPCISD::LFIWAX, |
| dl, DAG.getVTList(MVT::f64, MVT::Other), |
| Ops, MVT::i32, MMO); |
| Chain = Bits.getValue(1); |
| } else |
| Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); |
| |
| SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); |
| if (IsStrict) |
| Chain = FP.getValue(1); |
| |
| if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { |
| if (IsStrict) |
| FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, |
| DAG.getVTList(MVT::f32, MVT::Other), |
| {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); |
| else |
| FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, |
| DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); |
| } |
| return FP; |
| } |
| |
| assert(Src.getValueType() == MVT::i32 && |
| "Unhandled INT_TO_FP type in custom expander!"); |
| // Since we only generate this in 64-bit mode, we can take advantage of |
| // 64-bit registers. In particular, sign extend the input value into the |
| // 64-bit register with extsw, store the WHOLE 64-bit value into the stack |
| // then lfd it and fcfid it. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| SDValue Ld; |
| if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { |
| ReuseLoadInfo RLI; |
| bool ReusingLoad; |
| if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { |
| int FrameIdx = MFI.CreateStackObject(4, Align(4), false); |
| SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, |
| MachinePointerInfo::getFixedStack( |
| DAG.getMachineFunction(), FrameIdx)); |
| Chain = Store; |
| |
| assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && |
| "Expected an i32 store"); |
| |
| RLI.Ptr = FIdx; |
| RLI.Chain = Chain; |
| RLI.MPI = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); |
| RLI.Alignment = Align(4); |
| } |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, |
| RLI.Alignment, RLI.AAInfo, RLI.Ranges); |
| SDValue Ops[] = { RLI.Chain, RLI.Ptr }; |
| Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, |
| DAG.getVTList(MVT::f64, MVT::Other), Ops, |
| MVT::i32, MMO); |
| Chain = Ld.getValue(1); |
| if (ReusingLoad) |
| spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); |
| } else { |
| assert(Subtarget.isPPC64() && |
| "i32->FP without LFIWAX supported only on PPC64"); |
| |
| int FrameIdx = MFI.CreateStackObject(8, Align(8), false); |
| SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); |
| |
| // STD the extended value into the stack slot. |
| SDValue Store = DAG.getStore( |
| Chain, dl, Ext64, FIdx, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); |
| Chain = Store; |
| |
| // Load the value as a double. |
| Ld = DAG.getLoad( |
| MVT::f64, dl, Chain, FIdx, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); |
| Chain = Ld.getValue(1); |
| } |
| |
| // FCFID it and return it. |
| SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); |
| if (IsStrict) |
| Chain = FP.getValue(1); |
| if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { |
| if (IsStrict) |
| FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, |
| DAG.getVTList(MVT::f32, MVT::Other), |
| {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); |
| else |
| FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, |
| DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); |
| } |
| return FP; |
| } |
| |
| SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| /* |
| The rounding mode is in bits 30:31 of FPSR, and has the following |
| settings: |
| 00 Round to nearest |
| 01 Round to 0 |
| 10 Round to +inf |
| 11 Round to -inf |
| |
| GET_ROUNDING, on the other hand, expects the following: |
| -1 Undefined |
| 0 Round to 0 |
| 1 Round to nearest |
| 2 Round to +inf |
| 3 Round to -inf |
| |
| To perform the conversion, we do: |
| ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) |
| */ |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| EVT VT = Op.getValueType(); |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| // Save FP Control Word to register |
| SDValue Chain = Op.getOperand(0); |
| SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); |
| Chain = MFFS.getValue(1); |
| |
| SDValue CWD; |
| if (isTypeLegal(MVT::i64)) { |
| CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, |
| DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); |
| } else { |
| // Save FP register to stack slot |
| int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); |
| SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); |
| Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); |
| |
| // Load FP Control Word from low 32 bits of stack slot. |
| assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && |
| "Stack slot adjustment is valid only on big endian subtargets!"); |
| SDValue Four = DAG.getConstant(4, dl, PtrVT); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); |
| CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); |
| Chain = CWD.getValue(1); |
| } |
| |
| // Transform as necessary |
| SDValue CWD1 = |
| DAG.getNode(ISD::AND, dl, MVT::i32, |
| CWD, DAG.getConstant(3, dl, MVT::i32)); |
| SDValue CWD2 = |
| DAG.getNode(ISD::SRL, dl, MVT::i32, |
| DAG.getNode(ISD::AND, dl, MVT::i32, |
| DAG.getNode(ISD::XOR, dl, MVT::i32, |
| CWD, DAG.getConstant(3, dl, MVT::i32)), |
| DAG.getConstant(3, dl, MVT::i32)), |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| SDValue RetVal = |
| DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); |
| |
| RetVal = |
| DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), |
| dl, VT, RetVal); |
| |
| return DAG.getMergeValues({RetVal, Chain}, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| assert(Op.getNumOperands() == 3 && |
| VT == Op.getOperand(1).getValueType() && |
| "Unexpected SHL!"); |
| |
| // Expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Amt = Op.getOperand(2); |
| EVT AmtVT = Amt.getValueType(); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, |
| DAG.getConstant(BitWidth, dl, AmtVT), Amt); |
| SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); |
| SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); |
| SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); |
| SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, |
| DAG.getConstant(-BitWidth, dl, AmtVT)); |
| SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); |
| SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); |
| SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); |
| SDValue OutOps[] = { OutLo, OutHi }; |
| return DAG.getMergeValues(OutOps, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| unsigned BitWidth = VT.getSizeInBits(); |
| assert(Op.getNumOperands() == 3 && |
| VT == Op.getOperand(1).getValueType() && |
| "Unexpected SRL!"); |
| |
| // Expand into a bunch of logical ops. Note that these ops |
| // depend on the PPC behavior for oversized shift amounts. |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Amt = Op.getOperand(2); |
| EVT AmtVT = Amt.getValueType(); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, |
| DAG.getConstant(BitWidth, dl, AmtVT), Amt); |
| SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); |
| SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); |
| SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, |
| DAG.getConstant(-BitWidth, dl, AmtVT)); |
| SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); |
| SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); |
| SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); |
| SDValue OutOps[] = { OutLo, OutHi }; |
| return DAG.getMergeValues(OutOps, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| assert(Op.getNumOperands() == 3 && |
| VT == Op.getOperand(1).getValueType() && |
| "Unexpected SRA!"); |
| |
| // Expand into a bunch of logical ops, followed by a select_cc. |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Amt = Op.getOperand(2); |
| EVT AmtVT = Amt.getValueType(); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, |
| DAG.getConstant(BitWidth, dl, AmtVT), Amt); |
| SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); |
| SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); |
| SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); |
| SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, |
| DAG.getConstant(-BitWidth, dl, AmtVT)); |
| SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); |
| SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); |
| SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), |
| Tmp4, Tmp6, ISD::SETLE); |
| SDValue OutOps[] = { OutLo, OutHi }; |
| return DAG.getMergeValues(OutOps, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| unsigned BitWidth = VT.getSizeInBits(); |
| |
| bool IsFSHL = Op.getOpcode() == ISD::FSHL; |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| SDValue Z = Op.getOperand(2); |
| EVT AmtVT = Z.getValueType(); |
| |
| // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
| // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| // This is simpler than TargetLowering::expandFunnelShift because we can rely |
| // on PowerPC shift by BW being well defined. |
| Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, |
| DAG.getConstant(BitWidth - 1, dl, AmtVT)); |
| SDValue SubZ = |
| DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); |
| X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); |
| Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); |
| return DAG.getNode(ISD::OR, dl, VT, X, Y); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector related lowering. |
| // |
| |
| /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an |
| /// element size of SplatSize. Cast the result to VT. |
| static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| static const MVT VTys[] = { // canonical VT to use for each size. |
| MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 |
| }; |
| |
| EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; |
| |
| // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. |
| if (Val == ((1LLU << (SplatSize * 8)) - 1)) { |
| SplatSize = 1; |
| Val = 0xFF; |
| } |
| |
| EVT CanonicalVT = VTys[SplatSize-1]; |
| |
| // Build a canonical splat for this value. |
| return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); |
| } |
| |
| /// BuildIntrinsicOp - Return a unary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl, EVT DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = Op.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, |
| DAG.getConstant(IID, dl, MVT::i32), Op); |
| } |
| |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, |
| SelectionDAG &DAG, const SDLoc &dl, |
| EVT DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = LHS.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, |
| DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); |
| } |
| |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the |
| /// specified intrinsic ID. |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, |
| SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, |
| EVT DestVT = MVT::Other) { |
| if (DestVT == MVT::Other) DestVT = Op0.getValueType(); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, |
| DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); |
| } |
| |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified |
| /// amount. The result has the specified value type. |
| static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, |
| SelectionDAG &DAG, const SDLoc &dl) { |
| // Force LHS/RHS to be the right type. |
| LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); |
| RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); |
| |
| int Ops[16]; |
| for (unsigned i = 0; i != 16; ++i) |
| Ops[i] = i + Amt; |
| SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); |
| return DAG.getNode(ISD::BITCAST, dl, VT, T); |
| } |
| |
| /// Do we have an efficient pattern in a .td file for this node? |
| /// |
| /// \param V - pointer to the BuildVectorSDNode being matched |
| /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? |
| /// |
| /// There are some patterns where it is beneficial to keep a BUILD_VECTOR |
| /// node as a BUILD_VECTOR node rather than expanding it. The patterns where |
| /// the opposite is true (expansion is beneficial) are: |
| /// - The node builds a vector out of integers that are not 32 or 64-bits |
| /// - The node builds a vector out of constants |
| /// - The node is a "load-and-splat" |
| /// In all other cases, we will choose to keep the BUILD_VECTOR. |
| static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, |
| bool HasDirectMove, |
| bool HasP8Vector) { |
| EVT VecVT = V->getValueType(0); |
| bool RightType = VecVT == MVT::v2f64 || |
| (HasP8Vector && VecVT == MVT::v4f32) || |
| (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); |
| if (!RightType) |
| return false; |
| |
| bool IsSplat = true; |
| bool IsLoad = false; |
| SDValue Op0 = V->getOperand(0); |
| |
| // This function is called in a block that confirms the node is not a constant |
| // splat. So a constant BUILD_VECTOR here means the vector is built out of |
| // different constants. |
| if (V->isConstant()) |
| return false; |
| for (int i = 0, e = V->getNumOperands(); i < e; ++i) { |
| if (V->getOperand(i).isUndef()) |
| return false; |
| // We want to expand nodes that represent load-and-splat even if the |
| // loaded value is a floating point truncation or conversion to int. |
| if (V->getOperand(i).getOpcode() == ISD::LOAD || |
| (V->getOperand(i).getOpcode() == ISD::FP_ROUND && |
| V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || |
| (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && |
| V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || |
| (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && |
| V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) |
| IsLoad = true; |
| // If the operands are different or the input is not a load and has more |
| // uses than just this BV node, then it isn't a splat. |
| if (V->getOperand(i) != Op0 || |
| (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) |
| IsSplat = false; |
| } |
| return !(IsSplat && IsLoad); |
| } |
| |
| // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. |
| SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { |
| |
| SDLoc dl(Op); |
| SDValue Op0 = Op->getOperand(0); |
| |
| if ((Op.getValueType() != MVT::f128) || |
| (Op0.getOpcode() != ISD::BUILD_PAIR) || |
| (Op0.getOperand(0).getValueType() != MVT::i64) || |
| (Op0.getOperand(1).getValueType() != MVT::i64)) |
| return SDValue(); |
| |
| return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), |
| Op0.getOperand(1)); |
| } |
| |
| static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { |
| const SDValue *InputLoad = &Op; |
| while (InputLoad->getOpcode() == ISD::BITCAST) |
| InputLoad = &InputLoad->getOperand(0); |
| if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || |
| InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { |
| IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; |
| InputLoad = &InputLoad->getOperand(0); |
| } |
| if (InputLoad->getOpcode() != ISD::LOAD) |
| return nullptr; |
| LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); |
| return ISD::isNormalLoad(LD) ? InputLoad : nullptr; |
| } |
| |
| // Convert the argument APFloat to a single precision APFloat if there is no |
| // loss in information during the conversion to single precision APFloat and the |
| // resulting number is not a denormal number. Return true if successful. |
| bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { |
| APFloat APFloatToConvert = ArgAPFloat; |
| bool LosesInfo = true; |
| APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, |
| &LosesInfo); |
| bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); |
| if (Success) |
| ArgAPFloat = APFloatToConvert; |
| return Success; |
| } |
| |
| // Bitcast the argument APInt to a double and convert it to a single precision |
| // APFloat, bitcast the APFloat to an APInt and assign it to the original |
| // argument if there is no loss in information during the conversion from |
| // double to single precision APFloat and the resulting number is not a denormal |
| // number. Return true if successful. |
| bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { |
| double DpValue = ArgAPInt.bitsToDouble(); |
| APFloat APFloatDp(DpValue); |
| bool Success = convertToNonDenormSingle(APFloatDp); |
| if (Success) |
| ArgAPInt = APFloatDp.bitcastToAPInt(); |
| return Success; |
| } |
| |
| // Nondestructive check for convertTonNonDenormSingle. |
| bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { |
| // Only convert if it loses info, since XXSPLTIDP should |
| // handle the other case. |
| APFloat APFloatToConvert = ArgAPFloat; |
| bool LosesInfo = true; |
| APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, |
| &LosesInfo); |
| |
| return (!LosesInfo && !APFloatToConvert.isDenormal()); |
| } |
| |
| static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, |
| unsigned &Opcode) { |
| LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0)); |
| if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) |
| return false; |
| |
| EVT Ty = Op->getValueType(0); |
| // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending |
| // as we cannot handle extending loads for these types. |
| if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && |
| ISD::isNON_EXTLoad(InputNode)) |
| return true; |
| |
| EVT MemVT = InputNode->getMemoryVT(); |
| // For v8i16 and v16i8 types, extending loads can be handled as long as the |
| // memory VT is the same vector element VT type. |
| // The loads feeding into the v8i16 and v16i8 types will be extending because |
| // scalar i8/i16 are not legal types. |
| if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && |
| (MemVT == Ty.getVectorElementType())) |
| return true; |
| |
| if (Ty == MVT::v2i64) { |
| // Check the extend type, when the input type is i32, and the output vector |
| // type is v2i64. |
| if (MemVT == MVT::i32) { |
| if (ISD::isZEXTLoad(InputNode)) |
| Opcode = PPCISD::ZEXT_LD_SPLAT; |
| if (ISD::isSEXTLoad(InputNode)) |
| Opcode = PPCISD::SEXT_LD_SPLAT; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. If we CAN select this case, and if it |
| // selects to a single instruction, return Op. Otherwise, if we can codegen |
| // this case more efficiently than a constant pool load, lower it to the |
| // sequence of ops that should be used. |
| SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); |
| |
| // Check if this is a splat of a constant value. |
| APInt APSplatBits, APSplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| bool BVNIsConstantSplat = |
| BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, |
| HasAnyUndefs, 0, !Subtarget.isLittleEndian()); |
| |
| // If it is a splat of a double, check if we can shrink it to a 32 bit |
| // non-denormal float which when converted back to double gives us the same |
| // double. This is to exploit the XXSPLTIDP instruction. |
| // If we lose precision, we use XXSPLTI32DX. |
| if (BVNIsConstantSplat && (SplatBitSize == 64) && |
| Subtarget.hasPrefixInstrs()) { |
| // Check the type first to short-circuit so we don't modify APSplatBits if |
| // this block isn't executed. |
| if ((Op->getValueType(0) == MVT::v2f64) && |
| convertToNonDenormSingle(APSplatBits)) { |
| SDValue SplatNode = DAG.getNode( |
| PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, |
| DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); |
| return DAG.getBitcast(Op.getValueType(), SplatNode); |
| } else { |
| // We may lose precision, so we have to use XXSPLTI32DX. |
| |
| uint32_t Hi = |
| (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); |
| uint32_t Lo = |
| (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); |
| SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); |
| |
| if (!Hi || !Lo) |
| // If either load is 0, then we should generate XXLXOR to set to 0. |
| SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); |
| |
| if (Hi) |
| SplatNode = DAG.getNode( |
| PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, |
| DAG.getTargetConstant(0, dl, MVT::i32), |
| DAG.getTargetConstant(Hi, dl, MVT::i32)); |
| |
| if (Lo) |
| SplatNode = |
| DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, |
| DAG.getTargetConstant(1, dl, MVT::i32), |
| DAG.getTargetConstant(Lo, dl, MVT::i32)); |
| |
| return DAG.getBitcast(Op.getValueType(), SplatNode); |
| } |
| } |
| |
| if (!BVNIsConstantSplat || SplatBitSize > 32) { |
| unsigned NewOpcode = PPCISD::LD_SPLAT; |
| |
| // Handle load-and-splat patterns as we have instructions that will do this |
| // in one go. |
| if (DAG.isSplatValue(Op, true) && |
| isValidSplatLoad(Subtarget, Op, NewOpcode)) { |
| const SDValue *InputLoad = &Op.getOperand(0); |
| LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); |
| |
| // If the input load is an extending load, it will be an i32 -> i64 |
| // extending load and isValidSplatLoad() will update NewOpcode. |
| unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); |
| unsigned ElementSize = |
| MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); |
| |
| assert(((ElementSize == 2 * MemorySize) |
| ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || |
| NewOpcode == PPCISD::SEXT_LD_SPLAT) |
| : (NewOpcode == PPCISD::LD_SPLAT)) && |
| "Unmatched element size and opcode!\n"); |
| |
| // Checking for a single use of this load, we have to check for vector |
| // width (128 bits) / ElementSize uses (since each operand of the |
| // BUILD_VECTOR is a separate use of the value. |
| unsigned NumUsesOfInputLD = 128 / ElementSize; |
| for (SDValue BVInOp : Op->ops()) |
| if (BVInOp.isUndef()) |
| NumUsesOfInputLD--; |
| |
| // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: |
| // Below cases should also happen for "lfiwzx/lfiwax + LE target + index |
| // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index |
| // 15", but funciton IsValidSplatLoad() now will only return true when |
| // the data at index 0 is not nullptr. So we will not get into trouble for |
| // these cases. |
| // |
| // case 1 - lfiwzx/lfiwax |
| // 1.1: load result is i32 and is sign/zero extend to i64; |
| // 1.2: build a v2i64 vector type with above loaded value; |
| // 1.3: the vector has only one value at index 0, others are all undef; |
| // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. |
| if (NumUsesOfInputLD == 1 && |
| (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && |
| !Subtarget.isLittleEndian() && Subtarget.hasVSX() && |
| Subtarget.hasLFIWAX())) |
| return SDValue(); |
| |
| // case 2 - lxvr[hb]x |
| // 2.1: load result is at most i16; |
| // 2.2: build a vector with above loaded value; |
| // 2.3: the vector has only one value at index 0, others are all undef; |
| // 2.4: on LE target, so that lxvr[hb]x does not need any permute. |
| if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && |
| Subtarget.isISA3_1() && ElementSize <= 16) |
| return SDValue(); |
| |
| assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); |
| if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && |
| Subtarget.hasVSX()) { |
| SDValue Ops[] = { |
| LD->getChain(), // Chain |
| LD->getBasePtr(), // Ptr |
| DAG.getValueType(Op.getValueType()) // VT |
| }; |
| SDValue LdSplt = DAG.getMemIntrinsicNode( |
| NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, |
| LD->getMemoryVT(), LD->getMemOperand()); |
| // Replace all uses of the output chain of the original load with the |
| // output chain of the new load. |
| DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), |
| LdSplt.getValue(1)); |
| return LdSplt; |
| } |
| } |
| |
| // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to |
| // 32-bits can be lowered to VSX instructions under certain conditions. |
| // Without VSX, there is no pattern more efficient than expanding the node. |
| if (Subtarget.hasVSX() && Subtarget.isPPC64() && |
| haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), |
| Subtarget.hasP8Vector())) |
| return Op; |
| return SDValue(); |
| } |
| |
| uint64_t SplatBits = APSplatBits.getZExtValue(); |
| uint64_t SplatUndef = APSplatUndef.getZExtValue(); |
| unsigned SplatSize = SplatBitSize / 8; |
| |
| // First, handle single instruction cases. |
| |
| // All zeros? |
| if (SplatBits == 0) { |
| // Canonicalize all zero vectors to be v4i32. |
| if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { |
| SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); |
| Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); |
| } |
| return Op; |
| } |
| |
| // We have XXSPLTIW for constant splats four bytes wide. |
| // Given vector length is a multiple of 4, 2-byte splats can be replaced |
| // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to |
| // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be |
| // turned into a 4-byte splat of 0xABABABAB. |
| if (Subtarget.hasPrefixInstrs() && SplatSize == 2) |
| return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, |
| Op.getValueType(), DAG, dl); |
| |
| if (Subtarget.hasPrefixInstrs() && SplatSize == 4) |
| return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, |
| dl); |
| |
| // We have XXSPLTIB for constant splats one byte wide. |
| if (Subtarget.hasP9Vector() && SplatSize == 1) |
| return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, |
| dl); |
| |
| // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. |
| int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> |
| (32-SplatBitSize)); |
| if (SextVal >= -16 && SextVal <= 15) |
| return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, |
| dl); |
| |
| // Two instruction sequences. |
| |
| // If this value is in the range [-32,30] and is even, use: |
| // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) |
| // If this value is in the range [17,31] and is odd, use: |
| // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) |
| // If this value is in the range [-31,-17] and is odd, use: |
| // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) |
| // Note the last two are three-instruction sequences. |
| if (SextVal >= -32 && SextVal <= 31) { |
| // To avoid having these optimizations undone by constant folding, |
| // we convert to a pseudo that will be expanded later into one of |
| // the above forms. |
| SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); |
| EVT VT = (SplatSize == 1 ? MVT::v16i8 : |
| (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); |
| SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); |
| SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); |
| if (VT == Op.getValueType()) |
| return RetVal; |
| else |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); |
| } |
| |
| // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is |
| // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important |
| // for fneg/fabs. |
| if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { |
| // Make -1 and vspltisw -1: |
| SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); |
| |
| // Make the VSLW intrinsic, computing 0x8000_0000. |
| SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, |
| OnesV, DAG, dl); |
| |
| // xor by OnesV to invert it. |
| Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // Check to see if this is a wide variety of vsplti*, binop self cases. |
| static const signed char SplatCsts[] = { |
| -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, |
| -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 |
| }; |
| |
| for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) { |
| // Indirect through the SplatCsts array so that we favor 'vsplti -1' for |
| // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' |
| int i = SplatCsts[idx]; |
| |
| // Figure out what shift amount will be used by altivec if shifted by i in |
| // this splat size. |
| unsigned TypeShiftAmt = i & (SplatBitSize-1); |
| |
| // vsplti + shl self. |
| if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { |
| SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, |
| Intrinsic::ppc_altivec_vslw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // vsplti + srl self. |
| if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { |
| SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, |
| Intrinsic::ppc_altivec_vsrw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // vsplti + rol self. |
| if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | |
| ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { |
| SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); |
| static const unsigned IIDs[] = { // Intrinsic to use for each size. |
| Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, |
| Intrinsic::ppc_altivec_vrlw |
| }; |
| Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); |
| } |
| |
| // t = vsplti c, result = vsldoi t, t, 1 |
| if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { |
| SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); |
| unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; |
| return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); |
| } |
| // t = vsplti c, result = vsldoi t, t, 2 |
| if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { |
| SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); |
| unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; |
| return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); |
| } |
| // t = vsplti c, result = vsldoi t, t, 3 |
| if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { |
| SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); |
| unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; |
| return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VMRGHW, |
| OP_VMRGLW, |
| OP_VSPLTISW0, |
| OP_VSPLTISW1, |
| OP_VSPLTISW2, |
| OP_VSPLTISW3, |
| OP_VSLDOI4, |
| OP_VSLDOI8, |
| OP_VSLDOI12 |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1*9+2)*9+3) return LHS; |
| assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDValue OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| |
| int ShufIdxs[16]; |
| switch (OpNum) { |
| default: llvm_unreachable("Unknown i32 permute!"); |
| case OP_VMRGHW: |
| ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; |
| ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; |
| ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; |
| ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; |
| break; |
| case OP_VMRGLW: |
| ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; |
| ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; |
| ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; |
| ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; |
| break; |
| case OP_VSPLTISW0: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+0; |
| break; |
| case OP_VSPLTISW1: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+4; |
| break; |
| case OP_VSPLTISW2: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+8; |
| break; |
| case OP_VSPLTISW3: |
| for (unsigned i = 0; i != 16; ++i) |
| ShufIdxs[i] = (i&3)+12; |
| break; |
| case OP_VSLDOI4: |
| return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); |
| case OP_VSLDOI8: |
| return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); |
| case OP_VSLDOI12: |
| return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); |
| } |
| EVT VT = OpLHS.getValueType(); |
| OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); |
| OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); |
| SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); |
| return DAG.getNode(ISD::BITCAST, dl, VT, T); |
| } |
| |
| /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled |
| /// by the VINSERTB instruction introduced in ISA 3.0, else just return default |
| /// SDValue. |
| SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, |
| SelectionDAG &DAG) const { |
| const unsigned BytesInVector = 16; |
| bool IsLE = Subtarget.isLittleEndian(); |
| SDLoc dl(N); |
| SDValue V1 = N->getOperand(0); |
| SDValue V2 = N->getOperand(1); |
| unsigned ShiftElts = 0, InsertAtByte = 0; |
| bool Swap = false; |
| |
| // Shifts required to get the byte we want at element 7. |
| unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, |
| 0, 15, 14, 13, 12, 11, 10, 9}; |
| unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, |
| 1, 2, 3, 4, 5, 6, 7, 8}; |
| |
| ArrayRef<int> Mask = N->getMask(); |
| int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; |
| |
| // For each mask element, find out if we're just inserting something |
| // from V2 into V1 or vice versa. |
| // Possible permutations inserting an element from V2 into V1: |
| // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| // ... |
| // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X |
| // Inserting from V1 into V2 will be similar, except mask range will be |
| // [16,31]. |
| |
| bool FoundCandidate = false; |
| // If both vector operands for the shuffle are the same vector, the mask |
| // will contain only elements from the first one and the second one will be |
| // undef. |
| unsigned VINSERTBSrcElem = IsLE ? 8 : 7; |
| // Go through the mask of half-words to find an element that's being moved |
| // from one vector to the other. |
| for (unsigned i = 0; i < BytesInVector; ++i) { |
| unsigned CurrentElement = Mask[i]; |
| // If 2nd operand is undefined, we should only look for element 7 in the |
| // Mask. |
| if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) |
| continue; |
| |
| bool OtherElementsInOrder = true; |
| // Examine the other elements in the Mask to see if they're in original |
| // order. |
| for (unsigned j = 0; j < BytesInVector; ++j) { |
| if (j == i) |
| continue; |
| // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be |
| // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, |
| // in which we always assume we're always picking from the 1st operand. |
| int MaskOffset = |
| (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; |
| if (Mask[j] != OriginalOrder[j] + MaskOffset) { |
| OtherElementsInOrder = false; |
| break; |
| } |
| } |
| // If other elements are in original order, we record the number of shifts |
| // we need to get the element we want into element 7. Also record which byte |
| // in the vector we should insert into. |
| if (OtherElementsInOrder) { |
| // If 2nd operand is undefined, we assume no shifts and no swapping. |
| if (V2.isUndef()) { |
| ShiftElts = 0; |
| Swap = false; |
| } else { |
| // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. |
| ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] |
| : BigEndianShifts[CurrentElement & 0xF]; |
| Swap = CurrentElement < BytesInVector; |
| } |
| InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; |
| FoundCandidate = true; |
| break; |
| } |
| } |
| |
| if (!FoundCandidate) |
| return SDValue(); |
| |
| // Candidate found, construct the proper SDAG sequence with VINSERTB, |
| // optionally with VECSHL if shift is required. |
| if (Swap) |
| std::swap(V1, V2); |
| if (V2.isUndef()) |
| V2 = V1; |
| if (ShiftElts) { |
| SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, |
| DAG.getConstant(ShiftElts, dl, MVT::i32)); |
| return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| } |
| return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| } |
| |
| /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled |
| /// by the VINSERTH instruction introduced in ISA 3.0, else just return default |
| /// SDValue. |
| SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, |
| SelectionDAG &DAG) const { |
| const unsigned NumHalfWords = 8; |
| const unsigned BytesInVector = NumHalfWords * 2; |
| // Check that the shuffle is on half-words. |
| if (!isNByteElemShuffleMask(N, 2, 1)) |
| return SDValue(); |
| |
| bool IsLE = Subtarget.isLittleEndian(); |
| SDLoc dl(N); |
| SDValue V1 = N->getOperand(0); |
| SDValue V2 = N->getOperand(1); |
| unsigned ShiftElts = 0, InsertAtByte = 0; |
| bool Swap = false; |
| |
| // Shifts required to get the half-word we want at element 3. |
| unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; |
| unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; |
| |
| uint32_t Mask = 0; |
| uint32_t OriginalOrderLow = 0x1234567; |
| uint32_t OriginalOrderHigh = 0x89ABCDEF; |
| // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a |
| // 32-bit space, only need 4-bit nibbles per element. |
| for (unsigned i = 0; i < NumHalfWords; ++i) { |
| unsigned MaskShift = (NumHalfWords - 1 - i) * 4; |
| Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); |
| } |
| |
| // For each mask element, find out if we're just inserting something |
| // from V2 into V1 or vice versa. Possible permutations inserting an element |
| // from V2 into V1: |
| // X, 1, 2, 3, 4, 5, 6, 7 |
| // 0, X, 2, 3, 4, 5, 6, 7 |
| // 0, 1, X, 3, 4, 5, 6, 7 |
| // 0, 1, 2, X, 4, 5, 6, 7 |
| // 0, 1, 2, 3, X, 5, 6, 7 |
| // 0, 1, 2, 3, 4, X, 6, 7 |
| // 0, 1, 2, 3, 4, 5, X, 7 |
| // 0, 1, 2, 3, 4, 5, 6, X |
| // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. |
| |
| bool FoundCandidate = false; |
| // Go through the mask of half-words to find an element that's being moved |
| // from one vector to the other. |
| for (unsigned i = 0; i < NumHalfWords; ++i) { |
| unsigned MaskShift = (NumHalfWords - 1 - i) * 4; |
| uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; |
| uint32_t MaskOtherElts = ~(0xF << MaskShift); |
| uint32_t TargetOrder = 0x0; |
| |
| // If both vector operands for the shuffle are the same vector, the mask |
| // will contain only elements from the first one and the second one will be |
| // undef. |
| if (V2.isUndef()) { |
| ShiftElts = 0; |
| unsigned VINSERTHSrcElem = IsLE ? 4 : 3; |
| TargetOrder = OriginalOrderLow; |
| Swap = false; |
| // Skip if not the correct element or mask of other elements don't equal |
| // to our expected order. |
| if (MaskOneElt == VINSERTHSrcElem && |
| (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { |
| InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; |
| FoundCandidate = true; |
| break; |
| } |
| } else { // If both operands are defined. |
| // Target order is [8,15] if the current mask is between [0,7]. |
| TargetOrder = |
| (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; |
| // Skip if mask of other elements don't equal our expected order. |
| if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { |
| // We only need the last 3 bits for the number of shifts. |
| ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] |
| : BigEndianShifts[MaskOneElt & 0x7]; |
| InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; |
| Swap = MaskOneElt < NumHalfWords; |
| FoundCandidate = true; |
| break; |
| } |
| } |
| } |
| |
| if (!FoundCandidate) |
| return SDValue(); |
| |
| // Candidate found, construct the proper SDAG sequence with VINSERTH, |
| // optionally with VECSHL if shift is required. |
| if (Swap) |
| std::swap(V1, V2); |
| if (V2.isUndef()) |
| V2 = V1; |
| SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); |
| if (ShiftElts) { |
| // Double ShiftElts because we're left shifting on v16i8 type. |
| SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, |
| DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); |
| SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); |
| SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); |
| } |
| SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); |
| SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); |
| } |
| |
| /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be |
| /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise |
| /// return the default SDValue. |
| SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG) const { |
| // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles |
| // to v16i8. Peek through the bitcasts to get the actual operands. |
| SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); |
| SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); |
| |
| auto ShuffleMask = SVN->getMask(); |
| SDValue VecShuffle(SVN, 0); |
| SDLoc DL(SVN); |
| |
| // Check that we have a four byte shuffle. |
| if (!isNByteElemShuffleMask(SVN, 4, 1)) |
| return SDValue(); |
| |
| // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. |
| if (RHS->getOpcode() != ISD::BUILD_VECTOR) { |
| std::swap(LHS, RHS); |
| VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN)); |
| ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle); |
| if (!CommutedSV) |
| return SDValue(); |
| ShuffleMask = CommutedSV->getMask(); |
| } |
| |
| // Ensure that the RHS is a vector of constants. |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); |
| if (!BVN) |
| return SDValue(); |
| |
| // Check if RHS is a splat of 4-bytes (or smaller). |
| APInt APSplatValue, APSplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, |
| HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || |
| SplatBitSize > 32) |
| return SDValue(); |
| |
| // Check that the shuffle mask matches the semantics of XXSPLTI32DX. |
| // The instruction splats a constant C into two words of the source vector |
| // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. |
