| //===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for writing profiling data for clang's |
| // instrumentation based PGO and coverage. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ProfileData/InstrProfWriter.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/IR/ProfileSummary.h" |
| #include "llvm/ProfileData/InstrProf.h" |
| #include "llvm/ProfileData/MemProf.h" |
| #include "llvm/ProfileData/ProfileCommon.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/OnDiskHashTable.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| // A struct to define how the data stream should be patched. For Indexed |
| // profiling, only uint64_t data type is needed. |
| struct PatchItem { |
| uint64_t Pos; // Where to patch. |
| uint64_t *D; // Pointer to an array of source data. |
| int N; // Number of elements in \c D array. |
| }; |
| |
| namespace llvm { |
| |
| // A wrapper class to abstract writer stream with support of bytes |
| // back patching. |
| class ProfOStream { |
| public: |
| ProfOStream(raw_fd_ostream &FD) |
| : IsFDOStream(true), OS(FD), LE(FD, support::little) {} |
| ProfOStream(raw_string_ostream &STR) |
| : IsFDOStream(false), OS(STR), LE(STR, support::little) {} |
| |
| uint64_t tell() { return OS.tell(); } |
| void write(uint64_t V) { LE.write<uint64_t>(V); } |
| void writeByte(uint8_t V) { LE.write<uint8_t>(V); } |
| |
| // \c patch can only be called when all data is written and flushed. |
| // For raw_string_ostream, the patch is done on the target string |
| // directly and it won't be reflected in the stream's internal buffer. |
| void patch(PatchItem *P, int NItems) { |
| using namespace support; |
| |
| if (IsFDOStream) { |
| raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS); |
| const uint64_t LastPos = FDOStream.tell(); |
| for (int K = 0; K < NItems; K++) { |
| FDOStream.seek(P[K].Pos); |
| for (int I = 0; I < P[K].N; I++) |
| write(P[K].D[I]); |
| } |
| // Reset the stream to the last position after patching so that users |
| // don't accidentally overwrite data. This makes it consistent with |
| // the string stream below which replaces the data directly. |
| FDOStream.seek(LastPos); |
| } else { |
| raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS); |
| std::string &Data = SOStream.str(); // with flush |
| for (int K = 0; K < NItems; K++) { |
| for (int I = 0; I < P[K].N; I++) { |
| uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]); |
| Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t), |
| (const char *)&Bytes, sizeof(uint64_t)); |
| } |
| } |
| } |
| } |
| |
| // If \c OS is an instance of \c raw_fd_ostream, this field will be |
| // true. Otherwise, \c OS will be an raw_string_ostream. |
| bool IsFDOStream; |
| raw_ostream &OS; |
| support::endian::Writer LE; |
| }; |
| |
| class InstrProfRecordWriterTrait { |
| public: |
| using key_type = StringRef; |
| using key_type_ref = StringRef; |
| |
| using data_type = const InstrProfWriter::ProfilingData *const; |
| using data_type_ref = const InstrProfWriter::ProfilingData *const; |
| |
| using hash_value_type = uint64_t; |
| using offset_type = uint64_t; |
| |
| support::endianness ValueProfDataEndianness = support::little; |
| InstrProfSummaryBuilder *SummaryBuilder; |
| InstrProfSummaryBuilder *CSSummaryBuilder; |
| |
| InstrProfRecordWriterTrait() = default; |
| |
| static hash_value_type ComputeHash(key_type_ref K) { |
| return IndexedInstrProf::ComputeHash(K); |
| } |
| |
| static std::pair<offset_type, offset_type> |
| EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { |
| using namespace support; |
| |
| endian::Writer LE(Out, little); |
| |
| offset_type N = K.size(); |
| LE.write<offset_type>(N); |
| |
| offset_type M = 0; |
| for (const auto &ProfileData : *V) { |
| const InstrProfRecord &ProfRecord = ProfileData.second; |
| M += sizeof(uint64_t); // The function hash |
