blob: af3c27ebac76de744cff96f7805bbb5f3a7301b0 [file] [log] [blame]
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
// A struct to define how the data stream should be patched. For Indexed
// profiling, only uint64_t data type is needed.
struct PatchItem {
uint64_t Pos; // Where to patch.
uint64_t *D; // Pointer to an array of source data.
int N; // Number of elements in \c D array.
};
namespace llvm {
// A wrapper class to abstract writer stream with support of bytes
// back patching.
class ProfOStream {
public:
ProfOStream(raw_fd_ostream &FD)
: IsFDOStream(true), OS(FD), LE(FD, support::little) {}
ProfOStream(raw_string_ostream &STR)
: IsFDOStream(false), OS(STR), LE(STR, support::little) {}
uint64_t tell() { return OS.tell(); }
void write(uint64_t V) { LE.write<uint64_t>(V); }
void writeByte(uint8_t V) { LE.write<uint8_t>(V); }
// \c patch can only be called when all data is written and flushed.
// For raw_string_ostream, the patch is done on the target string
// directly and it won't be reflected in the stream's internal buffer.
void patch(PatchItem *P, int NItems) {
using namespace support;
if (IsFDOStream) {
raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
const uint64_t LastPos = FDOStream.tell();
for (int K = 0; K < NItems; K++) {
FDOStream.seek(P[K].Pos);
for (int I = 0; I < P[K].N; I++)
write(P[K].D[I]);
}
// Reset the stream to the last position after patching so that users
// don't accidentally overwrite data. This makes it consistent with
// the string stream below which replaces the data directly.
FDOStream.seek(LastPos);
} else {
raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
std::string &Data = SOStream.str(); // with flush
for (int K = 0; K < NItems; K++) {
for (int I = 0; I < P[K].N; I++) {
uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]);
Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t),
(const char *)&Bytes, sizeof(uint64_t));
}
}
}
}
// If \c OS is an instance of \c raw_fd_ostream, this field will be
// true. Otherwise, \c OS will be an raw_string_ostream.
bool IsFDOStream;
raw_ostream &OS;
support::endian::Writer LE;
};
class InstrProfRecordWriterTrait {
public:
using key_type = StringRef;
using key_type_ref = StringRef;
using data_type = const InstrProfWriter::ProfilingData *const;
using data_type_ref = const InstrProfWriter::ProfilingData *const;
using hash_value_type = uint64_t;
using offset_type = uint64_t;
support::endianness ValueProfDataEndianness = support::little;
InstrProfSummaryBuilder *SummaryBuilder;
InstrProfSummaryBuilder *CSSummaryBuilder;
InstrProfRecordWriterTrait() = default;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace support;
endian::Writer LE(Out, little);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
// Value data
M += ValueProfData::getSize(ProfileData.second);
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
Out.write(K.data(), N);
}
void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
using namespace support;
endian::Writer LE(Out, little);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
CSSummaryBuilder->addRecord(ProfRecord);
else
SummaryBuilder->addRecord(ProfRecord);
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts)
LE.write<uint64_t>(I);
// Write value data
std::unique_ptr<ValueProfData> VDataPtr =
ValueProfData::serializeFrom(ProfileData.second);
uint32_t S = VDataPtr->getSize();
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
Out.write((const char *)VDataPtr.get(), S);
}
}
};
} // end namespace llvm
InstrProfWriter::InstrProfWriter(bool Sparse)
: Sparse(Sparse), InfoObj(new InstrProfRecordWriterTrait()) {}
InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(
support::endianness Endianness) {
InfoObj->ValueProfDataEndianness = Endianness;
}
void InstrProfWriter::setOutputSparse(bool Sparse) {
this->Sparse = Sparse;
}
void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto Name = I.Name;
auto Hash = I.Hash;
addRecord(Name, Hash, std::move(I), Weight, Warn);
}
void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap,
const OverlapFuncFilters &FuncFilter) {
auto Name = Other.Name;
auto Hash = Other.Hash;
Other.accumulateCounts(FuncLevelOverlap.Test);
if (FunctionData.find(Name) == FunctionData.end()) {
Overlap.addOneUnique(FuncLevelOverlap.Test);
return;
}
if (FuncLevelOverlap.Test.CountSum < 1.0f) {
Overlap.Overlap.NumEntries += 1;
return;
}
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
if (NewFunc) {
Overlap.addOneMismatch(FuncLevelOverlap.Test);
return;
}
InstrProfRecord &Dest = Where->second;
uint64_t ValueCutoff = FuncFilter.ValueCutoff;
if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
ValueCutoff = 0;
Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}
void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
InstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
InstrProfRecord &Dest = Where->second;
auto MapWarn = [&](instrprof_error E) {
Warn(make_error<InstrProfError>(E));
};
if (NewFunc) {
// We've never seen a function with this name and hash, add it.
Dest = std::move(I);
if (Weight > 1)
Dest.scale(Weight, 1, MapWarn);
} else {
// We're updating a function we've seen before.