| // Thus we check that the shuffle mask is the equivalent of |
| // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. |
| // Note: the check above of isNByteElemShuffleMask() ensures that the bytes |
| // within each word are consecutive, so we only need to check the first byte. |
| SDValue Index; |
| bool IsLE = Subtarget.isLittleEndian(); |
| if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && |
| (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && |
| ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) |
| Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); |
| else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && |
| (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && |
| ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) |
| Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); |
| else |
| return SDValue(); |
| |
| // If the splat is narrower than 32-bits, we need to get the 32-bit value |
| // for XXSPLTI32DX. |
| unsigned SplatVal = APSplatValue.getZExtValue(); |
| for (; SplatBitSize < 32; SplatBitSize <<= 1) |
| SplatVal |= (SplatVal << SplatBitSize); |
| |
| SDValue SplatNode = DAG.getNode( |
| PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), |
| Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); |
| } |
| |
| /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). |
| /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is |
| /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) |
| /// i.e (or (shl x, C1), (srl x, 128-C1)). |
| SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); |
| assert(Op.getValueType() == MVT::v1i128 && |
| "Only set v1i128 as custom, other type shouldn't reach here!"); |
| SDLoc dl(Op); |
| SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); |
| SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); |
| unsigned SHLAmt = N1.getConstantOperandVal(0); |
| if (SHLAmt % 8 == 0) { |
| std::array<int, 16> Mask; |
| std::iota(Mask.begin(), Mask.end(), 0); |
| std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); |
| if (SDValue Shuffle = |
| DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), |
| DAG.getUNDEF(MVT::v16i8), Mask)) |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); |
| } |
| SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); |
| SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, |
| DAG.getConstant(SHLAmt, dl, MVT::i32)); |
| SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, |
| DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); |
| SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); |
| } |
| |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this |
| /// is a shuffle we can handle in a single instruction, return it. Otherwise, |
| /// return the code it can be lowered into. Worst case, it can always be |
| /// lowered into a vperm. |
| SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| |
| // Any nodes that were combined in the target-independent combiner prior |
| // to vector legalization will not be sent to the target combine. Try to |
| // combine it here. |
| if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { |
| if (!isa<ShuffleVectorSDNode>(NewShuffle)) |
| return NewShuffle; |
| Op = NewShuffle; |
| SVOp = cast<ShuffleVectorSDNode>(Op); |
| V1 = Op.getOperand(0); |
| V2 = Op.getOperand(1); |
| } |
| EVT VT = Op.getValueType(); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| |
| unsigned ShiftElts, InsertAtByte; |
| bool Swap = false; |
| |
| // If this is a load-and-splat, we can do that with a single instruction |
| // in some cases. However if the load has multiple uses, we don't want to |
| // combine it because that will just produce multiple loads. |
| bool IsPermutedLoad = false; |
| const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); |
| if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && |
| (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && |
| InputLoad->hasOneUse()) { |
| bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); |
| int SplatIdx = |
| PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); |
| |
| // The splat index for permuted loads will be in the left half of the vector |
| // which is strictly wider than the loaded value by 8 bytes. So we need to |
| // adjust the splat index to point to the correct address in memory. |
| if (IsPermutedLoad) { |
| assert((isLittleEndian || IsFourByte) && |
| "Unexpected size for permuted load on big endian target"); |
| SplatIdx += IsFourByte ? 2 : 1; |
| assert((SplatIdx < (IsFourByte ? 4 : 2)) && |
| "Splat of a value outside of the loaded memory"); |
| } |
| |
| LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); |
| // For 4-byte load-and-splat, we need Power9. |
| if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { |
| uint64_t Offset = 0; |
| if (IsFourByte) |
| Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; |
| else |
| Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; |
| |
| // If the width of the load is the same as the width of the splat, |
| // loading with an offset would load the wrong memory. |
| if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) |
| Offset = 0; |
| |
| SDValue BasePtr = LD->getBasePtr(); |
| if (Offset != 0) |
| BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), |
| BasePtr, DAG.getIntPtrConstant(Offset, dl)); |
| SDValue Ops[] = { |
| LD->getChain(), // Chain |
| BasePtr, // BasePtr |
| DAG.getValueType(Op.getValueType()) // VT |
| }; |
| SDVTList VTL = |
| DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); |
| SDValue LdSplt = |
| DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, |
| Ops, LD->getMemoryVT(), LD->getMemOperand()); |
| DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); |
| if (LdSplt.getValueType() != SVOp->getValueType(0)) |
| LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); |
| return LdSplt; |
| } |
| } |
| |
| // All v2i64 and v2f64 shuffles are legal |
| if (VT == MVT::v2i64 || VT == MVT::v2f64) |
| return Op; |
| |
| if (Subtarget.hasP9Vector() && |
| PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, |
| isLittleEndian)) { |
| if (Swap) |
| std::swap(V1, V2); |
| SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); |
| SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); |
| if (ShiftElts) { |
| SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, |
| DAG.getConstant(ShiftElts, dl, MVT::i32)); |
| SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); |
| } |
| SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); |
| } |
| |
| if (Subtarget.hasPrefixInstrs()) { |
| SDValue SplatInsertNode; |
| if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) |
| return SplatInsertNode; |
| } |
| |
| if (Subtarget.hasP9Altivec()) { |
| SDValue NewISDNode; |
| if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) |
| return NewISDNode; |
| |
| if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) |
| return NewISDNode; |
| } |
| |
| if (Subtarget.hasVSX() && |
| PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { |
| if (Swap) |
| std::swap(V1, V2); |
| SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); |
| SDValue Conv2 = |
| DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); |
| |
| SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, |
| DAG.getConstant(ShiftElts, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); |
| } |
| |
| if (Subtarget.hasVSX() && |
| PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { |
| if (Swap) |
| std::swap(V1, V2); |
| SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); |
| SDValue Conv2 = |
| DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); |
| |
| SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, |
| DAG.getConstant(ShiftElts, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); |
| } |
| |
| if (Subtarget.hasP9Vector()) { |
| if (PPC::isXXBRHShuffleMask(SVOp)) { |
| SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); |
| SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); |
| } else if (PPC::isXXBRWShuffleMask(SVOp)) { |
| SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); |
| SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); |
| } else if (PPC::isXXBRDShuffleMask(SVOp)) { |
| SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); |
| SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); |
| } else if (PPC::isXXBRQShuffleMask(SVOp)) { |
| SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); |
| SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); |
| } |
| } |
| |
| if (Subtarget.hasVSX()) { |
| if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { |
| int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); |
| |
| SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); |
| SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, |
| DAG.getConstant(SplatIdx, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); |
| } |
| |
| // Left shifts of 8 bytes are actually swaps. Convert accordingly. |
| if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { |
| SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); |
| SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); |
| return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); |
| } |
| } |
| |
| // Cases that are handled by instructions that take permute immediates |
| // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be |
| // selected by the instruction selector. |
| if (V2.isUndef()) { |
| if (PPC::isSplatShuffleMask(SVOp, 1) || |
| PPC::isSplatShuffleMask(SVOp, 2) || |
| PPC::isSplatShuffleMask(SVOp, 4) || |
| PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || |
| PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || |
| PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || |
| PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || |
| PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || |
| PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || |
| PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || |
| PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || |
| PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || |
| (Subtarget.hasP8Altivec() && ( |
| PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || |
| PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || |
| PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { |
| return Op; |
| } |
| } |
| |
| // Altivec has a variety of "shuffle immediates" that take two vector inputs |
| // and produce a fixed permutation. If any of these match, do not lower to |
| // VPERM. |
| unsigned int ShuffleKind = isLittleEndian ? 2 : 0; |
| if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || |
| PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || |
| PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || |
| PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || |
| PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || |
| PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || |
| PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || |
| PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || |
| PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || |
| (Subtarget.hasP8Altivec() && ( |
| PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || |
| PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || |
| PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) |
| return Op; |
| |
| // Check to see if this is a shuffle of 4-byte values. If so, we can use our |
| // perfect shuffle table to emit an optimal matching sequence. |
| ArrayRef<int> PermMask = SVOp->getMask(); |
| |
| if (!DisablePerfectShuffle && !isLittleEndian) { |
| unsigned PFIndexes[4]; |
| bool isFourElementShuffle = true; |
| for (unsigned i = 0; i != 4 && isFourElementShuffle; |
| ++i) { // Element number |
| unsigned EltNo = 8; // Start out undef. |
| for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. |
| if (PermMask[i * 4 + j] < 0) |
| continue; // Undef, ignore it. |
| |
| unsigned ByteSource = PermMask[i * 4 + j]; |
| if ((ByteSource & 3) != j) { |
| isFourElementShuffle = false; |
| break; |
| } |
| |
| if (EltNo == 8) { |
| EltNo = ByteSource / 4; |
| } else if (EltNo != ByteSource / 4) { |
| isFourElementShuffle = false; |
| break; |
| } |
| } |
| PFIndexes[i] = EltNo; |
| } |
| |
| // If this shuffle can be expressed as a shuffle of 4-byte elements, use the |
| // perfect shuffle vector to determine if it is cost effective to do this as |
| // discrete instructions, or whether we should use a vperm. |
| // For now, we skip this for little endian until such time as we have a |
| // little-endian perfect shuffle table. |
| if (isFourElementShuffle) { |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + |
| PFIndexes[2] * 9 + PFIndexes[3]; |
| |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| // Determining when to avoid vperm is tricky. Many things affect the cost |
| // of vperm, particularly how many times the perm mask needs to be |
| // computed. For example, if the perm mask can be hoisted out of a loop or |
| // is already used (perhaps because there are multiple permutes with the |
| // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the |
| // permute mask out of the loop requires an extra register. |
| // |
| // As a compromise, we only emit discrete instructions if the shuffle can |
| // be generated in 3 or fewer operations. When we have loop information |
| // available, if this block is within a loop, we should avoid using vperm |
| // for 3-operation perms and use a constant pool load instead. |
| if (Cost < 3) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| } |
| } |
| |
| // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant |
| // vector that will get spilled to the constant pool. |
| if (V2.isUndef()) V2 = V1; |
| |
| return LowerVPERM(Op, DAG, PermMask, VT, V1, V2); |
| } |
| |
| SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG, |
| ArrayRef<int> PermMask, EVT VT, |
| SDValue V1, SDValue V2) const { |
| unsigned Opcode = PPCISD::VPERM; |
| EVT ValType = V1.getValueType(); |
| SDLoc dl(Op); |
| bool NeedSwap = false; |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| // Only need to place items backwards in LE, |
| // the mask will be properly calculated. |
| if (isLittleEndian) |
| std::swap(V1, V2); |
| |
| if (Subtarget.isISA3_0() && (V1->hasOneUse() || V2->hasOneUse())) { |
| LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using " |
| "XXPERM instead\n"); |
| Opcode = PPCISD::XXPERM; |
| |
| // if V2 is dead, then we swap V1 and V2 so we can |
| // use V2 as the destination instead. |
| if (!V1->hasOneUse() && V2->hasOneUse()) { |
| std::swap(V1, V2); |
| NeedSwap = !NeedSwap; |
| } |
| } |
| |
| // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except |
| // that it is in input element units, not in bytes. Convert now. |
| |
| // For little endian, the order of the input vectors is reversed, and |
| // the permutation mask is complemented with respect to 31. This is |
| // necessary to produce proper semantics with the big-endian-based vperm |
| // instruction. |
| EVT EltVT = V1.getValueType().getVectorElementType(); |
| unsigned BytesPerElement = EltVT.getSizeInBits() / 8; |
| |
| bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; |
| bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; |
| |
| /* |
| Vectors will be appended like so: [ V1 | v2 ] |
| XXSWAPD on V1: |
| [ A | B | C | D ] -> [ C | D | A | B ] |
| 0-3 4-7 8-11 12-15 0-3 4-7 8-11 12-15 |
| i.e. index of A, B += 8, and index of C, D -= 8. |
| XXSWAPD on V2: |
| [ E | F | G | H ] -> [ G | H | E | F ] |
| 16-19 20-23 24-27 28-31 16-19 20-23 24-27 28-31 |
| i.e. index of E, F += 8, index of G, H -= 8 |
| Swap V1 and V2: |
| [ V1 | V2 ] -> [ V2 | V1 ] |
| 0-15 16-31 0-15 16-31 |
| i.e. index of V1 += 16, index of V2 -= 16 |
| */ |
| |
| SmallVector<SDValue, 16> ResultMask; |
| for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { |
| unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; |
| |
| if (Opcode == PPCISD::XXPERM) { |
| if (V1HasXXSWAPD) { |
| if (SrcElt < 8) |
| SrcElt += 8; |
| else if (SrcElt < 16) |
| SrcElt -= 8; |
| } |
| if (V2HasXXSWAPD) { |
| if (SrcElt > 23) |
| SrcElt -= 8; |
| else if (SrcElt > 15) |
| SrcElt += 8; |
| } |
| if (NeedSwap) { |
| if (SrcElt < 16) |
| SrcElt += 16; |
| else |
| SrcElt -= 16; |
| } |
| } |
| |
| for (unsigned j = 0; j != BytesPerElement; ++j) |
| if (isLittleEndian) |
| ResultMask.push_back( |
| DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32)); |
| else |
| ResultMask.push_back( |
| DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32)); |
| } |
| |
| if (Opcode == PPCISD::XXPERM && (V1HasXXSWAPD || V2HasXXSWAPD)) { |
| if (V1HasXXSWAPD) { |
| dl = SDLoc(V1->getOperand(0)); |
| V1 = V1->getOperand(0)->getOperand(1); |
| } |
| if (V2HasXXSWAPD) { |
| dl = SDLoc(V2->getOperand(0)); |
| V2 = V2->getOperand(0)->getOperand(1); |
| } |
| if (isPPC64 && ValType != MVT::v2f64) |
| V1 = DAG.getBitcast(MVT::v2f64, V1); |
| if (isPPC64 && V2.getValueType() != MVT::v2f64) |
| V2 = DAG.getBitcast(MVT::v2f64, V2); |
| } |
| |
| ShufflesHandledWithVPERM++; |
| SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); |
| LLVM_DEBUG({ |
| ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); |
| if (Opcode == PPCISD::XXPERM) { |
| dbgs() << "Emitting a XXPERM for the following shuffle:\n"; |
| } else { |
| dbgs() << "Emitting a VPERM for the following shuffle:\n"; |
| } |
| SVOp->dump(); |
| dbgs() << "With the following permute control vector:\n"; |
| VPermMask.dump(); |
| }); |
| |
| if (Opcode == PPCISD::XXPERM) |
| VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask); |
| |
| SDValue VPERMNode = |
| DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask); |
| |
| VPERMNode = DAG.getBitcast(ValType, VPERMNode); |
| return VPERMNode; |
| } |
| |
| /// getVectorCompareInfo - Given an intrinsic, return false if it is not a |
| /// vector comparison. If it is, return true and fill in Opc/isDot with |
| /// information about the intrinsic. |
| static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, |
| bool &isDot, const PPCSubtarget &Subtarget) { |
| unsigned IntrinsicID = |
| cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); |
| CompareOpc = -1; |
| isDot = false; |
| switch (IntrinsicID) { |
| default: |
| return false; |
| // Comparison predicates. |
| case Intrinsic::ppc_altivec_vcmpbfp_p: |
| CompareOpc = 966; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: |
| CompareOpc = 198; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequb_p: |
| CompareOpc = 6; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequh_p: |
| CompareOpc = 70; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequw_p: |
| CompareOpc = 134; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequd_p: |
| if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { |
| CompareOpc = 199; |
| isDot = true; |
| } else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpneb_p: |
| case Intrinsic::ppc_altivec_vcmpneh_p: |
| case Intrinsic::ppc_altivec_vcmpnew_p: |
| case Intrinsic::ppc_altivec_vcmpnezb_p: |
| case Intrinsic::ppc_altivec_vcmpnezh_p: |
| case Intrinsic::ppc_altivec_vcmpnezw_p: |
| if (Subtarget.hasP9Altivec()) { |
| switch (IntrinsicID) { |
| default: |
| llvm_unreachable("Unknown comparison intrinsic."); |
| case Intrinsic::ppc_altivec_vcmpneb_p: |
| CompareOpc = 7; |
| break; |
| case Intrinsic::ppc_altivec_vcmpneh_p: |
| CompareOpc = 71; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnew_p: |
| CompareOpc = 135; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnezb_p: |
| CompareOpc = 263; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnezh_p: |
| CompareOpc = 327; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnezw_p: |
| CompareOpc = 391; |
| break; |
| } |
| isDot = true; |
| } else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgefp_p: |
| CompareOpc = 454; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: |
| CompareOpc = 710; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: |
| CompareOpc = 774; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: |
| CompareOpc = 838; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: |
| CompareOpc = 902; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsd_p: |
| if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { |
| CompareOpc = 967; |
| isDot = true; |
| } else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtub_p: |
| CompareOpc = 518; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: |
| CompareOpc = 582; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: |
| CompareOpc = 646; |
| isDot = true; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtud_p: |
| if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { |
| CompareOpc = 711; |
| isDot = true; |
| } else |
| return false; |
| break; |
| |
| case Intrinsic::ppc_altivec_vcmpequq: |
| case Intrinsic::ppc_altivec_vcmpgtsq: |
| case Intrinsic::ppc_altivec_vcmpgtuq: |
| if (!Subtarget.isISA3_1()) |
| return false; |
| switch (IntrinsicID) { |
| default: |
| llvm_unreachable("Unknown comparison intrinsic."); |
| case Intrinsic::ppc_altivec_vcmpequq: |
| CompareOpc = 455; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsq: |
| CompareOpc = 903; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtuq: |
| CompareOpc = 647; |
| break; |
| } |
| break; |
| |
| // VSX predicate comparisons use the same infrastructure |
| case Intrinsic::ppc_vsx_xvcmpeqdp_p: |
| case Intrinsic::ppc_vsx_xvcmpgedp_p: |
| case Intrinsic::ppc_vsx_xvcmpgtdp_p: |
| case Intrinsic::ppc_vsx_xvcmpeqsp_p: |
| case Intrinsic::ppc_vsx_xvcmpgesp_p: |
| case Intrinsic::ppc_vsx_xvcmpgtsp_p: |
| if (Subtarget.hasVSX()) { |
| switch (IntrinsicID) { |
| case Intrinsic::ppc_vsx_xvcmpeqdp_p: |
| CompareOpc = 99; |
| break; |
| case Intrinsic::ppc_vsx_xvcmpgedp_p: |
| CompareOpc = 115; |
| break; |
| case Intrinsic::ppc_vsx_xvcmpgtdp_p: |
| CompareOpc = 107; |
| break; |
| case Intrinsic::ppc_vsx_xvcmpeqsp_p: |
| CompareOpc = 67; |
| break; |
| case Intrinsic::ppc_vsx_xvcmpgesp_p: |
| CompareOpc = 83; |
| break; |
| case Intrinsic::ppc_vsx_xvcmpgtsp_p: |
| CompareOpc = 75; |
| break; |
| } |
| isDot = true; |
| } else |
| return false; |
| break; |
| |
| // Normal Comparisons. |
| case Intrinsic::ppc_altivec_vcmpbfp: |
| CompareOpc = 966; |
| break; |
| case Intrinsic::ppc_altivec_vcmpeqfp: |
| CompareOpc = 198; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequb: |
| CompareOpc = 6; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequh: |
| CompareOpc = 70; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequw: |
| CompareOpc = 134; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequd: |
| if (Subtarget.hasP8Altivec()) |
| CompareOpc = 199; |
| else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpneb: |
| case Intrinsic::ppc_altivec_vcmpneh: |
| case Intrinsic::ppc_altivec_vcmpnew: |
| case Intrinsic::ppc_altivec_vcmpnezb: |
| case Intrinsic::ppc_altivec_vcmpnezh: |
| case Intrinsic::ppc_altivec_vcmpnezw: |
| if (Subtarget.hasP9Altivec()) |
| switch (IntrinsicID) { |
| default: |
| llvm_unreachable("Unknown comparison intrinsic."); |
| case Intrinsic::ppc_altivec_vcmpneb: |
| CompareOpc = 7; |
| break; |
| case Intrinsic::ppc_altivec_vcmpneh: |
| CompareOpc = 71; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnew: |
| CompareOpc = 135; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnezb: |
| CompareOpc = 263; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnezh: |
| CompareOpc = 327; |
| break; |
| case Intrinsic::ppc_altivec_vcmpnezw: |
| CompareOpc = 391; |
| break; |
| } |
| else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgefp: |
| CompareOpc = 454; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtfp: |
| CompareOpc = 710; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsb: |
| CompareOpc = 774; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsh: |
| CompareOpc = 838; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsw: |
| CompareOpc = 902; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsd: |
| if (Subtarget.hasP8Altivec()) |
| CompareOpc = 967; |
| else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtub: |
| CompareOpc = 518; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtuh: |
| CompareOpc = 582; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtuw: |
| CompareOpc = 646; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtud: |
| if (Subtarget.hasP8Altivec()) |
| CompareOpc = 711; |
| else |
| return false; |
| break; |
| case Intrinsic::ppc_altivec_vcmpequq_p: |
| case Intrinsic::ppc_altivec_vcmpgtsq_p: |
| case Intrinsic::ppc_altivec_vcmpgtuq_p: |
| if (!Subtarget.isISA3_1()) |
| return false; |
| switch (IntrinsicID) { |
| default: |
| llvm_unreachable("Unknown comparison intrinsic."); |
| case Intrinsic::ppc_altivec_vcmpequq_p: |
| CompareOpc = 455; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtsq_p: |
| CompareOpc = 903; |
| break; |
| case Intrinsic::ppc_altivec_vcmpgtuq_p: |
| CompareOpc = 647; |
| break; |
| } |
| isDot = true; |
| break; |
| } |
| return true; |
| } |
| |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom |
| /// lower, do it, otherwise return null. |
| SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntrinsicID = |
| cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| |
| SDLoc dl(Op); |
| |
| switch (IntrinsicID) { |
| case Intrinsic::thread_pointer: |
| // Reads the thread pointer register, used for __builtin_thread_pointer. |
| if (Subtarget.isPPC64()) |
| return DAG.getRegister(PPC::X13, MVT::i64); |
| return DAG.getRegister(PPC::R2, MVT::i32); |
| |
| case Intrinsic::ppc_mma_disassemble_acc: { |
| if (Subtarget.isISAFuture()) { |
| EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; |
| SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl, |
| ArrayRef(ReturnTypes, 2), |
| Op.getOperand(1)), |
| 0); |
| SmallVector<SDValue, 4> RetOps; |
| SDValue Value = SDValue(WideVec.getNode(), 0); |
| SDValue Value2 = SDValue(WideVec.getNode(), 1); |
| |
| SDValue Extract; |
| Extract = DAG.getNode( |
| PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, |
| Subtarget.isLittleEndian() ? Value2 : Value, |
| DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, |
| dl, getPointerTy(DAG.getDataLayout()))); |
| RetOps.push_back(Extract); |
| Extract = DAG.getNode( |
| PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, |
| Subtarget.isLittleEndian() ? Value2 : Value, |
| DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, |
| dl, getPointerTy(DAG.getDataLayout()))); |
| RetOps.push_back(Extract); |
| Extract = DAG.getNode( |
| PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, |
| Subtarget.isLittleEndian() ? Value : Value2, |
| DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, |
| dl, getPointerTy(DAG.getDataLayout()))); |
| RetOps.push_back(Extract); |
| Extract = DAG.getNode( |
| PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, |
| Subtarget.isLittleEndian() ? Value : Value2, |
| DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, |
| dl, getPointerTy(DAG.getDataLayout()))); |
| RetOps.push_back(Extract); |
| return DAG.getMergeValues(RetOps, dl); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::ppc_vsx_disassemble_pair: { |
| int NumVecs = 2; |
| SDValue WideVec = Op.getOperand(1); |
| if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { |
| NumVecs = 4; |
| WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); |
| } |
| SmallVector<SDValue, 4> RetOps; |
| for (int VecNo = 0; VecNo < NumVecs; VecNo++) { |
| SDValue Extract = DAG.getNode( |
| PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, |
| DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo |
| : VecNo, |
| dl, getPointerTy(DAG.getDataLayout()))); |
| RetOps.push_back(Extract); |
| } |
| return DAG.getMergeValues(RetOps, dl); |
| } |
| |
| case Intrinsic::ppc_unpack_longdouble: { |
| auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && |
| "Argument of long double unpack must be 0 or 1!"); |
| return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), |
| DAG.getConstant(!!(Idx->getSExtValue()), dl, |
| Idx->getValueType(0))); |
| } |
| |
| case Intrinsic::ppc_compare_exp_lt: |
| case Intrinsic::ppc_compare_exp_gt: |
| case Intrinsic::ppc_compare_exp_eq: |
| case Intrinsic::ppc_compare_exp_uo: { |
| unsigned Pred; |
| switch (IntrinsicID) { |
| case Intrinsic::ppc_compare_exp_lt: |
| Pred = PPC::PRED_LT; |
| break; |
| case Intrinsic::ppc_compare_exp_gt: |
| Pred = PPC::PRED_GT; |
| break; |
| case Intrinsic::ppc_compare_exp_eq: |
| Pred = PPC::PRED_EQ; |
| break; |
| case Intrinsic::ppc_compare_exp_uo: |
| Pred = PPC::PRED_UN; |
| break; |
| } |
| return SDValue( |
| DAG.getMachineNode( |
| PPC::SELECT_CC_I4, dl, MVT::i32, |
| {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, |
| Op.getOperand(1), Op.getOperand(2)), |
| 0), |
| DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), |
| DAG.getTargetConstant(Pred, dl, MVT::i32)}), |
| 0); |
| } |
| case Intrinsic::ppc_test_data_class: { |
| EVT OpVT = Op.getOperand(1).getValueType(); |
| unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP |
| : (OpVT == MVT::f64 ? PPC::XSTSTDCDP |
| : PPC::XSTSTDCSP); |
| return SDValue( |
| DAG.getMachineNode( |
| PPC::SELECT_CC_I4, dl, MVT::i32, |
| {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), |
| Op.getOperand(1)), |
| 0), |
| DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), |
| DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), |
| 0); |
| } |
| case Intrinsic::ppc_fnmsub: { |
| EVT VT = Op.getOperand(1).getValueType(); |
| if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) |
| return DAG.getNode( |
| ISD::FNEG, dl, VT, |
| DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), |
| DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); |
| return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| } |
| case Intrinsic::ppc_convert_f128_to_ppcf128: |
| case Intrinsic::ppc_convert_ppcf128_to_f128: { |
| RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 |
| ? RTLIB::CONVERT_PPCF128_F128 |
| : RTLIB::CONVERT_F128_PPCF128; |
| MakeLibCallOptions CallOptions; |
| std::pair<SDValue, SDValue> Result = |
| makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, |
| dl, SDValue()); |
| return Result.first; |
| } |
| case Intrinsic::ppc_maxfe: |
| case Intrinsic::ppc_maxfl: |
| case Intrinsic::ppc_maxfs: |
| case Intrinsic::ppc_minfe: |
| case Intrinsic::ppc_minfl: |
| case Intrinsic::ppc_minfs: { |
| EVT VT = Op.getValueType(); |
| assert( |
| all_of(Op->ops().drop_front(4), |
| [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && |
| "ppc_[max|min]f[e|l|s] must have uniform type arguments"); |
| (void)VT; |
| ISD::CondCode CC = ISD::SETGT; |
| if (IntrinsicID == Intrinsic::ppc_minfe || |
| IntrinsicID == Intrinsic::ppc_minfl || |
| IntrinsicID == Intrinsic::ppc_minfs) |
| CC = ISD::SETLT; |
| unsigned I = Op.getNumOperands() - 2, Cnt = I; |
| SDValue Res = Op.getOperand(I); |
| for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { |
| Res = |
| DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); |
| } |
| return Res; |
| } |
| } |
| |
| // If this is a lowered altivec predicate compare, CompareOpc is set to the |
| // opcode number of the comparison. |
| int CompareOpc; |
| bool isDot; |
| if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) |
| return SDValue(); // Don't custom lower most intrinsics. |
| |
| // If this is a non-dot comparison, make the VCMP node and we are done. |
| if (!isDot) { |
| SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), |
| Op.getOperand(1), Op.getOperand(2), |
| DAG.getConstant(CompareOpc, dl, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); |
| } |
| |
| // Create the PPCISD altivec 'dot' comparison node. |
| SDValue Ops[] = { |
| Op.getOperand(2), // LHS |
| Op.getOperand(3), // RHS |
| DAG.getConstant(CompareOpc, dl, MVT::i32) |
| }; |
| EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; |
| SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); |
| |
| // Now that we have the comparison, emit a copy from the CR to a GPR. |
| // This is flagged to the above dot comparison. |
| SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| CompNode.getValue(1)); |
| |
| // Unpack the result based on how the target uses it. |
| unsigned BitNo; // Bit # of CR6. |
| bool InvertBit; // Invert result? |
| switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Return the value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = false; |
| break; |
| case 1: // Return the inverted value of the EQ bit of CR6. |
| BitNo = 0; InvertBit = true; |
| break; |
| case 2: // Return the value of the LT bit of CR6. |
| BitNo = 2; InvertBit = false; |
| break; |
| case 3: // Return the inverted value of the LT bit of CR6. |
| BitNo = 2; InvertBit = true; |
| break; |
| } |
| |
| // Shift the bit into the low position. |
| Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, |
| DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); |
| // Isolate the bit. |
| Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, |
| DAG.getConstant(1, dl, MVT::i32)); |
| |
| // If we are supposed to, toggle the bit. |
| if (InvertBit) |
| Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, |
| DAG.getConstant(1, dl, MVT::i32)); |
| return Flags; |
| } |
| |
| SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, |
| SelectionDAG &DAG) const { |
| // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to |
| // the beginning of the argument list. |
| int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; |
| SDLoc DL(Op); |
| switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { |
| case Intrinsic::ppc_cfence: { |
| assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); |
| assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); |
| SDValue Val = Op.getOperand(ArgStart + 1); |
| EVT Ty = Val.getValueType(); |
| if (Ty == MVT::i128) { |
| // FIXME: Testing one of two paired registers is sufficient to guarantee |
| // ordering? |
| Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); |
| } |
| return SDValue( |
| DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, |
| DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val), |
| Op.getOperand(0)), |
| 0); |
| } |
| default: |
| break; |
| } |
| return SDValue(); |
| } |
| |
| // Lower scalar BSWAP64 to xxbrd. |
| SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| if (!Subtarget.isPPC64()) |
| return Op; |
| // MTVSRDD |
| Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), |
| Op.getOperand(0)); |
| // XXBRD |
| Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); |
| // MFVSRD |
| int VectorIndex = 0; |
| if (Subtarget.isLittleEndian()) |
| VectorIndex = 1; |
| Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, |
| DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); |
| return Op; |
| } |
| |
| // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be |
| // compared to a value that is atomically loaded (atomic loads zero-extend). |
| SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && |
| "Expecting an atomic compare-and-swap here."); |
| SDLoc dl(Op); |
| auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); |
| EVT MemVT = AtomicNode->getMemoryVT(); |
| if (MemVT.getSizeInBits() >= 32) |
| return Op; |
| |
| SDValue CmpOp = Op.getOperand(2); |
| // If this is already correctly zero-extended, leave it alone. |
| auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); |
| if (DAG.MaskedValueIsZero(CmpOp, HighBits)) |
| return Op; |
| |
| // Clear the high bits of the compare operand. |
| unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; |
| SDValue NewCmpOp = |
| DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, |
| DAG.getConstant(MaskVal, dl, MVT::i32)); |
| |
| // Replace the existing compare operand with the properly zero-extended one. |
| SmallVector<SDValue, 4> Ops; |
| for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) |
| Ops.push_back(AtomicNode->getOperand(i)); |
| Ops[2] = NewCmpOp; |
| MachineMemOperand *MMO = AtomicNode->getMemOperand(); |
| SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); |
| auto NodeTy = |
| (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; |
| return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); |
| } |
| |
| SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode()); |
| EVT MemVT = N->getMemoryVT(); |
| assert(MemVT.getSimpleVT() == MVT::i128 && |
| "Expect quadword atomic operations"); |
| SDLoc dl(N); |
| unsigned Opc = N->getOpcode(); |
| switch (Opc) { |
| case ISD::ATOMIC_LOAD: { |
| // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be |
| // lowered to ppc instructions by pattern matching instruction selector. |
| SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); |
| SmallVector<SDValue, 4> Ops{ |
| N->getOperand(0), |
| DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; |
| for (int I = 1, E = N->getNumOperands(); I < E; ++I) |
| Ops.push_back(N->getOperand(I)); |
| SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, |
| Ops, MemVT, N->getMemOperand()); |
| SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); |
| SDValue ValHi = |
| DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); |
| ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, |
| DAG.getConstant(64, dl, MVT::i32)); |
| SDValue Val = |
| DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, |
| {Val, LoadedVal.getValue(2)}); |
| } |
| case ISD::ATOMIC_STORE: { |
| // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be |
| // lowered to ppc instructions by pattern matching instruction selector. |
| SDVTList Tys = DAG.getVTList(MVT::Other); |
| SmallVector<SDValue, 4> Ops{ |
| N->getOperand(0), |
| DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; |
| SDValue Val = N->getOperand(2); |
| SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); |
| SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, |
| DAG.getConstant(64, dl, MVT::i32)); |
| ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); |
| Ops.push_back(ValLo); |
| Ops.push_back(ValHi); |
| Ops.push_back(N->getOperand(1)); |
| return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, |
| N->getMemOperand()); |
| } |
| default: |
| llvm_unreachable("Unexpected atomic opcode"); |
| } |
| } |
| |
| SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| // Create a stack slot that is 16-byte aligned. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| int FrameIdx = MFI.CreateStackObject(16, Align(16), false); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); |
| |
| // Store the input value into Value#0 of the stack slot. |
| SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, |
| MachinePointerInfo()); |
| // Load it out. |
| return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); |
| } |
| |
| SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && |
| "Should only be called for ISD::INSERT_VECTOR_ELT"); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| |
| if (VT == MVT::v2f64 && C) |
| return Op; |
| |
| if (Subtarget.hasP9Vector()) { |
| // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way |
| // because on P10, it allows this specific insert_vector_elt load pattern to |
| // utilize the refactored load and store infrastructure in order to exploit |
| // prefixed loads. |
| // On targets with inexpensive direct moves (Power9 and up), a |
| // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer |
| // load since a single precision load will involve conversion to double |
| // precision on the load followed by another conversion to single precision. |
| if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && |
| (isa<LoadSDNode>(V2))) { |
| SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); |
| SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); |
| SDValue InsVecElt = |
| DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, |
| BitcastLoad, Op.getOperand(2)); |
| return DAG.getBitcast(MVT::v4f32, InsVecElt); |
| } |
| } |
| |
| if (Subtarget.isISA3_1()) { |
| if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) |
| return SDValue(); |
| // On P10, we have legal lowering for constant and variable indices for |
| // all vectors. |
| if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || |
| VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) |
| return Op; |
| } |
| |
| // Before P10, we have legal lowering for constant indices but not for |
| // variable ones. |
| if (!C) |
| return SDValue(); |
| |
| // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. |
| if (VT == MVT::v8i16 || VT == MVT::v16i8) { |
| SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); |
| unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; |
| unsigned InsertAtElement = C->getZExtValue(); |
| unsigned InsertAtByte = InsertAtElement * BytesInEachElement; |
| if (Subtarget.isLittleEndian()) { |
| InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; |
| } |
| return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, |