| M += sizeof(uint64_t); // The size of the Counts vector |
| M += ProfRecord.Counts.size() * sizeof(uint64_t); |
| |
| // Value data |
| M += ValueProfData::getSize(ProfileData.second); |
| } |
| LE.write<offset_type>(M); |
| |
| return std::make_pair(N, M); |
| } |
| |
| void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) { |
| Out.write(K.data(), N); |
| } |
| |
| void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) { |
| using namespace support; |
| |
| endian::Writer LE(Out, little); |
| for (const auto &ProfileData : *V) { |
| const InstrProfRecord &ProfRecord = ProfileData.second; |
| if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first)) |
| CSSummaryBuilder->addRecord(ProfRecord); |
| else |
| SummaryBuilder->addRecord(ProfRecord); |
| |
| LE.write<uint64_t>(ProfileData.first); // Function hash |
| LE.write<uint64_t>(ProfRecord.Counts.size()); |
| for (uint64_t I : ProfRecord.Counts) |
| LE.write<uint64_t>(I); |
| |
| // Write value data |
| std::unique_ptr<ValueProfData> VDataPtr = |
| ValueProfData::serializeFrom(ProfileData.second); |
| uint32_t S = VDataPtr->getSize(); |
| VDataPtr->swapBytesFromHost(ValueProfDataEndianness); |
| Out.write((const char *)VDataPtr.get(), S); |
| } |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| InstrProfWriter::InstrProfWriter(bool Sparse) |
| : Sparse(Sparse), InfoObj(new InstrProfRecordWriterTrait()) {} |
| |
| InstrProfWriter::~InstrProfWriter() { delete InfoObj; } |
| |
| // Internal interface for testing purpose only. |
| void InstrProfWriter::setValueProfDataEndianness( |
| support::endianness Endianness) { |
| InfoObj->ValueProfDataEndianness = Endianness; |
| } |
| |
| void InstrProfWriter::setOutputSparse(bool Sparse) { |
| this->Sparse = Sparse; |
| } |
| |
| void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight, |
| function_ref<void(Error)> Warn) { |
| auto Name = I.Name; |
| auto Hash = I.Hash; |
| addRecord(Name, Hash, std::move(I), Weight, Warn); |
| } |
| |
| void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other, |
| OverlapStats &Overlap, |
| OverlapStats &FuncLevelOverlap, |
| const OverlapFuncFilters &FuncFilter) { |
| auto Name = Other.Name; |
| auto Hash = Other.Hash; |
| Other.accumulateCounts(FuncLevelOverlap.Test); |
| if (FunctionData.find(Name) == FunctionData.end()) { |
| Overlap.addOneUnique(FuncLevelOverlap.Test); |
| return; |
| } |
| if (FuncLevelOverlap.Test.CountSum < 1.0f) { |
| Overlap.Overlap.NumEntries += 1; |
| return; |
| } |
| auto &ProfileDataMap = FunctionData[Name]; |
| bool NewFunc; |
| ProfilingData::iterator Where; |
| std::tie(Where, NewFunc) = |
| ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); |
| if (NewFunc) { |
| Overlap.addOneMismatch(FuncLevelOverlap.Test); |
| return; |
| } |
| InstrProfRecord &Dest = Where->second; |
| |
| uint64_t ValueCutoff = FuncFilter.ValueCutoff; |
| if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter)) |
| ValueCutoff = 0; |
| |
| Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff); |
| } |
| |
| void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash, |
| InstrProfRecord &&I, uint64_t Weight, |
| function_ref<void(Error)> Warn) { |
| auto &ProfileDataMap = FunctionData[Name]; |
| |
| bool NewFunc; |
| ProfilingData::iterator Where; |
| std::tie(Where, NewFunc) = |
| ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); |
| InstrProfRecord &Dest = Where->second; |
| |
| auto MapWarn = [&](instrprof_error E) { |
| Warn(make_error<InstrProfError>(E)); |
| }; |
| |
| if (NewFunc) { |
| // We've never seen a function with this name and hash, add it. |
| Dest = std::move(I); |
| if (Weight > 1) |
| Dest.scale(Weight, 1, MapWarn); |
| } else { |
| // We're updating a function we've seen before. |
| Dest.merge(I, Weight, MapWarn); |
| } |
| |
| Dest.sortValueData(); |
| } |
| |
| void InstrProfWriter::addMemProfRecord( |
| const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) { |