Dest.merge(I, Weight, MapWarn);
}
Dest.sortValueData();
}
void InstrProfWriter::addMemProfRecord(
const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
auto Result = MemProfRecordData.insert({Id, Record});
// If we inserted a new record then we are done.
if (Result.second) {
return;
}
memprof::IndexedMemProfRecord &Existing = Result.first->second;
Existing.merge(Record);
}
bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
const memprof::Frame &Frame,
function_ref<void(Error)> Warn) {
auto Result = MemProfFrameData.insert({Id, Frame});
// If a mapping already exists for the current frame id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose Frame -> Id
// mapping across profiles is inconsistent.
if (!Result.second && Result.first->second != Frame) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"frame to id mapping mismatch"));
return false;
}
return true;
}
void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
llvm::append_range(BinaryIds, BIs);
}
void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
function_ref<void(Error)> Warn) {
for (auto &I : IPW.FunctionData)
for (auto &Func : I.getValue())
addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
for (auto &I : IPW.BinaryIds)
addBinaryIds(I);
MemProfFrameData.reserve(IPW.MemProfFrameData.size());
for (auto &I : IPW.MemProfFrameData) {
// If we weren't able to add the frame mappings then it doesn't make sense
// to try to merge the records from this profile.
if (!addMemProfFrame(I.first, I.second, Warn))
return;
}
MemProfRecordData.reserve(IPW.MemProfRecordData.size());
for (auto &I : IPW.MemProfRecordData) {
addMemProfRecord(I.first, I.second);
}
}
bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
if (!Sparse)
return true;
for (const auto &Func : PD) {
const InstrProfRecord &IPR = Func.second;
if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
return true;
}
return false;
}
static void setSummary(IndexedInstrProf::Summary *TheSummary,
ProfileSummary &PS) {
using namespace IndexedInstrProf;
const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
TheSummary->NumSummaryFields = Summary::NumKinds;
TheSummary->NumCutoffEntries = Res.size();
TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
for (unsigned I = 0; I < Res.size(); I++)
TheSummary->setEntry(I, Res[I]);
}
Error InstrProfWriter::writeImpl(ProfOStream &OS) {
using namespace IndexedInstrProf;
using namespace support;
OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->SummaryBuilder = &ISB;
InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->CSSummaryBuilder = &CSISB;
// Populate the hash table generator.
for (const auto &I : FunctionData)
if (shouldEncodeData(I.getValue()))
Generator.insert(I.getKey(), &I.getValue());
// Write the header.
IndexedInstrProf::Header Header;
Header.Magic = IndexedInstrProf::Magic;
Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion;
if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
Header.Version |= VARIANT_MASK_IR_PROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
Header.Version |= VARIANT_MASK_CSIR_PROF;
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
Header.Version |= VARIANT_MASK_INSTR_ENTRY;
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
Header.Version |= VARIANT_MASK_MEMPROF;
Header.Unused = 0;
Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
Header.HashOffset = 0;
Header.MemProfOffset = 0;
Header.BinaryIdOffset = 0;
int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
// Only write out all the fields except 'HashOffset', 'MemProfOffset' and
// 'BinaryIdOffset'. We need to remember the offset of these fields to allow
// back patching later.
for (int I = 0; I < N - 3; I++)
OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);
// Save the location of Header.HashOffset field in \c OS.
uint64_t HashTableStartFieldOffset = OS.tell();
// Reserve the space for HashOffset field.
OS.write(0);
// Save the location of MemProf profile data. This is stored in two parts as
// the schema and as a separate on-disk chained hashtable.
uint64_t MemProfSectionOffset = OS.tell();
// Reserve space for the MemProf table field to be patched later if this
// profile contains memory profile information.
OS.write(0);
// Save the location of binary ids section.
uint64_t BinaryIdSectionOffset = OS.tell();
// Reserve space for the BinaryIdOffset field to be patched later if this
// profile contains binary ids.
OS.write(0);
// Reserve space to write profile summary data.
uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
// Remember the summary offset.
uint64_t SummaryOffset = OS.tell();
for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
OS.write(0);
uint64_t CSSummaryOffset = 0;
uint64_t CSSummarySize = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
CSSummaryOffset = OS.tell();
CSSummarySize = SummarySize / sizeof(uint64_t);
for (unsigned I = 0; I < CSSummarySize; I++)
OS.write(0);
}
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
// Write the MemProf profile data if we have it. This includes a simple schema
// with the format described below followed by the hashtable:
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Stream offset before emitting the frame table
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
uint64_t MemProfSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
MemProfSectionStart = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
auto Schema = memprof::PortableMemInfoBlock::getSchema();
OS.write(static_cast<uint64_t>(Schema.size()));
for (const auto Id : Schema) {
OS.write(static_cast<uint64_t>(Id));
}
auto RecordWriter = std::make_unique<memprof::RecordWriterTrait>();
RecordWriter->Schema = &Schema;
OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
RecordTableGenerator;
for (auto &I : MemProfRecordData) {
// Insert the key (func hash) and value (memprof record).
RecordTableGenerator.insert(I.first, I.second);
}
uint64_t RecordTableOffset =
RecordTableGenerator.Emit(OS.OS, *RecordWriter);
uint64_t FramePayloadOffset = OS.tell();
auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>();
OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
FrameTableGenerator;
for (auto &I : MemProfFrameData) {
// Insert the key (frame id) and value (frame contents).