| DAG.getConstant(InsertAtByte, dl, MVT::i32)); |
| } |
| return Op; |
| } |
| |
| SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); |
| SDValue LoadChain = LN->getChain(); |
| SDValue BasePtr = LN->getBasePtr(); |
| EVT VT = Op.getValueType(); |
| |
| if (VT != MVT::v256i1 && VT != MVT::v512i1) |
| return Op; |
| |
| // Type v256i1 is used for pairs and v512i1 is used for accumulators. |
| // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in |
| // 2 or 4 vsx registers. |
| assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && |
| "Type unsupported without MMA"); |
| assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && |
| "Type unsupported without paired vector support"); |
| Align Alignment = LN->getAlign(); |
| SmallVector<SDValue, 4> Loads; |
| SmallVector<SDValue, 4> LoadChains; |
| unsigned NumVecs = VT.getSizeInBits() / 128; |
| for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { |
| SDValue Load = |
| DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, |
| LN->getPointerInfo().getWithOffset(Idx * 16), |
| commonAlignment(Alignment, Idx * 16), |
| LN->getMemOperand()->getFlags(), LN->getAAInfo()); |
| BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, |
| DAG.getConstant(16, dl, BasePtr.getValueType())); |
| Loads.push_back(Load); |
| LoadChains.push_back(Load.getValue(1)); |
| } |
| if (Subtarget.isLittleEndian()) { |
| std::reverse(Loads.begin(), Loads.end()); |
| std::reverse(LoadChains.begin(), LoadChains.end()); |
| } |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); |
| SDValue Value = |
| DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, |
| dl, VT, Loads); |
| SDValue RetOps[] = {Value, TF}; |
| return DAG.getMergeValues(RetOps, dl); |
| } |
| |
| SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); |
| SDValue StoreChain = SN->getChain(); |
| SDValue BasePtr = SN->getBasePtr(); |
| SDValue Value = SN->getValue(); |
| SDValue Value2 = SN->getValue(); |
| EVT StoreVT = Value.getValueType(); |
| |
| if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) |
| return Op; |
| |
| // Type v256i1 is used for pairs and v512i1 is used for accumulators. |
| // Here we create 2 or 4 v16i8 stores to store the pair or accumulator |
| // underlying registers individually. |
| assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && |
| "Type unsupported without MMA"); |
| assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && |
| "Type unsupported without paired vector support"); |
| Align Alignment = SN->getAlign(); |
| SmallVector<SDValue, 4> Stores; |
| unsigned NumVecs = 2; |
| if (StoreVT == MVT::v512i1) { |
| if (Subtarget.isISAFuture()) { |
| EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; |
| MachineSDNode *ExtNode = DAG.getMachineNode( |
| PPC::DMXXEXTFDMR512, dl, ArrayRef(ReturnTypes, 2), Op.getOperand(1)); |
| |
| Value = SDValue(ExtNode, 0); |
| Value2 = SDValue(ExtNode, 1); |
| } else |
| Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); |
| NumVecs = 4; |
| } |
| for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { |
| unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; |
| SDValue Elt; |
| if (Subtarget.isISAFuture()) { |
| VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2); |
| Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, |
| Idx > 1 ? Value2 : Value, |
| DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); |
| } else |
| Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, |
| DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); |
| |
| SDValue Store = |
| DAG.getStore(StoreChain, dl, Elt, BasePtr, |
| SN->getPointerInfo().getWithOffset(Idx * 16), |
| commonAlignment(Alignment, Idx * 16), |
| SN->getMemOperand()->getFlags(), SN->getAAInfo()); |
| BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, |
| DAG.getConstant(16, dl, BasePtr.getValueType())); |
| Stores.push_back(Store); |
| } |
| SDValue TF = DAG.getTokenFactor(dl, Stores); |
| return TF; |
| } |
| |
| SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| if (Op.getValueType() == MVT::v4i32) { |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| |
| SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); |
| // +16 as shift amt. |
| SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); |
| SDValue RHSSwap = // = vrlw RHS, 16 |
| BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); |
| |
| // Shrinkify inputs to v8i16. |
| LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); |
| RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); |
| RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); |
| |
| // Low parts multiplied together, generating 32-bit results (we ignore the |
| // top parts). |
| SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, |
| LHS, RHS, DAG, dl, MVT::v4i32); |
| |
| SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, |
| LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); |
| // Shift the high parts up 16 bits. |
| HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, |
| Neg16, DAG, dl); |
| return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); |
| } else if (Op.getValueType() == MVT::v16i8) { |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| |
| // Multiply the even 8-bit parts, producing 16-bit sums. |
| SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, |
| LHS, RHS, DAG, dl, MVT::v8i16); |
| EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); |
| |
| // Multiply the odd 8-bit parts, producing 16-bit sums. |
| SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, |
| LHS, RHS, DAG, dl, MVT::v8i16); |
| OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); |
| |
| // Merge the results together. Because vmuleub and vmuloub are |
| // instructions with a big-endian bias, we must reverse the |
| // element numbering and reverse the meaning of "odd" and "even" |
| // when generating little endian code. |
| int Ops[16]; |
| for (unsigned i = 0; i != 8; ++i) { |
| if (isLittleEndian) { |
| Ops[i*2 ] = 2*i; |
| Ops[i*2+1] = 2*i+16; |
| } else { |
| Ops[i*2 ] = 2*i+1; |
| Ops[i*2+1] = 2*i+1+16; |
| } |
| } |
| if (isLittleEndian) |
| return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); |
| else |
| return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); |
| } else { |
| llvm_unreachable("Unknown mul to lower!"); |
| } |
| } |
| |
| SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
| bool IsStrict = Op->isStrictFPOpcode(); |
| if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && |
| !Subtarget.hasP9Vector()) |
| return SDValue(); |
| |
| return Op; |
| } |
| |
| // Custom lowering for fpext vf32 to v2f64 |
| SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { |
| |
| assert(Op.getOpcode() == ISD::FP_EXTEND && |
| "Should only be called for ISD::FP_EXTEND"); |
| |
| // FIXME: handle extends from half precision float vectors on P9. |
| // We only want to custom lower an extend from v2f32 to v2f64. |
| if (Op.getValueType() != MVT::v2f64 || |
| Op.getOperand(0).getValueType() != MVT::v2f32) |
| return SDValue(); |
| |
| SDLoc dl(Op); |
| SDValue Op0 = Op.getOperand(0); |
| |
| switch (Op0.getOpcode()) { |
| default: |
| return SDValue(); |
| case ISD::EXTRACT_SUBVECTOR: { |
| assert(Op0.getNumOperands() == 2 && |
| isa<ConstantSDNode>(Op0->getOperand(1)) && |
| "Node should have 2 operands with second one being a constant!"); |
| |
| if (Op0.getOperand(0).getValueType() != MVT::v4f32) |
| return SDValue(); |
| |
| // Custom lower is only done for high or low doubleword. |
| int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); |
| if (Idx % 2 != 0) |
| return SDValue(); |
| |
| // Since input is v4f32, at this point Idx is either 0 or 2. |
| // Shift to get the doubleword position we want. |
| int DWord = Idx >> 1; |
| |
| // High and low word positions are different on little endian. |
| if (Subtarget.isLittleEndian()) |
| DWord ^= 0x1; |
| |
| return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, |
| Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); |
| } |
| case ISD::FADD: |
| case ISD::FMUL: |
| case ISD::FSUB: { |
| SDValue NewLoad[2]; |
| for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { |
| // Ensure both input are loads. |
| SDValue LdOp = Op0.getOperand(i); |
| if (LdOp.getOpcode() != ISD::LOAD) |
| return SDValue(); |
| // Generate new load node. |
| LoadSDNode *LD = cast<LoadSDNode>(LdOp); |
| SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; |
| NewLoad[i] = DAG.getMemIntrinsicNode( |
| PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, |
| LD->getMemoryVT(), LD->getMemOperand()); |
| } |
| SDValue NewOp = |
| DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], |
| NewLoad[1], Op0.getNode()->getFlags()); |
| return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, |
| DAG.getConstant(0, dl, MVT::i32)); |
| } |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(Op0); |
| SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; |
| SDValue NewLd = DAG.getMemIntrinsicNode( |
| PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, |
| LD->getMemoryVT(), LD->getMemOperand()); |
| return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, |
| DAG.getConstant(0, dl, MVT::i32)); |
| } |
| } |
| llvm_unreachable("ERROR:Should return for all cases within swtich."); |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Wasn't expecting to be able to lower this!"); |
| case ISD::FPOW: return lowerPow(Op, DAG); |
| case ISD::FSIN: return lowerSin(Op, DAG); |
| case ISD::FCOS: return lowerCos(Op, DAG); |
| case ISD::FLOG: return lowerLog(Op, DAG); |
| case ISD::FLOG10: return lowerLog10(Op, DAG); |
| case ISD::FEXP: return lowerExp(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::STRICT_FSETCC: |
| case ISD::STRICT_FSETCCS: |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); |
| case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); |
| |
| case ISD::INLINEASM: |
| case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); |
| // Variable argument lowering. |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::VAARG: return LowerVAARG(Op, DAG); |
| case ISD::VACOPY: return LowerVACOPY(Op, DAG); |
| |
| case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::GET_DYNAMIC_AREA_OFFSET: |
| return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); |
| |
| // Exception handling lowering. |
| case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); |
| case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); |
| case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); |
| |
| case ISD::LOAD: return LowerLOAD(Op, DAG); |
| case ISD::STORE: return LowerSTORE(Op, DAG); |
| case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::STRICT_FP_TO_UINT: |
| case ISD::STRICT_FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); |
| case ISD::STRICT_UINT_TO_FP: |
| case ISD::STRICT_SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); |
| case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); |
| |
| // Lower 64-bit shifts. |
| case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); |
| case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); |
| case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); |
| |
| case ISD::FSHL: return LowerFunnelShift(Op, DAG); |
| case ISD::FSHR: return LowerFunnelShift(Op, DAG); |
| |
| // Vector-related lowering. |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, DAG); |
| case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); |
| case ISD::STRICT_FP_ROUND: |
| case ISD::FP_ROUND: |
| return LowerFP_ROUND(Op, DAG); |
| case ISD::ROTL: return LowerROTL(Op, DAG); |
| |
| // For counter-based loop handling. |
| case ISD::INTRINSIC_W_CHAIN: return SDValue(); |
| |
| case ISD::BITCAST: return LowerBITCAST(Op, DAG); |
| |
| // Frame & Return address. |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| |
| case ISD::INTRINSIC_VOID: |
| return LowerINTRINSIC_VOID(Op, DAG); |
| case ISD::BSWAP: |
| return LowerBSWAP(Op, DAG); |
| case ISD::ATOMIC_CMP_SWAP: |
| return LowerATOMIC_CMP_SWAP(Op, DAG); |
| case ISD::ATOMIC_STORE: |
| return LowerATOMIC_LOAD_STORE(Op, DAG); |
| } |
| } |
| |
| void PPCTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const { |
| SDLoc dl(N); |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Do not know how to custom type legalize this operation!"); |
| case ISD::ATOMIC_LOAD: { |
| SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); |
| Results.push_back(Res); |
| Results.push_back(Res.getValue(1)); |
| break; |
| } |
| case ISD::READCYCLECOUNTER: { |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); |
| SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); |
| |
| Results.push_back( |
| DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); |
| Results.push_back(RTB.getValue(2)); |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != |
| Intrinsic::loop_decrement) |
| break; |
| |
| assert(N->getValueType(0) == MVT::i1 && |
| "Unexpected result type for CTR decrement intrinsic"); |
| EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), |
| N->getValueType(0)); |
| SDVTList VTs = DAG.getVTList(SVT, MVT::Other); |
| SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), |
| N->getOperand(1)); |
| |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); |
| Results.push_back(NewInt.getValue(1)); |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { |
| case Intrinsic::ppc_pack_longdouble: |
| Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, |
| N->getOperand(2), N->getOperand(1))); |
| break; |
| case Intrinsic::ppc_maxfe: |
| case Intrinsic::ppc_minfe: |
| case Intrinsic::ppc_fnmsub: |
| case Intrinsic::ppc_convert_f128_to_ppcf128: |
| Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); |
| break; |
| } |
| break; |
| } |
| case ISD::VAARG: { |
| if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) |
| return; |
| |
| EVT VT = N->getValueType(0); |
| |
| if (VT == MVT::i64) { |
| SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); |
| |
| Results.push_back(NewNode); |
| Results.push_back(NewNode.getValue(1)); |
| } |
| return; |
| } |
| case ISD::STRICT_FP_TO_SINT: |
| case ISD::STRICT_FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: { |
| // LowerFP_TO_INT() can only handle f32 and f64. |
| if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == |
| MVT::ppcf128) |
| return; |
| SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); |
| Results.push_back(LoweredValue); |
| if (N->isStrictFPOpcode()) |
| Results.push_back(LoweredValue.getValue(1)); |
| return; |
| } |
| case ISD::TRUNCATE: { |
| if (!N->getValueType(0).isVector()) |
| return; |
| SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); |
| if (Lowered) |
| Results.push_back(Lowered); |
| return; |
| } |
| case ISD::FSHL: |
| case ISD::FSHR: |
| // Don't handle funnel shifts here. |
| return; |
| case ISD::BITCAST: |
| // Don't handle bitcast here. |
| return; |
| case ISD::FP_EXTEND: |
| SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); |
| if (Lowered) |
| Results.push_back(Lowered); |
| return; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *Func = Intrinsic::getDeclaration(M, Id); |
| return Builder.CreateCall(Func, {}); |
| } |
| |
| // The mappings for emitLeading/TrailingFence is taken from |
| // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html |
| Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (Ord == AtomicOrdering::SequentiallyConsistent) |
| return callIntrinsic(Builder, Intrinsic::ppc_sync); |
| if (isReleaseOrStronger(Ord)) |
| return callIntrinsic(Builder, Intrinsic::ppc_lwsync); |
| return nullptr; |
| } |
| |
| Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { |
| // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and |
| // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html |
| // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. |
| if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) |
| return Builder.CreateCall( |
| Intrinsic::getDeclaration( |
| Builder.GetInsertBlock()->getParent()->getParent(), |
| Intrinsic::ppc_cfence, {Inst->getType()}), |
| {Inst}); |
| // FIXME: Can use isync for rmw operation. |
| return callIntrinsic(Builder, Intrinsic::ppc_lwsync); |
| } |
| return nullptr; |
| } |
| |
| MachineBasicBlock * |
| PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, |
| unsigned AtomicSize, |
| unsigned BinOpcode, |
| unsigned CmpOpcode, |
| unsigned CmpPred) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| auto LoadMnemonic = PPC::LDARX; |
| auto StoreMnemonic = PPC::STDCX; |
| switch (AtomicSize) { |
| default: |
| llvm_unreachable("Unexpected size of atomic entity"); |
| case 1: |
| LoadMnemonic = PPC::LBARX; |
| StoreMnemonic = PPC::STBCX; |
| assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); |
| break; |
| case 2: |
| LoadMnemonic = PPC::LHARX; |
| StoreMnemonic = PPC::STHCX; |
| assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); |
| break; |
| case 4: |
| LoadMnemonic = PPC::LWARX; |
| StoreMnemonic = PPC::STWCX; |
| break; |
| case 8: |
| LoadMnemonic = PPC::LDARX; |
| StoreMnemonic = PPC::STDCX; |
| break; |
| } |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *F = BB->getParent(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| Register dest = MI.getOperand(0).getReg(); |
| Register ptrA = MI.getOperand(1).getReg(); |
| Register ptrB = MI.getOperand(2).getReg(); |
| Register incr = MI.getOperand(3).getReg(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = |
| CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loopMBB); |
| if (CmpOpcode) |
| F->insert(It, loop2MBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register TmpReg = (!BinOpcode) ? incr : |
| RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass |
| : &PPC::GPRCRegClass); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // l[wd]arx dest, ptr |
| // add r0, dest, incr |
| // st[wd]cx. r0, ptr |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| |
| // For max/min... |
| // loopMBB: |
| // l[wd]arx dest, ptr |
| // cmpl?[wd] dest, incr |
| // bgt exitMBB |
| // loop2MBB: |
| // st[wd]cx. dest, ptr |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(LoadMnemonic), dest) |
| .addReg(ptrA).addReg(ptrB); |
| if (BinOpcode) |
| BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); |
| if (CmpOpcode) { |
| Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); |
| // Signed comparisons of byte or halfword values must be sign-extended. |
| if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { |
| Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); |
| BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), |
| ExtReg).addReg(dest); |
| BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr); |
| } else |
| BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr); |
| |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(CmpPred) |
| .addReg(CrReg) |
| .addMBB(exitMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| BB = loop2MBB; |
| } |
| BuildMI(BB, dl, TII->get(StoreMnemonic)) |
| .addReg(TmpReg).addReg(ptrA).addReg(ptrB); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| return BB; |
| } |
| |
| static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { |
| switch(MI.getOpcode()) { |
| default: |
| return false; |
| case PPC::COPY: |
| return TII->isSignExtended(MI.getOperand(1).getReg(), |
| &MI.getMF()->getRegInfo()); |
| case PPC::LHA: |
| case PPC::LHA8: |
| case PPC::LHAU: |
| case PPC::LHAU8: |
| case PPC::LHAUX: |
| case PPC::LHAUX8: |
| case PPC::LHAX: |
| case PPC::LHAX8: |
| case PPC::LWA: |
| case PPC::LWAUX: |
| case PPC::LWAX: |
| case PPC::LWAX_32: |
| case PPC::LWA_32: |
| case PPC::PLHA: |
| case PPC::PLHA8: |
| case PPC::PLHA8pc: |
| case PPC::PLHApc: |
| case PPC::PLWA: |
| case PPC::PLWA8: |
| case PPC::PLWA8pc: |
| case PPC::PLWApc: |
| case PPC::EXTSB: |
| case PPC::EXTSB8: |
| case PPC::EXTSB8_32_64: |
| case PPC::EXTSB8_rec: |
| case PPC::EXTSB_rec: |
| case PPC::EXTSH: |
| case PPC::EXTSH8: |
| case PPC::EXTSH8_32_64: |
| case PPC::EXTSH8_rec: |
| case PPC::EXTSH_rec: |
| case PPC::EXTSW: |
| case PPC::EXTSWSLI: |
| case PPC::EXTSWSLI_32_64: |
| case PPC::EXTSWSLI_32_64_rec: |
| case PPC::EXTSWSLI_rec: |
| case PPC::EXTSW_32: |
| case PPC::EXTSW_32_64: |
| case PPC::EXTSW_32_64_rec: |
| case PPC::EXTSW_rec: |
| case PPC::SRAW: |
| case PPC::SRAWI: |
| case PPC::SRAWI_rec: |
| case PPC::SRAW_rec: |
| return true; |
| } |
| return false; |
| } |
| |
| MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( |
| MachineInstr &MI, MachineBasicBlock *BB, |
| bool is8bit, // operation |
| unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const PPCInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| // If this is a signed comparison and the value being compared is not known |
| // to be sign extended, sign extend it here. |
| DebugLoc dl = MI.getDebugLoc(); |
| MachineFunction *F = BB->getParent(); |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register incr = MI.getOperand(3).getReg(); |
| bool IsSignExtended = |
| incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII); |
| |
| if (CmpOpcode == PPC::CMPW && !IsSignExtended) { |
| Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); |
| BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) |
| .addReg(MI.getOperand(3).getReg()); |
| MI.getOperand(3).setReg(ValueReg); |
| } |
| // If we support part-word atomic mnemonics, just use them |
| if (Subtarget.hasPartwordAtomics()) |
| return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, |
| CmpPred); |
| |
| // In 64 bit mode we have to use 64 bits for addresses, even though the |
| // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address |
| // registers without caring whether they're 32 or 64, but here we're |
| // doing actual arithmetic on the addresses. |
| bool is64bit = Subtarget.isPPC64(); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| Register dest = MI.getOperand(0).getReg(); |
| Register ptrA = MI.getOperand(1).getReg(); |
| Register ptrB = MI.getOperand(2).getReg(); |
| |
| MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = |
| CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loopMBB); |
| if (CmpOpcode) |
| F->insert(It, loop2MBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| const TargetRegisterClass *RC = |
| is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; |
| |
| Register PtrReg = RegInfo.createVirtualRegister(RC); |
| Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); |
| Register ShiftReg = |
| isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); |
| Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register MaskReg = RegInfo.createVirtualRegister(GPRC); |
| Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); |
| Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); |
| Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); |
| Register Ptr1Reg; |
| Register TmpReg = |
| (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // The 4-byte load must be aligned, while a char or short may be |
| // anywhere in the word. Hence all this nasty bookkeeping code. |
| // add ptr1, ptrA, ptrB [copy if ptrA==0] |
| // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] |
| // xori shift, shift1, 24 [16] |
| // rlwinm ptr, ptr1, 0, 0, 29 |
| // slw incr2, incr, shift |
| // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] |
| // slw mask, mask2, shift |
| // loopMBB: |
| // lwarx tmpDest, ptr |
| // add tmp, tmpDest, incr2 |
| // andc tmp2, tmpDest, mask |
| // and tmp3, tmp, mask |
| // or tmp4, tmp3, tmp2 |
| // stwcx. tmp4, ptr |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| // srw SrwDest, tmpDest, shift |
| // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 |
| if (ptrA != ZeroReg) { |
| Ptr1Reg = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) |
| .addReg(ptrA) |
| .addReg(ptrB); |
| } else { |
| Ptr1Reg = ptrB; |
| } |
| // We need use 32-bit subregister to avoid mismatch register class in 64-bit |
| // mode. |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) |
| .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) |
| .addImm(3) |
| .addImm(27) |
| .addImm(is8bit ? 28 : 27); |
| if (!isLittleEndian) |
| BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) |
| .addReg(Shift1Reg) |
| .addImm(is8bit ? 24 : 16); |
| if (is64bit) |
| BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) |
| .addReg(Ptr1Reg) |
| .addImm(0) |
| .addImm(61); |
| else |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) |
| .addReg(Ptr1Reg) |
| .addImm(0) |
| .addImm(0) |
| .addImm(29); |
| BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); |
| if (is8bit) |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); |
| else { |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); |
| BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) |
| .addReg(Mask3Reg) |
| .addImm(65535); |
| } |
| BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) |
| .addReg(Mask2Reg) |
| .addReg(ShiftReg); |
| |
| BB = loopMBB; |
| BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) |
| .addReg(ZeroReg) |
| .addReg(PtrReg); |
| if (BinOpcode) |
| BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) |
| .addReg(Incr2Reg) |
| .addReg(TmpDestReg); |
| BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) |
| .addReg(TmpDestReg) |
| .addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); |
| if (CmpOpcode) { |
| // For unsigned comparisons, we can directly compare the shifted values. |
| // For signed comparisons we shift and sign extend. |
| Register SReg = RegInfo.createVirtualRegister(GPRC); |
| Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); |
| BuildMI(BB, dl, TII->get(PPC::AND), SReg) |
| .addReg(TmpDestReg) |
| .addReg(MaskReg); |
| unsigned ValueReg = SReg; |
| unsigned CmpReg = Incr2Reg; |
| if (CmpOpcode == PPC::CMPW) { |
| ValueReg = RegInfo.createVirtualRegister(GPRC); |
| BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) |
| .addReg(SReg) |
| .addReg(ShiftReg); |
| Register ValueSReg = RegInfo.createVirtualRegister(GPRC); |
| BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) |
| .addReg(ValueReg); |
| ValueReg = ValueSReg; |
| CmpReg = incr; |
| } |
| BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(CmpPred) |
| .addReg(CrReg) |
| .addMBB(exitMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| BB = loop2MBB; |
| } |
| BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); |
| BuildMI(BB, dl, TII->get(PPC::STWCX)) |
| .addReg(Tmp4Reg) |
| .addReg(ZeroReg) |
| .addReg(PtrReg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE) |
| .addReg(PPC::CR0) |
| .addMBB(loopMBB); |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| // Since the shift amount is not a constant, we need to clear |
| // the upper bits with a separate RLWINM. |
| BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) |
| .addReg(SrwDestReg) |
| .addImm(0) |
| .addImm(is8bit ? 24 : 16) |
| .addImm(31); |
| BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) |
| .addReg(TmpDestReg) |
| .addReg(ShiftReg); |
| return BB; |
| } |
| |
| llvm::MachineBasicBlock * |
| PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| MachineFunction::iterator I = ++MBB->getIterator(); |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| const TargetRegisterClass *RC = MRI.getRegClass(DstReg); |
| assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); |
| Register mainDstReg = MRI.createVirtualRegister(RC); |
| Register restoreDstReg = MRI.createVirtualRegister(RC); |
| |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && |
| "Invalid Pointer Size!"); |
| // For v = setjmp(buf), we generate |
| // |
| // thisMBB: |
| // SjLjSetup mainMBB |
| // bl mainMBB |
| // v_restore = 1 |
| // b sinkMBB |
| // |
| // mainMBB: |
| // buf[LabelOffset] = LR |
| // v_main = 0 |
| // |
| // sinkMBB: |
| // v = phi(main, restore) |
| // |
| |
| MachineBasicBlock *thisMBB = MBB; |
| MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); |
| MF->insert(I, mainMBB); |
| MF->insert(I, sinkMBB); |
| |
| MachineInstrBuilder MIB; |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // Note that the structure of the jmp_buf used here is not compatible |
| // with that used by libc, and is not designed to be. Specifically, it |
| // stores only those 'reserved' registers that LLVM does not otherwise |
| // understand how to spill. Also, by convention, by the time this |
| // intrinsic is called, Clang has already stored the frame address in the |
| // first slot of the buffer and stack address in the third. Following the |
| // X86 target code, we'll store the jump address in the second slot. We also |
| // need to save the TOC pointer (R2) to handle jumps between shared |
| // libraries, and that will be stored in the fourth slot. The thread |
| // identifier (R13) is not affected. |
| |
| // thisMBB: |
| const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| const int64_t TOCOffset = 3 * PVT.getStoreSize(); |
| const int64_t BPOffset = 4 * PVT.getStoreSize(); |
| |
| // Prepare IP either in reg. |
| const TargetRegisterClass *PtrRC = getRegClassFor(PVT); |
| Register LabelReg = MRI.createVirtualRegister(PtrRC); |
| Register BufReg = MI.getOperand(1).getReg(); |
| |
| if (Subtarget.is64BitELFABI()) { |
| setUsesTOCBasePtr(*MBB->getParent()); |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) |
| .addReg(PPC::X2) |
| .addImm(TOCOffset) |
| .addReg(BufReg) |
| .cloneMemRefs(MI); |
| } |
| |
| // Naked functions never have a base pointer, and so we use r1. For all |
| // other functions, this decision must be delayed until during PEI. |
| unsigned BaseReg; |
| if (MF->getFunction().hasFnAttribute(Attribute::Naked)) |
| BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; |
| else |
| BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; |
| |
| MIB = BuildMI(*thisMBB, MI, DL, |
| TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) |
| .addReg(BaseReg) |
| .addImm(BPOffset) |
| .addReg(BufReg) |
| .cloneMemRefs(MI); |
| |
| // Setup |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); |
| MIB.addRegMask(TRI->getNoPreservedMask()); |
| |
| BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); |
| |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) |
| .addMBB(mainMBB); |
| MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); |
| |
| thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); |
| thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); |
| |
| // mainMBB: |
| // mainDstReg = 0 |
| MIB = |
| BuildMI(mainMBB, DL, |
| TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); |
| |
| // Store IP |
| if (Subtarget.isPPC64()) { |
| MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) |
| .addReg(LabelReg) |
| .addImm(LabelOffset) |
| .addReg(BufReg); |
| } else { |
| MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) |
| .addReg(LabelReg) |
| .addImm(LabelOffset) |
| .addReg(BufReg); |
| } |
| MIB.cloneMemRefs(MI); |
| |
| BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); |
| mainMBB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| BuildMI(*sinkMBB, sinkMBB->begin(), DL, |
| TII->get(PPC::PHI), DstReg) |
| .addReg(mainDstReg).addMBB(mainMBB) |
| .addReg(restoreDstReg).addMBB(thisMBB); |
| |
| MI.eraseFromParent(); |
| return sinkMBB; |
| } |
| |
| MachineBasicBlock * |
| PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| DebugLoc DL = MI.getDebugLoc(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| MachineFunction *MF = MBB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| MVT PVT = getPointerTy(MF->getDataLayout()); |
| assert((PVT == MVT::i64 || PVT == MVT::i32) && |
| "Invalid Pointer Size!"); |
| |
| const TargetRegisterClass *RC = |
| (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| Register Tmp = MRI.createVirtualRegister(RC); |
| // Since FP is only updated here but NOT referenced, it's treated as GPR. |
| unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; |
| unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; |
| unsigned BP = |
| (PVT == MVT::i64) |
| ? PPC::X30 |
| : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 |
| : PPC::R30); |
| |
| MachineInstrBuilder MIB; |
| |
| const int64_t LabelOffset = 1 * PVT.getStoreSize(); |
| const int64_t SPOffset = 2 * PVT.getStoreSize(); |
| const int64_t TOCOffset = 3 * PVT.getStoreSize(); |
| const int64_t BPOffset = 4 * PVT.getStoreSize(); |
| |
| Register BufReg = MI.getOperand(0).getReg(); |
| |
| // Reload FP (the jumped-to function may not have had a |
| // frame pointer, and if so, then its r31 will be restored |
| // as necessary). |
| if (PVT == MVT::i64) { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) |
| .addImm(0) |
| .addReg(BufReg); |
| } else { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) |
| .addImm(0) |
| .addReg(BufReg); |
| } |
| MIB.cloneMemRefs(MI); |
| |
| // Reload IP |
| if (PVT == MVT::i64) { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) |
| .addImm(LabelOffset) |
| .addReg(BufReg); |
| } else { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) |
| .addImm(LabelOffset) |
| .addReg(BufReg); |
| } |
| MIB.cloneMemRefs(MI); |
| |
| // Reload SP |
| if (PVT == MVT::i64) { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) |
| .addImm(SPOffset) |
| .addReg(BufReg); |
| } else { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) |
| .addImm(SPOffset) |
| .addReg(BufReg); |
| } |
| MIB.cloneMemRefs(MI); |
| |
| // Reload BP |
| if (PVT == MVT::i64) { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) |
| .addImm(BPOffset) |
| .addReg(BufReg); |
| } else { |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) |
| .addImm(BPOffset) |
| .addReg(BufReg); |
| } |
| MIB.cloneMemRefs(MI); |
| |
| // Reload TOC |
| if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { |
| setUsesTOCBasePtr(*MBB->getParent()); |
| MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) |
| .addImm(TOCOffset) |
| .addReg(BufReg) |
| .cloneMemRefs(MI); |
| } |
| |
| // Jump |
| BuildMI(*MBB, MI, DL, |
| TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); |
| BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); |
| |
| MI.eraseFromParent(); |
| return MBB; |
| } |
| |
| bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { |
| // If the function specifically requests inline stack probes, emit them. |
| if (MF.getFunction().hasFnAttribute("probe-stack")) |
| return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == |
| "inline-asm"; |
| return false; |
| } |
| |
| unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const { |
| const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); |
| unsigned StackAlign = TFI->getStackAlignment(); |
| assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && |
| "Unexpected stack alignment"); |
| // The default stack probe size is 4096 if the function has no |
| // stack-probe-size attribute. |
| const Function &Fn = MF.getFunction(); |
| unsigned StackProbeSize = |
| Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096); |
| // Round down to the stack alignment. |
| StackProbeSize &= ~(StackAlign - 1); |
| return StackProbeSize ? StackProbeSize : StackAlign; |
| } |
| |
| // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted |
| // into three phases. In the first phase, it uses pseudo instruction |
| // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and |
| // FinalStackPtr. In the second phase, it generates a loop for probing blocks. |
| // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of |
| // MaxCallFrameSize so that it can calculate correct data area pointer. |
| MachineBasicBlock * |
| PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| const bool isPPC64 = Subtarget.isPPC64(); |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| const unsigned ProbeSize = getStackProbeSize(*MF); |
| const BasicBlock *ProbedBB = MBB->getBasicBlock(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| // The CFG of probing stack looks as |
| // +-----+ |
| // | MBB | |
| // +--+--+ |
| // | |
| // +----v----+ |
| // +--->+ TestMBB +---+ |
| // | +----+----+ | |
| // | | | |
| // | +-----v----+ | |
| // +---+ BlockMBB | | |
| // +----------+ | |
| // | |
| // +---------+ | |
| // | TailMBB +<--+ |
| // +---------+ |
| // In MBB, calculate previous frame pointer and final stack pointer. |
| // In TestMBB, test if sp is equal to final stack pointer, if so, jump to |
| // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. |
| // TailMBB is spliced via \p MI. |
| MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); |
| MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); |
| MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); |
| |
| MachineFunction::iterator MBBIter = ++MBB->getIterator(); |
| MF->insert(MBBIter, TestMBB); |
| MF->insert(MBBIter, BlockMBB); |
| MF->insert(MBBIter, TailMBB); |
| |
| const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; |
| const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register NegSizeReg = MI.getOperand(1).getReg(); |
| Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; |
| Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| |
| // Since value of NegSizeReg might be realigned in prologepilog, insert a |
| // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and |
| // NegSize. |
| unsigned ProbeOpc; |
| if (!MRI.hasOneNonDBGUse(NegSizeReg)) |
| ProbeOpc = |
| isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; |
| else |
| // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg |
| // and NegSizeReg will be allocated in the same phyreg to avoid |
| // redundant copy when NegSizeReg has only one use which is current MI and |
| // will be replaced by PREPARE_PROBED_ALLOCA then. |
| ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 |
| : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; |
| BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) |
| .addDef(ActualNegSizeReg) |
| .addReg(NegSizeReg) |
| .add(MI.getOperand(2)) |
| .add(MI.getOperand(3)); |
| |
| // Calculate final stack pointer, which equals to SP + ActualNegSize. |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), |
| FinalStackPtr) |
| .addReg(SPReg) |
| .addReg(ActualNegSizeReg); |
| |
| // Materialize a scratch register for update. |
| int64_t NegProbeSize = -(int64_t)ProbeSize; |
| assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); |
| Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| if (!isInt<16>(NegProbeSize)) { |
| Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) |
| .addImm(NegProbeSize >> 16); |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), |
| ScratchReg) |
| .addReg(TempReg) |
| .addImm(NegProbeSize & 0xFFFF); |
| } else |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) |
| .addImm(NegProbeSize); |
| |
| { |
| // Probing leading residual part. |
| Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) |
| .addReg(ActualNegSizeReg) |
| .addReg(ScratchReg); |
| Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) |
| .addReg(Div) |
| .addReg(ScratchReg); |
| Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) |
| .addReg(Mul) |
| .addReg(ActualNegSizeReg); |
| BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) |
| .addReg(FramePointer) |
| .addReg(SPReg) |
| .addReg(NegMod); |
| } |
| |
| { |
| // Remaining part should be multiple of ProbeSize. |
| Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); |
| BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) |
| .addReg(SPReg) |
| .addReg(FinalStackPtr); |
| BuildMI(TestMBB, DL, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_EQ) |
| .addReg(CmpResult) |
| .addMBB(TailMBB); |
| TestMBB->addSuccessor(BlockMBB); |
| TestMBB->addSuccessor(TailMBB); |
| } |
| |
| { |
| // Touch the block. |
| // |P...|P...|P... |
| BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) |
| .addReg(FramePointer) |
| .addReg(SPReg) |
| .addReg(ScratchReg); |
| BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); |
| BlockMBB->addSuccessor(TestMBB); |
| } |
| |
| // Calculation of MaxCallFrameSize is deferred to prologepilog, use |
| // DYNAREAOFFSET pseudo instruction to get the future result. |
| Register MaxCallFrameSizeReg = |
| MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); |
| BuildMI(TailMBB, DL, |
| TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), |
| MaxCallFrameSizeReg) |
| .add(MI.getOperand(2)) |
| .add(MI.getOperand(3)); |
| BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) |
| .addReg(SPReg) |
| .addReg(MaxCallFrameSizeReg); |
| |
| // Splice instructions after MI to TailMBB. |
| TailMBB->splice(TailMBB->end(), MBB, |
| std::next(MachineBasicBlock::iterator(MI)), MBB->end()); |
| TailMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| MBB->addSuccessor(TestMBB); |
| |
| // Delete the pseudo instruction. |
| MI.eraseFromParent(); |
| |
| ++NumDynamicAllocaProbed; |
| return TailMBB; |
| } |
| |
| MachineBasicBlock * |
| PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| if (MI.getOpcode() == TargetOpcode::STACKMAP || |
| MI.getOpcode() == TargetOpcode::PATCHPOINT) { |
| if (Subtarget.is64BitELFABI() && |