| auto Result = MemProfRecordData.insert({Id, Record}); |
| // If we inserted a new record then we are done. |
| if (Result.second) { |
| return; |
| } |
| memprof::IndexedMemProfRecord &Existing = Result.first->second; |
| Existing.merge(Record); |
| } |
| |
| bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id, |
| const memprof::Frame &Frame, |
| function_ref<void(Error)> Warn) { |
| auto Result = MemProfFrameData.insert({Id, Frame}); |
| // If a mapping already exists for the current frame id and it does not |
| // match the new mapping provided then reset the existing contents and bail |
| // out. We don't support the merging of memprof data whose Frame -> Id |
| // mapping across profiles is inconsistent. |
| if (!Result.second && Result.first->second != Frame) { |
| Warn(make_error<InstrProfError>(instrprof_error::malformed, |
| "frame to id mapping mismatch")); |
| return false; |
| } |
| return true; |
| } |
| |
| void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) { |
| llvm::append_range(BinaryIds, BIs); |
| } |
| |
| void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW, |
| function_ref<void(Error)> Warn) { |
| for (auto &I : IPW.FunctionData) |
| for (auto &Func : I.getValue()) |
| addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn); |
| |
| BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size()); |
| for (auto &I : IPW.BinaryIds) |
| addBinaryIds(I); |
| |
| MemProfFrameData.reserve(IPW.MemProfFrameData.size()); |
| for (auto &I : IPW.MemProfFrameData) { |
| // If we weren't able to add the frame mappings then it doesn't make sense |
| // to try to merge the records from this profile. |
| if (!addMemProfFrame(I.first, I.second, Warn)) |
| return; |
| } |
| |
| MemProfRecordData.reserve(IPW.MemProfRecordData.size()); |
| for (auto &I : IPW.MemProfRecordData) { |
| addMemProfRecord(I.first, I.second); |
| } |
| } |
| |
| bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) { |
| if (!Sparse) |
| return true; |
| for (const auto &Func : PD) { |
| const InstrProfRecord &IPR = Func.second; |
| if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; })) |
| return true; |
| } |
| return false; |
| } |
| |
| static void setSummary(IndexedInstrProf::Summary *TheSummary, |
| ProfileSummary &PS) { |
| using namespace IndexedInstrProf; |
| |
| const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary(); |
| TheSummary->NumSummaryFields = Summary::NumKinds; |
| TheSummary->NumCutoffEntries = Res.size(); |
| TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount()); |
| TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount()); |
| TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount()); |
| TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount()); |
| TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts()); |
| TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions()); |
| for (unsigned I = 0; I < Res.size(); I++) |
| TheSummary->setEntry(I, Res[I]); |
| } |
| |
| Error InstrProfWriter::writeImpl(ProfOStream &OS) { |
| using namespace IndexedInstrProf; |
| using namespace support; |
| |
| OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator; |
| |
| InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs); |
| InfoObj->SummaryBuilder = &ISB; |
| InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs); |
| InfoObj->CSSummaryBuilder = &CSISB; |
| |
| // Populate the hash table generator. |
| for (const auto &I : FunctionData) |
| if (shouldEncodeData(I.getValue())) |
| Generator.insert(I.getKey(), &I.getValue()); |
| |
| // Write the header. |
| IndexedInstrProf::Header Header; |
| Header.Magic = IndexedInstrProf::Magic; |
| Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation)) |
| Header.Version |= VARIANT_MASK_IR_PROF; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) |
| Header.Version |= VARIANT_MASK_CSIR_PROF; |