FrameTableGenerator.insert(I.first, I.second);
}
uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter);
PatchItem PatchItems[] = {
{MemProfSectionStart, &RecordTableOffset, 1},
{MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1},
{MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1},
};
OS.patch(PatchItems, 3);
}
// BinaryIdSection has two parts:
// 1. uint64_t BinaryIdsSectionSize
// 2. list of binary ids that consist of:
// a. uint64_t BinaryIdLength
// b. uint8_t BinaryIdData
// c. uint8_t Padding (if necessary)
uint64_t BinaryIdSectionStart = OS.tell();
// Calculate size of binary section.
uint64_t BinaryIdsSectionSize = 0;
// Remove duplicate binary ids.
llvm::sort(BinaryIds);
BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()),
BinaryIds.end());
for (auto BI : BinaryIds) {
// Increment by binary id length data type size.
BinaryIdsSectionSize += sizeof(uint64_t);
// Increment by binary id data length, aligned to 8 bytes.
BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
}
// Write binary ids section size.
OS.write(BinaryIdsSectionSize);
for (auto BI : BinaryIds) {
uint64_t BILen = BI.size();
// Write binary id length.
OS.write(BILen);
// Write binary id data.
for (unsigned K = 0; K < BILen; K++)
OS.writeByte(BI[K]);
// Write padding if necessary.
uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
for (unsigned K = 0; K < PaddingSize; K++)
OS.writeByte(0);
}
// Allocate space for data to be serialized out.
std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
IndexedInstrProf::allocSummary(SummarySize);
// Compute the Summary and copy the data to the data
// structure to be serialized out (to disk or buffer).
std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
setSummary(TheSummary.get(), *PS);
InfoObj->SummaryBuilder = nullptr;
// For Context Sensitive summary.
std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
setSummary(TheCSSummary.get(), *CSPS);
}
InfoObj->CSSummaryBuilder = nullptr;
// Now do the final patch:
PatchItem PatchItems[] = {
// Patch the Header.HashOffset field.
{HashTableStartFieldOffset, &HashTableStart, 1},
// Patch the Header.MemProfOffset (=0 for profiles without MemProf
// data).
{MemProfSectionOffset, &MemProfSectionStart, 1},
// Patch the Header.BinaryIdSectionOffset.
{BinaryIdSectionOffset, &BinaryIdSectionStart, 1},
// Patch the summary data.
{SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
(int)(SummarySize / sizeof(uint64_t))},
{CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
(int)CSSummarySize}};
OS.patch(PatchItems, std::size(PatchItems));
for (const auto &I : FunctionData)
for (const auto &F : I.getValue())
if (Error E = validateRecord(F.second))
return E;
return Error::success();
}
Error InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
ProfOStream POS(OS);
return writeImpl(POS);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
raw_string_ostream OS(Data);
ProfOStream POS(OS);
// Write the hash table.
if (Error E = writeImpl(POS))
return nullptr;
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}
static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};
Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
DenseSet<uint64_t> SeenValues;
for (uint32_t I = 0; I < ND; I++)
if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second)
return make_error<InstrProfError>(instrprof_error::invalid_prof);
}
}
return Error::success();
}
void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
const InstrProfRecord &Func,
InstrProfSymtab &Symtab,
raw_fd_ostream &OS) {
OS << Name << "\n";
OS << "# Func Hash:\n" << Hash << "\n";
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
OS << "# Counter Values:\n";
for (uint64_t Count : Func.Counts)
OS << Count << "\n";
uint32_t NumValueKinds = Func.getNumValueKinds();
if (!NumValueKinds) {
OS << "\n";
return;
}
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
OS << "# NumValueSites:\n" << NS << "\n";
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
OS << ND << "\n";
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
for (uint32_t I = 0; I < ND; I++) {
if (VK == IPVK_IndirectCallTarget)
OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":"
<< VD[I].Count << "\n";
else
OS << VD[I].Value << ":" << VD[I].Count << "\n";
}
}
}
OS << "\n";
}
Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
// Check CS first since it implies an IR level profile.
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
OS << "# CSIR level Instrumentation Flag\n:csir\n";
else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
OS << "# IR level Instrumentation Flag\n:ir\n";
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
OS << "# Always instrument the function entry block\n:entry_first\n";
InstrProfSymtab Symtab;
using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
using RecordType = std::pair<StringRef, FuncPair>;
SmallVector<RecordType, 4> OrderedFuncData;
for (const auto &I : FunctionData) {
if (shouldEncodeData(I.getValue())) {
if (Error E = Symtab.addFuncName(I.getKey()))
return E;
for (const auto &Func : I.getValue())
OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
}
}
llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
return std::tie(A.first, A.second.first) <
std::tie(B.first, B.second.first);
});
for (const auto &record : OrderedFuncData) {
const StringRef &Name = record.first;
const FuncPair &Func = record.second;
writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
}
for (const auto &record : OrderedFuncData) {
const FuncPair &Func = record.second;
if (Error E = validateRecord(Func.second))
return E;
}
return Error::success();
}