| MI.getOpcode() == TargetOpcode::PATCHPOINT && |
| !Subtarget.isUsingPCRelativeCalls()) { |
| // Call lowering should have added an r2 operand to indicate a dependence |
| // on the TOC base pointer value. It can't however, because there is no |
| // way to mark the dependence as implicit there, and so the stackmap code |
| // will confuse it with a regular operand. Instead, add the dependence |
| // here. |
| MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); |
| } |
| |
| return emitPatchPoint(MI, BB); |
| } |
| |
| if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || |
| MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { |
| return emitEHSjLjSetJmp(MI, BB); |
| } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || |
| MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { |
| return emitEHSjLjLongJmp(MI, BB); |
| } |
| |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| // To "insert" these instructions we actually have to insert their |
| // control-flow patterns. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = ++BB->getIterator(); |
| |
| MachineFunction *F = BB->getParent(); |
| MachineRegisterInfo &MRI = F->getRegInfo(); |
| |
| if (MI.getOpcode() == PPC::SELECT_CC_I4 || |
| MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || |
| MI.getOpcode() == PPC::SELECT_I8) { |
| SmallVector<MachineOperand, 2> Cond; |
| if (MI.getOpcode() == PPC::SELECT_CC_I4 || |
| MI.getOpcode() == PPC::SELECT_CC_I8) |
| Cond.push_back(MI.getOperand(4)); |
| else |
| Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); |
| Cond.push_back(MI.getOperand(1)); |
| |
| DebugLoc dl = MI.getDebugLoc(); |
| TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, |
| MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); |
| } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || |
| MI.getOpcode() == PPC::SELECT_CC_F8 || |
| MI.getOpcode() == PPC::SELECT_CC_F16 || |
| MI.getOpcode() == PPC::SELECT_CC_VRRC || |
| MI.getOpcode() == PPC::SELECT_CC_VSFRC || |
| MI.getOpcode() == PPC::SELECT_CC_VSSRC || |
| MI.getOpcode() == PPC::SELECT_CC_VSRC || |
| MI.getOpcode() == PPC::SELECT_CC_SPE4 || |
| MI.getOpcode() == PPC::SELECT_CC_SPE || |
| MI.getOpcode() == PPC::SELECT_F4 || |
| MI.getOpcode() == PPC::SELECT_F8 || |
| MI.getOpcode() == PPC::SELECT_F16 || |
| MI.getOpcode() == PPC::SELECT_SPE || |
| MI.getOpcode() == PPC::SELECT_SPE4 || |
| MI.getOpcode() == PPC::SELECT_VRRC || |
| MI.getOpcode() == PPC::SELECT_VSFRC || |
| MI.getOpcode() == PPC::SELECT_VSSRC || |
| MI.getOpcode() == PPC::SELECT_VSRC) { |
| // The incoming instruction knows the destination vreg to set, the |
| // condition code register to branch on, the true/false values to |
| // select between, and a branch opcode to use. |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| DebugLoc dl = MI.getDebugLoc(); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || |
| MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || |
| MI.getOpcode() == PPC::SELECT_F16 || |
| MI.getOpcode() == PPC::SELECT_SPE4 || |
| MI.getOpcode() == PPC::SELECT_SPE || |
| MI.getOpcode() == PPC::SELECT_VRRC || |
| MI.getOpcode() == PPC::SELECT_VSFRC || |
| MI.getOpcode() == PPC::SELECT_VSSRC || |
| MI.getOpcode() == PPC::SELECT_VSRC) { |
| BuildMI(BB, dl, TII->get(PPC::BC)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(sinkMBB); |
| } else { |
| unsigned SelectPred = MI.getOperand(4).getImm(); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(SelectPred) |
| .addReg(MI.getOperand(1).getReg()) |
| .addMBB(sinkMBB); |
| } |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(3).getReg()) |
| .addMBB(copy0MBB) |
| .addReg(MI.getOperand(2).getReg()) |
| .addMBB(thisMBB); |
| } else if (MI.getOpcode() == PPC::ReadTB) { |
| // To read the 64-bit time-base register on a 32-bit target, we read the |
| // two halves. Should the counter have wrapped while it was being read, we |
| // need to try again. |
| // ... |
| // readLoop: |
| // mfspr Rx,TBU # load from TBU |
| // mfspr Ry,TB # load from TB |
| // mfspr Rz,TBU # load from TBU |
| // cmpw crX,Rx,Rz # check if 'old'='new' |
| // bne readLoop # branch if they're not equal |
| // ... |
| |
| MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| DebugLoc dl = MI.getDebugLoc(); |
| F->insert(It, readMBB); |
| F->insert(It, sinkMBB); |
| |
| // Transfer the remainder of BB and its successor edges to sinkMBB. |
| sinkMBB->splice(sinkMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| sinkMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(readMBB); |
| BB = readMBB; |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); |
| Register LoReg = MI.getOperand(0).getReg(); |
| Register HiReg = MI.getOperand(1).getReg(); |
| |
| BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); |
| BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); |
| BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); |
| |
| Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); |
| |
| BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) |
| .addReg(HiReg) |
| .addReg(ReadAgainReg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE) |
| .addReg(CmpReg) |
| .addMBB(readMBB); |
| |
| BB->addSuccessor(readMBB); |
| BB->addSuccessor(sinkMBB); |
| } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT); |
| else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT); |
| |
| else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) |
| BB = EmitPartwordAtomicBinary(MI, BB, true, 0); |
| else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) |
| BB = EmitPartwordAtomicBinary(MI, BB, false, 0); |
| else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) |
| BB = EmitAtomicBinary(MI, BB, 4, 0); |
| else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) |
| BB = EmitAtomicBinary(MI, BB, 8, 0); |
| else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || |
| MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || |
| (Subtarget.hasPartwordAtomics() && |
| MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || |
| (Subtarget.hasPartwordAtomics() && |
| MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { |
| bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; |
| |
| auto LoadMnemonic = PPC::LDARX; |
| auto StoreMnemonic = PPC::STDCX; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Compare and swap of unknown size"); |
| case PPC::ATOMIC_CMP_SWAP_I8: |
| LoadMnemonic = PPC::LBARX; |
| StoreMnemonic = PPC::STBCX; |
| assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); |
| break; |
| case PPC::ATOMIC_CMP_SWAP_I16: |
| LoadMnemonic = PPC::LHARX; |
| StoreMnemonic = PPC::STHCX; |
| assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); |
| break; |
| case PPC::ATOMIC_CMP_SWAP_I32: |
| LoadMnemonic = PPC::LWARX; |
| StoreMnemonic = PPC::STWCX; |
| break; |
| case PPC::ATOMIC_CMP_SWAP_I64: |
| LoadMnemonic = PPC::LDARX; |
| StoreMnemonic = PPC::STDCX; |
| break; |
| } |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register dest = MI.getOperand(0).getReg(); |
| Register ptrA = MI.getOperand(1).getReg(); |
| Register ptrB = MI.getOperand(2).getReg(); |
| Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); |
| Register oldval = MI.getOperand(3).getReg(); |
| Register newval = MI.getOperand(4).getReg(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loop1MBB); |
| F->insert(It, loop2MBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loop1MBB); |
| |
| // loop1MBB: |
| // l[bhwd]arx dest, ptr |
| // cmp[wd] dest, oldval |
| // bne- exitBB |
| // loop2MBB: |
| // st[bhwd]cx. newval, ptr |
| // bne- loopMBB |
| // b exitBB |
| // exitBB: |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg) |
| .addReg(dest) |
| .addReg(oldval); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE) |
| .addReg(CrReg) |
| .addMBB(exitMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| |
| BB = loop2MBB; |
| BuildMI(BB, dl, TII->get(StoreMnemonic)) |
| .addReg(newval) |
| .addReg(ptrA) |
| .addReg(ptrB); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE) |
| .addReg(PPC::CR0) |
| .addMBB(loop1MBB); |
| BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || |
| MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { |
| // We must use 64-bit registers for addresses when targeting 64-bit, |
| // since we're actually doing arithmetic on them. Other registers |
| // can be 32-bit. |
| bool is64bit = Subtarget.isPPC64(); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; |
| |
| Register dest = MI.getOperand(0).getReg(); |
| Register ptrA = MI.getOperand(1).getReg(); |
| Register ptrB = MI.getOperand(2).getReg(); |
| Register oldval = MI.getOperand(3).getReg(); |
| Register newval = MI.getOperand(4).getReg(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| F->insert(It, loop1MBB); |
| F->insert(It, loop2MBB); |
| F->insert(It, exitMBB); |
| exitMBB->splice(exitMBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| exitMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| const TargetRegisterClass *RC = |
| is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; |
| const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; |
| |
| Register PtrReg = RegInfo.createVirtualRegister(RC); |
| Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); |
| Register ShiftReg = |
| isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); |
| Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); |
| Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); |
| Register MaskReg = RegInfo.createVirtualRegister(GPRC); |
| Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); |
| Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); |
| Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); |
| Register Ptr1Reg; |
| Register TmpReg = RegInfo.createVirtualRegister(GPRC); |
| Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; |
| Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loop1MBB); |
| |
| // The 4-byte load must be aligned, while a char or short may be |
| // anywhere in the word. Hence all this nasty bookkeeping code. |
| // add ptr1, ptrA, ptrB [copy if ptrA==0] |
| // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] |
| // xori shift, shift1, 24 [16] |
| // rlwinm ptr, ptr1, 0, 0, 29 |
| // slw newval2, newval, shift |
| // slw oldval2, oldval,shift |
| // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] |
| // slw mask, mask2, shift |
| // and newval3, newval2, mask |
| // and oldval3, oldval2, mask |
| // loop1MBB: |
| // lwarx tmpDest, ptr |
| // and tmp, tmpDest, mask |
| // cmpw tmp, oldval3 |
| // bne- exitBB |
| // loop2MBB: |
| // andc tmp2, tmpDest, mask |
| // or tmp4, tmp2, newval3 |
| // stwcx. tmp4, ptr |
| // bne- loop1MBB |
| // b exitBB |
| // exitBB: |
| // srw dest, tmpDest, shift |
| if (ptrA != ZeroReg) { |
| Ptr1Reg = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) |
| .addReg(ptrA) |
| .addReg(ptrB); |
| } else { |
| Ptr1Reg = ptrB; |
| } |
| |
| // We need use 32-bit subregister to avoid mismatch register class in 64-bit |
| // mode. |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) |
| .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) |
| .addImm(3) |
| .addImm(27) |
| .addImm(is8bit ? 28 : 27); |
| if (!isLittleEndian) |
| BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) |
| .addReg(Shift1Reg) |
| .addImm(is8bit ? 24 : 16); |
| if (is64bit) |
| BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) |
| .addReg(Ptr1Reg) |
| .addImm(0) |
| .addImm(61); |
| else |
| BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) |
| .addReg(Ptr1Reg) |
| .addImm(0) |
| .addImm(0) |
| .addImm(29); |
| BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) |
| .addReg(newval) |
| .addReg(ShiftReg); |
| BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) |
| .addReg(oldval) |
| .addReg(ShiftReg); |
| if (is8bit) |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); |
| else { |
| BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); |
| BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) |
| .addReg(Mask3Reg) |
| .addImm(65535); |
| } |
| BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) |
| .addReg(Mask2Reg) |
| .addReg(ShiftReg); |
| BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) |
| .addReg(NewVal2Reg) |
| .addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) |
| .addReg(OldVal2Reg) |
| .addReg(MaskReg); |
| |
| BB = loop1MBB; |
| BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) |
| .addReg(ZeroReg) |
| .addReg(PtrReg); |
| BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) |
| .addReg(TmpDestReg) |
| .addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg) |
| .addReg(TmpReg) |
| .addReg(OldVal3Reg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE) |
| .addReg(CrReg) |
| .addMBB(exitMBB); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| |
| BB = loop2MBB; |
| BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) |
| .addReg(TmpDestReg) |
| .addReg(MaskReg); |
| BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) |
| .addReg(Tmp2Reg) |
| .addReg(NewVal3Reg); |
| BuildMI(BB, dl, TII->get(PPC::STWCX)) |
| .addReg(Tmp4Reg) |
| .addReg(ZeroReg) |
| .addReg(PtrReg); |
| BuildMI(BB, dl, TII->get(PPC::BCC)) |
| .addImm(PPC::PRED_NE) |
| .addReg(PPC::CR0) |
| .addMBB(loop1MBB); |
| BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) |
| .addReg(TmpReg) |
| .addReg(ShiftReg); |
| } else if (MI.getOpcode() == PPC::FADDrtz) { |
| // This pseudo performs an FADD with rounding mode temporarily forced |
| // to round-to-zero. We emit this via custom inserter since the FPSCR |
| // is not modeled at the SelectionDAG level. |
| Register Dest = MI.getOperand(0).getReg(); |
| Register Src1 = MI.getOperand(1).getReg(); |
| Register Src2 = MI.getOperand(2).getReg(); |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); |
| |
| // Save FPSCR value. |
| BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); |
| |
| // Set rounding mode to round-to-zero. |
| BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) |
| .addImm(31) |
| .addReg(PPC::RM, RegState::ImplicitDefine); |
| |
| BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) |
| .addImm(30) |
| .addReg(PPC::RM, RegState::ImplicitDefine); |
| |
| // Perform addition. |
| auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) |
| .addReg(Src1) |
| .addReg(Src2); |
| if (MI.getFlag(MachineInstr::NoFPExcept)) |
| MIB.setMIFlag(MachineInstr::NoFPExcept); |
| |
| // Restore FPSCR value. |
| BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); |
| } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || |
| MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || |
| MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || |
| MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { |
| unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || |
| MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) |
| ? PPC::ANDI8_rec |
| : PPC::ANDI_rec; |
| bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || |
| MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register Dest = RegInfo.createVirtualRegister( |
| Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); |
| |
| DebugLoc Dl = MI.getDebugLoc(); |
| BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) |
| .addReg(MI.getOperand(1).getReg()) |
| .addImm(1); |
| BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), |
| MI.getOperand(0).getReg()) |
| .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); |
| } else if (MI.getOpcode() == PPC::TCHECK_RET) { |
| DebugLoc Dl = MI.getDebugLoc(); |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); |
| BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); |
| BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), |
| MI.getOperand(0).getReg()) |
| .addReg(CRReg); |
| } else if (MI.getOpcode() == PPC::TBEGIN_RET) { |
| DebugLoc Dl = MI.getDebugLoc(); |
| unsigned Imm = MI.getOperand(1).getImm(); |
| BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); |
| BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), |
| MI.getOperand(0).getReg()) |
| .addReg(PPC::CR0EQ); |
| } else if (MI.getOpcode() == PPC::SETRNDi) { |
| DebugLoc dl = MI.getDebugLoc(); |
| Register OldFPSCRReg = MI.getOperand(0).getReg(); |
| |
| // Save FPSCR value. |
| if (MRI.use_empty(OldFPSCRReg)) |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); |
| else |
| BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); |
| |
| // The floating point rounding mode is in the bits 62:63 of FPCSR, and has |
| // the following settings: |
| // 00 Round to nearest |
| // 01 Round to 0 |
| // 10 Round to +inf |
| // 11 Round to -inf |
| |
| // When the operand is immediate, using the two least significant bits of |
| // the immediate to set the bits 62:63 of FPSCR. |
| unsigned Mode = MI.getOperand(1).getImm(); |
| BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) |
| .addImm(31) |
| .addReg(PPC::RM, RegState::ImplicitDefine); |
| |
| BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) |
| .addImm(30) |
| .addReg(PPC::RM, RegState::ImplicitDefine); |
| } else if (MI.getOpcode() == PPC::SETRND) { |
| DebugLoc dl = MI.getDebugLoc(); |
| |
| // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg |
| // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. |
| // If the target doesn't have DirectMove, we should use stack to do the |
| // conversion, because the target doesn't have the instructions like mtvsrd |
| // or mfvsrd to do this conversion directly. |
| auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { |
| if (Subtarget.hasDirectMove()) { |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) |
| .addReg(SrcReg); |
| } else { |
| // Use stack to do the register copy. |
| unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); |
| if (RC == &PPC::F8RCRegClass) { |
| // Copy register from F8RCRegClass to G8RCRegclass. |
| assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && |
| "Unsupported RegClass."); |
| |
| StoreOp = PPC::STFD; |
| LoadOp = PPC::LD; |
| } else { |
| // Copy register from G8RCRegClass to F8RCRegclass. |
| assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && |
| (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && |
| "Unsupported RegClass."); |
| } |
| |
| MachineFrameInfo &MFI = F->getFrameInfo(); |
| int FrameIdx = MFI.CreateStackObject(8, Align(8), false); |
| |
| MachineMemOperand *MMOStore = F->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), |
| MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlign(FrameIdx)); |
| |
| // Store the SrcReg into the stack. |
| BuildMI(*BB, MI, dl, TII->get(StoreOp)) |
| .addReg(SrcReg) |
| .addImm(0) |
| .addFrameIndex(FrameIdx) |
| .addMemOperand(MMOStore); |
| |
| MachineMemOperand *MMOLoad = F->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), |
| MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlign(FrameIdx)); |
| |
| // Load from the stack where SrcReg is stored, and save to DestReg, |
| // so we have done the RegClass conversion from RegClass::SrcReg to |
| // RegClass::DestReg. |
| BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) |
| .addImm(0) |
| .addFrameIndex(FrameIdx) |
| .addMemOperand(MMOLoad); |
| } |
| }; |
| |
| Register OldFPSCRReg = MI.getOperand(0).getReg(); |
| |
| // Save FPSCR value. |
| BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); |
| |
| // When the operand is gprc register, use two least significant bits of the |
| // register and mtfsf instruction to set the bits 62:63 of FPSCR. |
| // |
| // copy OldFPSCRTmpReg, OldFPSCRReg |
| // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) |
| // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 |
| // copy NewFPSCRReg, NewFPSCRTmpReg |
| // mtfsf 255, NewFPSCRReg |
| MachineOperand SrcOp = MI.getOperand(1); |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); |
| |
| copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); |
| |
| Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); |
| Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); |
| |
| // The first operand of INSERT_SUBREG should be a register which has |
| // subregisters, we only care about its RegClass, so we should use an |
| // IMPLICIT_DEF register. |
| BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); |
| BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) |
| .addReg(ImDefReg) |
| .add(SrcOp) |
| .addImm(1); |
| |
| Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); |
| BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) |
| .addReg(OldFPSCRTmpReg) |
| .addReg(ExtSrcReg) |
| .addImm(0) |
| .addImm(62); |
| |
| Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); |
| copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); |
| |
| // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 |
| // bits of FPSCR. |
| BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) |
| .addImm(255) |
| .addReg(NewFPSCRReg) |
| .addImm(0) |
| .addImm(0); |
| } else if (MI.getOpcode() == PPC::SETFLM) { |
| DebugLoc Dl = MI.getDebugLoc(); |
| |
| // Result of setflm is previous FPSCR content, so we need to save it first. |
| Register OldFPSCRReg = MI.getOperand(0).getReg(); |
| if (MRI.use_empty(OldFPSCRReg)) |
| BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); |
| else |
| BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); |
| |
| // Put bits in 32:63 to FPSCR. |
| Register NewFPSCRReg = MI.getOperand(1).getReg(); |
| BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) |
| .addImm(255) |
| .addReg(NewFPSCRReg) |
| .addImm(0) |
| .addImm(0); |
| } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || |
| MI.getOpcode() == PPC::PROBED_ALLOCA_64) { |
| return emitProbedAlloca(MI, BB); |
| } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { |
| DebugLoc DL = MI.getDebugLoc(); |
| Register Src = MI.getOperand(2).getReg(); |
| Register Lo = MI.getOperand(0).getReg(); |
| Register Hi = MI.getOperand(1).getReg(); |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) |
| .addDef(Lo) |
| .addUse(Src, 0, PPC::sub_gp8_x1); |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) |
| .addDef(Hi) |
| .addUse(Src, 0, PPC::sub_gp8_x0); |
| } else if (MI.getOpcode() == PPC::LQX_PSEUDO || |
| MI.getOpcode() == PPC::STQX_PSEUDO) { |
| DebugLoc DL = MI.getDebugLoc(); |
| // Ptr is used as the ptr_rc_no_r0 part |
| // of LQ/STQ's memory operand and adding result of RA and RB, |
| // so it has to be g8rc_and_g8rc_nox0. |
| Register Ptr = |
| F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); |
| Register Val = MI.getOperand(0).getReg(); |
| Register RA = MI.getOperand(1).getReg(); |
| Register RB = MI.getOperand(2).getReg(); |
| BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); |
| BuildMI(*BB, MI, DL, |
| MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) |
| : TII->get(PPC::STQ)) |
| .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) |
| .addImm(0) |
| .addReg(Ptr); |
| } else { |
| llvm_unreachable("Unexpected instr type to insert"); |
| } |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Target Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { |
| // For the estimates, convergence is quadratic, so we essentially double the |
| // number of digits correct after every iteration. For both FRE and FRSQRTE, |
| // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), |
| // this is 2^-14. IEEE float has 23 digits and double has 52 digits. |
| int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; |
| if (VT.getScalarType() == MVT::f64) |
| RefinementSteps++; |
| return RefinementSteps; |
| } |
| |
| SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, |
| const DenormalMode &Mode) const { |
| // We only have VSX Vector Test for software Square Root. |
| EVT VT = Op.getValueType(); |
| if (!isTypeLegal(MVT::i1) || |
| (VT != MVT::f64 && |
| ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) |
| return TargetLowering::getSqrtInputTest(Op, DAG, Mode); |
| |
| SDLoc DL(Op); |
| // The output register of FTSQRT is CR field. |
| SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); |
| // ftsqrt BF,FRB |
| // Let e_b be the unbiased exponent of the double-precision |
| // floating-point operand in register FRB. |
| // fe_flag is set to 1 if either of the following conditions occurs. |
| // - The double-precision floating-point operand in register FRB is a zero, |
| // a NaN, or an infinity, or a negative value. |
| // - e_b is less than or equal to -970. |
| // Otherwise fe_flag is set to 0. |
| // Both VSX and non-VSX versions would set EQ bit in the CR if the number is |
| // not eligible for iteration. (zero/negative/infinity/nan or unbiased |
| // exponent is less than -970) |
| SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); |
| return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, |
| FTSQRT, SRIdxVal), |
| 0); |
| } |
| |
| SDValue |
| PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, |
| SelectionDAG &DAG) const { |
| // We only have VSX Vector Square Root. |
| EVT VT = Op.getValueType(); |
| if (VT != MVT::f64 && |
| ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) |
| return TargetLowering::getSqrtResultForDenormInput(Op, DAG); |
| |
| return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); |
| } |
| |
| SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, |
| int Enabled, int &RefinementSteps, |
| bool &UseOneConstNR, |
| bool Reciprocal) const { |
| EVT VT = Operand.getValueType(); |
| if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || |
| (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || |
| (VT == MVT::v4f32 && Subtarget.hasAltivec()) || |
| (VT == MVT::v2f64 && Subtarget.hasVSX())) { |
| if (RefinementSteps == ReciprocalEstimate::Unspecified) |
| RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); |
| |
| // The Newton-Raphson computation with a single constant does not provide |
| // enough accuracy on some CPUs. |
| UseOneConstNR = !Subtarget.needsTwoConstNR(); |
| return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); |
| } |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, |
| int Enabled, |
| int &RefinementSteps) const { |
| EVT VT = Operand.getValueType(); |
| if ((VT == MVT::f32 && Subtarget.hasFRES()) || |
| (VT == MVT::f64 && Subtarget.hasFRE()) || |
| (VT == MVT::v4f32 && Subtarget.hasAltivec()) || |
| (VT == MVT::v2f64 && Subtarget.hasVSX())) { |
| if (RefinementSteps == ReciprocalEstimate::Unspecified) |
| RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); |
| return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); |
| } |
| return SDValue(); |
| } |
| |
| unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { |
| // Note: This functionality is used only when unsafe-fp-math is enabled, and |
| // on cores with reciprocal estimates (which are used when unsafe-fp-math is |
| // enabled for division), this functionality is redundant with the default |
| // combiner logic (once the division -> reciprocal/multiply transformation |
| // has taken place). As a result, this matters more for older cores than for |
| // newer ones. |
| |
| // Combine multiple FDIVs with the same divisor into multiple FMULs by the |
| // reciprocal if there are two or more FDIVs (for embedded cores with only |
| // one FP pipeline) for three or more FDIVs (for generic OOO cores). |
| switch (Subtarget.getCPUDirective()) { |
| default: |
| return 3; |
| case PPC::DIR_440: |
| case PPC::DIR_A2: |
| case PPC::DIR_E500: |
| case PPC::DIR_E500mc: |
| case PPC::DIR_E5500: |
| return 2; |
| } |
| } |
| |
| // isConsecutiveLSLoc needs to work even if all adds have not yet been |
| // collapsed, and so we need to look through chains of them. |
| static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, |
| int64_t& Offset, SelectionDAG &DAG) { |
| if (DAG.isBaseWithConstantOffset(Loc)) { |
| Base = Loc.getOperand(0); |
| Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); |
| |
| // The base might itself be a base plus an offset, and if so, accumulate |
| // that as well. |
| getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); |
| } |
| } |
| |
| static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, |
| unsigned Bytes, int Dist, |
| SelectionDAG &DAG) { |
| if (VT.getSizeInBits() / 8 != Bytes) |
| return false; |
| |
| SDValue BaseLoc = Base->getBasePtr(); |
| if (Loc.getOpcode() == ISD::FrameIndex) { |
| if (BaseLoc.getOpcode() != ISD::FrameIndex) |
| return false; |
| const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); |
| int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); |
| int FS = MFI.getObjectSize(FI); |
| int BFS = MFI.getObjectSize(BFI); |
| if (FS != BFS || FS != (int)Bytes) return false; |
| return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); |
| } |
| |
| SDValue Base1 = Loc, Base2 = BaseLoc; |
| int64_t Offset1 = 0, Offset2 = 0; |
| getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); |
| getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); |
| if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) |
| return true; |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| const GlobalValue *GV1 = nullptr; |
| const GlobalValue *GV2 = nullptr; |
| Offset1 = 0; |
| Offset2 = 0; |
| bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); |
| bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); |
| if (isGA1 && isGA2 && GV1 == GV2) |
| return Offset1 == (Offset2 + Dist*Bytes); |
| return false; |
| } |
| |
| // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does |
| // not enforce equality of the chain operands. |
| static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, |
| unsigned Bytes, int Dist, |
| SelectionDAG &DAG) { |
| if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { |
| EVT VT = LS->getMemoryVT(); |
| SDValue Loc = LS->getBasePtr(); |
| return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); |
| } |
| |
| if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { |
| EVT VT; |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| default: return false; |
| case Intrinsic::ppc_altivec_lvx: |
| case Intrinsic::ppc_altivec_lvxl: |
| case Intrinsic::ppc_vsx_lxvw4x: |
| case Intrinsic::ppc_vsx_lxvw4x_be: |
| VT = MVT::v4i32; |
| break; |
| case Intrinsic::ppc_vsx_lxvd2x: |
| case Intrinsic::ppc_vsx_lxvd2x_be: |
| VT = MVT::v2f64; |
| break; |
| case Intrinsic::ppc_altivec_lvebx: |
| VT = MVT::i8; |
| break; |
| case Intrinsic::ppc_altivec_lvehx: |
| VT = MVT::i16; |
| break; |
| case Intrinsic::ppc_altivec_lvewx: |
| VT = MVT::i32; |
| break; |
| } |
| |
| return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); |
| } |
| |
| if (N->getOpcode() == ISD::INTRINSIC_VOID) { |
| EVT VT; |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| default: return false; |
| case Intrinsic::ppc_altivec_stvx: |
| case Intrinsic::ppc_altivec_stvxl: |
| case Intrinsic::ppc_vsx_stxvw4x: |
| VT = MVT::v4i32; |
| break; |
| case Intrinsic::ppc_vsx_stxvd2x: |
| VT = MVT::v2f64; |
| break; |
| case Intrinsic::ppc_vsx_stxvw4x_be: |
| VT = MVT::v4i32; |
| break; |
| case Intrinsic::ppc_vsx_stxvd2x_be: |
| VT = MVT::v2f64; |
| break; |
| case Intrinsic::ppc_altivec_stvebx: |
| VT = MVT::i8; |
| break; |
| case Intrinsic::ppc_altivec_stvehx: |
| VT = MVT::i16; |
| break; |
| case Intrinsic::ppc_altivec_stvewx: |
| VT = MVT::i32; |
| break; |
| } |
| |
| return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); |
| } |
| |
| return false; |
| } |
| |
| // Return true is there is a nearyby consecutive load to the one provided |
| // (regardless of alignment). We search up and down the chain, looking though |
| // token factors and other loads (but nothing else). As a result, a true result |
| // indicates that it is safe to create a new consecutive load adjacent to the |
| // load provided. |
| static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { |
| SDValue Chain = LD->getChain(); |
| EVT VT = LD->getMemoryVT(); |
| |
| SmallSet<SDNode *, 16> LoadRoots; |
| SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); |
| SmallSet<SDNode *, 16> Visited; |
| |
| // First, search up the chain, branching to follow all token-factor operands. |
| // If we find a consecutive load, then we're done, otherwise, record all |
| // nodes just above the top-level loads and token factors. |
| while (!Queue.empty()) { |
| SDNode *ChainNext = Queue.pop_back_val(); |
| if (!Visited.insert(ChainNext).second) |
| continue; |
| |
| if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { |
| if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) |
| return true; |
| |
| if (!Visited.count(ChainLD->getChain().getNode())) |
| Queue.push_back(ChainLD->getChain().getNode()); |
| } else if (ChainNext->getOpcode() == ISD::TokenFactor) { |
| for (const SDUse &O : ChainNext->ops()) |
| if (!Visited.count(O.getNode())) |
| Queue.push_back(O.getNode()); |
| } else |
| LoadRoots.insert(ChainNext); |
| } |
| |
| // Second, search down the chain, starting from the top-level nodes recorded |
| // in the first phase. These top-level nodes are the nodes just above all |
| // loads and token factors. Starting with their uses, recursively look though |
| // all loads (just the chain uses) and token factors to find a consecutive |
| // load. |
| Visited.clear(); |
| Queue.clear(); |
| |
| for (SDNode *I : LoadRoots) { |
| Queue.push_back(I); |
| |
| while (!Queue.empty()) { |
| SDNode *LoadRoot = Queue.pop_back_val(); |
| if (!Visited.insert(LoadRoot).second) |
| continue; |
| |
| if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) |
| if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) |
| return true; |
| |
| for (SDNode *U : LoadRoot->uses()) |
| if (((isa<MemSDNode>(U) && |
| cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) || |
| U->getOpcode() == ISD::TokenFactor) && |
| !Visited.count(U)) |
| Queue.push_back(U); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// This function is called when we have proved that a SETCC node can be replaced |
| /// by subtraction (and other supporting instructions) so that the result of |
| /// comparison is kept in a GPR instead of CR. This function is purely for |
| /// codegen purposes and has some flags to guide the codegen process. |
| static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, |
| bool Swap, SDLoc &DL, SelectionDAG &DAG) { |
| assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); |
| |
| // Zero extend the operands to the largest legal integer. Originally, they |
| // must be of a strictly smaller size. |
| auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), |
| DAG.getConstant(Size, DL, MVT::i32)); |
| auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), |
| DAG.getConstant(Size, DL, MVT::i32)); |
| |
| // Swap if needed. Depends on the condition code. |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| // Subtract extended integers. |
| auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); |
| |
| // Move the sign bit to the least significant position and zero out the rest. |
| // Now the least significant bit carries the result of original comparison. |
| auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, |
| DAG.getConstant(Size - 1, DL, MVT::i32)); |
| auto Final = Shifted; |
| |
| // Complement the result if needed. Based on the condition code. |
| if (Complement) |
| Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, |
| DAG.getConstant(1, DL, MVT::i64)); |
| |
| return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); |
| } |
| |
| SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| // Size of integers being compared has a critical role in the following |
| // analysis, so we prefer to do this when all types are legal. |
| if (!DCI.isAfterLegalizeDAG()) |
| return SDValue(); |
| |
| // If all users of SETCC extend its value to a legal integer type |
| // then we replace SETCC with a subtraction |
| for (const SDNode *U : N->uses()) |
| if (U->getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| auto OpSize = N->getOperand(0).getValueSizeInBits(); |
| |
| unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); |
| |
| if (OpSize < Size) { |
| switch (CC) { |
| default: break; |
| case ISD::SETULT: |
| return generateEquivalentSub(N, Size, false, false, DL, DAG); |
| case ISD::SETULE: |
| return generateEquivalentSub(N, Size, true, true, DL, DAG); |
| case ISD::SETUGT: |
| return generateEquivalentSub(N, Size, false, true, DL, DAG); |
| case ISD::SETUGE: |
| return generateEquivalentSub(N, Size, true, false, DL, DAG); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| |
| assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); |
| // If we're tracking CR bits, we need to be careful that we don't have: |
| // trunc(binary-ops(zext(x), zext(y))) |
| // or |
| // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) |
| // such that we're unnecessarily moving things into GPRs when it would be |
| // better to keep them in CR bits. |
| |
| // Note that trunc here can be an actual i1 trunc, or can be the effective |
| // truncation that comes from a setcc or select_cc. |
| if (N->getOpcode() == ISD::TRUNCATE && |
| N->getValueType(0) != MVT::i1) |
| return SDValue(); |
| |
| if (N->getOperand(0).getValueType() != MVT::i32 && |
| N->getOperand(0).getValueType() != MVT::i64) |
| return SDValue(); |
| |
| if (N->getOpcode() == ISD::SETCC || |
| N->getOpcode() == ISD::SELECT_CC) { |
| // If we're looking at a comparison, then we need to make sure that the |
| // high bits (all except for the first) don't matter the result. |
| ISD::CondCode CC = |
| cast<CondCodeSDNode>(N->getOperand( |
| N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); |
| unsigned OpBits = N->getOperand(0).getValueSizeInBits(); |
| |
| if (ISD::isSignedIntSetCC(CC)) { |
| if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || |
| DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) |
| return SDValue(); |
| } else if (ISD::isUnsignedIntSetCC(CC)) { |
| if (!DAG.MaskedValueIsZero(N->getOperand(0), |
| APInt::getHighBitsSet(OpBits, OpBits-1)) || |
| !DAG.MaskedValueIsZero(N->getOperand(1), |
| APInt::getHighBitsSet(OpBits, OpBits-1))) |
| return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) |
| : SDValue()); |
| } else { |
| // This is neither a signed nor an unsigned comparison, just make sure |
| // that the high bits are equal. |
| KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); |
| KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); |
| |
| // We don't really care about what is known about the first bit (if |
| // anything), so pretend that it is known zero for both to ensure they can |
| // be compared as constants. |
| Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); |
| Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); |
| |
| if (!Op1Known.isConstant() || !Op2Known.isConstant() || |
| Op1Known.getConstant() != Op2Known.getConstant()) |
| return SDValue(); |
| } |
| } |
| |
| // We now know that the higher-order bits are irrelevant, we just need to |
| // make sure that all of the intermediate operations are bit operations, and |
| // all inputs are extensions. |
| if (N->getOperand(0).getOpcode() != ISD::AND && |
| N->getOperand(0).getOpcode() != ISD::OR && |
| N->getOperand(0).getOpcode() != ISD::XOR && |
| N->getOperand(0).getOpcode() != ISD::SELECT && |
| N->getOperand(0).getOpcode() != ISD::SELECT_CC && |
| N->getOperand(0).getOpcode() != ISD::TRUNCATE && |
| N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && |
| N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && |
| N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) |
| return SDValue(); |
| |
| if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && |
| N->getOperand(1).getOpcode() != ISD::AND && |
| N->getOperand(1).getOpcode() != ISD::OR && |
| N->getOperand(1).getOpcode() != ISD::XOR && |
| N->getOperand(1).getOpcode() != ISD::SELECT && |
| N->getOperand(1).getOpcode() != ISD::SELECT_CC && |
| N->getOperand(1).getOpcode() != ISD::TRUNCATE && |
| N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && |
| N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && |
| N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) |
| return SDValue(); |
| |
| SmallVector<SDValue, 4> Inputs; |
| SmallVector<SDValue, 8> BinOps, PromOps; |
| SmallPtrSet<SDNode *, 16> Visited; |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || |
| N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || |
| N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && |
| N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || |
| isa<ConstantSDNode>(N->getOperand(i))) |
| Inputs.push_back(N->getOperand(i)); |
| else |
| BinOps.push_back(N->getOperand(i)); |
| |
| if (N->getOpcode() == ISD::TRUNCATE) |
| break; |
| } |
| |
| // Visit all inputs, collect all binary operations (and, or, xor and |
| // select) that are all fed by extensions. |
| while (!BinOps.empty()) { |
| SDValue BinOp = BinOps.pop_back_val(); |
| |
| if (!Visited.insert(BinOp.getNode()).second) |
| continue; |
| |
| PromOps.push_back(BinOp); |
| |
| for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { |
| // The condition of the select is not promoted. |