| if (static_cast<bool>(ProfileKind & |
| InstrProfKind::FunctionEntryInstrumentation)) |
| Header.Version |= VARIANT_MASK_INSTR_ENTRY; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage)) |
| Header.Version |= VARIANT_MASK_BYTE_COVERAGE; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly)) |
| Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) |
| Header.Version |= VARIANT_MASK_MEMPROF; |
| |
| Header.Unused = 0; |
| Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType); |
| Header.HashOffset = 0; |
| Header.MemProfOffset = 0; |
| Header.BinaryIdOffset = 0; |
| int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); |
| |
| // Only write out all the fields except 'HashOffset', 'MemProfOffset' and |
| // 'BinaryIdOffset'. We need to remember the offset of these fields to allow |
| // back patching later. |
| for (int I = 0; I < N - 3; I++) |
| OS.write(reinterpret_cast<uint64_t *>(&Header)[I]); |
| |
| // Save the location of Header.HashOffset field in \c OS. |
| uint64_t HashTableStartFieldOffset = OS.tell(); |
| // Reserve the space for HashOffset field. |
| OS.write(0); |
| |
| // Save the location of MemProf profile data. This is stored in two parts as |
| // the schema and as a separate on-disk chained hashtable. |
| uint64_t MemProfSectionOffset = OS.tell(); |
| // Reserve space for the MemProf table field to be patched later if this |
| // profile contains memory profile information. |
| OS.write(0); |
| |
| // Save the location of binary ids section. |
| uint64_t BinaryIdSectionOffset = OS.tell(); |
| // Reserve space for the BinaryIdOffset field to be patched later if this |
| // profile contains binary ids. |
| OS.write(0); |
| |
| // Reserve space to write profile summary data. |
| uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size(); |
| uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries); |
| // Remember the summary offset. |
| uint64_t SummaryOffset = OS.tell(); |
| for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++) |
| OS.write(0); |
| uint64_t CSSummaryOffset = 0; |
| uint64_t CSSummarySize = 0; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) { |
| CSSummaryOffset = OS.tell(); |
| CSSummarySize = SummarySize / sizeof(uint64_t); |
| for (unsigned I = 0; I < CSSummarySize; I++) |
| OS.write(0); |
| } |
| |
| // Write the hash table. |
| uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj); |
| |
| // Write the MemProf profile data if we have it. This includes a simple schema |
| // with the format described below followed by the hashtable: |
| // uint64_t RecordTableOffset = RecordTableGenerator.Emit |
| // uint64_t FramePayloadOffset = Stream offset before emitting the frame table |
| // uint64_t FrameTableOffset = FrameTableGenerator.Emit |
| // uint64_t Num schema entries |
| // uint64_t Schema entry 0 |
| // uint64_t Schema entry 1 |
| // .... |
| // uint64_t Schema entry N - 1 |
| // OnDiskChainedHashTable MemProfRecordData |
| // OnDiskChainedHashTable MemProfFrameData |
| uint64_t MemProfSectionStart = 0; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) { |
| MemProfSectionStart = OS.tell(); |
| OS.write(0ULL); // Reserve space for the memprof record table offset. |
| OS.write(0ULL); // Reserve space for the memprof frame payload offset. |
| OS.write(0ULL); // Reserve space for the memprof frame table offset. |
| |
| auto Schema = memprof::PortableMemInfoBlock::getSchema(); |
| OS.write(static_cast<uint64_t>(Schema.size())); |
| for (const auto Id : Schema) { |
| OS.write(static_cast<uint64_t>(Id)); |
| } |
| |
| auto RecordWriter = std::make_unique<memprof::RecordWriterTrait>(); |
| RecordWriter->Schema = &Schema; |
| OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait> |
| RecordTableGenerator; |
| for (auto &I : MemProfRecordData) { |
| // Insert the key (func hash) and value (memprof record). |
| RecordTableGenerator.insert(I.first, I.second); |