| if (BinOp.getOpcode() == ISD::SELECT && i == 0) |
| continue; |
| if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) |
| continue; |
| |
| if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || |
| BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || |
| BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && |
| BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || |
| isa<ConstantSDNode>(BinOp.getOperand(i))) { |
| Inputs.push_back(BinOp.getOperand(i)); |
| } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || |
| BinOp.getOperand(i).getOpcode() == ISD::OR || |
| BinOp.getOperand(i).getOpcode() == ISD::XOR || |
| BinOp.getOperand(i).getOpcode() == ISD::SELECT || |
| BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || |
| BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || |
| BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || |
| BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || |
| BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { |
| BinOps.push_back(BinOp.getOperand(i)); |
| } else { |
| // We have an input that is not an extension or another binary |
| // operation; we'll abort this transformation. |
| return SDValue(); |
| } |
| } |
| } |
| |
| // Make sure that this is a self-contained cluster of operations (which |
| // is not quite the same thing as saying that everything has only one |
| // use). |
| for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { |
| if (isa<ConstantSDNode>(Inputs[i])) |
| continue; |
| |
| for (const SDNode *User : Inputs[i].getNode()->uses()) { |
| if (User != N && !Visited.count(User)) |
| return SDValue(); |
| |
| // Make sure that we're not going to promote the non-output-value |
| // operand(s) or SELECT or SELECT_CC. |
| // FIXME: Although we could sometimes handle this, and it does occur in |
| // practice that one of the condition inputs to the select is also one of |
| // the outputs, we currently can't deal with this. |
| if (User->getOpcode() == ISD::SELECT) { |
| if (User->getOperand(0) == Inputs[i]) |
| return SDValue(); |
| } else if (User->getOpcode() == ISD::SELECT_CC) { |
| if (User->getOperand(0) == Inputs[i] || |
| User->getOperand(1) == Inputs[i]) |
| return SDValue(); |
| } |
| } |
| } |
| |
| for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { |
| for (const SDNode *User : PromOps[i].getNode()->uses()) { |
| if (User != N && !Visited.count(User)) |
| return SDValue(); |
| |
| // Make sure that we're not going to promote the non-output-value |
| // operand(s) or SELECT or SELECT_CC. |
| // FIXME: Although we could sometimes handle this, and it does occur in |
| // practice that one of the condition inputs to the select is also one of |
| // the outputs, we currently can't deal with this. |
| if (User->getOpcode() == ISD::SELECT) { |
| if (User->getOperand(0) == PromOps[i]) |
| return SDValue(); |
| } else if (User->getOpcode() == ISD::SELECT_CC) { |
| if (User->getOperand(0) == PromOps[i] || |
| User->getOperand(1) == PromOps[i]) |
| return SDValue(); |
| } |
| } |
| } |
| |
| // Replace all inputs with the extension operand. |
| for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { |
| // Constants may have users outside the cluster of to-be-promoted nodes, |
| // and so we need to replace those as we do the promotions. |
| if (isa<ConstantSDNode>(Inputs[i])) |
| continue; |
| else |
| DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); |
| } |
| |
| std::list<HandleSDNode> PromOpHandles; |
| for (auto &PromOp : PromOps) |
| PromOpHandles.emplace_back(PromOp); |
| |
| // Replace all operations (these are all the same, but have a different |
| // (i1) return type). DAG.getNode will validate that the types of |
| // a binary operator match, so go through the list in reverse so that |
| // we've likely promoted both operands first. Any intermediate truncations or |
| // extensions disappear. |
| while (!PromOpHandles.empty()) { |
| SDValue PromOp = PromOpHandles.back().getValue(); |
| PromOpHandles.pop_back(); |
| |
| if (PromOp.getOpcode() == ISD::TRUNCATE || |
| PromOp.getOpcode() == ISD::SIGN_EXTEND || |
| PromOp.getOpcode() == ISD::ZERO_EXTEND || |
| PromOp.getOpcode() == ISD::ANY_EXTEND) { |
| if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && |
| PromOp.getOperand(0).getValueType() != MVT::i1) { |
| // The operand is not yet ready (see comment below). |
| PromOpHandles.emplace_front(PromOp); |
| continue; |
| } |
| |
| SDValue RepValue = PromOp.getOperand(0); |
| if (isa<ConstantSDNode>(RepValue)) |
| RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); |
| |
| DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); |
| continue; |
| } |
| |
| unsigned C; |
| switch (PromOp.getOpcode()) { |
| default: C = 0; break; |
| case ISD::SELECT: C = 1; break; |
| case ISD::SELECT_CC: C = 2; break; |
| } |
| |
| if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && |
| PromOp.getOperand(C).getValueType() != MVT::i1) || |
| (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && |
| PromOp.getOperand(C+1).getValueType() != MVT::i1)) { |
| // The to-be-promoted operands of this node have not yet been |
| // promoted (this should be rare because we're going through the |
| // list backward, but if one of the operands has several users in |
| // this cluster of to-be-promoted nodes, it is possible). |
| PromOpHandles.emplace_front(PromOp); |
| continue; |
| } |
| |
| SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), |
| PromOp.getNode()->op_end()); |
| |
| // If there are any constant inputs, make sure they're replaced now. |
| for (unsigned i = 0; i < 2; ++i) |
| if (isa<ConstantSDNode>(Ops[C+i])) |
| Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); |
| |
| DAG.ReplaceAllUsesOfValueWith(PromOp, |
| DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); |
| } |
| |
| // Now we're left with the initial truncation itself. |
| if (N->getOpcode() == ISD::TRUNCATE) |
| return N->getOperand(0); |
| |
| // Otherwise, this is a comparison. The operands to be compared have just |
| // changed type (to i1), but everything else is the same. |
| return SDValue(N, 0); |
| } |
| |
| SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| |
| // If we're tracking CR bits, we need to be careful that we don't have: |
| // zext(binary-ops(trunc(x), trunc(y))) |
| // or |
| // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) |
| // such that we're unnecessarily moving things into CR bits that can more |
| // efficiently stay in GPRs. Note that if we're not certain that the high |
| // bits are set as required by the final extension, we still may need to do |
| // some masking to get the proper behavior. |
| |
| // This same functionality is important on PPC64 when dealing with |
| // 32-to-64-bit extensions; these occur often when 32-bit values are used as |
| // the return values of functions. Because it is so similar, it is handled |
| // here as well. |
| |
| if (N->getValueType(0) != MVT::i32 && |
| N->getValueType(0) != MVT::i64) |
| return SDValue(); |
| |
| if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || |
| (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) |
| return SDValue(); |
| |
| if (N->getOperand(0).getOpcode() != ISD::AND && |
| N->getOperand(0).getOpcode() != ISD::OR && |
| N->getOperand(0).getOpcode() != ISD::XOR && |
| N->getOperand(0).getOpcode() != ISD::SELECT && |
| N->getOperand(0).getOpcode() != ISD::SELECT_CC) |
| return SDValue(); |
| |
| SmallVector<SDValue, 4> Inputs; |
| SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; |
| SmallPtrSet<SDNode *, 16> Visited; |
| |
| // Visit all inputs, collect all binary operations (and, or, xor and |
| // select) that are all fed by truncations. |
| while (!BinOps.empty()) { |
| SDValue BinOp = BinOps.pop_back_val(); |
| |
| if (!Visited.insert(BinOp.getNode()).second) |
| continue; |
| |
| PromOps.push_back(BinOp); |
| |
| for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { |
| // The condition of the select is not promoted. |
| if (BinOp.getOpcode() == ISD::SELECT && i == 0) |
| continue; |
| if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) |
| continue; |
| |
| if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || |
| isa<ConstantSDNode>(BinOp.getOperand(i))) { |
| Inputs.push_back(BinOp.getOperand(i)); |
| } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || |
| BinOp.getOperand(i).getOpcode() == ISD::OR || |
| BinOp.getOperand(i).getOpcode() == ISD::XOR || |
| BinOp.getOperand(i).getOpcode() == ISD::SELECT || |
| BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { |
| BinOps.push_back(BinOp.getOperand(i)); |
| } else { |
| // We have an input that is not a truncation or another binary |
| // operation; we'll abort this transformation. |
| return SDValue(); |
| } |
| } |
| } |
| |
| // The operands of a select that must be truncated when the select is |
| // promoted because the operand is actually part of the to-be-promoted set. |
| DenseMap<SDNode *, EVT> SelectTruncOp[2]; |
| |
| // Make sure that this is a self-contained cluster of operations (which |
| // is not quite the same thing as saying that everything has only one |
| // use). |
| for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { |
| if (isa<ConstantSDNode>(Inputs[i])) |
| continue; |
| |
| for (SDNode *User : Inputs[i].getNode()->uses()) { |
| if (User != N && !Visited.count(User)) |
| return SDValue(); |
| |
| // If we're going to promote the non-output-value operand(s) or SELECT or |
| // SELECT_CC, record them for truncation. |
| if (User->getOpcode() == ISD::SELECT) { |
| if (User->getOperand(0) == Inputs[i]) |
| SelectTruncOp[0].insert(std::make_pair(User, |
| User->getOperand(0).getValueType())); |
| } else if (User->getOpcode() == ISD::SELECT_CC) { |
| if (User->getOperand(0) == Inputs[i]) |
| SelectTruncOp[0].insert(std::make_pair(User, |
| User->getOperand(0).getValueType())); |
| if (User->getOperand(1) == Inputs[i]) |
| SelectTruncOp[1].insert(std::make_pair(User, |
| User->getOperand(1).getValueType())); |
| } |
| } |
| } |
| |
| for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { |
| for (SDNode *User : PromOps[i].getNode()->uses()) { |
| if (User != N && !Visited.count(User)) |
| return SDValue(); |
| |
| // If we're going to promote the non-output-value operand(s) or SELECT or |
| // SELECT_CC, record them for truncation. |
| if (User->getOpcode() == ISD::SELECT) { |
| if (User->getOperand(0) == PromOps[i]) |
| SelectTruncOp[0].insert(std::make_pair(User, |
| User->getOperand(0).getValueType())); |
| } else if (User->getOpcode() == ISD::SELECT_CC) { |
| if (User->getOperand(0) == PromOps[i]) |
| SelectTruncOp[0].insert(std::make_pair(User, |
| User->getOperand(0).getValueType())); |
| if (User->getOperand(1) == PromOps[i]) |
| SelectTruncOp[1].insert(std::make_pair(User, |
| User->getOperand(1).getValueType())); |
| } |
| } |
| } |
| |
| unsigned PromBits = N->getOperand(0).getValueSizeInBits(); |
| bool ReallyNeedsExt = false; |
| if (N->getOpcode() != ISD::ANY_EXTEND) { |
| // If all of the inputs are not already sign/zero extended, then |
| // we'll still need to do that at the end. |
| for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { |
| if (isa<ConstantSDNode>(Inputs[i])) |
| continue; |
| |
| unsigned OpBits = |
| Inputs[i].getOperand(0).getValueSizeInBits(); |
| assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); |
| |
| if ((N->getOpcode() == ISD::ZERO_EXTEND && |
| !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), |
| APInt::getHighBitsSet(OpBits, |
| OpBits-PromBits))) || |
| (N->getOpcode() == ISD::SIGN_EXTEND && |
| DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < |
| (OpBits-(PromBits-1)))) { |
| ReallyNeedsExt = true; |
| break; |
| } |
| } |
| } |
| |
| // Replace all inputs, either with the truncation operand, or a |
| // truncation or extension to the final output type. |
| for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { |
| // Constant inputs need to be replaced with the to-be-promoted nodes that |
| // use them because they might have users outside of the cluster of |
| // promoted nodes. |
| if (isa<ConstantSDNode>(Inputs[i])) |
| continue; |
| |
| SDValue InSrc = Inputs[i].getOperand(0); |
| if (Inputs[i].getValueType() == N->getValueType(0)) |
| DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); |
| else if (N->getOpcode() == ISD::SIGN_EXTEND) |
| DAG.ReplaceAllUsesOfValueWith(Inputs[i], |
| DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); |
| else if (N->getOpcode() == ISD::ZERO_EXTEND) |
| DAG.ReplaceAllUsesOfValueWith(Inputs[i], |
| DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); |
| else |
| DAG.ReplaceAllUsesOfValueWith(Inputs[i], |
| DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); |
| } |
| |
| std::list<HandleSDNode> PromOpHandles; |
| for (auto &PromOp : PromOps) |
| PromOpHandles.emplace_back(PromOp); |
| |
| // Replace all operations (these are all the same, but have a different |
| // (promoted) return type). DAG.getNode will validate that the types of |
| // a binary operator match, so go through the list in reverse so that |
| // we've likely promoted both operands first. |
| while (!PromOpHandles.empty()) { |
| SDValue PromOp = PromOpHandles.back().getValue(); |
| PromOpHandles.pop_back(); |
| |
| unsigned C; |
| switch (PromOp.getOpcode()) { |
| default: C = 0; break; |
| case ISD::SELECT: C = 1; break; |
| case ISD::SELECT_CC: C = 2; break; |
| } |
| |
| if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && |
| PromOp.getOperand(C).getValueType() != N->getValueType(0)) || |
| (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && |
| PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { |
| // The to-be-promoted operands of this node have not yet been |
| // promoted (this should be rare because we're going through the |
| // list backward, but if one of the operands has several users in |
| // this cluster of to-be-promoted nodes, it is possible). |
| PromOpHandles.emplace_front(PromOp); |
| continue; |
| } |
| |
| // For SELECT and SELECT_CC nodes, we do a similar check for any |
| // to-be-promoted comparison inputs. |
| if (PromOp.getOpcode() == ISD::SELECT || |
| PromOp.getOpcode() == ISD::SELECT_CC) { |
| if ((SelectTruncOp[0].count(PromOp.getNode()) && |
| PromOp.getOperand(0).getValueType() != N->getValueType(0)) || |
| (SelectTruncOp[1].count(PromOp.getNode()) && |
| PromOp.getOperand(1).getValueType() != N->getValueType(0))) { |
| PromOpHandles.emplace_front(PromOp); |
| continue; |
| } |
| } |
| |
| SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), |
| PromOp.getNode()->op_end()); |
| |
| // If this node has constant inputs, then they'll need to be promoted here. |
| for (unsigned i = 0; i < 2; ++i) { |
| if (!isa<ConstantSDNode>(Ops[C+i])) |
| continue; |
| if (Ops[C+i].getValueType() == N->getValueType(0)) |
| continue; |
| |
| if (N->getOpcode() == ISD::SIGN_EXTEND) |
| Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); |
| else if (N->getOpcode() == ISD::ZERO_EXTEND) |
| Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); |
| else |
| Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); |
| } |
| |
| // If we've promoted the comparison inputs of a SELECT or SELECT_CC, |
| // truncate them again to the original value type. |
| if (PromOp.getOpcode() == ISD::SELECT || |
| PromOp.getOpcode() == ISD::SELECT_CC) { |
| auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); |
| if (SI0 != SelectTruncOp[0].end()) |
| Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); |
| auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); |
| if (SI1 != SelectTruncOp[1].end()) |
| Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); |
| } |
| |
| DAG.ReplaceAllUsesOfValueWith(PromOp, |
| DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); |
| } |
| |
| // Now we're left with the initial extension itself. |
| if (!ReallyNeedsExt) |
| return N->getOperand(0); |
| |
| // To zero extend, just mask off everything except for the first bit (in the |
| // i1 case). |
| if (N->getOpcode() == ISD::ZERO_EXTEND) |
| return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), |
| DAG.getConstant(APInt::getLowBitsSet( |
| N->getValueSizeInBits(0), PromBits), |
| dl, N->getValueType(0))); |
| |
| assert(N->getOpcode() == ISD::SIGN_EXTEND && |
| "Invalid extension type"); |
| EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); |
| SDValue ShiftCst = |
| DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); |
| return DAG.getNode( |
| ISD::SRA, dl, N->getValueType(0), |
| DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), |
| ShiftCst); |
| } |
| |
| SDValue PPCTargetLowering::combineSetCC(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert(N->getOpcode() == ISD::SETCC && |
| "Should be called with a SETCC node"); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| if (CC == ISD::SETNE || CC == ISD::SETEQ) { |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. |
| if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && |
| LHS.hasOneUse()) |
| std::swap(LHS, RHS); |
| |
| // x == 0-y --> x+y == 0 |
| // x != 0-y --> x+y != 0 |
| if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && |
| RHS.hasOneUse()) { |
| SDLoc DL(N); |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| EVT OpVT = LHS.getValueType(); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); |
| return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); |
| } |
| } |
| |
| return DAGCombineTruncBoolExt(N, DCI); |
| } |
| |
| // Is this an extending load from an f32 to an f64? |
| static bool isFPExtLoad(SDValue Op) { |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) |
| return LD->getExtensionType() == ISD::EXTLOAD && |
| Op.getValueType() == MVT::f64; |
| return false; |
| } |
| |
| /// Reduces the number of fp-to-int conversion when building a vector. |
| /// |
| /// If this vector is built out of floating to integer conversions, |
| /// transform it to a vector built out of floating point values followed by a |
| /// single floating to integer conversion of the vector. |
| /// Namely (build_vector (fptosi $A), (fptosi $B), ...) |
| /// becomes (fptosi (build_vector ($A, $B, ...))) |
| SDValue PPCTargetLowering:: |
| combineElementTruncationToVectorTruncation(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| "Should be called with a BUILD_VECTOR node"); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| |
| SDValue FirstInput = N->getOperand(0); |
| assert(FirstInput.getOpcode() == PPCISD::MFVSR && |
| "The input operand must be an fp-to-int conversion."); |
| |
| // This combine happens after legalization so the fp_to_[su]i nodes are |
| // already converted to PPCSISD nodes. |
| unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); |
| if (FirstConversion == PPCISD::FCTIDZ || |
| FirstConversion == PPCISD::FCTIDUZ || |
| FirstConversion == PPCISD::FCTIWZ || |
| FirstConversion == PPCISD::FCTIWUZ) { |
| bool IsSplat = true; |
| bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || |
| FirstConversion == PPCISD::FCTIWUZ; |
| EVT SrcVT = FirstInput.getOperand(0).getValueType(); |
| SmallVector<SDValue, 4> Ops; |
| EVT TargetVT = N->getValueType(0); |
| for (int i = 0, e = N->getNumOperands(); i < e; ++i) { |
| SDValue NextOp = N->getOperand(i); |
| if (NextOp.getOpcode() != PPCISD::MFVSR) |
| return SDValue(); |
| unsigned NextConversion = NextOp.getOperand(0).getOpcode(); |
| if (NextConversion != FirstConversion) |
| return SDValue(); |
| // If we are converting to 32-bit integers, we need to add an FP_ROUND. |
| // This is not valid if the input was originally double precision. It is |
| // also not profitable to do unless this is an extending load in which |
| // case doing this combine will allow us to combine consecutive loads. |
| if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) |
| return SDValue(); |
| if (N->getOperand(i) != FirstInput) |
| IsSplat = false; |
| } |
| |
| // If this is a splat, we leave it as-is since there will be only a single |
| // fp-to-int conversion followed by a splat of the integer. This is better |
| // for 32-bit and smaller ints and neutral for 64-bit ints. |
| if (IsSplat) |
| return SDValue(); |
| |
| // Now that we know we have the right type of node, get its operands |
| for (int i = 0, e = N->getNumOperands(); i < e; ++i) { |
| SDValue In = N->getOperand(i).getOperand(0); |
| if (Is32Bit) { |
| // For 32-bit values, we need to add an FP_ROUND node (if we made it |
| // here, we know that all inputs are extending loads so this is safe). |
| if (In.isUndef()) |
| Ops.push_back(DAG.getUNDEF(SrcVT)); |
| else { |
| SDValue Trunc = |
| DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0), |
| DAG.getIntPtrConstant(1, dl, /*isTarget=*/true)); |
| Ops.push_back(Trunc); |
| } |
| } else |
| Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); |
| } |
| |
| unsigned Opcode; |
| if (FirstConversion == PPCISD::FCTIDZ || |
| FirstConversion == PPCISD::FCTIWZ) |
| Opcode = ISD::FP_TO_SINT; |
| else |
| Opcode = ISD::FP_TO_UINT; |
| |
| EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; |
| SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); |
| return DAG.getNode(Opcode, dl, TargetVT, BV); |
| } |
| return SDValue(); |
| } |
| |
| /// Reduce the number of loads when building a vector. |
| /// |
| /// Building a vector out of multiple loads can be converted to a load |
| /// of the vector type if the loads are consecutive. If the loads are |
| /// consecutive but in descending order, a shuffle is added at the end |
| /// to reorder the vector. |
| static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| "Should be called with a BUILD_VECTOR node"); |
| |
| SDLoc dl(N); |
| |
| // Return early for non byte-sized type, as they can't be consecutive. |
| if (!N->getValueType(0).getVectorElementType().isByteSized()) |
| return SDValue(); |
| |
| bool InputsAreConsecutiveLoads = true; |
| bool InputsAreReverseConsecutive = true; |
| unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); |
| SDValue FirstInput = N->getOperand(0); |
| bool IsRoundOfExtLoad = false; |
| LoadSDNode *FirstLoad = nullptr; |
| |
| if (FirstInput.getOpcode() == ISD::FP_ROUND && |
| FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { |
| FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0)); |
| IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD; |
| } |
| // Not a build vector of (possibly fp_rounded) loads. |
| if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || |
| N->getNumOperands() == 1) |
| return SDValue(); |
| |
| if (!IsRoundOfExtLoad) |
| FirstLoad = cast<LoadSDNode>(FirstInput); |
| |
| SmallVector<LoadSDNode *, 4> InputLoads; |
| InputLoads.push_back(FirstLoad); |
| for (int i = 1, e = N->getNumOperands(); i < e; ++i) { |
| // If any inputs are fp_round(extload), they all must be. |
| if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) |
| return SDValue(); |
| |
| SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : |
| N->getOperand(i); |
| if (NextInput.getOpcode() != ISD::LOAD) |
| return SDValue(); |
| |
| SDValue PreviousInput = |
| IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); |
| LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput); |
| LoadSDNode *LD2 = cast<LoadSDNode>(NextInput); |
| |
| // If any inputs are fp_round(extload), they all must be. |
| if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) |
| return SDValue(); |
| |
| // We only care about regular loads. The PPC-specific load intrinsics |
| // will not lead to a merge opportunity. |
| if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1)) |
| InputsAreConsecutiveLoads = false; |
| if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1)) |
| InputsAreReverseConsecutive = false; |
| |
| // Exit early if the loads are neither consecutive nor reverse consecutive. |
| if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) |
| return SDValue(); |
| InputLoads.push_back(LD2); |
| } |
| |
| assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && |
| "The loads cannot be both consecutive and reverse consecutive."); |
| |
| SDValue WideLoad; |
| SDValue ReturnSDVal; |
| if (InputsAreConsecutiveLoads) { |
| assert(FirstLoad && "Input needs to be a LoadSDNode."); |
| WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(), |
| FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), |
| FirstLoad->getAlign()); |
| ReturnSDVal = WideLoad; |
| } else if (InputsAreReverseConsecutive) { |
| LoadSDNode *LastLoad = InputLoads.back(); |
| assert(LastLoad && "Input needs to be a LoadSDNode."); |
| WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(), |
| LastLoad->getBasePtr(), LastLoad->getPointerInfo(), |
| LastLoad->getAlign()); |
| SmallVector<int, 16> Ops; |
| for (int i = N->getNumOperands() - 1; i >= 0; i--) |
| Ops.push_back(i); |
| |
| ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad, |
| DAG.getUNDEF(N->getValueType(0)), Ops); |
| } else |
| return SDValue(); |
| |
| for (auto *LD : InputLoads) |
| DAG.makeEquivalentMemoryOrdering(LD, WideLoad); |
| return ReturnSDVal; |
| } |
| |
| // This function adds the required vector_shuffle needed to get |
| // the elements of the vector extract in the correct position |
| // as specified by the CorrectElems encoding. |
| static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, |
| SDValue Input, uint64_t Elems, |
| uint64_t CorrectElems) { |
| SDLoc dl(N); |
| |
| unsigned NumElems = Input.getValueType().getVectorNumElements(); |
| SmallVector<int, 16> ShuffleMask(NumElems, -1); |
| |
| // Knowing the element indices being extracted from the original |
| // vector and the order in which they're being inserted, just put |
| // them at element indices required for the instruction. |
| for (unsigned i = 0; i < N->getNumOperands(); i++) { |
| if (DAG.getDataLayout().isLittleEndian()) |
| ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; |
| else |
| ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; |
| CorrectElems = CorrectElems >> 8; |
| Elems = Elems >> 8; |
| } |
| |
| SDValue Shuffle = |
| DAG.getVectorShuffle(Input.getValueType(), dl, Input, |
| DAG.getUNDEF(Input.getValueType()), ShuffleMask); |
| |
| EVT VT = N->getValueType(0); |
| SDValue Conv = DAG.getBitcast(VT, Shuffle); |
| |
| EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), |
| Input.getValueType().getVectorElementType(), |
| VT.getVectorNumElements()); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, |
| DAG.getValueType(ExtVT)); |
| } |
| |
| // Look for build vector patterns where input operands come from sign |
| // extended vector_extract elements of specific indices. If the correct indices |
| // aren't used, add a vector shuffle to fix up the indices and create |
| // SIGN_EXTEND_INREG node which selects the vector sign extend instructions |
| // during instruction selection. |
| static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { |
| // This array encodes the indices that the vector sign extend instructions |
| // extract from when extending from one type to another for both BE and LE. |
| // The right nibble of each byte corresponds to the LE incides. |
| // and the left nibble of each byte corresponds to the BE incides. |
| // For example: 0x3074B8FC byte->word |
| // For LE: the allowed indices are: 0x0,0x4,0x8,0xC |
| // For BE: the allowed indices are: 0x3,0x7,0xB,0xF |
| // For example: 0x000070F8 byte->double word |
| // For LE: the allowed indices are: 0x0,0x8 |
| // For BE: the allowed indices are: 0x7,0xF |
| uint64_t TargetElems[] = { |
| 0x3074B8FC, // b->w |
| 0x000070F8, // b->d |
| 0x10325476, // h->w |
| 0x00003074, // h->d |
| 0x00001032, // w->d |
| }; |
| |
| uint64_t Elems = 0; |
| int Index; |
| SDValue Input; |
| |
| auto isSExtOfVecExtract = [&](SDValue Op) -> bool { |
| if (!Op) |
| return false; |
| if (Op.getOpcode() != ISD::SIGN_EXTEND && |
| Op.getOpcode() != ISD::SIGN_EXTEND_INREG) |
| return false; |
| |
| // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value |
| // of the right width. |
| SDValue Extract = Op.getOperand(0); |
| if (Extract.getOpcode() == ISD::ANY_EXTEND) |
| Extract = Extract.getOperand(0); |
| if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return false; |
| |
| ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); |
| if (!ExtOp) |
| return false; |
| |
| Index = ExtOp->getZExtValue(); |
| if (Input && Input != Extract.getOperand(0)) |
| return false; |
| |
| if (!Input) |
| Input = Extract.getOperand(0); |
| |
| Elems = Elems << 8; |
| Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; |
| Elems |= Index; |
| |
| return true; |
| }; |
| |
| // If the build vector operands aren't sign extended vector extracts, |
| // of the same input vector, then return. |
| for (unsigned i = 0; i < N->getNumOperands(); i++) { |
| if (!isSExtOfVecExtract(N->getOperand(i))) { |
| return SDValue(); |
| } |
| } |
| |
| // If the vector extract indicies are not correct, add the appropriate |
| // vector_shuffle. |
| int TgtElemArrayIdx; |
| int InputSize = Input.getValueType().getScalarSizeInBits(); |
| int OutputSize = N->getValueType(0).getScalarSizeInBits(); |
| if (InputSize + OutputSize == 40) |
| TgtElemArrayIdx = 0; |
| else if (InputSize + OutputSize == 72) |
| TgtElemArrayIdx = 1; |
| else if (InputSize + OutputSize == 48) |
| TgtElemArrayIdx = 2; |
| else if (InputSize + OutputSize == 80) |
| TgtElemArrayIdx = 3; |
| else if (InputSize + OutputSize == 96) |
| TgtElemArrayIdx = 4; |
| else |
| return SDValue(); |
| |
| uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; |
| CorrectElems = DAG.getDataLayout().isLittleEndian() |
| ? CorrectElems & 0x0F0F0F0F0F0F0F0F |
| : CorrectElems & 0xF0F0F0F0F0F0F0F0; |
| if (Elems != CorrectElems) { |
| return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); |
| } |
| |
| // Regular lowering will catch cases where a shuffle is not needed. |
| return SDValue(); |
| } |
| |
| // Look for the pattern of a load from a narrow width to i128, feeding |
| // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node |
| // (LXVRZX). This node represents a zero extending load that will be matched |
| // to the Load VSX Vector Rightmost instructions. |
| static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| |
| // This combine is only eligible for a BUILD_VECTOR of v1i128. |
| if (N->getValueType(0) != MVT::v1i128) |
| return SDValue(); |
| |
| SDValue Operand = N->getOperand(0); |
| // Proceed with the transformation if the operand to the BUILD_VECTOR |
| // is a load instruction. |
| if (Operand.getOpcode() != ISD::LOAD) |
| return SDValue(); |
| |
| auto *LD = cast<LoadSDNode>(Operand); |
| EVT MemoryType = LD->getMemoryVT(); |
| |
| // This transformation is only valid if the we are loading either a byte, |
| // halfword, word, or doubleword. |
| bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || |
| MemoryType == MVT::i32 || MemoryType == MVT::i64; |
| |
| // Ensure that the load from the narrow width is being zero extended to i128. |
| if (!ValidLDType || |
| (LD->getExtensionType() != ISD::ZEXTLOAD && |
| LD->getExtensionType() != ISD::EXTLOAD)) |
| return SDValue(); |
| |
| SDValue LoadOps[] = { |
| LD->getChain(), LD->getBasePtr(), |
| DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; |
| |
| return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, |
| DAG.getVTList(MVT::v1i128, MVT::Other), |
| LoadOps, MemoryType, LD->getMemOperand()); |
| } |
| |
| SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && |
| "Should be called with a BUILD_VECTOR node"); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| |
| if (!Subtarget.hasVSX()) |
| return SDValue(); |
| |
| // The target independent DAG combiner will leave a build_vector of |
| // float-to-int conversions intact. We can generate MUCH better code for |
| // a float-to-int conversion of a vector of floats. |
| SDValue FirstInput = N->getOperand(0); |
| if (FirstInput.getOpcode() == PPCISD::MFVSR) { |
| SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); |
| if (Reduced) |
| return Reduced; |
| } |
| |
| // If we're building a vector out of consecutive loads, just load that |
| // vector type. |
| SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); |
| if (Reduced) |
| return Reduced; |
| |
| // If we're building a vector out of extended elements from another vector |
| // we have P9 vector integer extend instructions. The code assumes legal |
| // input types (i.e. it can't handle things like v4i16) so do not run before |
| // legalization. |
| if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { |
| Reduced = combineBVOfVecSExt(N, DAG); |
| if (Reduced) |
| return Reduced; |
| } |
| |
| // On Power10, the Load VSX Vector Rightmost instructions can be utilized |
| // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR |
| // is a load from <valid narrow width> to i128. |
| if (Subtarget.isISA3_1()) { |
| SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); |
| if (BVOfZLoad) |
| return BVOfZLoad; |
| } |
| |
| if (N->getValueType(0) != MVT::v2f64) |
| return SDValue(); |
| |
| // Looking for: |
| // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) |
| if (FirstInput.getOpcode() != ISD::SINT_TO_FP && |
| FirstInput.getOpcode() != ISD::UINT_TO_FP) |
| return SDValue(); |
| if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && |
| N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) |
| return SDValue(); |
| if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) |
| return SDValue(); |
| |
| SDValue Ext1 = FirstInput.getOperand(0); |
| SDValue Ext2 = N->getOperand(1).getOperand(0); |
| if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); |
| ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); |
| if (!Ext1Op || !Ext2Op) |
| return SDValue(); |
| if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || |
| Ext1.getOperand(0) != Ext2.getOperand(0)) |
| return SDValue(); |
| |
| int FirstElem = Ext1Op->getZExtValue(); |
| int SecondElem = Ext2Op->getZExtValue(); |
| int SubvecIdx; |
| if (FirstElem == 0 && SecondElem == 1) |
| SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; |
| else if (FirstElem == 2 && SecondElem == 3) |
| SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; |
| else |
| return SDValue(); |
| |
| SDValue SrcVec = Ext1.getOperand(0); |
| auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? |
| PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; |
| return DAG.getNode(NodeType, dl, MVT::v2f64, |
| SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); |
| } |
| |
| SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert((N->getOpcode() == ISD::SINT_TO_FP || |
| N->getOpcode() == ISD::UINT_TO_FP) && |
| "Need an int -> FP conversion node here"); |
| |
| if (useSoftFloat() || !Subtarget.has64BitSupport()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| SDValue Op(N, 0); |
| |
| // Don't handle ppc_fp128 here or conversions that are out-of-range capable |
| // from the hardware. |
| if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) |
| return SDValue(); |
| if (!Op.getOperand(0).getValueType().isSimple()) |
| return SDValue(); |
| if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || |
| Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) |
| return SDValue(); |
| |
| SDValue FirstOperand(Op.getOperand(0)); |
| bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && |
| (FirstOperand.getValueType() == MVT::i8 || |
| FirstOperand.getValueType() == MVT::i16); |
| if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { |
| bool Signed = N->getOpcode() == ISD::SINT_TO_FP; |
| bool DstDouble = Op.getValueType() == MVT::f64; |
| unsigned ConvOp = Signed ? |
| (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : |
| (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); |
| SDValue WidthConst = |
| DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, |
| dl, false); |
| LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); |
| SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; |
| SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, |
| DAG.getVTList(MVT::f64, MVT::Other), |
| Ops, MVT::i8, LDN->getMemOperand()); |
| |
| // For signed conversion, we need to sign-extend the value in the VSR |
| if (Signed) { |
| SDValue ExtOps[] = { Ld, WidthConst }; |
| SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); |
| return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); |
| } else |
| return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); |
| } |
| |
| |
| // For i32 intermediate values, unfortunately, the conversion functions |
| // leave the upper 32 bits of the value are undefined. Within the set of |
| // scalar instructions, we have no method for zero- or sign-extending the |
| // value. Thus, we cannot handle i32 intermediate values here. |
| if (Op.getOperand(0).getValueType() == MVT::i32) |
| return SDValue(); |
| |
| assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && |
| "UINT_TO_FP is supported only with FPCVT"); |
| |
| // If we have FCFIDS, then use it when converting to single-precision. |
| // Otherwise, convert to double-precision and then round. |
| unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) |
| ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS |
| : PPCISD::FCFIDS) |
| : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU |
| : PPCISD::FCFID); |
| MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) |
| ? MVT::f32 |
| : MVT::f64; |
| |
| // If we're converting from a float, to an int, and back to a float again, |
| // then we don't need the store/load pair at all. |
| if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && |
| Subtarget.hasFPCVT()) || |
| (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { |
| SDValue Src = Op.getOperand(0).getOperand(0); |
| if (Src.getValueType() == MVT::f32) { |
| Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); |
| DCI.AddToWorklist(Src.getNode()); |
| } else if (Src.getValueType() != MVT::f64) { |
| // Make sure that we don't pick up a ppc_fp128 source value. |
| return SDValue(); |
| } |
| |
| unsigned FCTOp = |
| Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : |
| PPCISD::FCTIDUZ; |
| |
| SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); |
| SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); |
| |
| if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { |
| FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, |
| DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); |
| DCI.AddToWorklist(FP.getNode()); |
| } |
| |
| return FP; |
| } |
| |
| return SDValue(); |
| } |
| |
| // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for |
| // builtins) into loads with swaps. |
| SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| // Delay VSX load for LE combine until after LegalizeOps to prioritize other |
| // load combines. |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| SDValue Chain; |
| SDValue Base; |
| MachineMemOperand *MMO; |
| |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode for little endian VSX load"); |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| Chain = LD->getChain(); |
| Base = LD->getBasePtr(); |
| MMO = LD->getMemOperand(); |
| // If the MMO suggests this isn't a load of a full vector, leave |
| // things alone. For a built-in, we have to make the change for |
| // correctness, so if there is a size problem that will be a bug. |
| if (MMO->getSize() < 16) |
| return SDValue(); |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); |
| Chain = Intrin->getChain(); |
| // Similarly to the store case below, Intrin->getBasePtr() doesn't get |
| // us what we want. Get operand 2 instead. |
| Base = Intrin->getOperand(2); |
| MMO = Intrin->getMemOperand(); |
| break; |
| } |
| } |
| |
| MVT VecTy = N->getValueType(0).getSimpleVT(); |
| |
| SDValue LoadOps[] = { Chain, Base }; |
| SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, |
| DAG.getVTList(MVT::v2f64, MVT::Other), |
| LoadOps, MVT::v2f64, MMO); |
| |
| DCI.AddToWorklist(Load.getNode()); |
| Chain = Load.getValue(1); |
| SDValue Swap = DAG.getNode( |
| PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); |
| DCI.AddToWorklist(Swap.getNode()); |
| |
| // Add a bitcast if the resulting load type doesn't match v2f64. |
| if (VecTy != MVT::v2f64) { |
| SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); |
| DCI.AddToWorklist(N.getNode()); |
| // Package {bitcast value, swap's chain} to match Load's shape. |
| return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), |
| N, Swap.getValue(1)); |
| } |
| |
| return Swap; |
| } |
| |
| // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for |
| // builtins) into stores with swaps. |
| SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| // Delay VSX store for LE combine until after LegalizeOps to prioritize other |
| // store combines. |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| SDValue Chain; |
| SDValue Base; |
| unsigned SrcOpnd; |
| MachineMemOperand *MMO; |
| |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode for little endian VSX store"); |
| case ISD::STORE: { |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| Chain = ST->getChain(); |
| Base = ST->getBasePtr(); |
| MMO = ST->getMemOperand(); |
| SrcOpnd = 1; |
| // If the MMO suggests this isn't a store of a full vector, leave |
| // things alone. For a built-in, we have to make the change for |
| // correctness, so if there is a size problem that will be a bug. |
| if (MMO->getSize() < 16) |
| return SDValue(); |
| break; |
| } |
| case ISD::INTRINSIC_VOID: { |
| MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); |
| Chain = Intrin->getChain(); |
| // Intrin->getBasePtr() oddly does not get what we want. |
| Base = Intrin->getOperand(3); |
| MMO = Intrin->getMemOperand(); |
| SrcOpnd = 2; |
| break; |
| } |
| } |
| |
| SDValue Src = N->getOperand(SrcOpnd); |
| MVT VecTy = Src.getValueType().getSimpleVT(); |
| |
| // All stores are done as v2f64 and possible bit cast. |
| if (VecTy != MVT::v2f64) { |
| Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); |
| DCI.AddToWorklist(Src.getNode()); |
| } |
| |
| SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, |
| DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); |
| DCI.AddToWorklist(Swap.getNode()); |
| Chain = Swap.getValue(1); |
| SDValue StoreOps[] = { Chain, Swap, Base }; |
| SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, |
| DAG.getVTList(MVT::Other), |
| StoreOps, VecTy, MMO); |
| DCI.AddToWorklist(Store.getNode()); |
| return Store; |
| } |
| |
| // Handle DAG combine for STORE (FP_TO_INT F). |
| SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| unsigned Opcode = N->getOperand(1).getOpcode(); |
| |
| assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) |
| && "Not a FP_TO_INT Instruction!"); |
| |
| SDValue Val = N->getOperand(1).getOperand(0); |
| EVT Op1VT = N->getOperand(1).getValueType(); |
| EVT ResVT = Val.getValueType(); |
| |
| if (!isTypeLegal(ResVT)) |
| return SDValue(); |
| |
| // Only perform combine for conversion to i64/i32 or power9 i16/i8. |
| bool ValidTypeForStoreFltAsInt = |
| (Op1VT == MVT::i32 || Op1VT == MVT::i64 || |
| (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); |
| |
| if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) |
| return SDValue(); |
| |
| if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || |
| cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) |
| return SDValue(); |
| |
| // Extend f32 values to f64 |
| if (ResVT.getScalarSizeInBits() == 32) { |
| Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| } |
| |
| // Set signed or unsigned conversion opcode. |
| unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? |
| PPCISD::FP_TO_SINT_IN_VSR : |
| PPCISD::FP_TO_UINT_IN_VSR; |
| |
| Val = DAG.getNode(ConvOpcode, |
| dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); |
| DCI.AddToWorklist(Val.getNode()); |
| |
| // Set number of bytes being converted. |
| unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; |
| SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), |
| DAG.getIntPtrConstant(ByteSize, dl, false), |
| DAG.getValueType(Op1VT) }; |
| |
| Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, |
| DAG.getVTList(MVT::Other), Ops, |
| cast<StoreSDNode>(N)->getMemoryVT(), |
| cast<StoreSDNode>(N)->getMemOperand()); |
| |
| DCI.AddToWorklist(Val.getNode()); |
| return Val; |
| } |
| |
| static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { |
| // Check that the source of the element keeps flipping |
| // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). |
| bool PrevElemFromFirstVec = Mask[0] < NumElts; |
| for (int i = 1, e = Mask.size(); i < e; i++) { |
| if (PrevElemFromFirstVec && Mask[i] < NumElts) |
| return false; |
| if (!PrevElemFromFirstVec && Mask[i] >= NumElts) |
| return false; |
| PrevElemFromFirstVec = !PrevElemFromFirstVec; |
| } |
| return true; |
| } |
| |
| static bool isSplatBV(SDValue Op) { |
| if (Op.getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| SDValue FirstOp; |
| |
| // Find first non-undef input. |
| for (int i = 0, e = Op.getNumOperands(); i < e; i++) { |
| FirstOp = Op.getOperand(i); |
| if (!FirstOp.isUndef()) |
| break; |
| } |
| |
| // All inputs are undef or the same as the first non-undef input. |
| for (int i = 1, e = Op.getNumOperands(); i < e; i++) |
| if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) |
| return false; |
| return true; |
| } |
| |
| static SDValue isScalarToVec(SDValue Op) { |
| if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return Op; |
| if (Op.getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| Op = Op.getOperand(0); |
| if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return Op; |
| return SDValue(); |
| } |
| |
| // Fix up the shuffle mask to account for the fact that the result of |
| // scalar_to_vector is not in lane zero. This just takes all values in |
| // the ranges specified by the min/max indices and adds the number of |
| // elements required to ensure each element comes from the respective |
| // position in the valid lane. |
| // On little endian, that's just the corresponding element in the other |
| // half of the vector. On big endian, it is in the same half but right |
| // justified rather than left justified in that half. |
| static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, |
| int LHSMaxIdx, int RHSMinIdx, |
| int RHSMaxIdx, int HalfVec, |
| unsigned ValidLaneWidth, |
| const PPCSubtarget &Subtarget) { |
| for (int i = 0, e = ShuffV.size(); i < e; i++) { |
| int Idx = ShuffV[i]; |
| if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) |
| ShuffV[i] += |
| Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; |
| } |
| } |
| |
| // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if |
| // the original is: |
| // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) |
| // In such a case, just change the shuffle mask to extract the element |
| // from the permuted index. |
| static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| SDLoc dl(OrigSToV); |
| EVT VT = OrigSToV.getValueType(); |
| assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && |
| "Expecting a SCALAR_TO_VECTOR here"); |
| SDValue Input = OrigSToV.getOperand(0); |
| |
| if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); |
| SDValue OrigVector = Input.getOperand(0); |
| |
| // Can't handle non-const element indices or different vector types |
| // for the input to the extract and the output of the scalar_to_vector. |
| if (Idx && VT == OrigVector.getValueType()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| assert( |
| NumElts > 1 && |
| "Cannot produce a permuted scalar_to_vector for one element vector"); |
| SmallVector<int, 16> NewMask(NumElts, -1); |
| unsigned ResultInElt = NumElts / 2; |
| ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; |
| NewMask[ResultInElt] = Idx->getZExtValue(); |
| return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); |
| } |
| } |
| return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, |
| OrigSToV.getOperand(0)); |
| } |
| |
| // On little endian subtargets, combine shuffles such as: |
| // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b |
| // into: |
| // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b |
| // because the latter can be matched to a single instruction merge. |
| // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute |
| // to put the value into element zero. Adjust the shuffle mask so that the |
| // vector can remain in permuted form (to prevent a swap prior to a shuffle). |
| // On big endian targets, this is still useful for SCALAR_TO_VECTOR |
| // nodes with elements smaller than doubleword because all the ways |
| // of getting scalar data into a vector register put the value in the |
| // rightmost element of the left half of the vector. |
| SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, |
| SelectionDAG &DAG) const { |
| SDValue LHS = SVN->getOperand(0); |
| SDValue RHS = SVN->getOperand(1); |
| auto Mask = SVN->getMask(); |
| int NumElts = LHS.getValueType().getVectorNumElements(); |
| SDValue Res(SVN, 0); |
| SDLoc dl(SVN); |
| bool IsLittleEndian = Subtarget.isLittleEndian(); |
| |
| // On big endian targets this is only useful for subtargets with direct moves. |
| // On little endian targets it would be useful for all subtargets with VSX. |
| // However adding special handling for LE subtargets without direct moves |
| // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) |
| // which includes direct moves. |
| if (!Subtarget.hasDirectMove()) |
| return Res; |
| |
| // If this is not a shuffle of a shuffle and the first element comes from |
| // the second vector, canonicalize to the commuted form. This will make it |
| // more likely to match one of the single instruction patterns. |
| if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && |
| RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { |
| std::swap(LHS, RHS); |
| Res = DAG.getCommutedVectorShuffle(*SVN); |
| Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); |
| } |
| |
| // Adjust the shuffle mask if either input vector comes from a |
| // SCALAR_TO_VECTOR and keep the respective input vector in permuted |
| // form (to prevent the need for a swap). |
| SmallVector<int, 16> ShuffV(Mask); |
| SDValue SToVLHS = isScalarToVec(LHS); |
| SDValue SToVRHS = isScalarToVec(RHS); |
| if (SToVLHS || SToVRHS) { |
| // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the |
| // same type and have differing element sizes, then do not perform |
| // the following transformation. The current transformation for |
| // SCALAR_TO_VECTOR assumes that both input vectors have the same |
| // element size. This will be updated in the future to account for |
| // differing sizes of the LHS and RHS. |
| if (SToVLHS && SToVRHS && |
| (SToVLHS.getValueType().getScalarSizeInBits() != |
| SToVRHS.getValueType().getScalarSizeInBits())) |
| return Res; |
| |
| int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() |
| : SToVRHS.getValueType().getVectorNumElements(); |
| int NumEltsOut = ShuffV.size(); |
| // The width of the "valid lane" (i.e. the lane that contains the value that |
| // is vectorized) needs to be expressed in terms of the number of elements |
| // of the shuffle. It is thereby the ratio of the values before and after |
| // any bitcast. |
| unsigned ValidLaneWidth = |
| SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / |
| LHS.getValueType().getScalarSizeInBits() |
| : SToVRHS.getValueType().getScalarSizeInBits() / |
| RHS.getValueType().getScalarSizeInBits(); |
| |
| // Initially assume that neither input is permuted. These will be adjusted |
| // accordingly if either input is. |
| int LHSMaxIdx = -1; |
| int RHSMinIdx = -1; |
| int RHSMaxIdx = -1; |
| int HalfVec = LHS.getValueType().getVectorNumElements() / 2; |
| |
| // Get the permuted scalar to vector nodes for the source(s) that come from |
| // ISD::SCALAR_TO_VECTOR. |
| // On big endian systems, this only makes sense for element sizes smaller |
| // than 64 bits since for 64-bit elements, all instructions already put |
| // the value into element zero. Since scalar size of LHS and RHS may differ |
| // after isScalarToVec, this should be checked using their own sizes. |
| if (SToVLHS) { |
| if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) |
| return Res; |
| // Set up the values for the shuffle vector fixup. |
| LHSMaxIdx = NumEltsOut / NumEltsIn; |
| SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); |
| if (SToVLHS.getValueType() != LHS.getValueType()) |
| SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); |
| LHS = SToVLHS; |
| } |
| if (SToVRHS) { |
| if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) |
| return Res; |
| RHSMinIdx = NumEltsOut; |
| RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; |
| SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); |
| if (SToVRHS.getValueType() != RHS.getValueType()) |
| SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); |
| RHS = SToVRHS; |
| } |
| |
| // Fix up the shuffle mask to reflect where the desired element actually is. |
| // The minimum and maximum indices that correspond to element zero for both |
| // the LHS and RHS are computed and will control which shuffle mask entries |
| // are to be changed. For example, if the RHS is permuted, any shuffle mask |
| // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. |
| fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, |
| HalfVec, ValidLaneWidth, Subtarget); |
| Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); |
| |
| // We may have simplified away the shuffle. We won't be able to do anything |
| // further with it here. |
| if (!isa<ShuffleVectorSDNode>(Res)) |
| return Res; |
| Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); |
| } |
| |
| SDValue TheSplat = IsLittleEndian ? RHS : LHS; |
| // The common case after we commuted the shuffle is that the RHS is a splat |
| // and we have elements coming in from the splat at indices that are not |
| // conducive to using a merge. |
| // Example: |
| // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> |
| if (!isSplatBV(TheSplat)) |
| return Res; |
| |
| // We are looking for a mask such that all even elements are from |
| // one vector and all odd elements from the other. |
| if (!isAlternatingShuffMask(Mask, NumElts)) |
| return Res; |
| |
| // Adjust the mask so we are pulling in the same index from the splat |
| // as the index from the interesting vector in consecutive elements. |
| if (IsLittleEndian) { |
| // Example (even elements from first vector): |
| // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> |
| if (Mask[0] < NumElts) |
| for (int i = 1, e = Mask.size(); i < e; i += 2) { |
| if (ShuffV[i] < 0) |
| continue; |
| ShuffV[i] = (ShuffV[i - 1] + NumElts); |
| } |
| // Example (odd elements from first vector): |
| // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> |
| else |
| for (int i = 0, e = Mask.size(); i < e; i += 2) { |
| if (ShuffV[i] < 0) |
| continue; |
| ShuffV[i] = (ShuffV[i + 1] + NumElts); |
| } |
| } else { |
| // Example (even elements from first vector): |
| // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 |
| if (Mask[0] < NumElts) |
| for (int i = 0, e = Mask.size(); i < e; i += 2) { |
| if (ShuffV[i] < 0) |
| continue; |
| ShuffV[i] = ShuffV[i + 1] - NumElts; |
| } |
| // Example (odd elements from first vector): |
| // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 |
| else |
| for (int i = 1, e = Mask.size(); i < e; i += 2) { |
| if (ShuffV[i] < 0) |
| continue; |
| ShuffV[i] = ShuffV[i - 1] - NumElts; |
| } |
| } |
| |
| // If the RHS has undefs, we need to remove them since we may have created |
| // a shuffle that adds those instead of the splat value. |
| SDValue SplatVal = |
| cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); |
| TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); |
| |
| if (IsLittleEndian) |
| RHS = TheSplat; |
| else |
| LHS = TheSplat; |
| return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); |
| } |
| |
| SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, |
| LSBaseSDNode *LSBase, |
| DAGCombinerInfo &DCI) const { |
| assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && |
| "Not a reverse memop pattern!"); |
| |
| auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { |
| auto Mask = SVN->getMask(); |
| int i = 0; |
| auto I = Mask.rbegin(); |
| auto E = Mask.rend(); |
| |
| for (; I != E; ++I) { |
| if (*I != i) |
| return false; |
| i++; |
| } |
| return true; |
| }; |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = SVN->getValueType(0); |
| |
| if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) |
| return SDValue(); |
| |
| // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. |
| // See comment in PPCVSXSwapRemoval.cpp. |
| // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. |
| if (!Subtarget.hasP9Vector()) |
| return SDValue(); |
| |
| if(!IsElementReverse(SVN)) |
| return SDValue(); |
| |
| if (LSBase->getOpcode() == ISD::LOAD) { |
| // If the load return value 0 has more than one user except the |
| // shufflevector instruction, it is not profitable to replace the |
| // shufflevector with a reverse load. |
| for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); |
| UI != UE; ++UI) |
| if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) |
| return SDValue(); |
| |
| SDLoc dl(LSBase); |
| SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; |
| return DAG.getMemIntrinsicNode( |
| PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, |
| LSBase->getMemoryVT(), LSBase->getMemOperand()); |
| } |
| |
| if (LSBase->getOpcode() == ISD::STORE) { |
| // If there are other uses of the shuffle, the swap cannot be avoided. |
| // Forcing the use of an X-Form (since swapped stores only have |
| // X-Forms) without removing the swap is unprofitable. |
| if (!SVN->hasOneUse()) |
| return SDValue(); |
| |
| SDLoc dl(LSBase); |
| SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), |
| LSBase->getBasePtr()}; |
| return DAG.getMemIntrinsicNode( |
| PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, |
| LSBase->getMemoryVT(), LSBase->getMemOperand()); |
| } |
| |
| llvm_unreachable("Expected a load or store node here"); |
| } |
| |
| static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) { |
| unsigned IntrinsicID = |
| cast<ConstantSDNode>(Intrin.getOperand(1))->getZExtValue(); |
| if (IntrinsicID == Intrinsic::ppc_stdcx) |
| StoreWidth = 8; |
| else if (IntrinsicID == Intrinsic::ppc_stwcx) |
| StoreWidth = 4; |
| else if (IntrinsicID == Intrinsic::ppc_sthcx) |
| StoreWidth = 2; |
| else if (IntrinsicID == Intrinsic::ppc_stbcx) |
| StoreWidth = 1; |
| else |
| return false; |
| return true; |
| } |
| |
| SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: |
| return combineADD(N, DCI); |
| case ISD::SHL: |
| return combineSHL(N, DCI); |
| case ISD::SRA: |
| return combineSRA(N, DCI); |
| case ISD::SRL: |
| return combineSRL(N, DCI); |
| case ISD::MUL: |
| return combineMUL(N, DCI); |
| case ISD::FMA: |
| case PPCISD::FNMSUB: |
| return combineFMALike(N, DCI); |
| case PPCISD::SHL: |
| if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. |
| return N->getOperand(0); |
| break; |
| case PPCISD::SRL: |
| if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. |
| return N->getOperand(0); |
| break; |
| case PPCISD::SRA: |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| if (C->isZero() || // 0 >>s V -> 0. |
| C->isAllOnes()) // -1 >>s V -> -1. |
| return N->getOperand(0); |
| } |
| break; |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| return DAGCombineExtBoolTrunc(N, DCI); |
| case ISD::TRUNCATE: |
| return combineTRUNCATE(N, DCI); |
| case ISD::SETCC: |
| if (SDValue CSCC = combineSetCC(N, DCI)) |
| return CSCC; |
| [[fallthrough]]; |
| case ISD::SELECT_CC: |
| return DAGCombineTruncBoolExt(N, DCI); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return combineFPToIntToFP(N, DCI); |
| case ISD::VECTOR_SHUFFLE: |
| if (ISD::isNormalLoad(N->getOperand(0).getNode())) { |
| LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); |
| return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); |
| } |
| return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); |
| case ISD::STORE: { |
| |
| EVT Op1VT = N->getOperand(1).getValueType(); |
| unsigned Opcode = N->getOperand(1).getOpcode(); |
| |
| if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { |
| SDValue Val= combineStoreFPToInt(N, DCI); |
| if (Val) |
| return Val; |
| } |
| |
| if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); |
| SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); |
| if (Val) |
| return Val; |
| } |
| |
| // Turn STORE (BSWAP) -> sthbrx/stwbrx. |
| if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && |
| N->getOperand(1).getNode()->hasOneUse() && |
| (Op1VT == MVT::i32 || Op1VT == MVT::i16 || |
| (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { |
| |
| // STBRX can only handle simple types and it makes no sense to store less |
| // two bytes in byte-reversed order. |
| EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); |
| if (mVT.isExtended() || mVT.getSizeInBits() < 16) |
| break; |
| |
| SDValue BSwapOp = N->getOperand(1).getOperand(0); |
| // Do an any-extend to 32-bits if this is a half-word input. |
| if (BSwapOp.getValueType() == MVT::i16) |
| BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); |
| |
| // If the type of BSWAP operand is wider than stored memory width |
| // it need to be shifted to the right side before STBRX. |
| if (Op1VT.bitsGT(mVT)) { |
| int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); |
| BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, |
| DAG.getConstant(Shift, dl, MVT::i32)); |
| // Need to truncate if this is a bswap of i64 stored as i32/i16. |
| if (Op1VT == MVT::i64) |
| BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); |
| } |
| |
| SDValue Ops[] = { |
| N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) |
| }; |
| return |
| DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), |
| Ops, cast<StoreSDNode>(N)->getMemoryVT(), |
| cast<StoreSDNode>(N)->getMemOperand()); |
| } |
| |
| // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> |
| // So it can increase the chance of CSE constant construction. |
| if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && |
| isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { |
| // Need to sign-extended to 64-bits to handle negative values. |
| EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); |
| uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), |
| MemVT.getSizeInBits()); |
| SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); |
| |
| // DAG.getTruncStore() can't be used here because it doesn't accept |
| // the general (base + offset) addressing mode. |
| // So we use UpdateNodeOperands and setTruncatingStore instead. |
| DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), |
| N->getOperand(3)); |
| cast<StoreSDNode>(N)->setTruncatingStore(true); |
| return SDValue(N, 0); |
| } |
| |
| // For little endian, VSX stores require generating xxswapd/lxvd2x. |
| // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. |
| if (Op1VT.isSimple()) { |
| MVT StoreVT = Op1VT.getSimpleVT(); |
| if (Subtarget.needsSwapsForVSXMemOps() && |
| (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || |
| StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) |
| return expandVSXStoreForLE(N, DCI); |
| } |
| break; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT VT = LD->getValueType(0); |
| |
| // For little endian, VSX loads require generating lxvd2x/xxswapd. |
| // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. |
| if (VT.isSimple()) { |
| MVT LoadVT = VT.getSimpleVT(); |
| if (Subtarget.needsSwapsForVSXMemOps() && |
| (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || |
| LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) |
| return expandVSXLoadForLE(N, DCI); |
| } |
| |
| // We sometimes end up with a 64-bit integer load, from which we extract |
| // two single-precision floating-point numbers. This happens with |
| // std::complex<float>, and other similar structures, because of the way we |
| // canonicalize structure copies. However, if we lack direct moves, |
| // then the final bitcasts from the extracted integer values to the |
| // floating-point numbers turn into store/load pairs. Even with direct moves, |
| // just loading the two floating-point numbers is likely better. |
| auto ReplaceTwoFloatLoad = [&]() { |
| if (VT != MVT::i64) |
| return false; |
| |
| if (LD->getExtensionType() != ISD::NON_EXTLOAD || |
| LD->isVolatile()) |
| return false; |
| |
| // We're looking for a sequence like this: |
| // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 |
| // t16: i64 = srl t13, Constant:i32<32> |
| // t17: i32 = truncate t16 |
| // t18: f32 = bitcast t17 |
| // t19: i32 = truncate t13 |
| // t20: f32 = bitcast t19 |
| |
| if (!LD->hasNUsesOfValue(2, 0)) |
| return false; |
| |
| auto UI = LD->use_begin(); |
| while (UI.getUse().getResNo() != 0) ++UI; |
| SDNode *Trunc = *UI++; |
| while (UI.getUse().getResNo() != 0) ++UI; |
| SDNode *RightShift = *UI; |
| if (Trunc->getOpcode() != ISD::TRUNCATE) |
| std::swap(Trunc, RightShift); |
| |
| if (Trunc->getOpcode() != ISD::TRUNCATE || |
| Trunc->getValueType(0) != MVT::i32 || |
| !Trunc->hasOneUse()) |
| return false; |
| if (RightShift->getOpcode() != ISD::SRL || |
| !isa<ConstantSDNode>(RightShift->getOperand(1)) || |
| RightShift->getConstantOperandVal(1) != 32 || |
| !RightShift->hasOneUse()) |
| return false; |
| |
| SDNode *Trunc2 = *RightShift->use_begin(); |
| if (Trunc2->getOpcode() != ISD::TRUNCATE || |
| Trunc2->getValueType(0) != MVT::i32 || |
| !Trunc2->hasOneUse()) |
| return false; |
| |
| SDNode *Bitcast = *Trunc->use_begin(); |
| SDNode *Bitcast2 = *Trunc2->use_begin(); |
| |
| if (Bitcast->getOpcode() != ISD::BITCAST || |
| Bitcast->getValueType(0) != MVT::f32) |
| return false; |
| if (Bitcast2->getOpcode() != ISD::BITCAST || |
| Bitcast2->getValueType(0) != MVT::f32) |
| return false; |
| |
| if (Subtarget.isLittleEndian()) |
| std::swap(Bitcast, Bitcast2); |
| |
| // Bitcast has the second float (in memory-layout order) and Bitcast2 |
| // has the first one. |
| |
| SDValue BasePtr = LD->getBasePtr(); |
| if (LD->isIndexed()) { |
| assert(LD->getAddressingMode() == ISD::PRE_INC && |
| "Non-pre-inc AM on PPC?"); |
| BasePtr = |
| DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, |
| LD->getOffset()); |
| } |
| |
| auto MMOFlags = |
| LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; |
| SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, |
| LD->getPointerInfo(), LD->getAlign(), |
| MMOFlags, LD->getAAInfo()); |
| SDValue AddPtr = |
| DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), |
| BasePtr, DAG.getIntPtrConstant(4, dl)); |
| SDValue FloatLoad2 = DAG.getLoad( |
| MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, |
| LD->getPointerInfo().getWithOffset(4), |
| commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo()); |
| |
| if (LD->isIndexed()) { |
| // Note that DAGCombine should re-form any pre-increment load(s) from |
| // what is produced here if that makes sense. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); |
| } |
| |
| DCI.CombineTo(Bitcast2, FloatLoad); |
| DCI.CombineTo(Bitcast, FloatLoad2); |
| |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), |
| SDValue(FloatLoad2.getNode(), 1)); |
| return true; |
| }; |
| |
| if (ReplaceTwoFloatLoad()) |
| return SDValue(N, 0); |
| |
| EVT MemVT = LD->getMemoryVT(); |
| Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); |
| Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); |
| if (LD->isUnindexed() && VT.isVector() && |
| ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && |
| // P8 and later hardware should just use LOAD. |
| !Subtarget.hasP8Vector() && |
| (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || |
| VT == MVT::v4f32))) && |
| LD->getAlign() < ABIAlignment) { |
| // This is a type-legal unaligned Altivec load. |
| SDValue Chain = LD->getChain(); |
| SDValue Ptr = LD->getBasePtr(); |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| |
| // This implements the loading of unaligned vectors as described in |
| // the venerable Apple Velocity Engine overview. Specifically: |
| // https://developer.apple.com/hardwaredrivers/ve/alignment.html |
| // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html |
| // |
| // The general idea is to expand a sequence of one or more unaligned |
| // loads into an alignment-based permutation-control instruction (lvsl |
| // or lvsr), a series of regular vector loads (which always truncate |
| // their input address to an aligned address), and a series of |
| // permutations. The results of these permutations are the requested |
| // loaded values. The trick is that the last "extra" load is not taken |
| // from the address you might suspect (sizeof(vector) bytes after the |
| // last requested load), but rather sizeof(vector) - 1 bytes after the |
| // last requested vector. The point of this is to avoid a page fault if |
| // the base address happened to be aligned. This works because if the |
| // base address is aligned, then adding less than a full vector length |
| // will cause the last vector in the sequence to be (re)loaded. |
| // Otherwise, the next vector will be fetched as you might suspect was |
| // necessary. |
| |
| // We might be able to reuse the permutation generation from |
| // a different base address offset from this one by an aligned amount. |
| // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this |
| // optimization later. |
| Intrinsic::ID Intr, IntrLD, IntrPerm; |
| MVT PermCntlTy, PermTy, LDTy; |
| Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr |
| : Intrinsic::ppc_altivec_lvsl; |
| IntrLD = Intrinsic::ppc_altivec_lvx; |
| IntrPerm = Intrinsic::ppc_altivec_vperm; |
| PermCntlTy = MVT::v16i8; |
| PermTy = MVT::v4i32; |
| LDTy = MVT::v4i32; |
| |
| SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); |
| |
| // Create the new MMO for the new base load. It is like the original MMO, |
| // but represents an area in memory almost twice the vector size centered |
| // on the original address. If the address is unaligned, we might start |
| // reading up to (sizeof(vector)-1) bytes below the address of the |
| // original unaligned load. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *BaseMMO = |
| MF.getMachineMemOperand(LD->getMemOperand(), |
| -(int64_t)MemVT.getStoreSize()+1, |
| 2*MemVT.getStoreSize()-1); |
| |
| // Create the new base load. |
| SDValue LDXIntID = |
| DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); |
| SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; |
| SDValue BaseLoad = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, |
| DAG.getVTList(PermTy, MVT::Other), |
| BaseLoadOps, LDTy, BaseMMO); |
| |
| // Note that the value of IncOffset (which is provided to the next |
| // load's pointer info offset value, and thus used to calculate the |
| // alignment), and the value of IncValue (which is actually used to |
| // increment the pointer value) are different! This is because we |
| // require the next load to appear to be aligned, even though it |
| // is actually offset from the base pointer by a lesser amount. |
| int IncOffset = VT.getSizeInBits() / 8; |
| int IncValue = IncOffset; |
| |
| // Walk (both up and down) the chain looking for another load at the real |
| // (aligned) offset (the alignment of the other load does not matter in |
| // this case). If found, then do not use the offset reduction trick, as |
| // that will prevent the loads from being later combined (as they would |
| // otherwise be duplicates). |
| if (!findConsecutiveLoad(LD, DAG)) |
| --IncValue; |
| |
| SDValue Increment = |
| DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); |
| Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); |
| |
| MachineMemOperand *ExtraMMO = |
| MF.getMachineMemOperand(LD->getMemOperand(), |
| 1, 2*MemVT.getStoreSize()-1); |
| SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; |
| SDValue ExtraLoad = |
| DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, |
| DAG.getVTList(PermTy, MVT::Other), |
| ExtraLoadOps, LDTy, ExtraMMO); |
| |
| SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| BaseLoad.getValue(1), ExtraLoad.getValue(1)); |
| |
| // Because vperm has a big-endian bias, we must reverse the order |
| // of the input vectors and complement the permute control vector |
| // when generating little endian code. We have already handled the |
| // latter by using lvsr instead of lvsl, so just reverse BaseLoad |
| // and ExtraLoad here. |
| SDValue Perm; |
| if (isLittleEndian) |
| Perm = BuildIntrinsicOp(IntrPerm, |
| ExtraLoad, BaseLoad, PermCntl, DAG, dl); |
| else |
| Perm = BuildIntrinsicOp(IntrPerm, |
| BaseLoad, ExtraLoad, PermCntl, DAG, dl); |
| |
| if (VT != PermTy) |
| Perm = Subtarget.hasAltivec() |
| ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) |
| : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, |
| DAG.getTargetConstant(1, dl, MVT::i64)); |
| // second argument is 1 because this rounding |
| // is always exact. |
| |
| // The output of the permutation is our loaded result, the TokenFactor is |
| // our new chain. |
| DCI.CombineTo(N, Perm, TF); |
| return SDValue(N, 0); |
| } |
| } |
| break; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| bool isLittleEndian = Subtarget.isLittleEndian(); |
| unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr |
| : Intrinsic::ppc_altivec_lvsl); |
| if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { |
| SDValue Add = N->getOperand(1); |
| |
| int Bits = 4 /* 16 byte alignment */; |
| |
| if (DAG.MaskedValueIsZero(Add->getOperand(1), |
| APInt::getAllOnes(Bits /* alignment */) |
| .zext(Add.getScalarValueSizeInBits()))) { |
| SDNode *BasePtr = Add->getOperand(0).getNode(); |
| for (SDNode *U : BasePtr->uses()) { |
| if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) { |
| // We've found another LVSL/LVSR, and this address is an aligned |
| // multiple of that one. The results will be the same, so use the |
| // one we've just found instead. |
| |
| return SDValue(U, 0); |
| } |
| } |
| } |
| |
| if (isa<ConstantSDNode>(Add->getOperand(1))) { |
| SDNode *BasePtr = Add->getOperand(0).getNode(); |
| for (SDNode *U : BasePtr->uses()) { |
| if (U->getOpcode() == ISD::ADD && |
| isa<ConstantSDNode>(U->getOperand(1)) && |
| (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - |
| cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) % |
| (1ULL << Bits) == |
| 0) { |
| SDNode *OtherAdd = U; |
| for (SDNode *V : OtherAdd->uses()) { |
| if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() == |
| IID) { |
| return SDValue(V, 0); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Combine vmaxsw/h/b(a, a's negation) to abs(a) |
| // Expose the vabsduw/h/b opportunity for down stream |
| if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && |
| (IID == Intrinsic::ppc_altivec_vmaxsw || |
| IID == Intrinsic::ppc_altivec_vmaxsh || |
| IID == Intrinsic::ppc_altivec_vmaxsb)) { |
| SDValue V1 = N->getOperand(1); |
| SDValue V2 = N->getOperand(2); |
| if ((V1.getSimpleValueType() == MVT::v4i32 || |
| V1.getSimpleValueType() == MVT::v8i16 || |
| V1.getSimpleValueType() == MVT::v16i8) && |
| V1.getSimpleValueType() == V2.getSimpleValueType()) { |
| // (0-a, a) |
| if (V1.getOpcode() == ISD::SUB && |
| ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && |
| V1.getOperand(1) == V2) { |
| return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); |
| } |
| // (a, 0-a) |
| if (V2.getOpcode() == ISD::SUB && |
| ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && |
| V2.getOperand(1) == V1) { |
| return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); |
| } |
| // (x-y, y-x) |
| if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && |
| V1.getOperand(0) == V2.getOperand(1) && |
| V1.getOperand(1) == V2.getOperand(0)) { |
| return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); |
| } |
| } |
| } |
| } |
| |
| break; |
| case ISD::INTRINSIC_W_CHAIN: |
| // For little endian, VSX loads require generating lxvd2x/xxswapd. |
| // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. |
| if (Subtarget.needsSwapsForVSXMemOps()) { |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| default: |
| break; |
| case Intrinsic::ppc_vsx_lxvw4x: |
| case Intrinsic::ppc_vsx_lxvd2x: |
| return expandVSXLoadForLE(N, DCI); |
| } |
| } |
| break; |
| case ISD::INTRINSIC_VOID: |
| // For little endian, VSX stores require generating xxswapd/stxvd2x. |
| // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. |
| if (Subtarget.needsSwapsForVSXMemOps()) { |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| default: |
| break; |
| case Intrinsic::ppc_vsx_stxvw4x: |
| case Intrinsic::ppc_vsx_stxvd2x: |
| return expandVSXStoreForLE(N, DCI); |
| } |
| } |
| break; |
| case ISD::BSWAP: { |
| // Turn BSWAP (LOAD) -> lhbrx/lwbrx. |
| // For subtargets without LDBRX, we can still do better than the default |
| // expansion even for 64-bit BSWAP (LOAD). |
| bool Is64BitBswapOn64BitTgt = |
| Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; |
| bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && |
| N->getOperand(0).hasOneUse(); |
| if (IsSingleUseNormalLd && |
| (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || |
| (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { |
| SDValue Load = N->getOperand(0); |
| LoadSDNode *LD = cast<LoadSDNode>(Load); |
| // Create the byte-swapping load. |
| SDValue Ops[] = { |
| LD->getChain(), // Chain |
| LD->getBasePtr(), // Ptr |
| DAG.getValueType(N->getValueType(0)) // VT |
| }; |
| SDValue BSLoad = |
| DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, |
| DAG.getVTList(N->getValueType(0) == MVT::i64 ? |
| MVT::i64 : MVT::i32, MVT::Other), |
| Ops, LD->getMemoryVT(), LD->getMemOperand()); |
| |
| // If this is an i16 load, insert the truncate. |
| SDValue ResVal = BSLoad; |
| if (N->getValueType(0) == MVT::i16) |
| ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); |
| |
| // First, combine the bswap away. This makes the value produced by the |
| // load dead. |
| DCI.CombineTo(N, ResVal); |
| |
| // Next, combine the load away, we give it a bogus result value but a real |
| // chain result. The result value is dead because the bswap is dead. |
| DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); |
| |
| // Return N so it doesn't get rechecked! |
| return SDValue(N, 0); |
| } |
| // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only |
| // before legalization so that the BUILD_PAIR is handled correctly. |
| if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || |
| !IsSingleUseNormalLd) |
| return SDValue(); |
| LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); |
| |
| // Can't split volatile or atomic loads. |
| if (!LD->isSimple()) |
| return SDValue(); |
| SDValue BasePtr = LD->getBasePtr(); |
| SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, |
| LD->getPointerInfo(), LD->getAlign()); |
| Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); |
| BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, |
| DAG.getIntPtrConstant(4, dl)); |
| MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( |
| LD->getMemOperand(), 4, 4); |
| SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); |
| Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); |
| SDValue Res; |
| if (Subtarget.isLittleEndian()) |
| Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); |
| else |
| Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| SDValue TF = |
| DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); |
| return Res; |
| } |
| case PPCISD::VCMP: |
| // If a VCMP_rec node already exists with exactly the same operands as this |
| // node, use its result instead of this node (VCMP_rec computes both a CR6 |
| // and a normal output). |
| // |
| if (!N->getOperand(0).hasOneUse() && |
| !N->getOperand(1).hasOneUse() && |
| !N->getOperand(2).hasOneUse()) { |
| |
| // Scan all of the users of the LHS, looking for VCMP_rec's that match. |
| SDNode *VCMPrecNode = nullptr; |
| |
| SDNode *LHSN = N->getOperand(0).getNode(); |
| for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); |
| UI != E; ++UI) |
| if (UI->getOpcode() == PPCISD::VCMP_rec && |
| UI->getOperand(1) == N->getOperand(1) && |
| UI->getOperand(2) == N->getOperand(2) && |
| UI->getOperand(0) == N->getOperand(0)) { |
| VCMPrecNode = *UI; |
| break; |
| } |
| |
| // If there is no VCMP_rec node, or if the flag value has a single use, |
| // don't transform this. |
| if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) |
| break; |
| |
| // Look at the (necessarily single) use of the flag value. If it has a |
| // chain, this transformation is more complex. Note that multiple things |
| // could use the value result, which we should ignore. |
| SDNode *FlagUser = nullptr; |
| for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); |
| FlagUser == nullptr; ++UI) { |
| assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { |
| FlagUser = User; |
| break; |
| } |
| } |
| } |
| |
| // If the user is a MFOCRF instruction, we know this is safe. |
| // Otherwise we give up for right now. |
| if (FlagUser->getOpcode() == PPCISD::MFOCRF) |
| return SDValue(VCMPrecNode, 0); |
| } |
| break; |
| case ISD::BR_CC: { |
| // If this is a branch on an altivec predicate comparison, lower this so |
| // that we don't have to do a MFOCRF: instead, branch directly on CR6. This |
| // lowering is done pre-legalize, because the legalizer lowers the predicate |
| // compare down to code that is difficult to reassemble. |
| // This code also handles branches that depend on the result of a store |
| // conditional. |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); |
| |
| int CompareOpc; |
| bool isDot; |
| |
| if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE)) |