| } |
| |
| uint64_t RecordTableOffset = |
| RecordTableGenerator.Emit(OS.OS, *RecordWriter); |
| |
| uint64_t FramePayloadOffset = OS.tell(); |
| |
| auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>(); |
| OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait> |
| FrameTableGenerator; |
| for (auto &I : MemProfFrameData) { |
| // Insert the key (frame id) and value (frame contents). |
| FrameTableGenerator.insert(I.first, I.second); |
| } |
| |
| uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter); |
| |
| PatchItem PatchItems[] = { |
| {MemProfSectionStart, &RecordTableOffset, 1}, |
| {MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1}, |
| {MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1}, |
| }; |
| OS.patch(PatchItems, 3); |
| } |
| |
| // BinaryIdSection has two parts: |
| // 1. uint64_t BinaryIdsSectionSize |
| // 2. list of binary ids that consist of: |
| // a. uint64_t BinaryIdLength |
| // b. uint8_t BinaryIdData |
| // c. uint8_t Padding (if necessary) |
| uint64_t BinaryIdSectionStart = OS.tell(); |
| // Calculate size of binary section. |
| uint64_t BinaryIdsSectionSize = 0; |
| |
| // Remove duplicate binary ids. |
| llvm::sort(BinaryIds); |
| BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()), |
| BinaryIds.end()); |
| |
| for (auto BI : BinaryIds) { |
| // Increment by binary id length data type size. |
| BinaryIdsSectionSize += sizeof(uint64_t); |
| // Increment by binary id data length, aligned to 8 bytes. |
| BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t)); |
| } |
| // Write binary ids section size. |
| OS.write(BinaryIdsSectionSize); |
| |
| for (auto BI : BinaryIds) { |
| uint64_t BILen = BI.size(); |
| // Write binary id length. |
| OS.write(BILen); |
| // Write binary id data. |
| for (unsigned K = 0; K < BILen; K++) |
| OS.writeByte(BI[K]); |
| // Write padding if necessary. |
| uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen; |
| for (unsigned K = 0; K < PaddingSize; K++) |
| OS.writeByte(0); |
| } |
| |
| // Allocate space for data to be serialized out. |
| std::unique_ptr<IndexedInstrProf::Summary> TheSummary = |
| IndexedInstrProf::allocSummary(SummarySize); |
| // Compute the Summary and copy the data to the data |
| // structure to be serialized out (to disk or buffer). |
| std::unique_ptr<ProfileSummary> PS = ISB.getSummary(); |
| setSummary(TheSummary.get(), *PS); |
| InfoObj->SummaryBuilder = nullptr; |
| |
| // For Context Sensitive summary. |
| std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr; |
| if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) { |
| TheCSSummary = IndexedInstrProf::allocSummary(SummarySize); |
| std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary(); |
| setSummary(TheCSSummary.get(), *CSPS); |
| } |
| InfoObj->CSSummaryBuilder = nullptr; |
| |
| // Now do the final patch: |
| PatchItem PatchItems[] = { |
| // Patch the Header.HashOffset field. |
| {HashTableStartFieldOffset, &HashTableStart, 1}, |
| // Patch the Header.MemProfOffset (=0 for profiles without MemProf |
| // data). |
| {MemProfSectionOffset, &MemProfSectionStart, 1}, |
| // Patch the Header.BinaryIdSectionOffset. |
| {BinaryIdSectionOffset, &BinaryIdSectionStart, 1}, |
| // Patch the summary data. |
| {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()), |
| (int)(SummarySize / sizeof(uint64_t))}, |
| {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()), |
| (int)CSSummarySize}}; |
| |
| OS.patch(PatchItems, std::size(PatchItems)); |
| |
| for (const auto &I : FunctionData) |
| for (const auto &F : I.getValue()) |
| if (Error E = validateRecord(F.second)) |
| return E; |
| |
| return Error::success(); |
| } |
| |
| Error InstrProfWriter::write(raw_fd_ostream &OS) { |
| // Write the hash table. |
| ProfOStream POS(OS); |
| return writeImpl(POS); |
| } |
| |
| std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() { |
| std::string Data; |
| raw_string_ostream OS(Data); |
| ProfOStream POS(OS); |
| // Write the hash table. |
| if (Error E = writeImpl(POS)) |
| return nullptr; |
| // Return this in an aligned memory buffer. |
| return MemoryBuffer::getMemBufferCopy(Data); |
| } |
| |
| static const char *ValueProfKindStr[] = { |
| #define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator, |
| #include "llvm/ProfileData/InstrProfData.inc" |
| }; |
| |
| Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) { |
| for (uint32_t VK = 0; VK <= IPVK_Last; VK++) { |
| uint32_t NS = Func.getNumValueSites(VK); |
| if (!NS) |
| continue; |
| for (uint32_t S = 0; S < NS; S++) { |
| uint32_t ND = Func.getNumValueDataForSite(VK, S); |
| std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S); |
| DenseSet<uint64_t> SeenValues; |
| for (uint32_t I = 0; I < ND; I++) |
| if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second) |
| return make_error<InstrProfError>(instrprof_error::invalid_prof); |
| } |
| } |
| |
| return Error::success(); |
| } |
| |
| void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash, |
| const InstrProfRecord &Func, |
| InstrProfSymtab &Symtab, |
| raw_fd_ostream &OS) { |
| OS << Name << "\n"; |
| OS << "# Func Hash:\n" << Hash << "\n"; |
| OS << "# Num Counters:\n" << Func.Counts.size() << "\n"; |
| OS << "# Counter Values:\n"; |
| for (uint64_t Count : Func.Counts) |
| OS << Count << "\n"; |
| |
| uint32_t NumValueKinds = Func.getNumValueKinds(); |
| if (!NumValueKinds) { |
| OS << "\n"; |
| return; |
| } |
| |
| OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n"; |
| for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) { |
| uint32_t NS = Func.getNumValueSites(VK); |
| if (!NS) |
| continue; |
| OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n"; |
| OS << "# NumValueSites:\n" << NS << "\n"; |
| for (uint32_t S = 0; S < NS; S++) { |
| uint32_t ND = Func.getNumValueDataForSite(VK, S); |
| OS << ND << "\n"; |
| std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S); |
| for (uint32_t I = 0; I < ND; I++) { |
| if (VK == IPVK_IndirectCallTarget) |
| OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":" |
| << VD[I].Count << "\n"; |
| else |
| OS << VD[I].Value << ":" << VD[I].Count << "\n"; |
| } |
| } |
| } |
| |
| OS << "\n"; |
| } |
| |
| Error InstrProfWriter::writeText(raw_fd_ostream &OS) { |
| // Check CS first since it implies an IR level profile. |
| if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) |
| OS << "# CSIR level Instrumentation Flag\n:csir\n"; |
| else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation)) |
| OS << "# IR level Instrumentation Flag\n:ir\n"; |
| |
| if (static_cast<bool>(ProfileKind & |
| InstrProfKind::FunctionEntryInstrumentation)) |
| OS << "# Always instrument the function entry block\n:entry_first\n"; |
| InstrProfSymtab Symtab; |
| |
| using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>; |
| using RecordType = std::pair<StringRef, FuncPair>; |
| SmallVector<RecordType, 4> OrderedFuncData; |
| |
| for (const auto &I : FunctionData) { |
| if (shouldEncodeData(I.getValue())) { |
| if (Error E = Symtab.addFuncName(I.getKey())) |
| return E; |
| for (const auto &Func : I.getValue()) |
| OrderedFuncData.push_back(std::make_pair(I.getKey(), Func)); |
| } |
| } |
| |
| llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) { |
| return std::tie(A.first, A.second.first) < |
| std::tie(B.first, B.second.first); |
| }); |
| |
| for (const auto &record : OrderedFuncData) { |
| const StringRef &Name = record.first; |
| const FuncPair &Func = record.second; |
| writeRecordInText(Name, Func.first, Func.second, Symtab, OS); |
| } |
| |
| for (const auto &record : OrderedFuncData) { |
| const FuncPair &Func = record.second; |
| if (Error E = validateRecord(Func.second)) |
| return E; |
| } |
| |
| return Error::success(); |
| } |