| break; |
| |
| // Since we are doing this pre-legalize, the RHS can be a constant of |
| // arbitrary bitwidth which may cause issues when trying to get the value |
| // from the underlying APInt. |
| auto RHSAPInt = cast<ConstantSDNode>(RHS)->getAPIntValue(); |
| if (!RHSAPInt.isIntN(64)) |
| break; |
| |
| unsigned Val = RHSAPInt.getZExtValue(); |
| auto isImpossibleCompare = [&]() { |
| // If this is a comparison against something other than 0/1, then we know |
| // that the condition is never/always true. |
| if (Val != 0 && Val != 1) { |
| if (CC == ISD::SETEQ) // Cond never true, remove branch. |
| return N->getOperand(0); |
| // Always !=, turn it into an unconditional branch. |
| return DAG.getNode(ISD::BR, dl, MVT::Other, |
| N->getOperand(0), N->getOperand(4)); |
| } |
| return SDValue(); |
| }; |
| // Combine branches fed by store conditional instructions (st[bhwd]cx). |
| unsigned StoreWidth = 0; |
| if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && |
| isStoreConditional(LHS, StoreWidth)) { |
| if (SDValue Impossible = isImpossibleCompare()) |
| return Impossible; |
| PPC::Predicate CompOpc; |
| // eq 0 => ne |
| // ne 0 => eq |
| // eq 1 => eq |
| // ne 1 => ne |
| if (Val == 0) |
| CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ; |
| else |
| CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE; |
| |
| SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3), |
| DAG.getConstant(StoreWidth, dl, MVT::i32)}; |
| auto *MemNode = cast<MemSDNode>(LHS); |
| SDValue ConstSt = DAG.getMemIntrinsicNode( |
| PPCISD::STORE_COND, dl, |
| DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops, |
| MemNode->getMemoryVT(), MemNode->getMemOperand()); |
| |
| SDValue InChain; |
| // Unchain the branch from the original store conditional. |
| if (N->getOperand(0) == LHS.getValue(1)) |
| InChain = LHS.getOperand(0); |
| else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) { |
| SmallVector<SDValue, 4> InChains; |
| SDValue InTF = N->getOperand(0); |
| for (int i = 0, e = InTF.getNumOperands(); i < e; i++) |
| if (InTF.getOperand(i) != LHS.getValue(1)) |
| InChains.push_back(InTF.getOperand(i)); |
| InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains); |
| } |
| |
| return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain, |
| DAG.getConstant(CompOpc, dl, MVT::i32), |
| DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4), |
| ConstSt.getValue(2)); |
| } |
| |
| if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { |
| assert(isDot && "Can't compare against a vector result!"); |
| |
| if (SDValue Impossible = isImpossibleCompare()) |
| return Impossible; |
| |
| bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); |
| // Create the PPCISD altivec 'dot' comparison node. |
| SDValue Ops[] = { |
| LHS.getOperand(2), // LHS of compare |
| LHS.getOperand(3), // RHS of compare |
| DAG.getConstant(CompareOpc, dl, MVT::i32) |
| }; |
| EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; |
| SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); |
| |
| // Unpack the result based on how the target uses it. |
| PPC::Predicate CompOpc; |
| switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { |
| default: // Can't happen, don't crash on invalid number though. |
| case 0: // Branch on the value of the EQ bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; |
| break; |
| case 1: // Branch on the inverted value of the EQ bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; |
| break; |
| case 2: // Branch on the value of the LT bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; |
| break; |
| case 3: // Branch on the inverted value of the LT bit of CR6. |
| CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; |
| break; |
| } |
| |
| return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), |
| DAG.getConstant(CompOpc, dl, MVT::i32), |
| DAG.getRegister(PPC::CR6, MVT::i32), |
| N->getOperand(4), CompNode.getValue(1)); |
| } |
| break; |
| } |
| case ISD::BUILD_VECTOR: |
| return DAGCombineBuildVector(N, DCI); |
| case ISD::ABS: |
| return combineABS(N, DCI); |
| case ISD::VSELECT: |
| return combineVSelect(N, DCI); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) const { |
| // fold (sdiv X, pow2) |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::i64 && !Subtarget.isPPC64()) |
| return SDValue(); |
| if ((VT != MVT::i32 && VT != MVT::i64) || |
| !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue N0 = N->getOperand(0); |
| |
| bool IsNegPow2 = Divisor.isNegatedPowerOf2(); |
| unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); |
| SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); |
| |
| SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); |
| Created.push_back(Op.getNode()); |
| |
| if (IsNegPow2) { |
| Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); |
| Created.push_back(Op.getNode()); |
| } |
| |
| return Op; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| Known.resetAll(); |
| switch (Op.getOpcode()) { |
| default: break; |
| case PPCISD::LBRX: { |
| // lhbrx is known to have the top bits cleared out. |
| if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) |
| Known.Zero = 0xFFFF0000; |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { |
| default: break; |
| case Intrinsic::ppc_altivec_vcmpbfp_p: |
| case Intrinsic::ppc_altivec_vcmpeqfp_p: |
| case Intrinsic::ppc_altivec_vcmpequb_p: |
| case Intrinsic::ppc_altivec_vcmpequh_p: |
| case Intrinsic::ppc_altivec_vcmpequw_p: |
| case Intrinsic::ppc_altivec_vcmpequd_p: |
| case Intrinsic::ppc_altivec_vcmpequq_p: |
| case Intrinsic::ppc_altivec_vcmpgefp_p: |
| case Intrinsic::ppc_altivec_vcmpgtfp_p: |
| case Intrinsic::ppc_altivec_vcmpgtsb_p: |
| case Intrinsic::ppc_altivec_vcmpgtsh_p: |
| case Intrinsic::ppc_altivec_vcmpgtsw_p: |
| case Intrinsic::ppc_altivec_vcmpgtsd_p: |
| case Intrinsic::ppc_altivec_vcmpgtsq_p: |
| case Intrinsic::ppc_altivec_vcmpgtub_p: |
| case Intrinsic::ppc_altivec_vcmpgtuh_p: |
| case Intrinsic::ppc_altivec_vcmpgtuw_p: |
| case Intrinsic::ppc_altivec_vcmpgtud_p: |
| case Intrinsic::ppc_altivec_vcmpgtuq_p: |
| Known.Zero = ~1U; // All bits but the low one are known to be zero. |
| break; |
| } |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { |
| default: |
| break; |
| case Intrinsic::ppc_load2r: |
| // Top bits are cleared for load2r (which is the same as lhbrx). |
| Known.Zero = 0xFFFF0000; |
| break; |
| } |
| break; |
| } |
| } |
| } |
| |
| Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { |
| switch (Subtarget.getCPUDirective()) { |
| default: break; |
| case PPC::DIR_970: |
| case PPC::DIR_PWR4: |
| case PPC::DIR_PWR5: |
| case PPC::DIR_PWR5X: |
| case PPC::DIR_PWR6: |
| case PPC::DIR_PWR6X: |
| case PPC::DIR_PWR7: |
| case PPC::DIR_PWR8: |
| case PPC::DIR_PWR9: |
| case PPC::DIR_PWR10: |
| case PPC::DIR_PWR_FUTURE: { |
| if (!ML) |
| break; |
| |
| if (!DisableInnermostLoopAlign32) { |
| // If the nested loop is an innermost loop, prefer to a 32-byte alignment, |
| // so that we can decrease cache misses and branch-prediction misses. |
| // Actual alignment of the loop will depend on the hotness check and other |
| // logic in alignBlocks. |
| if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) |
| return Align(32); |
| } |
| |
| const PPCInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| // For small loops (between 5 and 8 instructions), align to a 32-byte |
| // boundary so that the entire loop fits in one instruction-cache line. |
| uint64_t LoopSize = 0; |
| for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) |
| for (const MachineInstr &J : **I) { |
| LoopSize += TII->getInstSizeInBytes(J); |
| if (LoopSize > 32) |
| break; |
| } |
| |
| if (LoopSize > 16 && LoopSize <= 32) |
| return Align(32); |
| |
| break; |
| } |
| } |
| |
| return TargetLowering::getPrefLoopAlignment(ML); |
| } |
| |
| /// getConstraintType - Given a constraint, return the type of |
| /// constraint it is for this target. |
| PPCTargetLowering::ConstraintType |
| PPCTargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'b': |
| case 'r': |
| case 'f': |
| case 'd': |
| case 'v': |
| case 'y': |
| return C_RegisterClass; |
| case 'Z': |
| // FIXME: While Z does indicate a memory constraint, it specifically |
| // indicates an r+r address (used in conjunction with the 'y' modifier |
| // in the replacement string). Currently, we're forcing the base |
| // register to be r0 in the asm printer (which is interpreted as zero) |
| // and forming the complete address in the second register. This is |
| // suboptimal. |
| return C_Memory; |
| } |
| } else if (Constraint == "wc") { // individual CR bits. |
| return C_RegisterClass; |
| } else if (Constraint == "wa" || Constraint == "wd" || |
| Constraint == "wf" || Constraint == "ws" || |
| Constraint == "wi" || Constraint == "ww") { |
| return C_RegisterClass; // VSX registers. |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| PPCTargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| |
| // Look at the constraint type. |
| if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) |
| return CW_Register; // an individual CR bit. |
| else if ((StringRef(constraint) == "wa" || |
| StringRef(constraint) == "wd" || |
| StringRef(constraint) == "wf") && |
| type->isVectorTy()) |
| return CW_Register; |
| else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) |
| return CW_Register; // just hold 64-bit integers data. |
| else if (StringRef(constraint) == "ws" && type->isDoubleTy()) |
| return CW_Register; |
| else if (StringRef(constraint) == "ww" && type->isFloatTy()) |
| return CW_Register; |
| |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'b': |
| if (type->isIntegerTy()) |
| weight = CW_Register; |
| break; |
| case 'f': |
| if (type->isFloatTy()) |
| weight = CW_Register; |
| break; |
| case 'd': |
| if (type->isDoubleTy()) |
| weight = CW_Register; |
| break; |
| case 'v': |
| if (type->isVectorTy()) |
| weight = CW_Register; |
| break; |
| case 'y': |
| weight = CW_Register; |
| break; |
| case 'Z': |
| weight = CW_Memory; |
| break; |
| } |
| return weight; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC RS6000 Constraint Letters |
| switch (Constraint[0]) { |
| case 'b': // R1-R31 |
| if (VT == MVT::i64 && Subtarget.isPPC64()) |
| return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); |
| return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); |
| case 'r': // R0-R31 |
| if (VT == MVT::i64 && Subtarget.isPPC64()) |
| return std::make_pair(0U, &PPC::G8RCRegClass); |
| return std::make_pair(0U, &PPC::GPRCRegClass); |
| // 'd' and 'f' constraints are both defined to be "the floating point |
| // registers", where one is for 32-bit and the other for 64-bit. We don't |
| // really care overly much here so just give them all the same reg classes. |
| case 'd': |
| case 'f': |
| if (Subtarget.hasSPE()) { |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return std::make_pair(0U, &PPC::GPRCRegClass); |
| if (VT == MVT::f64 || VT == MVT::i64) |
| return std::make_pair(0U, &PPC::SPERCRegClass); |
| } else { |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return std::make_pair(0U, &PPC::F4RCRegClass); |
| if (VT == MVT::f64 || VT == MVT::i64) |
| return std::make_pair(0U, &PPC::F8RCRegClass); |
| } |
| break; |
| case 'v': |
| if (Subtarget.hasAltivec() && VT.isVector()) |
| return std::make_pair(0U, &PPC::VRRCRegClass); |
| else if (Subtarget.hasVSX()) |
| // Scalars in Altivec registers only make sense with VSX. |
| return std::make_pair(0U, &PPC::VFRCRegClass); |
| break; |
| case 'y': // crrc |
| return std::make_pair(0U, &PPC::CRRCRegClass); |
| } |
| } else if (Constraint == "wc" && Subtarget.useCRBits()) { |
| // An individual CR bit. |
| return std::make_pair(0U, &PPC::CRBITRCRegClass); |
| } else if ((Constraint == "wa" || Constraint == "wd" || |
| Constraint == "wf" || Constraint == "wi") && |
| Subtarget.hasVSX()) { |
| // A VSX register for either a scalar (FP) or vector. There is no |
| // support for single precision scalars on subtargets prior to Power8. |
| if (VT.isVector()) |
| return std::make_pair(0U, &PPC::VSRCRegClass); |
| if (VT == MVT::f32 && Subtarget.hasP8Vector()) |
| return std::make_pair(0U, &PPC::VSSRCRegClass); |
| return std::make_pair(0U, &PPC::VSFRCRegClass); |
| } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { |
| if (VT == MVT::f32 && Subtarget.hasP8Vector()) |
| return std::make_pair(0U, &PPC::VSSRCRegClass); |
| else |
| return std::make_pair(0U, &PPC::VSFRCRegClass); |
| } else if (Constraint == "lr") { |
| if (VT == MVT::i64) |
| return std::make_pair(0U, &PPC::LR8RCRegClass); |
| else |
| return std::make_pair(0U, &PPC::LRRCRegClass); |
| } |
| |
| // Handle special cases of physical registers that are not properly handled |
| // by the base class. |
| if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { |
| // If we name a VSX register, we can't defer to the base class because it |
| // will not recognize the correct register (their names will be VSL{0-31} |
| // and V{0-31} so they won't match). So we match them here. |
| if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { |
| int VSNum = atoi(Constraint.data() + 3); |
| assert(VSNum >= 0 && VSNum <= 63 && |
| "Attempted to access a vsr out of range"); |
| if (VSNum < 32) |
| return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); |
| return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); |
| } |
| |
| // For float registers, we can't defer to the base class as it will match |
| // the SPILLTOVSRRC class. |
| if (Constraint.size() > 3 && Constraint[1] == 'f') { |
| int RegNum = atoi(Constraint.data() + 2); |
| if (RegNum > 31 || RegNum < 0) |
| report_fatal_error("Invalid floating point register number"); |
| if (VT == MVT::f32 || VT == MVT::i32) |
| return Subtarget.hasSPE() |
| ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) |
| : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); |
| if (VT == MVT::f64 || VT == MVT::i64) |
| return Subtarget.hasSPE() |
| ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) |
| : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); |
| } |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> R = |
| TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| |
| // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers |
| // (which we call X[0-9]+). If a 64-bit value has been requested, and a |
| // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent |
| // register. |
| // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use |
| // the AsmName field from *RegisterInfo.td, then this would not be necessary. |
| if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && |
| PPC::GPRCRegClass.contains(R.first)) |
| return std::make_pair(TRI->getMatchingSuperReg(R.first, |
| PPC::sub_32, &PPC::G8RCRegClass), |
| &PPC::G8RCRegClass); |
| |
| // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. |
| if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { |
| R.first = PPC::CR0; |
| R.second = &PPC::CRRCRegClass; |
| } |
| // FIXME: This warning should ideally be emitted in the front end. |
| const auto &TM = getTargetMachine(); |
| if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { |
| if (((R.first >= PPC::V20 && R.first <= PPC::V31) || |
| (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && |
| (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) |
| errs() << "warning: vector registers 20 to 32 are reserved in the " |
| "default AIX AltiVec ABI and cannot be used\n"; |
| } |
| |
| return R; |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| |
| // Only support length 1 constraints. |
| if (Constraint.length() > 1) return; |
| |
| char Letter = Constraint[0]; |
| switch (Letter) { |
| default: break; |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': { |
| ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); |
| if (!CST) return; // Must be an immediate to match. |
| SDLoc dl(Op); |
| int64_t Value = CST->getSExtValue(); |
| EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative |
| // numbers are printed as such. |
| switch (Letter) { |
| default: llvm_unreachable("Unknown constraint letter!"); |
| case 'I': // "I" is a signed 16-bit constant. |
| if (isInt<16>(Value)) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'J': // "J" is a constant with only the high-order 16 bits nonzero. |
| if (isShiftedUInt<16, 16>(Value)) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. |
| if (isShiftedInt<16, 16>(Value)) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'K': // "K" is a constant with only the low-order 16 bits nonzero. |
| if (isUInt<16>(Value)) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'M': // "M" is a constant that is greater than 31. |
| if (Value > 31) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'N': // "N" is a positive constant that is an exact power of two. |
| if (Value > 0 && isPowerOf2_64(Value)) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'O': // "O" is the constant zero. |
| if (Value == 0) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| case 'P': // "P" is a constant whose negation is a signed 16-bit constant. |
| if (isInt<16>(-Value)) |
| Result = DAG.getTargetConstant(Value, dl, TCVT); |
| break; |
| } |
| break; |
| } |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| // Handle standard constraint letters. |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, |
| SmallVectorImpl<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| if (I.getNumOperands() <= 1) |
| return; |
| if (!isa<ConstantSDNode>(Ops[1].getNode())) |
| return; |
| auto IntrinsicID = cast<ConstantSDNode>(Ops[1].getNode())->getZExtValue(); |
| if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && |
| IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap) |
| return; |
| |
| if (I.hasMetadata("annotation")) { |
| MDNode *MDN = I.getMetadata("annotation"); |
| Ops.push_back(DAG.getMDNode(MDN)); |
| } |
| } |
| |
| // isLegalAddressingMode - Return true if the addressing mode represented |
| // by AM is legal for this target, for a load/store of the specified type. |
| bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, |
| Instruction *I) const { |
| // Vector type r+i form is supported since power9 as DQ form. We don't check |
| // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, |
| // imm form is preferred and the offset can be adjusted to use imm form later |
| // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and |
| // max offset to check legal addressing mode, we should be a little aggressive |
| // to contain other offsets for that LSRUse. |
| if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) |
| return false; |
| |
| // PPC allows a sign-extended 16-bit immediate field. |
| if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) |
| return false; |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // PPC only support r+r, |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. |
| return false; |
| // Otherwise we have r+r or r+i. |
| break; |
| case 2: |
| if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. |
| return false; |
| // Allow 2*r as r+r. |
| break; |
| default: |
| // No other scales are supported. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| SDLoc dl(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| |
| // Make sure the function does not optimize away the store of the RA to |
| // the stack. |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setLRStoreRequired(); |
| bool isPPC64 = Subtarget.isPPC64(); |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| |
| if (Depth > 0) { |
| // The link register (return address) is saved in the caller's frame |
| // not the callee's stack frame. So we must get the caller's frame |
| // address and load the return address at the LR offset from there. |
| SDValue FrameAddr = |
| DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), |
| LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); |
| SDValue Offset = |
| DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, |
| isPPC64 ? MVT::i64 : MVT::i32); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Just load the return address off the stack. |
| SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, |
| MachinePointerInfo()); |
| } |
| |
| SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| EVT PtrVT = getPointerTy(MF.getDataLayout()); |
| bool isPPC64 = PtrVT == MVT::i64; |
| |
| // Naked functions never have a frame pointer, and so we use r1. For all |
| // other functions, this decision must be delayed until during PEI. |
| unsigned FrameReg; |
| if (MF.getFunction().hasFnAttribute(Attribute::Naked)) |
| FrameReg = isPPC64 ? PPC::X1 : PPC::R1; |
| else |
| FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; |
| |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, |
| PtrVT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), |
| FrameAddr, MachinePointerInfo()); |
| return FrameAddr; |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, |
| const MachineFunction &MF) const { |
| bool isPPC64 = Subtarget.isPPC64(); |
| |
| bool is64Bit = isPPC64 && VT == LLT::scalar(64); |
| if (!is64Bit && VT != LLT::scalar(32)) |
| report_fatal_error("Invalid register global variable type"); |
| |
| Register Reg = StringSwitch<Register>(RegName) |
| .Case("r1", is64Bit ? PPC::X1 : PPC::R1) |
| .Case("r2", isPPC64 ? Register() : PPC::R2) |
| .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) |
| .Default(Register()); |
| |
| if (Reg) |
| return Reg; |
| report_fatal_error("Invalid register name global variable"); |
| } |
| |
| bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { |
| // 32-bit SVR4 ABI access everything as got-indirect. |
| if (Subtarget.is32BitELFABI()) |
| return true; |
| |
| // AIX accesses everything indirectly through the TOC, which is similar to |
| // the GOT. |
| if (Subtarget.isAIXABI()) |
| return true; |
| |
| CodeModel::Model CModel = getTargetMachine().getCodeModel(); |
| // If it is small or large code model, module locals are accessed |
| // indirectly by loading their address from .toc/.got. |
| if (CModel == CodeModel::Small || CModel == CodeModel::Large) |
| return true; |
| |
| // JumpTable and BlockAddress are accessed as got-indirect. |
| if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) |
| return true; |
| |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) |
| return Subtarget.isGVIndirectSymbol(G->getGlobal()); |
| |
| return false; |
| } |
| |
| bool |
| PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The PowerPC target isn't yet aware of offsets. |
| return false; |
| } |
| |
| bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| case Intrinsic::ppc_atomicrmw_xchg_i128: |
| case Intrinsic::ppc_atomicrmw_add_i128: |
| case Intrinsic::ppc_atomicrmw_sub_i128: |
| case Intrinsic::ppc_atomicrmw_nand_i128: |
| case Intrinsic::ppc_atomicrmw_and_i128: |
| case Intrinsic::ppc_atomicrmw_or_i128: |
| case Intrinsic::ppc_atomicrmw_xor_i128: |
| case Intrinsic::ppc_cmpxchg_i128: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i128; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(16); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | |
| MachineMemOperand::MOVolatile; |
| return true; |
| case Intrinsic::ppc_atomic_load_i128: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i128; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(16); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; |
| return true; |
| case Intrinsic::ppc_atomic_store_i128: |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = MVT::i128; |
| Info.ptrVal = I.getArgOperand(2); |
| Info.offset = 0; |
| Info.align = Align(16); |
| Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; |
| return true; |
| case Intrinsic::ppc_altivec_lvx: |
| case Intrinsic::ppc_altivec_lvxl: |
| case Intrinsic::ppc_altivec_lvebx: |
| case Intrinsic::ppc_altivec_lvehx: |
| case Intrinsic::ppc_altivec_lvewx: |
| case Intrinsic::ppc_vsx_lxvd2x: |
| case Intrinsic::ppc_vsx_lxvw4x: |
| case Intrinsic::ppc_vsx_lxvd2x_be: |
| case Intrinsic::ppc_vsx_lxvw4x_be: |
| case Intrinsic::ppc_vsx_lxvl: |
| case Intrinsic::ppc_vsx_lxvll: { |
| EVT VT; |
| switch (Intrinsic) { |
| case Intrinsic::ppc_altivec_lvebx: |
| VT = MVT::i8; |
| break; |
| case Intrinsic::ppc_altivec_lvehx: |
| VT = MVT::i16; |
| break; |
| case Intrinsic::ppc_altivec_lvewx: |
| VT = MVT::i32; |
| break; |
| case Intrinsic::ppc_vsx_lxvd2x: |
| case Intrinsic::ppc_vsx_lxvd2x_be: |
| VT = MVT::v2f64; |
| break; |
| default: |
| VT = MVT::v4i32; |
| break; |
| } |
| |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = VT; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = -VT.getStoreSize()+1; |
| Info.size = 2*VT.getStoreSize()-1; |
| Info.align = Align(1); |
| Info.flags = MachineMemOperand::MOLoad; |
| return true; |
| } |
| case Intrinsic::ppc_altivec_stvx: |
| case Intrinsic::ppc_altivec_stvxl: |
| case Intrinsic::ppc_altivec_stvebx: |
| case Intrinsic::ppc_altivec_stvehx: |
| case Intrinsic::ppc_altivec_stvewx: |
| case Intrinsic::ppc_vsx_stxvd2x: |
| case Intrinsic::ppc_vsx_stxvw4x: |
| case Intrinsic::ppc_vsx_stxvd2x_be: |
| case Intrinsic::ppc_vsx_stxvw4x_be: |
| case Intrinsic::ppc_vsx_stxvl: |
| case Intrinsic::ppc_vsx_stxvll: { |
| EVT VT; |
| switch (Intrinsic) { |
| case Intrinsic::ppc_altivec_stvebx: |
| VT = MVT::i8; |
| break; |
| case Intrinsic::ppc_altivec_stvehx: |
| VT = MVT::i16; |
| break; |
| case Intrinsic::ppc_altivec_stvewx: |
| VT = MVT::i32; |
| break; |
| case Intrinsic::ppc_vsx_stxvd2x: |
| case Intrinsic::ppc_vsx_stxvd2x_be: |
| VT = MVT::v2f64; |
| break; |
| default: |
| VT = MVT::v4i32; |
| break; |
| } |
| |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = VT; |
| Info.ptrVal = I.getArgOperand(1); |
| Info.offset = -VT.getStoreSize()+1; |
| Info.size = 2*VT.getStoreSize()-1; |
| Info.align = Align(1); |
| Info.flags = MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::ppc_stdcx: |
| case Intrinsic::ppc_stwcx: |
| case Intrinsic::ppc_sthcx: |
| case Intrinsic::ppc_stbcx: { |
| EVT VT; |
| auto Alignment = Align(8); |
| switch (Intrinsic) { |
| case Intrinsic::ppc_stdcx: |
| VT = MVT::i64; |
| break; |
| case Intrinsic::ppc_stwcx: |
| VT = MVT::i32; |
| Alignment = Align(4); |
| break; |
| case Intrinsic::ppc_sthcx: |
| VT = MVT::i16; |
| Alignment = Align(2); |
| break; |
| case Intrinsic::ppc_stbcx: |
| VT = MVT::i8; |
| Alignment = Align(1); |
| break; |
| } |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = VT; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Alignment; |
| Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| EVT PPCTargetLowering::getOptimalMemOpType( |
| const MemOp &Op, const AttributeList &FuncAttributes) const { |
| if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { |
| // We should use Altivec/VSX loads and stores when available. For unaligned |
| // addresses, unaligned VSX loads are only fast starting with the P8. |
| if (Subtarget.hasAltivec() && Op.size() >= 16 && |
| (Op.isAligned(Align(16)) || |
| ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) |
| return MVT::v4i32; |
| } |
| |
| if (Subtarget.isPPC64()) { |
| return MVT::i64; |
| } |
| |
| return MVT::i32; |
| } |
| |
| /// Returns true if it is beneficial to convert a load of a constant |
| /// to just the constant itself. |
| bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| return !(BitSize == 0 || BitSize > 64); |
| } |
| |
| bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| return NumBits1 == 64 && NumBits2 == 32; |
| } |
| |
| bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (!VT1.isInteger() || !VT2.isInteger()) |
| return false; |
| unsigned NumBits1 = VT1.getSizeInBits(); |
| unsigned NumBits2 = VT2.getSizeInBits(); |
| return NumBits1 == 64 && NumBits2 == 32; |
| } |
| |
| bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| // Generally speaking, zexts are not free, but they are free when they can be |
| // folded with other operations. |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { |
| EVT MemVT = LD->getMemoryVT(); |
| if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || |
| (Subtarget.isPPC64() && MemVT == MVT::i32)) && |
| (LD->getExtensionType() == ISD::NON_EXTLOAD || |
| LD->getExtensionType() == ISD::ZEXTLOAD)) |
| return true; |
| } |
| |
| // FIXME: Add other cases... |
| // - 32-bit shifts with a zext to i64 |
| // - zext after ctlz, bswap, etc. |
| // - zext after and by a constant mask |
| |
| return TargetLowering::isZExtFree(Val, VT2); |
| } |
| |
| bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { |
| assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && |
| "invalid fpext types"); |
| // Extending to float128 is not free. |
| if (DestVT == MVT::f128) |
| return false; |
| return true; |
| } |
| |
| bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return isInt<16>(Imm) || isUInt<16>(Imm); |
| } |
| |
| bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| return isInt<16>(Imm) || isUInt<16>(Imm); |
| } |
| |
| bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, |
| MachineMemOperand::Flags, |
| unsigned *Fast) const { |
| if (DisablePPCUnaligned) |
| return false; |
| |
| // PowerPC supports unaligned memory access for simple non-vector types. |
| // Although accessing unaligned addresses is not as efficient as accessing |
| // aligned addresses, it is generally more efficient than manual expansion, |
| // and generally only traps for software emulation when crossing page |
| // boundaries. |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (VT.isFloatingPoint() && !VT.isVector() && |
| !Subtarget.allowsUnalignedFPAccess()) |
| return false; |
| |
| if (VT.getSimpleVT().isVector()) { |
| if (Subtarget.hasVSX()) { |
| if (VT != MVT::v2f64 && VT != MVT::v2i64 && |
| VT != MVT::v4f32 && VT != MVT::v4i32) |
| return false; |
| } else { |
| return false; |
| } |
| } |
| |
| if (VT == MVT::ppcf128) |
| return false; |
| |
| if (Fast) |
| *Fast = 1; |
| |
| return true; |
| } |
| |
| bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, |
| SDValue C) const { |
| // Check integral scalar types. |
| if (!VT.isScalarInteger()) |
| return false; |
| if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { |
| if (!ConstNode->getAPIntValue().isSignedIntN(64)) |
| return false; |
| // This transformation will generate >= 2 operations. But the following |
| // cases will generate <= 2 instructions during ISEL. So exclude them. |
| // 1. If the constant multiplier fits 16 bits, it can be handled by one |
| // HW instruction, ie. MULLI |
| // 2. If the multiplier after shifted fits 16 bits, an extra shift |
| // instruction is needed than case 1, ie. MULLI and RLDICR |
| int64_t Imm = ConstNode->getSExtValue(); |
| unsigned Shift = countTrailingZeros<uint64_t>(Imm); |
| Imm >>= Shift; |
| if (isInt<16>(Imm)) |
| return false; |
| uint64_t UImm = static_cast<uint64_t>(Imm); |
| if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || |
| isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
| EVT VT) const { |
| return isFMAFasterThanFMulAndFAdd( |
| MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); |
| } |
| |
| bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, |
| Type *Ty) const { |
| if (Subtarget.hasSPE()) |
| return false; |
| switch (Ty->getScalarType()->getTypeID()) { |
| case Type::FloatTyID: |
| case Type::DoubleTyID: |
| return true; |
| case Type::FP128TyID: |
| return Subtarget.hasP9Vector(); |
| default: |
| return false; |
| } |
| } |
| |
| // FIXME: add more patterns which are not profitable to hoist. |
| bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { |
| if (!I->hasOneUse()) |
| return true; |
| |
| Instruction *User = I->user_back(); |
| assert(User && "A single use instruction with no uses."); |
| |
| switch (I->getOpcode()) { |
| case Instruction::FMul: { |
| // Don't break FMA, PowerPC prefers FMA. |
| if (User->getOpcode() != Instruction::FSub && |
| User->getOpcode() != Instruction::FAdd) |
| return true; |
| |
| const TargetOptions &Options = getTargetMachine().Options; |
| const Function *F = I->getFunction(); |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| Type *Ty = User->getOperand(0)->getType(); |
| |
| return !( |
| isFMAFasterThanFMulAndFAdd(*F, Ty) && |
| isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && |
| (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); |
| } |
| case Instruction::Load: { |
| // Don't break "store (load float*)" pattern, this pattern will be combined |
| // to "store (load int32)" in later InstCombine pass. See function |
| // combineLoadToOperationType. On PowerPC, loading a float point takes more |
| // cycles than loading a 32 bit integer. |
| LoadInst *LI = cast<LoadInst>(I); |
| // For the loads that combineLoadToOperationType does nothing, like |
| // ordered load, it should be profitable to hoist them. |
| // For swifterror load, it can only be used for pointer to pointer type, so |
| // later type check should get rid of this case. |
| if (!LI->isUnordered()) |
| return true; |
| |
| if (User->getOpcode() != Instruction::Store) |
| return true; |
| |
| if (I->getType()->getTypeID() != Type::FloatTyID) |
| return true; |
| |
| return false; |
| } |
| default: |
| return true; |
| } |
| return true; |
| } |
| |
| const MCPhysReg * |
| PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { |
| // LR is a callee-save register, but we must treat it as clobbered by any call |
| // site. Hence we include LR in the scratch registers, which are in turn added |
| // as implicit-defs for stackmaps and patchpoints. The same reasoning applies |
| // to CTR, which is used by any indirect call. |
| static const MCPhysReg ScratchRegs[] = { |
| PPC::X12, PPC::LR8, PPC::CTR8, 0 |
| }; |
| |
| return ScratchRegs; |
| } |
| |
| Register PPCTargetLowering::getExceptionPointerRegister( |
| const Constant *PersonalityFn) const { |
| return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; |
| } |
| |
| Register PPCTargetLowering::getExceptionSelectorRegister( |
| const Constant *PersonalityFn) const { |
| return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; |
| } |
| |
| bool |
| PPCTargetLowering::shouldExpandBuildVectorWithShuffles( |
| EVT VT , unsigned DefinedValues) const { |
| if (VT == MVT::v2i64) |
| return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves |
| |
| if (Subtarget.hasVSX()) |
| return true; |
| |
| return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); |
| } |
| |
| Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { |
| if (DisableILPPref || Subtarget.enableMachineScheduler()) |
| return TargetLowering::getSchedulingPreference(N); |
| |
| return Sched::ILP; |
| } |
| |
| // Create a fast isel object. |
| FastISel * |
| PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, |
| const TargetLibraryInfo *LibInfo) const { |
| return PPC::createFastISel(FuncInfo, LibInfo); |
| } |
| |
| // 'Inverted' means the FMA opcode after negating one multiplicand. |
| // For example, (fma -a b c) = (fnmsub a b c) |
| static unsigned invertFMAOpcode(unsigned Opc) { |
| switch (Opc) { |
| default: |
| llvm_unreachable("Invalid FMA opcode for PowerPC!"); |
| case ISD::FMA: |
| return PPCISD::FNMSUB; |
| case PPCISD::FNMSUB: |
| return ISD::FMA; |
| } |
| } |
| |
| SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, |
| bool LegalOps, bool OptForSize, |
| NegatibleCost &Cost, |
| unsigned Depth) const { |
| if (Depth > SelectionDAG::MaxRecursionDepth) |
| return SDValue(); |
| |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| SDNodeFlags Flags = Op.getNode()->getFlags(); |
| |
| switch (Opc) { |
| case PPCISD::FNMSUB: |
| if (!Op.hasOneUse() || !isTypeLegal(VT)) |
| break; |
| |
| const TargetOptions &Options = getTargetMachine().Options; |
| SDValue N0 = Op.getOperand(0); |
| SDValue N1 = Op.getOperand(1); |
| SDValue N2 = Op.getOperand(2); |
| SDLoc Loc(Op); |
| |
| NegatibleCost N2Cost = NegatibleCost::Expensive; |
| SDValue NegN2 = |
| getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); |
| |
| if (!NegN2) |
| return SDValue(); |
| |
| // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) |
| // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) |
| // These transformations may change sign of zeroes. For example, |
| // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. |
| if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { |
| // Try and choose the cheaper one to negate. |
| NegatibleCost N0Cost = NegatibleCost::Expensive; |
| SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, |
| N0Cost, Depth + 1); |
| |
| NegatibleCost N1Cost = NegatibleCost::Expensive; |
| SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, |
| N1Cost, Depth + 1); |
| |
| if (NegN0 && N0Cost <= N1Cost) { |
| Cost = std::min(N0Cost, N2Cost); |
| return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); |
| } else if (NegN1) { |
| Cost = std::min(N1Cost, N2Cost); |
| return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); |
| } |
| } |
| |
| // (fneg (fnmsub a b c)) => (fma a b (fneg c)) |
| if (isOperationLegal(ISD::FMA, VT)) { |
| Cost = N2Cost; |
| return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); |
| } |
| |
| break; |
| } |
| |
| return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, |
| Cost, Depth); |
| } |
| |
| // Override to enable LOAD_STACK_GUARD lowering on Linux. |
| bool PPCTargetLowering::useLoadStackGuardNode() const { |
| if (!Subtarget.isTargetLinux()) |
| return TargetLowering::useLoadStackGuardNode(); |
| return true; |
| } |
| |
| // Override to disable global variable loading on Linux and insert AIX canary |
| // word declaration. |
| void PPCTargetLowering::insertSSPDeclarations(Module &M) const { |
| if (Subtarget.isAIXABI()) { |
| M.getOrInsertGlobal(AIXSSPCanaryWordName, |
| Type::getInt8PtrTy(M.getContext())); |
| return; |
| } |
| if (!Subtarget.isTargetLinux()) |
| return TargetLowering::insertSSPDeclarations(M); |
| } |
| |
| Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { |
| if (Subtarget.isAIXABI()) |
| return M.getGlobalVariable(AIXSSPCanaryWordName); |
| return TargetLowering::getSDagStackGuard(M); |
| } |
| |
| bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const { |
| if (!VT.isSimple() || !Subtarget.hasVSX()) |
| return false; |
| |
| switch(VT.getSimpleVT().SimpleTy) { |
| default: |
| // For FP types that are currently not supported by PPC backend, return |
| // false. Examples: f16, f80. |
| return false; |
| case MVT::f32: |
| case MVT::f64: { |
| if (Subtarget.hasPrefixInstrs()) { |
| // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. |
| return true; |
| } |
| bool IsExact; |
| APSInt IntResult(16, false); |
| // The rounding mode doesn't really matter because we only care about floats |
| // that can be converted to integers exactly. |
| Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact); |
| // For exact values in the range [-16, 15] we can materialize the float. |
| if (IsExact && IntResult <= 15 && IntResult >= -16) |
| return true; |
| return Imm.isZero(); |
| } |
| case MVT::ppcf128: |
| return Imm.isPosZero(); |
| } |
| } |
| |
| // For vector shift operation op, fold |
| // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) |
| static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, |
| SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| EVT VT = N0.getValueType(); |
| unsigned OpSizeInBits = VT.getScalarSizeInBits(); |
| unsigned Opcode = N->getOpcode(); |
| unsigned TargetOpcode; |
| |
| switch (Opcode) { |
| default: |
| llvm_unreachable("Unexpected shift operation"); |
| case ISD::SHL: |
| TargetOpcode = PPCISD::SHL; |
| break; |
| case ISD::SRL: |
| TargetOpcode = PPCISD::SRL; |
| break; |
| case ISD::SRA: |
| TargetOpcode = PPCISD::SRA; |
| break; |
| } |
| |
| if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && |
| N1->getOpcode() == ISD::AND) |
| if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) |
| if (Mask->getZExtValue() == OpSizeInBits - 1) |
| return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); |
| |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { |
| if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) |
| return Value; |
| |
| SDValue N0 = N->getOperand(0); |
| ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || |
| N0.getOpcode() != ISD::SIGN_EXTEND || |
| N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || |
| N->getValueType(0) != MVT::i64) |
| return SDValue(); |
| |
| // We can't save an operation here if the value is already extended, and |
| // the existing shift is easier to combine. |
| SDValue ExtsSrc = N0.getOperand(0); |
| if (ExtsSrc.getOpcode() == ISD::TRUNCATE && |
| ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) |
| return SDValue(); |
| |
| SDLoc DL(N0); |
| SDValue ShiftBy = SDValue(CN1, 0); |
| // We want the shift amount to be i32 on the extswli, but the shift could |
| // have an i64. |
| if (ShiftBy.getValueType() == MVT::i64) |
| ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); |
| |
| return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), |
| ShiftBy); |
| } |
| |
| SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { |
| if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) |
| return Value; |
| |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { |
| if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) |
| return Value; |
| |
| return SDValue(); |
| } |
| |
| // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) |
| // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) |
| // When C is zero, the equation (addi Z, -C) can be simplified to Z |
| // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types |
| static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| if (!Subtarget.isPPC64()) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| auto isZextOfCompareWithConstant = [](SDValue Op) { |
| if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || |
| Op.getValueType() != MVT::i64) |
| return false; |
| |
| SDValue Cmp = Op.getOperand(0); |
| if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || |
| Cmp.getOperand(0).getValueType() != MVT::i64) |
| return false; |
| |
| if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { |
| int64_t NegConstant = 0 - Constant->getSExtValue(); |
| // Due to the limitations of the addi instruction, |
| // -C is required to be [-32768, 32767]. |
| return isInt<16>(NegConstant); |
| } |
| |
| return false; |
| }; |
| |
| bool LHSHasPattern = isZextOfCompareWithConstant(LHS); |
| bool RHSHasPattern = isZextOfCompareWithConstant(RHS); |
| |
| // If there is a pattern, canonicalize a zext operand to the RHS. |
| if (LHSHasPattern && !RHSHasPattern) |
| std::swap(LHS, RHS); |
| else if (!LHSHasPattern && !RHSHasPattern) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); |
| SDValue Cmp = RHS.getOperand(0); |
| SDValue Z = Cmp.getOperand(0); |
| auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); |
| int64_t NegConstant = 0 - Constant->getSExtValue(); |
| |
| switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { |
| default: break; |
| case ISD::SETNE: { |
| // when C == 0 |
| // --> addze X, (addic Z, -1).carry |
| // / |
| // add X, (zext(setne Z, C))-- |
| // \ when -32768 <= -C <= 32767 && C != 0 |
| // --> addze X, (addic (addi Z, -C), -1).carry |
| SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, |
| DAG.getConstant(NegConstant, DL, MVT::i64)); |
| SDValue AddOrZ = NegConstant != 0 ? Add : Z; |
| SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), |
| AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); |
| return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), |
| SDValue(Addc.getNode(), 1)); |
| } |
| case ISD::SETEQ: { |
| // when C == 0 |
| // --> addze X, (subfic Z, 0).carry |
| // / |
| // add X, (zext(sete Z, C))-- |
| // \ when -32768 <= -C <= 32767 && C != 0 |
| // --> addze X, (subfic (addi Z, -C), 0).carry |
| SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, |
| DAG.getConstant(NegConstant, DL, MVT::i64)); |
| SDValue AddOrZ = NegConstant != 0 ? Add : Z; |
| SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), |
| DAG.getConstant(0, DL, MVT::i64), AddOrZ); |
| return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), |
| SDValue(Subc.getNode(), 1)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Transform |
| // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to |
| // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) |
| // In this case both C1 and C2 must be known constants. |
| // C1+C2 must fit into a 34 bit signed integer. |
| static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, |
| const PPCSubtarget &Subtarget) { |
| if (!Subtarget.isUsingPCRelativeCalls()) |
| return SDValue(); |
| |
| // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. |
| // If we find that node try to cast the Global Address and the Constant. |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) |
| std::swap(LHS, RHS); |
| |
| if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) |
| return SDValue(); |
| |
| // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. |
| GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); |
| ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); |
| |
| // Check that both casts succeeded. |
| if (!GSDN || !ConstNode) |
| return SDValue(); |
| |
| int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); |
| SDLoc DL(GSDN); |
| |
| // The signed int offset needs to fit in 34 bits. |
| if (!isInt<34>(NewOffset)) |
| return SDValue(); |
| |
| // The new global address is a copy of the old global address except |
| // that it has the updated Offset. |
| SDValue GA = |
| DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), |
| NewOffset, GSDN->getTargetFlags()); |
| SDValue MatPCRel = |
| DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); |
| return MatPCRel; |
| } |
| |
| SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { |
| if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) |
| return Value; |
| |
| if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) |
| return Value; |
| |
| return SDValue(); |
| } |
| |
| // Detect TRUNCATE operations on bitcasts of float128 values. |
| // What we are looking for here is the situtation where we extract a subset |
| // of bits from a 128 bit float. |
| // This can be of two forms: |
| // 1) BITCAST of f128 feeding TRUNCATE |
| // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE |
| // The reason this is required is because we do not have a legal i128 type |
| // and so we want to prevent having to store the f128 and then reload part |
| // of it. |
| SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| // If we are using CRBits then try that first. |
| if (Subtarget.useCRBits()) { |
| // Check if CRBits did anything and return that if it did. |
| if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) |
| return CRTruncValue; |
| } |
| |
| SDLoc dl(N); |
| SDValue Op0 = N->getOperand(0); |
| |
| // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) |
| if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) |
| return SDValue(); |
| SDValue Sub = Op0.getOperand(0); |
| if (Sub.getOpcode() == ISD::SUB) { |
| SDValue SubOp0 = Sub.getOperand(0); |
| SDValue SubOp1 = Sub.getOperand(1); |
| if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && |
| (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { |
| return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), |
| SubOp1.getOperand(0), |
| DCI.DAG.getTargetConstant(0, dl, MVT::i32)); |
| } |
| } |
| } |
| |
| // Looking for a truncate of i128 to i64. |
| if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) |
| return SDValue(); |
| |
| int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; |
| |
| // SRL feeding TRUNCATE. |
| if (Op0.getOpcode() == ISD::SRL) { |
| ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); |
| // The right shift has to be by 64 bits. |
| if (!ConstNode || ConstNode->getZExtValue() != 64) |
| return SDValue(); |
| |
| // Switch the element number to extract. |
| EltToExtract = EltToExtract ? 0 : 1; |
| // Update Op0 past the SRL. |
| Op0 = Op0.getOperand(0); |
| } |
| |
| // BITCAST feeding a TRUNCATE possibly via SRL. |
| if (Op0.getOpcode() == ISD::BITCAST && |
| Op0.getValueType() == MVT::i128 && |
| Op0.getOperand(0).getValueType() == MVT::f128) { |
| SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); |
| return DCI.DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, |
| DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); |
| } |
| return SDValue(); |
| } |
| |
| SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); |
| if (!ConstOpOrElement) |
| return SDValue(); |
| |
| // An imul is usually smaller than the alternative sequence for legal type. |
| if (DAG.getMachineFunction().getFunction().hasMinSize() && |
| isOperationLegal(ISD::MUL, N->getValueType(0))) |
| return SDValue(); |
| |
| auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { |
| switch (this->Subtarget.getCPUDirective()) { |
| default: |
| // TODO: enhance the condition for subtarget before pwr8 |
| return false; |
| case PPC::DIR_PWR8: |
| // type mul add shl |
| // scalar 4 1 1 |
| // vector 7 2 2 |
| return true; |
| case PPC::DIR_PWR9: |
| case PPC::DIR_PWR10: |
| case PPC::DIR_PWR_FUTURE: |
| // type mul add shl |
| // scalar 5 2 2 |
| // vector 7 2 2 |
| |
| // The cycle RATIO of related operations are showed as a table above. |
| // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both |
| // scalar and vector type. For 2 instrs patterns, add/sub + shl |
| // are 4, it is always profitable; but for 3 instrs patterns |
| // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. |
| // So we should only do it for vector type. |
| return IsAddOne && IsNeg ? VT.isVector() : true; |
| } |
| }; |
| |
| EVT VT = N->getValueType(0); |
| SDLoc DL(N); |
| |
| const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); |
| bool IsNeg = MulAmt.isNegative(); |
| APInt MulAmtAbs = MulAmt.abs(); |
| |
| if ((MulAmtAbs - 1).isPowerOf2()) { |
| // (mul x, 2^N + 1) => (add (shl x, N), x) |
| // (mul x, -(2^N + 1)) => -(add (shl x, N), x) |
| |
| if (!IsProfitable(IsNeg, true, VT)) |
| return SDValue(); |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = |
| DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); |
| SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); |
| |
| if (!IsNeg) |
| return Res; |
| |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); |
| } else if ((MulAmtAbs + 1).isPowerOf2()) { |
| // (mul x, 2^N - 1) => (sub (shl x, N), x) |
| // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) |
| |
| if (!IsProfitable(IsNeg, false, VT)) |
| return SDValue(); |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = |
| DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), |
| DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); |
| |
| if (!IsNeg) |
| return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); |
| else |
| return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); |
| |
| } else { |
| return SDValue(); |
| } |
| } |
| |
| // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this |
| // in combiner since we need to check SD flags and other subtarget features. |
| SDValue PPCTargetLowering::combineFMALike(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDNodeFlags Flags = N->getFlags(); |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetOptions &Options = getTargetMachine().Options; |
| unsigned Opc = N->getOpcode(); |
| bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); |
| bool LegalOps = !DCI.isBeforeLegalizeOps(); |
| SDLoc Loc(N); |
| |
| if (!isOperationLegal(ISD::FMA, VT)) |
| return SDValue(); |
| |
| // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 |
| // since (fnmsub a b c)=-0 while c-ab=+0. |
| if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) |
| return SDValue(); |
| |
| // (fma (fneg a) b c) => (fnmsub a b c) |
| // (fnmsub (fneg a) b c) => (fma a b c) |
| if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) |
| return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); |
| |
| // (fma a (fneg b) c) => (fnmsub a b c) |
| // (fnmsub a (fneg b) c) => (fma a b c) |
| if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) |
| return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); |
| |
| return SDValue(); |
| } |
| |
| bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| // Only duplicate to increase tail-calls for the 64bit SysV ABIs. |
| if (!Subtarget.is64BitELFABI()) |
| return false; |
| |
| // If not a tail call then no need to proceed. |
| if (!CI->isTailCall()) |
| return false; |
| |
| // If sibling calls have been disabled and tail-calls aren't guaranteed |
| // there is no reason to duplicate. |
| auto &TM = getTargetMachine(); |
| if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) |
| return false; |
| |
| // Can't tail call a function called indirectly, or if it has variadic args. |
| const Function *Callee = CI->getCalledFunction(); |
| if (!Callee || Callee->isVarArg()) |
| return false; |
| |
| // Make sure the callee and caller calling conventions are eligible for tco. |
| const Function *Caller = CI->getParent()->getParent(); |
| if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), |
| CI->getCallingConv())) |
| return false; |
| |
| // If the function is local then we have a good chance at tail-calling it |
| return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); |
| } |
| |
| bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { |
| if (!Subtarget.hasVSX()) |
| return false; |
| if (Subtarget.hasP9Vector() && VT == MVT::f128) |
| return true; |
| return VT == MVT::f32 || VT == MVT::f64 || |
| VT == MVT::v4f32 || VT == MVT::v2f64; |
| } |
| |
| bool PPCTargetLowering:: |
| isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { |
| const Value *Mask = AndI.getOperand(1); |
| // If the mask is suitable for andi. or andis. we should sink the and. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { |
| // Can't handle constants wider than 64-bits. |
| if (CI->getBitWidth() > 64) |
| return false; |
| int64_t ConstVal = CI->getZExtValue(); |
| return isUInt<16>(ConstVal) || |
| (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); |
| } |
| |
| // For non-constant masks, we can always use the record-form and. |
| return true; |
| } |
| |
| // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) |
| // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) |
| // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) |
| // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) |
| // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 |
| SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { |
| assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); |
| assert(Subtarget.hasP9Altivec() && |
| "Only combine this when P9 altivec supported!"); |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| if (N->getOperand(0).getOpcode() == ISD::SUB) { |
| // Even for signed integers, if it's known to be positive (as signed |
| // integer) due to zero-extended inputs. |
| unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); |
| unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); |
| if ((SubOpcd0 == ISD::ZERO_EXTEND || |
| SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && |
| (SubOpcd1 == ISD::ZERO_EXTEND || |
| SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { |
| return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), |
| N->getOperand(0)->getOperand(0), |
| N->getOperand(0)->getOperand(1), |
| DAG.getTargetConstant(0, dl, MVT::i32)); |
| } |
| |
| // For type v4i32, it can be optimized with xvnegsp + vabsduw |
| if (N->getOperand(0).getValueType() == MVT::v4i32 && |
| N->getOperand(0).hasOneUse()) { |
| return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), |
| N->getOperand(0)->getOperand(0), |
| N->getOperand(0)->getOperand(1), |
| DAG.getTargetConstant(1, dl, MVT::i32)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // For type v4i32/v8ii16/v16i8, transform |
| // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) |
| // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) |
| // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) |
| // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) |
| SDValue PPCTargetLowering::combineVSelect(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); |
| assert(Subtarget.hasP9Altivec() && |
| "Only combine this when P9 altivec supported!"); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc dl(N); |
| SDValue Cond = N->getOperand(0); |
| SDValue TrueOpnd = N->getOperand(1); |
| SDValue FalseOpnd = N->getOperand(2); |
| EVT VT = N->getOperand(1).getValueType(); |
| |
| if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || |
| FalseOpnd.getOpcode() != ISD::SUB) |
| return SDValue(); |
| |
| // ABSD only available for type v4i32/v8i16/v16i8 |
| if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) |
| return SDValue(); |
| |
| // At least to save one more dependent computation |
| if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) |
| return SDValue(); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| |
| // Can only handle unsigned comparison here |
| switch (CC) { |
| default: |
| return SDValue(); |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| break; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| std::swap(TrueOpnd, FalseOpnd); |
| break; |
| } |
| |
| SDValue CmpOpnd1 = Cond.getOperand(0); |
| SDValue CmpOpnd2 = Cond.getOperand(1); |
| |
| // SETCC CmpOpnd1 CmpOpnd2 cond |
| // TrueOpnd = CmpOpnd1 - CmpOpnd2 |
| // FalseOpnd = CmpOpnd2 - CmpOpnd1 |
| if (TrueOpnd.getOperand(0) == CmpOpnd1 && |
| TrueOpnd.getOperand(1) == CmpOpnd2 && |
| FalseOpnd.getOperand(0) == CmpOpnd2 && |
| FalseOpnd.getOperand(1) == CmpOpnd1) { |
| return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), |
| CmpOpnd1, CmpOpnd2, |
| DAG.getTargetConstant(0, dl, MVT::i32)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// getAddrModeForFlags - Based on the set of address flags, select the most |
| /// optimal instruction format to match by. |
| PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { |
| // This is not a node we should be handling here. |
| if (Flags == PPC::MOF_None) |
| return PPC::AM_None; |
| // Unaligned D-Forms are tried first, followed by the aligned D-Forms. |
| for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) |
| if ((Flags & FlagSet) == FlagSet) |
| return PPC::AM_DForm; |
| for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) |
| if ((Flags & FlagSet) == FlagSet) |
| return PPC::AM_DSForm; |
| for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) |
| if ((Flags & FlagSet) == FlagSet) |
| return PPC::AM_DQForm; |
| for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) |
| if ((Flags & FlagSet) == FlagSet) |
| return PPC::AM_PrefixDForm; |
| // If no other forms are selected, return an X-Form as it is the most |
| // general addressing mode. |
| return PPC::AM_XForm; |
| } |
| |
| /// Set alignment flags based on whether or not the Frame Index is aligned. |
| /// Utilized when computing flags for address computation when selecting |
| /// load and store instructions. |
| static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, |
| SelectionDAG &DAG) { |
| bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); |
| if (!FI) |
| return; |
| const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); |
| // If this is (add $FI, $S16Imm), the alignment flags are already set |
| // based on the immediate. We just need to clear the alignment flags |
| // if the FI alignment is weaker. |
| if ((FrameIndexAlign % 4) != 0) |
| FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; |
| if ((FrameIndexAlign % 16) != 0) |
| FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; |
| // If the address is a plain FrameIndex, set alignment flags based on |
| // FI alignment. |
| if (!IsAdd) { |
| if ((FrameIndexAlign % 4) == 0) |
| FlagSet |= PPC::MOF_RPlusSImm16Mult4; |
| if ((FrameIndexAlign % 16) == 0) |
| FlagSet |= PPC::MOF_RPlusSImm16Mult16; |
| } |
| } |
| |
| /// Given a node, compute flags that are used for address computation when |
| /// selecting load and store instructions. The flags computed are stored in |
| /// FlagSet. This function takes into account whether the node is a constant, |
| /// an ADD, OR, or a constant, and computes the address flags accordingly. |
| static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, |
| SelectionDAG &DAG) { |
| // Set the alignment flags for the node depending on if the node is |
| // 4-byte or 16-byte aligned. |
| auto SetAlignFlagsForImm = [&](uint64_t Imm) { |
| if ((Imm & 0x3) == 0) |
| FlagSet |= PPC::MOF_RPlusSImm16Mult4; |
| if ((Imm & 0xf) == 0) |
| FlagSet |= PPC::MOF_RPlusSImm16Mult16; |
| }; |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // All 32-bit constants can be computed as LIS + Disp. |
| const APInt &ConstImm = CN->getAPIntValue(); |
| if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. |
| FlagSet |= PPC::MOF_AddrIsSImm32; |
| SetAlignFlagsForImm(ConstImm.getZExtValue()); |
| setAlignFlagsForFI(N, FlagSet, DAG); |
| } |
| if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. |
| FlagSet |= PPC::MOF_RPlusSImm34; |
| else // Let constant materialization handle large constants. |
| FlagSet |= PPC::MOF_NotAddNorCst; |
| } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { |
| // This address can be represented as an addition of: |
| // - Register + Imm16 (possibly a multiple of 4/16) |
| // - Register + Imm34 |
| // - Register + PPCISD::Lo |
| // - Register + Register |
| // In any case, we won't have to match this as Base + Zero. |
| SDValue RHS = N.getOperand(1); |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { |
| const APInt &ConstImm = CN->getAPIntValue(); |
| if (ConstImm.isSignedIntN(16)) { |
| FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. |
| SetAlignFlagsForImm(ConstImm.getZExtValue()); |
| setAlignFlagsForFI(N, FlagSet, DAG); |
| } |
| if (ConstImm.isSignedIntN(34)) |
| FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. |
| else |
| FlagSet |= PPC::MOF_RPlusR; // Register. |
| } else if (RHS.getOpcode() == PPCISD::Lo && |
| !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) |
| FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. |
| else |
| FlagSet |= PPC::MOF_RPlusR; |
| } else { // The address computation is not a constant or an addition. |
| setAlignFlagsForFI(N, FlagSet, DAG); |
| FlagSet |= PPC::MOF_NotAddNorCst; |
| } |
| } |
| |
| static bool isPCRelNode(SDValue N) { |
| return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || |
| isValidPCRelNode<ConstantPoolSDNode>(N) || |
| isValidPCRelNode<GlobalAddressSDNode>(N) || |
| isValidPCRelNode<JumpTableSDNode>(N) || |
| isValidPCRelNode<BlockAddressSDNode>(N)); |
| } |
| |
| /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute |
| /// the address flags of the load/store instruction that is to be matched. |
| unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, |
| SelectionDAG &DAG) const { |
| unsigned FlagSet = PPC::MOF_None; |
| |
| // Compute subtarget flags. |
| if (!Subtarget.hasP9Vector()) |
| FlagSet |= PPC::MOF_SubtargetBeforeP9; |
| else { |
| FlagSet |= PPC::MOF_SubtargetP9; |
| if (Subtarget.hasPrefixInstrs()) |
| FlagSet |= PPC::MOF_SubtargetP10; |
| } |
| if (Subtarget.hasSPE()) |
| FlagSet |= PPC::MOF_SubtargetSPE; |
| |
| // Check if we have a PCRel node and return early. |
| if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) |
| return FlagSet; |
| |
| // If the node is the paired load/store intrinsics, compute flags for |
| // address computation and return early. |
| unsigned ParentOp = Parent->getOpcode(); |
| if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || |
| (ParentOp == ISD::INTRINSIC_VOID))) { |
| unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue(); |
| if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { |
| SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) |
| ? Parent->getOperand(2) |
| : Parent->getOperand(3); |
| computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); |
| FlagSet |= PPC::MOF_Vector; |
| return FlagSet; |
| } |
| } |
| |
| // Mark this as something we don't want to handle here if it is atomic |
| // or pre-increment instruction. |
| if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) |
| if (LSB->isIndexed()) |
| return PPC::MOF_None; |
| |
| // Compute in-memory type flags. This is based on if there are scalars, |
| // floats or vectors. |
| const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); |
| assert(MN && "Parent should be a MemSDNode!"); |
| EVT MemVT = MN->getMemoryVT(); |
| unsigned Size = MemVT.getSizeInBits(); |
| if (MemVT.isScalarInteger()) { |
| assert(Size <= 128 && |
| "Not expecting scalar integers larger than 16 bytes!"); |
| if (Size < 32) |
| FlagSet |= PPC::MOF_SubWordInt; |
| else if (Size == 32) |
| FlagSet |= PPC::MOF_WordInt; |
| else |
| FlagSet |= PPC::MOF_DoubleWordInt; |
| } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. |
| if (Size == 128) |
| FlagSet |= PPC::MOF_Vector; |
| else if (Size == 256) { |
| assert(Subtarget.pairedVectorMemops() && |
| "256-bit vectors are only available when paired vector memops is " |
| "enabled!"); |
| FlagSet |= PPC::MOF_Vector; |
| } else |
| llvm_unreachable("Not expecting illegal vectors!"); |
| } else { // Floating point type: can be scalar, f128 or vector types. |
| if (Size == 32 || Size == 64) |
| FlagSet |= PPC::MOF_ScalarFloat; |
| else if (MemVT == MVT::f128 || MemVT.isVector()) |
| FlagSet |= PPC::MOF_Vector; |
| else |
| llvm_unreachable("Not expecting illegal scalar floats!"); |
| } |
| |
| // Compute flags for address computation. |
| computeFlagsForAddressComputation(N, FlagSet, DAG); |
| |
| // Compute type extension flags. |
| if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { |
| switch (LN->getExtensionType()) { |
| case ISD::SEXTLOAD: |
| FlagSet |= PPC::MOF_SExt; |
| break; |
| case ISD::EXTLOAD: |
| case ISD::ZEXTLOAD: |
| FlagSet |= PPC::MOF_ZExt; |
| break; |
| case ISD::NON_EXTLOAD: |
| FlagSet |= PPC::MOF_NoExt; |
| break; |
| } |
| } else |
| FlagSet |= PPC::MOF_NoExt; |
| |
| // For integers, no extension is the same as zero extension. |
| // We set the extension mode to zero extension so we don't have |
| // to add separate entries in AddrModesMap for loads and stores. |
| if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { |
| FlagSet |= PPC::MOF_ZExt; |
| FlagSet &= ~PPC::MOF_NoExt; |
| } |
| |
| // If we don't have prefixed instructions, 34-bit constants should be |
| // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. |
| bool IsNonP1034BitConst = |
| ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & |
| FlagSet) == PPC::MOF_RPlusSImm34; |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && |
| IsNonP1034BitConst) |
| FlagSet |= PPC::MOF_NotAddNorCst; |
| |
| return FlagSet; |
| } |
| |
| /// SelectForceXFormMode - Given the specified address, force it to be |
| /// represented as an indexed [r+r] operation (an XForm instruction). |
| PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, |
| SDValue &Base, |
| SelectionDAG &DAG) const { |
| |
| PPC::AddrMode Mode = PPC::AM_XForm; |
| int16_t ForceXFormImm = 0; |
| if (provablyDisjointOr(DAG, N) && |
| !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { |
| Disp = N.getOperand(0); |
| Base = N.getOperand(1); |
| return Mode; |
| } |
| |
| // If the address is the result of an add, we will utilize the fact that the |
| // address calculation includes an implicit add. However, we can reduce |
| // register pressure if we do not materialize a constant just for use as the |
| // index register. We only get rid of the add if it is not an add of a |
| // value and a 16-bit signed constant and both have a single use. |
| if (N.getOpcode() == ISD::ADD && |
| (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || |
| !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { |
| Disp = N.getOperand(0); |
| Base = N.getOperand(1); |
| return Mode; |
| } |
| |
| // Otherwise, use R0 as the base register. |
| Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, |
| N.getValueType()); |
| Base = N; |
| |
| return Mode; |
| } |
| |
| bool PPCTargetLowering::splitValueIntoRegisterParts( |
| SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| EVT ValVT = Val.getValueType(); |
| // If we are splitting a scalar integer into f64 parts (i.e. so they |
| // can be placed into VFRC registers), we need to zero extend and |
| // bitcast the values. This will ensure the value is placed into a |
| // VSR using direct moves or stack operations as needed. |
| if (PartVT == MVT::f64 && |
| (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { |
| Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); |
| Parts[0] = Val; |
| return true; |
| } |
| return false; |
| } |
| |
| SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, |
| SelectionDAG &DAG) const { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| EVT RetVT = Op.getValueType(); |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| SDValue Callee = |
| DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); |
| bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| for (const SDValue &N : Op->op_values()) { |
| EVT ArgVT = N.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| Entry.Node = N; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); |
| Entry.IsZExt = !Entry.IsSExt; |
| Args.push_back(Entry); |
| } |
| |
| SDValue InChain = DAG.getEntryNode(); |
| SDValue TCChain = InChain; |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| bool isTailCall = |
| TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && |
| (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); |
| if (isTailCall) |
| InChain = TCChain; |
| CLI.setDebugLoc(SDLoc(Op)) |
| .setChain(InChain) |
| .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) |
| .setTailCall(isTailCall) |
| .setSExtResult(SignExtend) |
| .setZExtResult(!SignExtend) |
| .setIsPostTypeLegalization(true); |
| return TLI.LowerCallTo(CLI).first; |
| } |
| |
| SDValue PPCTargetLowering::lowerLibCallBasedOnType( |
| const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Op.getValueType() == MVT::f32) |
| return lowerToLibCall(LibCallFloatName, Op, DAG); |
| |
| if (Op.getValueType() == MVT::f64) |
| return lowerToLibCall(LibCallDoubleName, Op, DAG); |
| |
| return SDValue(); |
| } |
| |
| bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { |
| SDNodeFlags Flags = Op.getNode()->getFlags(); |
| return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && |
| Flags.hasNoNaNs() && Flags.hasNoInfs(); |
| } |
| |
| bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { |
| return Op.getNode()->getFlags().hasApproximateFuncs(); |
| } |
| |
| bool PPCTargetLowering::isScalarMASSConversionEnabled() const { |
| return getTargetMachine().Options.PPCGenScalarMASSEntries; |
| } |
| |
| SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, |
| const char *LibCallFloatName, |
| const char *LibCallDoubleNameFinite, |
| const char *LibCallFloatNameFinite, |
| SDValue Op, |
| SelectionDAG &DAG) const { |
| if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op)) |
| return SDValue(); |
| |
| if (!isLowringToMASSFiniteSafe(Op)) |
| return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, |
| DAG); |
| |
| return lowerLibCallBasedOnType(LibCallFloatNameFinite, |
| LibCallDoubleNameFinite, Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { |
| return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", |
| "__xl_powf_finite", Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { |
| return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", |
| "__xl_sinf_finite", Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { |
| return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", |
| "__xl_cosf_finite", Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { |
| return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", |
| "__xl_logf_finite", Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { |
| return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", |
| "__xl_log10f_finite", Op, DAG); |
| } |
| |
| SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { |
| return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", |
| "__xl_expf_finite", Op, DAG); |
| } |
| |
| // If we happen to match to an aligned D-Form, check if the Frame Index is |
| // adequately aligned. If it is not, reset the mode to match to X-Form. |
| static void setXFormForUnalignedFI(SDValue N, unsigned Flags, |
| PPC::AddrMode &Mode) { |
| if (!isa<FrameIndexSDNode>(N)) |
| return; |
| if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || |
| (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) |
| Mode = PPC::AM_XForm; |
| } |
| |
| /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), |
| /// compute the address flags of the node, get the optimal address mode based |
| /// on the flags, and set the Base and Disp based on the address mode. |
| PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, |
| SDValue N, SDValue &Disp, |
| SDValue &Base, |
| SelectionDAG &DAG, |
| MaybeAlign Align) const { |
| SDLoc DL(Parent); |
| |
| // Compute the address flags. |
| unsigned Flags = computeMOFlags(Parent, N, DAG); |
| |
| // Get the optimal address mode based on the Flags. |
| PPC::AddrMode Mode = getAddrModeForFlags(Flags); |
| |
| // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. |
| // Select an X-Form load if it is not. |
| setXFormForUnalignedFI(N, Flags, Mode); |
| |
| // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. |
| if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { |
| assert(Subtarget.isUsingPCRelativeCalls() && |
| "Must be using PC-Relative calls when a valid PC-Relative node is " |
| "present!"); |
| Mode = PPC::AM_PCRel; |
| } |
| |
| // Set Base and Disp accordingly depending on the address mode. |
| switch (Mode) { |
| case PPC::AM_DForm: |
| case PPC::AM_DSForm: |
| case PPC::AM_DQForm: { |
| // This is a register plus a 16-bit immediate. The base will be the |
| // register and the displacement will be the immediate unless it |
| // isn't sufficiently aligned. |
| if (Flags & PPC::MOF_RPlusSImm16) { |
| SDValue Op0 = N.getOperand(0); |
| SDValue Op1 = N.getOperand(1); |
| int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); |
| if (!Align || isAligned(*Align, Imm)) { |
| Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); |
| Base = Op0; |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); |
| } |
| break; |
| } |
| } |
| // This is a register plus the @lo relocation. The base is the register |
| // and the displacement is the global address. |
| else if (Flags & PPC::MOF_RPlusLo) { |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetGlobalTLSAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| break; |
| } |
| // This is a constant address at most 32 bits. The base will be |
| // zero or load-immediate-shifted and the displacement will be |
| // the low 16 bits of the address. |
| else if (Flags & PPC::MOF_AddrIsSImm32) { |
| auto *CN = cast<ConstantSDNode>(N); |
| EVT CNType = CN->getValueType(0); |
| uint64_t CNImm = CN->getZExtValue(); |
| // If this address fits entirely in a 16-bit sext immediate field, codegen |
| // this as "d, 0". |
| int16_t Imm; |
| if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { |
| Disp = DAG.getTargetConstant(Imm, DL, CNType); |
| Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, |
| CNType); |
| break; |
| } |
| // Handle 32-bit sext immediate with LIS + Addr mode. |
| if ((CNType == MVT::i32 || isInt<32>(CNImm)) && |
| (!Align || isAligned(*Align, CNImm))) { |
| int32_t Addr = (int32_t)CNImm; |
| // Otherwise, break this down into LIS + Disp. |
| Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); |
| Base = |
| DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); |
| uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; |
| Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); |
| break; |
| } |
| } |
| // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. |
| Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); |
| } else |
| Base = N; |
| break; |
| } |
| case PPC::AM_PrefixDForm: { |
| int64_t Imm34 = 0; |
| unsigned Opcode = N.getOpcode(); |
| if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && |
| (isIntS34Immediate(N.getOperand(1), Imm34))) { |
| // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. |
| Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) |
| Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); |
| else |
| Base = N.getOperand(0); |
| } else if (isIntS34Immediate(N, Imm34)) { |
| // The address is a 34-bit signed immediate. |
| Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); |
| Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); |
| } |
| break; |
| } |
| case PPC::AM_PCRel: { |
| // When selecting PC-Relative instructions, "Base" is not utilized as |
| // we select the address as [PC+imm]. |
| Disp = N; |
| break; |
| } |
| case PPC::AM_None: |
| break; |
| default: { // By default, X-Form is always available to be selected. |
| // When a frame index is not aligned, we also match by XForm. |
| FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); |
| Base = FI ? N : N.getOperand(1); |
| Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, |
| N.getValueType()) |
| : N.getOperand(0); |
| break; |
| } |
| } |
| return Mode; |
| } |
| |
| CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, |
| bool Return, |
| bool IsVarArg) const { |
| switch (CC) { |
| case CallingConv::Cold: |
| return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); |
| default: |
| return CC_PPC64_ELF_FIS; |
| } |
| } |
| |
| bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { |
| // TODO: 16-byte atomic type support for AIX is in progress; we should be able |
| // to inline 16-byte atomic ops on AIX too in the future. |
| return Subtarget.isPPC64() && |
| (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) && |
| Subtarget.hasQuadwordAtomics(); |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| unsigned Size = AI->getType()->getPrimitiveSizeInBits(); |
| if (shouldInlineQuadwordAtomics() && Size == 128) |
| return AtomicExpansionKind::MaskedIntrinsic; |
| |
| switch (AI->getOperation()) { |
| case AtomicRMWInst::UIncWrap: |
| case AtomicRMWInst::UDecWrap: |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| return TargetLowering::shouldExpandAtomicRMWInIR(AI); |
| } |
| |
| llvm_unreachable("unreachable atomicrmw operation"); |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { |
| unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); |
| if (shouldInlineQuadwordAtomics() && Size == 128) |
| return AtomicExpansionKind::MaskedIntrinsic; |
| return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); |
| } |
| |
| static Intrinsic::ID |
| getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { |
| switch (BinOp) { |
| default: |
| llvm_unreachable("Unexpected AtomicRMW BinOp"); |
| case AtomicRMWInst::Xchg: |
| return Intrinsic::ppc_atomicrmw_xchg_i128; |
| case AtomicRMWInst::Add: |
| return Intrinsic::ppc_atomicrmw_add_i128; |
| case AtomicRMWInst::Sub: |
| return Intrinsic::ppc_atomicrmw_sub_i128; |
| case AtomicRMWInst::And: |
| return Intrinsic::ppc_atomicrmw_and_i128; |
| case AtomicRMWInst::Or: |
| return Intrinsic::ppc_atomicrmw_or_i128; |
| case AtomicRMWInst::Xor: |
| return Intrinsic::ppc_atomicrmw_xor_i128; |
| case AtomicRMWInst::Nand: |
| return Intrinsic::ppc_atomicrmw_nand_i128; |
| } |
| } |
| |
| Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( |
| IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, |
| Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { |
| assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Type *ValTy = Incr->getType(); |
| assert(ValTy->getPrimitiveSizeInBits() == 128); |
| Function *RMW = Intrinsic::getDeclaration( |
| M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); |
| Type *Int64Ty = Type::getInt64Ty(M->getContext()); |
| Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); |
| Value *IncrHi = |
| Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); |
| Value *Addr = |
| Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); |
| Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); |
| Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); |
| Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); |
| Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); |
| Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); |
| return Builder.CreateOr( |
| Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); |
| } |
| |
| Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( |
| IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, |
| Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { |
| assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Type *ValTy = CmpVal->getType(); |
| assert(ValTy->getPrimitiveSizeInBits() == 128); |
| Function *IntCmpXchg = |
| Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); |
| Type *Int64Ty = Type::getInt64Ty(M->getContext()); |
| Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); |
| Value *CmpHi = |
| Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); |
| Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); |
| Value *NewHi = |
| Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); |
| Value *Addr = |
| Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); |
| emitLeadingFence(Builder, CI, Ord); |
| Value *LoHi = |
| Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); |
| emitTrailingFence(Builder, CI, Ord); |
| Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); |
| Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); |
| Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); |
| Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); |
| return Builder.CreateOr( |
| Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); |
| } |